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ABSTRACT
High quality black hole videos can provide key evidence of
astrophysical processes that single static images cannot pro-
vide. However, reconstructing a video of a black hole is a
highly ill-posed problem, requiring additional structural con-
straints to produce a plausible solution. Traditional structural
constraints on the spatial or temporal structure are subject to
human bias. In our work, we adapt recently developed tech-
niques to solve realistic black hole video reconstruction with-
out direct priors on the spatial or temporal structure, mitigat-
ing human bias. In particular, we solve a set of per-frame
imaging inverse problems by relying on the shared structure
across different underlying frames of the black hole as regu-
larization. We encode this shared structure through a deep
generative neural network, requiring that the reconstructed
frames all lie within the range of this shared generator. We
demonstrate our framework on a set of synthetic measure-
ments of a simulated video of the supermassive black hole
M87*, showing that we can substantially outperform both
traditional and modern imaging methods and even achieve a
level of superresolution in the reconstructed frames.

Index Terms— inverse problems, computational imag-
ing, astronomical imaging, phase retrieval, interferometry

1. INTRODUCTION
Imaging the dynamics of a black hole opens a window into
understanding complex black hole properties, such as how
they grow and evolve. In 2019, the first images of the su-
permassive black hole Messier 87* (M87*) was produced by
the Event Horizon Telescope (EHT) collaboration. This im-
age demonstrated the possibilities of advancing fundamental
physics through black hole images [1]. However, from this
single static image, there are important properties of black
holes that cannot be observed, such as understanding the
jet launching and accretion processes [2, 3]. Characterizing
these dynamic properties is a key goal of the next-generation
Event Horizon Telescope (ngEHT). To do so requires that
the ngEHT create dynamic, rather than static, black hole re-
constructions in the form of black hole videos. This involves
observing a black hole, namely M87*, at regular intervals
over the course of a few months.

The EHT array generates measurements of black holes
through very long baseline interferometry (VLBI). In this set-

ting, black hole image reconstruction can be characterized
by interferometric measurements y = f(x) + ⌘ where f is
the forward model that is dependent on the telescope con-
figuration, x is the true underlying image that we are trying
to reconstruct, and ⌘ is noise. The difficulty of this prob-
lem arises from a non-convex forward model and the inherent
physical constraints of the EHT array. Namely, the EHT tele-
scope array is small (i.e., 11 telescope sites in 2023) and the
distance between sites is limited by the size of the earth, up-
per bounding the maximum image resolution. The sparsity of
measurements makes this problem highly ill-posed. Although
the ngEHT does plan to add additional telescopes, the same
physical constraints will still apply to any realistic telescope
array. Thus, additional structural constraints are necessary for
reconstructing black hole images from VLBI measurements.

Currently, black hole image reconstruction methods all
rely on defining structural constraints on the image, either
through hand-crafted or data-driven priors. A key challenge
affecting this choice is that direct images of black holes do
not exist, making it hard to identify the optimal choice of
constraints. For example, hand-crafted priors such as spatial
priors (e.g. total variation [4]) or temporal-consistency priors
require selecting hyperparameters, which are subject to hu-
man bias. On the other hand, accurate data-driven priors do
not exist since we do not have access to direct images of black
holes. While we could use data-driven priors of other image
distributions (e.g. simulated black hole images), this could
bias our reconstructions towards those datasets.

We aim to adapt recently developed techniques to solve
black hole video reconstruction without direct priors on the
spatial or temporal structure, but instead using priors on
shared structure between different images of the same black
hole. We adapt the framework in [5, 6] to show how this
method can handle the challenging problem of black hole
video reconstruction without explicit priors on the spatiotem-
poral structure. To do so, we solve a set of per-frame imaging
inverse problems by inferring the shared structure across the
true underlying images. Our method exploits the fact that
we expect different images of the same black hole to share
common structure, which we encode through a shared deep
generative neural network. We demonstrate this method on
realistic synthetic measurements of M87* and show that it
outperforms other methods.
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(a) UV Coverage (b) UV Coverage (c) Ground Truth (d) Target (e) Dirty Image       

Fig. 1. Intrinsic resolution of the M87* Event Horizon
Telescope (EHT) measurements. The EHT measures sparse
spatial frequencies (i.e. Fourier components) of the image.
The 2D Fourier frequency coverage of the array, with posi-
tions (u, v), is called the UV coverage. To reconstruct the un-
derlying image in (c), the full frequency domain, represented
by the orange square in (a), must be measured. Measuring
instead only all frequency components within the green circle
in (a) and (b) generates the target image in (d), where (b) is
(a) zoomed in over 10x. The EHT measures a subset of fre-
quencies within the green circle’s interior, shown by the black
samples in (b). If we use complex visibility measurements (as
described in Sec. 2.1) where yvis. = Ax + ⌘ and A is a low-
rank compressed sensing matrix, then we can naively recover
the dirty image in (e), computed by AHyvis..

