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Abstract

Federated learning on graphs (a.k.a., federated graph learning– FGL)

has recently received increasing attention due to its capacity to en-

able collaborative learning over distributed graph datasets without

compromising local clients’ data privacy. In previous works, clients

of FGL typically represent institutes or organizations that possess

sets of entire graphs (e.g., molecule graphs in biochemical research)

or parts of a larger graph (e.g., sub-user networks of e-commerce

platforms). However, another natural paradigm exists where clients

act as remote devices retaining the graph structures of local neigh-

borhoods centered around the device owners (i.e., ego-networks),

which can be modeled for speci�c graph applications such as user

pro�ling on social ego-networks and infection prediction on con-

tact ego-networks. FGL in such novel yet realistic ego-network

settings faces the unique challenge of incomplete neighborhood

information for non-ego local nodes since they likely appear and

have di�erent sets of neighbors in multiple ego-networks. To ad-

dress this challenge, we propose an FGL method for distributed

ego-networks in which clients obtain complete neighborhood infor-

mation of local nodes through sharing node embeddings with other

clients. A contrastive learning mechanism is proposed to bridge

the gap between local and global node embeddings and stabilize

the local training of graph neural network models, while a secure

embedding sharing protocol is employed to protect individual node

identity and embedding privacy against the server and other clients.

Comprehensive experiments on various distributed ego-network

datasets successfully demonstrate the e�ectiveness of our proposed

embedding sharing method on top of di�erent federated model

sharing frameworks, and we also provide discussions on the poten-

tial e�ciency and privacy drawbacks of the method as well as their

future mitigation.

CCS Concepts

• Information systems → Data mining; • Computing method-

ologies → Distributed arti�cial intelligence; Neural networks;

Machine learning; • Security and privacy→ Privacy-preserving

protocols; • Theory of computation → Social networks.
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1 Introduction

Federated learning (FL) is a distributed learning paradigm designed

to facilitate collaborative model training without sharing local data,

in the considerations of data privacy, di�culty in centralizing data,

and lack of high-quality data to train promising local models (e.g.,

data scarcity, imbalance, and bias) [20, 31, 31, 57, 64]. Recently,

FL with graph data, a.k.a., federated graph learning (FGL), has at-

tracted a lot of attention due to the emergence of vast amounts of

real-world graphs and their properties distinguished from general

Euclidean data [9, 16, 27]. In FGL, graphs can be distributed in dif-

ferent ways according to real scenarios. For example, for molecule

studies in the biochemical domain, local clients such as biomedi-

cal institutes possess sets of entire molecular graphs and aim for

graph-level downstream applications like predicting the property

of molecules [17, 28, 29, 66]. For healthcare, �nance, or businesses,

local clients such as hospitals, banks, or e-commerce platforms,

usually possess only parts of a global patient or customer network

and desire to collectively train models with distributed subgraphs

for downstream graph tasks like node classi�cation and link predic-

tion [26, 41, 43, 51]. FGL over distributed subgraphs presents more

challenges due to the information missing across clients and entity

alignments among clients. Recent works of FGL have been devoted

to resolving these issues [1, 13, 24, 58, 61, 63].

Apart from FGL across distributed sets of entire graphs and

distributed subgraphs, there exists another essential real-world sce-

nario where each client represents an individual or remote device

and possesses an ego-network that only includes the neighborhood

information centered on the ego itself, and many such clients want

to collaboratively train better local models. This setting, i.e., FGL

over distributed ego-networks, is realistic and crucial as it aims to

protect users’ personal information while enhancing the utilities

of downstream applications. For example, in a heterogeneous e-

commerce network of customers and sellers, user pro�ling is a

critical application that can identify various user attributes such

as habits and interests of customers towards better product rec-

ommendations. However, customers may not want their personal

data such as browsing behaviors and purchasing histories to be
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Figure 1: Toy examples of distributed ego-networks.

freely shared among di�erent sellers for privacy concerns; here-

with, the sellers (as clients) can aggregate secure versions of the

missing data from other clients’ ego-networks to achieve better

local utilities for recommendation. A toy example can be seen from

Figure 1– if the information of customer 8 is incomplete in seller

0’s ego-network while customer 8 also interacts with seller 1, then

seller 0 can aggregate information about customer 8 from seller 1 to

improve his/her local modeling of customer 8 . Another real scenario

is infection prediction in local contact networks. During pandemics,

it is crucial that individuals can assess the infection risks in their

contact networks to avoid certain contacts that may further spread

the diseases. As also shown in Figure 1, individual 0 wants to assess

the infection risk of individual 9 , but 9 also contacts with other

individuals in individual 2’s ego-network. The assessment of 0 can

thus bene�t from information about 9 obtained from 2 .

Besides the generic challenges of FL such as local data scarcity,

imbalance, and bias (which encourages the federated sharing of

models across clients), FGL over distributed ego-networks faces

an additional unique challenge of incomplete information of lo-

cal nodes (which encourages the federated sharing of embeddings

across clients). In the context of graph learning, the information of

each local node can be incomplete regarding both their own node

features and the features and link structures of their neighboring

nodes. Thus, our key insight is, sharing models such as the graph

neural networks (GNNs) cannot e�ectively bridge this gap of incom-

plete local neighborhood information. In Table 1, we empirically

illustrate the impact of such incomplete information in distributed

local ego-networks. We sample 100 nodes as local clients with two

hops of ego-networks from the commonly used network datasets

of Cora[30] and LastFM-Asia[35], and evaluate standard GCN

models [23] trained with di�erent mechanisms towards local node

classi�cation tasks. It is obvious that locally trained models (i.e.,

Local) perform worse than the globally trained model (i.e., Global),

possibly due to insu�cient local data samples or incomplete lo-

cal neighborhood information. However, FL with model-sharing

mechanisms (i.e., FedAvg [31] and FedProx [25]) has no e�ect in

improving over the locally trained models, showcasing that simply

increasing local data samples (training with more local data sam-

ples by engaging more clients in FL collaboration) is not bene�cial

and model-sharing cannot mitigate incomplete local neighborhood

information.

Contributions. In this work, we propose Secure Contrastive

Embedding Sharing (a.k.a., FedSCem) for federated node classi�ca-

tion over distributed ego-networks. To bridge the gap of incom-

plete local neighborhood information in FL with distributed ego-

networks, we propose to share node embeddings across clients.

Analogous to model sharing based on FedAvg [31], this process in-

volves clients uploading locally computed node embeddings to the

Table 1: Learning on distributed ego-networks su�ers from

incomplete local neighborhood information.

Avg. Accuracy Cora LastFM-Asia

Local 0.8006 (± 0.0028) 0.8678 (± 0.0013)

FedAvg 0.7982 (± 0.0012) 0.8582 (± 0.0006)

FedProx 0.7991 (± 0.0013) 0.8594 (± 0.0027)

Global 0.8399 (± 0.0081) 0.8792 (± 0.0038)

server, and the server computing the globally aggregated node em-

beddings and sending them back to clients. Furthermore, we design

a contrastive learning mechanism to bridge the gap between locally

computed and globally aggregated embeddings during each FL iter-

ation to stablize the local training of GNN models. To address the

privacy issues of embedding sharing, we employ a secure sharing

protocol and proves its capabilities of protecting important private

information regarding individual node identities and embeddings

in each local client against the server and other clients. Finally, we

also provide comprehensive discussions regarding the potential

e�ciency and privacy limitations of our method and suggestions

on their future mitigation.

Our work contributes to both problem innovation and technique

designs:

• We study the novel problem setting of FGL over distributed ego-

networks and its essential challenge, which motivates a novel

FGL framework based on node embedding sharing, as orthogonal

to traditional FGL through model sharing.

• We design a contrastive learning mechanism for stabilized em-

bedding sharing and employ a secure sharing protocol to protect

individual local node identities and embeddings. We also con-

duct detailed discussions about the potential drawbacks of our

proposed methods and their future mitigation.

• We conduct comprehensive experiments and in-depth analysis on

four real-world graph datasets to demonstrate the e�ectiveness of

our proposed methods over di�erent model-sharing mechanisms

and against SOTA baselines.

2 Related Works

2.1 Node Classi�cation

Node classi�cation is a pivotal graphmining task that can be applied

across numerous real-world scenarios for diverse applications. The

traditional data mining techniques for node classi�cation include

graph kernels [39, 44, 53, 54], which measure similarity between

graphs and identify the recurring patterns or motifs for classifying

nodes; label propagation [52, 65] by which the label or informa-

tion of nodes are propagated through graph edges iteratively till

convergence for node class inference; shallow embeddings [11, 33]

which incorporate random walk algorithms to generate numerical

embeddings that preserve local neighborhood information of each

node, and these node embeddings can be used for downstream node

classi�cation.

Recently, more advanced techniques for learning on graphs have

emerged and gained extensive attention, such as the graph neural

networks (GNNs) of GCN [23, 36] and graph transformers [19, 56].

GCNs can iterative update node representations by aggregating



Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing CIKM ’24, October 21–25, 2024, Boise, ID, USA

information from nodes’ neighbors through message-passing mech-

anisms. For a node classi�cation task, GNNs can be trained with

the supervision of labeled nodes to predict unlabeled nodes. Graph

transformers adapt the transformer architecture to learn on graphs

by computing the connectivity via self-attentions. It can realize

a long-distance dependency within graphs therefore learning the

entire graph information, which improves the e�ectiveness for

downstream tasks including node classi�cation.

2.2 Federated Learning with Graph Data

Federated learning (FL) is developed for realizing information shar-

ing among distributed data. In many real-world scenarios where

graphs are distributed, FL can be employed as an e�ective ap-

proach to allow collaboration among these graphs while preserving

their data privacy, which is denoted as federated graph learning

(FGL). Recently, many works have started to study FGL which inte-

grates GNN techniques with FL algorithms for downstream graph

tasks like node classi�cation [3, 12, 45, 50], graph classi�cation

[16, 42, 49, 51], and link prediction [18, 32].