2. VERY LONG BASELINE INTERFEROMETRY
2.1. VLBI measurement process
In VLBI, we measure a single 2D spatial Fourier frequency of
the image x for each pair of telescopes a and b at time t. This
measurement is called the complex visibility F t

a,b
(x). This

results in
�
St

2

�
measurements for St observing telescopes at

time t. For more details on how these measurements are ac-
quired, see [7]. In Fig. 1, we visualize the measured frequency
coverage, measurements of M87* for an EHT array with 11
telescopes, and the intrinsic resolution of the telescope array.
2.2. Data products
In reality, the complex visibility measurements made by
a VLBI imaging array, such as the EHT, include different
sources of noise. Specifically, the noisy measurements are
characterized by �

t

a,b
= ei(�

t
a��

t
b)F t

a,b
(x) + ⌘t

a,b
, where F t

a,b

is the ideal Fourier component measured by telescopes a, b
at time t, ⌘t

a,b
is noise arising from Gaussian thermal noise

[8], and �a and �b are phase errors arising from the inho-
mogeneity of the atmosphere [9]. These phase errors make
the phase from raw visibility measurements unusable at mm
and sub-mm wavelengths [9], rendering VLBI imaging as a
phase retrieval problem. However, when we consider a set of
three telescopes a, b, c, in the triple product �t

a,b
�
t

b,c
�
t

c,a
, we

have an identity property ei(�a��b)ei(�b��c)ei(�c��a) = 1.
Hence, the product �a,b�b,c�c,a, called the bispectrum, is
invariant to atmospheric error [10]. This motivates the usage
of the phase of the bispectrum, called the closure phase, as
a constraint for the image reconstruction problem. Addition-
ally, with calibration, the visibility amplitudes |�t

a,b
| can be

well estimated [7], giving us a second set of constraints1.
1Although the amplitudes can be largely calibrated, some error typically

remains. As phase errors are much more challenging, we chose to make the
simplifying assumption of fully calibrated amplitudes in this work.

Formally, we define our measurements for a single image as

y := (yamp., yclph.)

yamp.
:=

�
|�t

a,b
|
 
(a,b)2S

t
2,t

=

n
|F t

a,b
(x)|+ ⌘amp.,t

a,b

o

(a,b)2S
t
2,t

yclph. :=
�
\(�t

a,b
�
t

b,c
�
t

c,a
)
 
(a,b,c)2S

t
3,t

=

n
\(F t

a,b
(x)F t

b,c
(x)F t

c,a
(x)) + ⌘clph.,t

a,b,c

o

(a,b,c)2S
t
3,t

(1)

where a, b, c index telescopes, t is a time stamp from 0 to T ,
and St

k
=

�
S

t

k

�
2. Following [7, 11] we treat the noise on

yamp. and yclph. as Gaussian.

3. APPROACH
In this work, we adapt a method proposed in [5, 6] to the
task of reconstructing a video of a black hole from noisy
VLBI phase-retrieval measurements. Although [5, 6] demon-
strated their approach on the simpler task of reconstructing
a video from idealized VLBI compressed-sensing measure-
ments, they did not include realistic thermal and atmospheric
noise sources on the measurements, which warrants several
modifications to the method.

The key assumption of this method is that different under-
lying images share common low-dimensional structure. This
assumption is consistent with our problem setting since we
are observing a single evolving target across many nights;
while it is changing, many features such as the size of the
black hole shadow (i.e., ring diameter) remain consistent. We
can use this shared structure as regularization even without
knowledge of the true underlying data distribution that gener-
ated the underlying images. This common structure can be
captured by a shared Image Generation Model (IGM) G✓:
a deep generative neural network whose weights ✓ are in-
ferred directly from N noisy measurements {y(i) = f (i)

(x)+
⌘(i)}N

i=1
. We solve the reconstruction problem by constrain-

ing the reconstructed images {x̂(i)}N
i=1

to lie within the range
of G. Fig. 2 shows an overview of our method.