Among them, FGL for node classi�cation is an important ap-

plication and mainly lies in the setting of FL with subgraphs [1,

24, 55, 58, 60, 61]. Previous works in FGL with subgraphs mainly

aim to address 1) the missing links across distributed subgraphs

[24, 58, 61, 63], or 2) graph data heterogeneity and distribution shift

[1, 13]. Our setting of FGL over distributed ego-networks is closer to

the setting of the former due to the consideration and mitigation of

incomplete local information, while orthogonal to the latter which

focuses on better ways to share models. However, these subgraph

FGL studies focus on the disjoint subgraphs and try to recover the

missing links by learning the neighbor distributions, but these miss-

ing links do not exist in any clients’ graph and no real supervision

can be used to guide the learning of real missing links. In contrast,

our setting studies the distributed overlapping ego-networks where

the missing information of one ego-network actually exists in other

ego-networks, and we study the sharing of such real information

across ego-networks via embeddings. Recently, there have emerged

several works studying federated embedding sharing [4, 5, 46, 59],

but they are mostly designed for vertical FL settings with di�erent

types of relations on knowledge graphs and are divergent from our

FGL over ego-network setting.

Additionally, several recent studies have explored settings some-

what relevant to FLwith ego-networks [27, 34, 47, 48]. However, our

work intrinsically distinguishes itself from these existing studies in

several key aspects. While these prior works focus on applying FL

to bipartite graphs for recommendations, characterized by speci�c

graph schemas, user-item interactions, and downstream tasks, our

research investigates FL on (generic) ego-networks. Another key

distinguishing aspect is our aim to address the unique challenges

posed by the natural incompleteness inherent in both ego node fea-

tures and the features and link structures of the ego’s neighboring

nodes. Moreover, our work focuses on the node embedding sharing

approach, as well as the interrelated privacy-preserving concerns,

an aspect that has been limited explored in previous studies.

3 Problem Formulation

Distributed Ego-networks. This work studies the novel prob-

lem setting of FGL over distributed ego-networks. In this FGL

system, suppose there exist a server and < clients C = {C}ģ ,

each client Cė ∈ C representing a user/individual (a.k.a., ego) who

possesses its ego-network 6ė = (+ė, �ė,Xė, yė, �ė), where +ė and

�ė represent the node set and edge set, respectively, Xė and yė
are node features and labels w.r.t. +ė , and �ė is the set containing

the unique identities corresponding to +ė . From the global level,

�ė ¢∅ I
Ĥ , where I

Ĥ represents the unique identities of overall =

nodes across all ego-networks G = {6}ģ . The existing of global

identities is realistic yet common in various scenarios like a user-

name in e-commerce or phone number in the contact network. For

a client Cė , its ego-network 6ė will always overlap with one or

more ego-networks in other clients, such that 6ė and its overlapped

ego-network 6Ę have

6ė ∩ 6Ę ≠ ∅ : +ė ∩+Ę = {E : E ∈ +ė and E ∈ +Ę }.

For a node E ∈ +ė ∩+Ę , its neighbors Nė (E) in 6ė and neighbors

NĘ (E) in 6Ę have

Nė (E) ∩ NĘ (E) ¦∅ Nė (E) or NĘ (E) .

In practice, Nė (E) and NĘ (E) can hardly be equal.

Node Classi�cation. Node classi�cation is an important graph

learning task in the scenarios of FGL over distributed ego-networks.

In this work, we focus on federated node classi�cation across ego-

networks. We employ GNNs for learning on local ego-networks G,

which in general can be formulated as:

ℎ
(Ģ+1)
Ĭ = f

( [

W(Ģ ) agg
(

{ℎ
(Ģ )
ī ;D ∈ N (E)}

)

,B(Ģ )ℎ
(Ģ )
Ĭ

] )

,∀; ∈ [0, !),

(1)

where ℎ
(Ģ+1)
Ĭ represents the node embeddings of E at the (; + 1)th

layer out of the total ! layer, f (·) and agg(·) refer to activation func-

tion and aggregation function, respectively, and Θgnn = [W,B] are

parameters of GNNs. The node embeddings ℎ
(Ģ+1)
Ĭ are computed by

aggregating its own information (embeddings) and the information

ℎ
(Ģ )
ī propagated from its neighbors D ∈ N (E) from the previous

layer ; . On top of the GNNs, we adopt linear layers as node classi-

�ers Θclf = [w, 1], which take node embeddings generated from

GNNs and predict the class of nodes, i.e.,

~̂Ĭ = wTℎĬ + 1. (2)

The local empirical risk Rė is the cross-entropy loss for node clas-

si�cation:

Rė (Θė ;6ė) := Lnc = −
∑

Ĭ

~Ĭ log(~̂Ĭ), (3)

where Θė = [Θgnnė ,Θclfė ]. For each client Cė , the local model Θė

is trained with a training node set + tr
ė by optimizing the local risk,

Θ
∗
ė = argmin Rė (Θė ;6ė) . (4)

Federated Learning. Federated learning (FL) involves infor-

mation sharing which is usually realized by sharing local models.

Regarding the model sharing-based FL methods, the goal is to opti-

mize models by minimizing the global empirical risk R:

R(Θ;G) := E
ė∈[1,ģ]

[Rė (Θė ;6ė)] . (5)
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Figure 2: Overview of FedSCem. Each client possesses a node identity set ą and securely communicates with the server to obtain the aligned view of the

node identities ą ′ ( 2© secure alignment)1. Based on ą ′ , the local embeddings H are rearranged and encrypted for secure aggregation ( 3©). After receiving the

global embeddings, clients perform contrastive learning for local and global embedding fusion 1©.

4 Methods

FGL over distributed ego-networks confronts the unique challenge

of natural incompleteness of local graphs which impedes the model

sharing-based FGL methods. To address it, we propose a novel ap-

proach that aims to share actual graph information across clients

by sharing the node embeddings of local ego-networks (Section

4.1). To technically realize the embedding sharing, we introduce a

contrastive embedding sharing method that guides the local models

by contrastive learning between local embeddings and global em-

beddings (Section 4.2). Moreover, regarding the privacy concerns of

sharing embeddings, we propose a secure embedding sharing pro-

tocol comprising secure alignment and secure aggregation that can

protect the local node identities and local embeddings (Section 4.3).

Additionally, despite the less focus on the e�ciency improvement

of our proposed methods, we theoretically and empirically ana-

lyze the e�ciency of our methods, discuss the potential e�ciency

and privacy risks, and propose future directions for improvements

(Section 4.4).

4.1 Embedding Sharing for Federated Node
Classi�cation across Ego-networks

The unique challenge of incomplete local neighborhood informa-

tion in FGL with distributed ego-networks necessitates the sharing

of actual graph information, which can help complete the miss-

ing neighborhood information across clients that simply sharing

models cannot capture. We note that a recent work FedSage+ [61]

studies the problem of missing links across disjoint distributed

subgraphs in the cross-silo FGL setting. It incorporates a missing

neighbor generator to simulate the missing links across disjoint

subgraphs from the local distributions. The original intention of

the missing neighbor generator is to recover those cross-subgraph

missing links; however, the real cross-subgraph links that should

be utilized to supervise the process of link generation do not exist

in FedSage+’s setting. Therefore, the missing neighbor generator

can only generate virtual neighbors that might be similar to the

learned node feature distributions from other clients, which can

1The aligned views of node identities ą ′ shown in the �gure do not represent the actual
alignment order. Instead, we provide a simpli�ed demonstration of ą ′ for clarity. For a
detailed explanation of the exact alignment process, please refer to Section 4.3.1.

be wildly inaccurate and lead to noisy neighborhoods. In contrast,

in this work, we aim to retrieve information about the real neigh-

bors across clients and share the actual local graph information by

sharing node embeddings. Through this approach, local clients can

retain accurate distributions of those neighbors that are missing in

their local ego-networks.

For sharing embeddings, clients �rst obtain their node embed-

dings Hė by passing the original node features Xė into GNNs, as in

Equation 1, and then upload these node embeddings to the server.

The server receives the shared local node embeddings and aggre-

gates them to compute the global node embeddings:

H̃ = agg
ė∈[1,ģ]

({Hė}), (6)

where aggregation function agg(·) can be adapted to various algo-

rithms. We employ averaging for aggregation in this work because

it is basic and intuitive. As each local client possesses a di�erent

set of nodes +ė , we compute the average global embeddings of a

node E if it appears in multiple local ego-networks, i.e.:

ℎ̃Ĭ = E
«

(ℎėĬ ), where « = {0 ∈ [1,<]
�

� E ∈ +ė} (7)

The aggregated global node embeddings H̃ will then be sent back

to local clients.

Embedding Sharing v.s. Model Sharing. The approach of em-

bedding sharing in FGL diverges from traditional model sharing

techniques, which focus on disparate problems and serve to tackle

generic challenges for FGL. For instance, in the FGL setting where

local clients contend with inadequate data for training unbiased lo-

cal models yet target congruent task objectives, model sharing can

confer advantages to the local clients. Conversely, when local clients

possess adequate data and target incongruent task objectives, the

utility of model sharing becomes trivial and even detrimental. The

model sharing methods are speci�cally devised to study these prob-

lems of trading o� between personalization (i.e., self-training) and

sharing (i.e., FL) which arise from distinct scenarios characterized

by varying datasets and tasks. Unlike the model sharing methods,

our embedding sharing method tackles the distinctive obstacle of

absent neighborhood information within ego-networks in the FGL

setting, which is orthogonal to the model sharing methods. Hence,
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the embedding sharing method can be integrated with other model

sharing methods to further enhance utility, particularly in the FGL

scenarios where local graph information remains incomplete.