Formally, following [5, 6], we use a proxy for the evi-
dence lower bound (ELBO), termed the ELBOProxy, as our
optimization objective. We define 1) a generator of the form
x = G(z) where z 2 Rd and x 2 RM⇥M , 2) N variational
distributions for the latent space {z(i) ⇠ q�(i)(z(i))}Ni=1

, and
3) prior distribution log pZ(z|G) defined by z ⇠ N (0, I). For
a single measurement example y,

ELBOProxy(G, q�; y)

:= Ez⇠q�(z)

h
log p(y|G(z))| {z }

data-fit

+ log pZ(z|G)| {z }
prior

� log q�(z)| {z }
log entropy

i
.

(2)

2It is unnecessary to use all |St
3
| closure phase measurements. We use the

minimum set St
3

such that the set of all telescopes St = [Si2St
3
Si.
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Fig. 2. Overview of our method. In this work, we re-
construct a video of the black hole M87⇤ from synthetic
sparse, noisy very-long baseline interferometry (VLBI) mea-
surements. This problem is highly ill-posed and non-convex.
We propose solving this video reconstruction by learning an
Image Generation Model (IGM) directly from noisy measure-
ments of a single black hole evolving over time (described in
Sec. 3). Our key insight is that images of different snapshots
of the same black hole share common low-dimensional struc-
ture. The inputs of our method are N measurement examples
{y(i)}N

i=1
with known forward models {f (i)}N

i=1
. The outputs

are a single inferred IGM G✓ leading to N image reconstruc-
tion distributions {q�(i)(x(i)

)}N
i=1

, from which we sample to
reconstruct the underlying images {x(i)}N

i=1
.

For a collection of measurements {y(i) = f (i)
(x(i)

) +

⌘(i)}N
i=1

where we assume that the underlying images {x(i)}
share common structure, we aim to infer the parameters of
N latent space distributions q�(1) , . . . , q�(N) and a shared
generator G✓ by minimizing the loss function,

LELBO = � 1

N

NX

i=1

h
ELBOProxy(G✓, q�(i) ; y

(i)
) + log p(G✓)

i
.

In the VLBI phase-retrieval problem setting, each measure-
ment y can be described as Eq. 1, which induces
ELBOProxy(G✓, q�(i) ; {yamp.,(i), yclph.,(i)}). To combine
these into a single objective, we control the relative strength
between the visibility amplitude and closure phase data-fits
with a hyperparameter ↵, resulting in the updated data-fit
log p(y|G(z)) from Eq. 2:

log p(y|G(z)) = log p(yclph.|G✓(z)) + ↵ log p(yamp.|G✓(z))

Since phase retrieval problems have intrinsic phase am-
biguities, spatial shifts and flips are possible reconstructions.
Closure phases remove the flip ambiguity, but the spatial shift
ambiguity still remains. Modelling such a multi-modal distri-
bution is challenging, so we introduce a centering loss term
to help with the optimization. The center loss is defined by
Lcenter :=

1

2N

P
N

i=1

��(Center(x(i)
)� COM(x(i)

))
��2 where

Center(x)3 and COM(x)4 are the center point and the center
of mass of the image x respectively. We use the hyperparam-
eter � to control the strength of the centering loss, which we

3
Center(x) :=

�
1

2
(M + 1), 1

2
(M + 1)

�

4
COM(x) := 1PM

m,n=1 xmn

PM
m,n=1

xmn(m,n)

anneal from � to 0 as a function of epoch k ("k). Thus our
final optimization objective is

{✓̂, �̂(1), . . . , �̂(N)} = argmin

✓,{�(i)}N
i=1

{LELBO + �"kLcenter} .

Once the parameters have been inferred, x̂(i) is found by sam-
pling ẑ(i) ⇠ q

�̂(i)(z(i)) and computing x̂(i)
= G✓(ẑ(i)).

4. EXPERIMENTAL RESULTS
4.1. Synthetic data generation
We show our results on a collection of realistic synthetic mea-
surements for M87* generated using the eht-imaging li-
brary [12]. We use 60 sets of synthetic measurements, com-
puted using 60 frames of a simulated black hole video from
[13, 14] with a realistic flux of 1 Jansky. We use the telescope
array EHT2017+, consisting of the 8 telescopes used for the
EHT in 2017, with 3 additional augmenting telescopes that
have been or are in the process of being added to the EHT 5.
We generate visibility measurements �t

a,b
with realistic Gaus-

sian thermal noise. The visibility amplitudes yamp. and clo-
sure phases yclph. are then computed according to Eq. 1.