4.2 Contrastive Learning for Local and Global
Embedding Fusion

The embedding sharing procedure can be analogous to the basic

FedAvg [31] method, as described in Section 4.1. However, after

local clients receive the aggregated global embeddings, how should

the local clients adapt the global embeddings into their local model

training? Straightforwardly, it seems plausible that local clients

substitute their original embeddings with global embeddings, akin

to how clients update local models in FedAvg. However, this way

is in fact infeasible due to the gap between global embeddings and

local embeddings and models, that is, unlike the models, embed-

dings encapsulate real graph information and cannot be seamlessly

swapped out. Speci�cally elaborating, the local models are trained

on local distributions to output the local embeddings, while the

global embeddings aggregate these outputs of local models and are

unsuitable as inputs for training these same models. To this end, we

propose a contrastive embedding sharing method by incorporating

contrastive learning [14] that can guide the local models to generate

local embeddings approaching the globally aggregated embeddings

for the same nodes while separating the di�erent nodes, therefore

realizing the adaption of global graph information into local models.

The procedure is depicted in Figure 2 on the right.

After the server computes the aggregated global node embed-

dings H̃ (to be explained in Section 4.3), client Cę will receive partial

H̃ comprising the aggregated global embeddings of those nodes in

6ę that also appear in other ego-networks, i.e., H̃ę . To contrastively

learn between the local embeddings Hę and global embeddings H̃ę

for making the same nodes similar while diverging di�erent nodes,

we �rst incorporate a multilayer perception (MLP) as a projection

head 5 (·) to transform H̃ę and Hę into the corresponding metric

embeddings Z̃ę and Zę , respectively:

Z̃ę = 5 (H̃ę ;Θmlp), Zę = 5 (Hę ;Θmlp) (8)

The nonlinear projection head 5 (·) is added on the top of a GNN

to enhance the representation quality of the preceding convolu-

tional layer through nonlinear transformations [6], and it will be

discarded after training is complete. The metric embeddings Z̃ę and

Zę are then used to compute the contrastive loss Lct, for which

we incorporate the commonly used NT-Xent loss [6]. For a node 9

in client Cę , the NT-Xent contrastive loss between its local metric

embedding I Ġ = 5 (ℎ Ġ ) and its global metric embedding Ĩ Ġ = 5 (ℎ̃ Ġ )

is calculated by

ℓ (I Ġ , Ĩ Ġ ) = − log
exp(sim(I Ġ , Ĩ Ġ )/g)

∑2 |Ēę |

ġ=1
1[ġ≠Ġ ] exp(sim(I Ġ , Iġ )/g)

, (9)

where g is the temperature hyperparameter, and sim(·) uses a co-

sine similarity function
İ Ġ ∗İġ

∥İ Ġ ∥ ∥İġ ∥
. 1[ġ≠Ġ ] ∈ {0, 1} is an indicator

function that only returns 1 when : ≠ 9 . Hereby, the contrastive

loss for the positive pair (I Ġ , Ĩ Ġ ) is computed by contrasting all

negative pairs {(I Ġ , Ĩġ ), (I Ġ , Iġ )
�

� : ∈ +ę } (+ę represents the node

set of ego-netowrk on client Cę ), aiming to maximize the agreement

Figure 3: Securely aligning node identities.

between the same nodes and minimize the agreement between dif-

ferent nodes, as depicted by 1© in Figure 2. Overall, the contrastive

loss Lct for client Cę is

Lct =

∑

Ġ∈Ēę

ℓ (I Ġ , Ĩ Ġ ) . (10)

The local GNN is then updated end-to-end by the backpropagation

of Lct. As this procedure is trained unsupervised and invariant to

the downstream task, we integrate the node classi�cation loss Lnc

with Lct for co-training the local models. Thus, for a client Cę , its

local empirical risk is

Rę (Θę ;6ę ) := Lours =

∑

Ġ∈Ēę

−~ Ġ log(~̂ Ġ ) + ` ∗ ℓ (I Ġ , Ĩ Ġ ), (11)

where ~̂ Ġ is the predicted node label, and I Ġ and Ĩ Ġ are the metric

embeddings of node 9 ’s local and global node embeddings. We

introduce a hyperparameter ` to weight the contrastive loss Lct.

4.3 Secure Embedding Sharing among Clients
and the Server

Given that node embeddings encapsulate sensitive original graph

data, sharing them directly invokes privacy concerns regarding

potential local data leakage. Moreover, considering that clients’

ego-networks vary in size and node sets, the information regarding

how many and which nodes a client possesses is also private and

requires privacy protection.

As discussed in Section 4.1, the procedure of embedding shar-

ing among clients involves: 1) the server aligns the overlapped

local node embeddings across the clients according to original node

identities, 2) the server aggregates these local embeddings based

on alignment and computes the global node embeddings, and 3)

the server sends back the globally aggregated node embeddings to

clients. The potential privacy concerns arise from: 1) the number

of nodes and the node identities within the clients being exposed

to the server, 2) the local data information being leaked through

actual embeddings to the server, 3) the client’s local data informa-

tion being leaked through aggregated global embeddings to other

clients. To address these privacy concerns, we propose a secure

embedding sharing protocol that can prevent these information

leakages among clients and the server. Speci�cally, we utilize a

secure alignment method to ensure that the server does not learn

the node identity belongings of clients and a secure aggregation

method by which the shared local embeddings are encrypted for

aggregation in the server. Regarding the privacy concern in down-

loading the globally aggregated embeddings, di�erential privacy

techniques can be adapted, which we discuss in Section 4.4.2.

4.3.1 Secure Alignment of Node Identities. Motivated by [21]

designed for computational phenotyping that aims to align clinical

concepts (phenotypes) before aggregating model gradients, we
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adapt the idea of the secure alignment of phenotypes into our node

embedding sharing setting to realize the secure alignment of node

identities before embedding aggregation, which can protect the size

of node sets and the node identities within each client from the

server.

As illustrated by (i) in Figure 3, clients di�er in node sets +

leading to non-aligned node identity sets � . To prevent the exposure

of local node identities to the server, each client Cė �rst encrypts

the node identity set �ė to a polynomial (function) dė (W) = (W −

Wė1 ) · · · (W−Wė |ąė |
), whereWėğ ∈ �ė and a node identityW belongs to �ė

if and only if dė (W) = 0. To avoid factorization of the polynomials

for preventing the server from inspecting the identities, clients

compute the polynomial d∗ė by multiplying dė with (W − b) using

a prime random number b and compute its modulus (%) using a

prime random number V ,

d∗ė (W) = [dė (W) ∗ (W − b)] % V, where b ∉ �ė . (12)

Then a node identity W belongs to �ė if and only if d∗ė (W) =

0. The server receives the uploaded polynomials {d∗}ģ from <

clients and �nds the pair-wise intersection �ė ∩ �Ę between two

clients Cė and CĘ by computing the sum of their polynomials

[d∗ė (W) + d∗
Ę
(W)] % V , from which a node identity W ∈ �ė ∩ �Ę if

[d∗ė (W) + d∗
Ę
(W)] % V = 0. The server then sends back (< − 1)

polynomial to each client, and the client can check whether each of

its node identity W is in the intersections with others’ node identity

sets. Referring to the protocol in [21], the server collects the sizes

of all combinations of intersections and has all clients agree on the

same order of all intersections (with a total length of =), and the

size of every combination of intersections is allocated. Herewith,

clients can align their nodes according to the agreed global ordering.

For example, in (ii) of Figure 3, considering two clients Cė and CĘ ,

given the global ordering �ė ∩ �Ę , �ė ∩ � c
Ę
, � cė ∩ �Ę , and the size of each

intersection, clients can rearrange these nodes correspondingly

to obtain the aligned view � ′ of � (nodes within the sections are

sorted). The alignment is secure because clients are ignorant of the

elements of others’ � ′, and the server cannot inspect the elements

of all intersections. With the alignment, each client uploads the

transformed version of local node embeddings based on � ′ by �lling

empties with 0 (see (iii) in Figure 3). Since the secure alignment

of node identities is computed only once with implementations

like utilizing modulus and sparse tensors, it will not lead to extra

burdens on time and memory e�ciency.

4.3.2 Secure Aggregation for Local Embeddings. After secure

alignment, the clients need to upload the local node embeddings

based on the aligned order for aggregation. The local node em-

beddings are sensitive information because they encode not only

the nodes’ features but also the feature and link information of

their neighbors. To prevent the potential exposure risk of local data

information to the server via local embeddings, we incorporate a

secure aggregation protocol. An existing work [2] improves previ-

ous secure aggregation protocols by reducing the transmitted data

(w.r.t. e�ciency) and resolving the privacy risks of clients’ dropout.

Motivated by it, we design a secure aggregation protocol to securely

obtain the averaging aggregation of the local node embeddings.

In this protocol, we have clients agree on the pair-wise Di�e-

Hellman key agreement [7] for encrypting local embeddings, in

which clients share a public generator i and a prime modulus

V while each client Cė keeps its own secret key ^ė . The public

generator i (% V) pairs with Cė ’s secret key to generate the public

key iĄė for client Cė , which is safe to reveal. The server then

collects all< public keys from< clients and sends all other (< − 1)

public keys to each client. Client Cė raises the received public key

iĄĘ from client CĘ to the power of its secret key ^ė to get the

shared secret iĄĘĄė with client CĘ . These pair-wise shared secret

keys applied to local embeddings will then be canceled out during

the sum aggregation.