4.2. Black hole video reconstruction of M87*
We show results of our reconstruction method on selected
frames in Fig. 3. The target image is computed by blurring
the ground-truth image to the intrinsic resolution of the EHT
telescope array (⇠25 µas), as shown in Fig. 1.d. The time
⇥ angle plots, which visualize the temporal trajectory of the
ring, are created by plotting the intensity counter-clockwise
for each of the 60 frames. Since we reconstruct not just a sin-
gle image but an image distribution, we show images of the
empirical mean and standard deviation. Our reconstructions
are visually similar to the target and accurately reconstruct the
primary features while reconstructing some high-frequency
features. Additionally, the time ⇥ angle plots of our recon-
structions are similar to that of the target, indicating that our
reconstruction accurately captures the dynamics of the black
hole even without any temporal regularization. We find that
our reconstructions best match the ground truth image at a 10
µas resolution, substantially smaller than the intrinsic 25 µas
resolution of the telescope, implying that our approach also
achieves a level of superresolution.
Baseline Comparisons We further quantify the quality of
the reconstruction by comparing our reconstruction to base-
line methods in Fig. 4. We used the official EHT published
code in eht-imaging [12] to produce the regularized max-
imum likelihood (RML) baselines with the following regular-
izers: maximum entropy (MEM-RML) [17], total variation
(TV-RML) [18], and total squared variation (TSV-RML) [19].
We also include the following baselines: 1) Deep Image Prior
(DIP) [15], which uses a deep implicit prior that we modify to
have a centering loss and 2) AmbientGAN [16], which learns

52017 array plus OVRO, Kitt Peak, IRAM NOEMA, and Greenland Tele-
scopes
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Fig. 3. Our reconstructions of selected frames from a
video of M87*. We show the ground truth, dirty image, target
image (see Fig. 1), and empirical mean and standard deviation
of our reconstructed image distribution for selected frames
from the 60-frame M87* video. Additionally, we show the
unwrapped space vs. time image, which is taken counter-
clockwise along the ring; the trajectory of the bright spot in
our reconstruction matches the true image. Our method re-
constructs the primary features of the true underlying images
while also reconstructing some high frequency features.

the underlying data distribution through a generative model
directly from noisy measurements.

We show the peak signal-to-noise ratio (PSNR) and nor-
malized cross-correlation (NXCorr) for each method com-
pared to the target image. Our method exhibits the highest
PSNR and NXCorr, is visually more accurate in reconstruct-
ing the image features, and exhibits less artifacts than the
other reconstruction methods. Unlike the RML baselines, our
method is able to reconstruct the dynamics of the spiral struc-
ture in Frame 20. Moreover, our results have temporal consis-
tency, substantially outperforming DIP even when using the
same centering loss throughout DIP’s inference.

For our forward model dependent hyperparameters, we
find that the choice of ↵ has a substantial impact on the data-
fit while the reconstructions are less sensitive to � since it is
annealed quickly during optimization.

5. CONCLUSION
In this work, we showcase how one can reconstruct images
of black holes by inferring an IGM directly from noisy VLBI
measurements, without any explicit spatial or temporal priors
that would introduce human bias. By leveraging the assumed
common structure between different images of the same black
hole, we can infer an IGM capable of simultaneously solving
the N inverse problems from an N -frame video of a black
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Ours MEM-RML TV-RML TSV-RML DIP AmbientGAN

PSNR (") 30.870 26.112 26.119 26.079 24.986 13.573
NXCorr (") 0.980 0.955 0.956 0.953 0.916 0.519

Fig. 4. Baseline comparisons. We show results from the fol-
lowing baseline methods: regularized maximum likelihood
with maximum entropy (MEM-RML), total variation (TV-
RML), and total-squared-variation (TSV-RML), Deep Im-
age Prior (DIP) [15], and AmbientGAN [16]. We show the
average peak signal to noise ratio (PSNR) and normalized
cross correlation (NXCorr) compared to the target images
(see Fig. 3). Our method exhibits fewer artifacts and has the
highest average PSNR and NXCorr, although PSNR is not an
ideal metric due to the shift ambiguities in phase retrieval.

hole, reconstructing a full movie of a black hole. We demon-
strate our method on realistic synthetic interferometric data
modelled after the black hole M87*, showing that we can ac-
curately recover the black hole’s features and dynamics with-
out any explicit spatial or temporal priors. Our work show-
cases that we are able to solve the challenging ill-posed and
non-convex black hole image reconstruction problem in an
unsupervised manner while mitigating human bias. In the fu-
ture, paired with data collected over the span of months with
the ngEHT, our approach could help shed light on potentially
surprising phenomenon in M87*’s evolving structure.
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