As the local node embeddings are transformed and uploaded

after secure alignment whose non-overlapping nodes’ positions

are �lled with zeros, simply averaging them can yield incorrect

global embedding for these non-overlapping nodes. To address it,

we employ an additional activation mask oė = {0, 1}Ĥ for each

� ′ė of client Cė which indicates whether a position in � ′ė has node

identity. We also apply secure aggregation for the activation masks

{o}ģ to ensure the security of node identities and their alignments.

Finally, the averaged global embeddings are computed by dividing

the sum aggregation of local embeddings by the sum aggregation

of activation masks.

Regarding the privacy risks of client dropout in secure aggrega-

tion, the idea of double-masking in [2] can be integrated into our

protocol. Besides, the potential privacy concerns can also arise from

the aggregated global embeddings. For these privacy concerns, we

provide more discussion in Section 4.4.2.

4.4 Discussions on E�ciency and Privacy

4.4.1 E�iciency Analysis. This work does not focus on e�ciency

improvement. The main e�ciency concerns can arise from sharing

node embeddings with a large number of nodes. Here, we analyze

the potential e�ciency burdens that can be brought by node shar-

ing with contrastive learning and secure protocol, as well as the

potential future exploration to mitigate the e�ciency issues.

Extra Costs of Contrastive Embedding Sharing. Compared to

themodel sharing FLmethods like FedAvg, our contrastive learning-

based embedding sharing method only increases the computation

cost from the projection head, which can be a one-layer MLP with

small hidden states and will not cause extra computation burden.

Regarding communication and memory cost, as our method only

transmits node embeddings, it relieves the cost of model transmis-

sion and the memory cost of model storage in the server, but it

can encounter overwhelming communication costs with a large

number of total nodes =, which could be O(< ∗ =) for< clients at

the worst case.

Extra Costs of Secure Embedding Sharing. With the secure

alignment protocol, it can incur extra O(<) computation cost for

all clients to compute intersections and O(< ∗ =) memory cost

for all clients to store the aligned view of node identity sets. The

extra communication cost is O(<2) for transmitting all intersec-

tions between clients and the server. However, the aligning process

is computed once ahead, which will not cause strong e�ciency

drawbacks. For the secure aggregation, each client costs O(1) for

key agreements and encrypting local embeddings and activation

masks which leads to an extra O(<) computation cost, and the
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Table 2: Statistics of ego-networks from four datasets.

Dataset
q total nodes q total edges

q features q classes density
100 ego-networks

nodes edges avg. q nodes avg. q edges avg. q classes avg. density

Cora 1,523 3,006 1,433 7 1.97 66.88 117.51 3.86 1.76

Citeseer 1,081 2,192 3,703 6 2.03 43.68 87.76 3.40 2.01

Pubmed 6,977 19,129 500 3 2.74 176.93 451.58 2.76 2.55

LastFM-Asia 3,671 15,083 7,842 18 4.11 96.45 375.05 5.96 3.89
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Figure 4: Distributions of ego-networks w.r.t. the numbers of nodes, edges, and labels on all datasets.

additional activation masks lead to extra O(< ∗ =) memory and

communication costs. Similarly, the key agreements and activation

masks are computed once and will not impose strong computation

burdens.

Potential Mitigation. As the main e�ciency concerns arise

from large numbers of clients and nodes, apart from the generic im-

provement regarding communication cost like sampling participat-

ing clients and reducing the frequency of sharing, more dedicated

techniques can be designed w.r.t. a large number of nodes such as

prototyping nodes and only sharing the local embedding of proto-

types, which can reduce the communication and memory burdens.

Furthermore, from the perspective of FL, clustering clients and

conducting within-cluster sharing can also be a possible solution

to improve e�ciency.

4.4.2 Privacy Analysis. Although our secure embedding sharing

protocol protects the node identities and actual local embeddings

for aggregation, the global embeddings broadcast to local clients

can be vulnerable to inference attacks. Additionally, our method

does not have a speci�c privacy protocol designed for local models

because no model is shared if our method is used directly based on

local self-trained models. However, when integrating our method

with other FL methods based on model sharing, the aggregated

global model can be exposed to attacks. Furthermore, our problem

setting studies FGL over distributed ego-networks, which often

follows the cross-device setting where the number of clients is

large and certain client sampling techniques are usually employed

or clients can fall o�-line. This can raise privacy concerns during

secure aggregation regarding clients dropping out, i.e., the paired

shared secret masked on a sampled client’ local embeddings cannot

be canceled out during aggregation because of the absence of the

client sharing the paired secret with the sampled client.

Potential Mitigation. Regarding the risk of broadcasting global

embeddings, a potential approach to address it can be incorporating

di�erential privacy techniques [8, 15, 62] that add noise to the local

embeddings therefore protecting the embeddings from inference

attacks, which can be easily adapted into our method to prevent

the potential data leakage from the aggregated global embeddings.

To address the privacy risk from unprotected models when com-

bining our methods with model sharing, a possible solution is to

use a secure aggregation protocol to encrypt the shared local mod-

els/gradients and use di�erential privacy to protect the downloaded

aggregated models/gradients. For the issue of client dropout, the

double-masking techniques in [2] which generate additional in-

dividual keys for clients and rely on Shamir’s C-out-of-= [38] for

secret sharing can be engaged, so that the server can reconstruct

the shared or individual keys and starts to cancel out the masks

even when some of the clients are dropout. Furthermore, as the

secure aggregation focuses only on protecting the clients in a single

round, more advanced techniques like [40] can be leveraged to

further secure the secure aggregation for multiple rounds of FL.

5 Experiments

5.1 Experimental Settings

5.1.1 Data. To experimentally demonstrate our methods in the

unique yet novel setting of FGL over distributed ego-networks, we

randomly sample 100 2-hop ego-networks for each of the four public

benchmarking datasets, including three publication networks Cora

[30], Citeseer [10], Pubmed [37], and a social network LastFM-

Asia [35]. We employ these public datasets because of the lack of

access to real social networks (most open-source social networks

are preprocessed w.r.t. the consideration of privacy and lead to dis-

torted information like fake density, adding noise, etc.), as well as

the three publication datasets are used by most node classi�cation

works and are also used for simulating social networks. Addition-

ally, since our setting only requires ego-networks from an entire

graph to be distributed to local clients, given a certain number of

clients/egos, the size of an entire graph does not necessarily a�ect

the distributions of ego-networks. The data statistics are presented

in Table 2. The �rst �ve columns provide an overview of the entire

dataset statistics, while the next �ve columns present the average

statistics for 100 ego-networks. Additionally, we further analyze

the data distribution for the sample ego-networks from all datasets.

Figure 4 displays the distributions of numbers of nodes, edges, and

labels for ego-networks. From Figure 4a-4d, most ego-networks

in the four datasets contain less than 200 nodes. Additionally, Fig-

ure 4e indicates the heterogeneity w.r.t. labels where some clients
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can possess only a part of the total labels, which is realistic and we

intentionally retrain in our setting.

5.1.2 Compared Baselines. We compare our methods with �ve

baselines including: Self-training (i.e., “Local” in Table 1) in which

local models are trained standalone, FedAvg [31] in which local

models are aggregated by averaging, FedProx [25] which advances

FedAvg by adding a proximal term to the local training loss for

addressing data heterogeneity issues, LocalSage+ [61] in which the

local GNN models are trained together with local NeighGen for

generating “virtual” links, and FedSage+ [61] in which the local

GNN models and NeighGen models are federated trained. We do

not include global training as a baseline due to the lack of a global

model in our setting.

5.1.3 Our Models. We denote our model as FedSCem which co-

trains the contrastive learning with node classi�cation. Besides, we

also experiment with two variants including FedSCem ğĪěĨ which

trains node classi�cation and contrastive learning iteratively by

batch, and FedSCem- which removes the local training step from

FedSCem that is trained before the cotraining within a communica-

tion round. Additionally, we adapt FedSCem to model sharing based

FL methods, i.e., FedAvg+FedSCem and FedProx+FedSCem.

5.1.4 Hyper-parameter se�ings. For all the methods, we utilize

a 2-layer GCN [23] model and a linear layer as a node classi�er, both

with the hidden size of 64. For the projection head for contrastive

learning, we use a 1-layer MLP with the output dimension of 32.

We incorporate Adam [22] optimizer for model updating with the

learning rate of 0.0005 and the weight decay of 54 − 5. The local

epoch for FL is set to 1, and the hyperparameter weighting the

proximal term in FedProx is set to 0.01. For our methods, we tune `

and g within [0.5, 1, 5, 10] and [0.01, 0.1, 1, 5, 10], respectively, and

set (` = 5, g = 10) for Cora, (` = 10, g = 1) for Pubmed, and

(` = 1, g = 0.1) for Citeseer and LastFM-Asia datasets. We run

all experiments for 3 repeats with di�erent seeds on a server with

eight 48GB NVIDIA Quadro RTX 8000 GPUs. All codes and data

are provided in this repository2.

5.2 Performance Analysis

5.2.1 Overall Performance. Table 3 displays the comprehen-

sive results of utilities (average accuracy) and e�ciency (elapsed

time per round and GPU memory allocated) evaluating all meth-

ods on four datasets each with 100 ego-networks. It is obvious that

FedSCem and its variants (FedSCem ğĪěĨ and FedSCem-) show promis-

ing improvement from self-training and outperform FedAvg and

FedProx on all datasets. FedAvg+FedSCem and FedProx+FedSCem

perform worse than FedSCem because 1) model sharing can fail

when local information is incomplete and 2) the gap exists between

embedding sharing and model sharing and sharing both can lead

the performance to optimize towards the betweenness of them.

LocalSage+ and FedSage+ are originally designed for cross-silo dis-

jointed subgraphs (where the subgraphs are relatively large) and

applying them directly to the distributed ego-networks is deteri-

orative, due to the lack of enough data at the local ego-networks

2https://github.com/Oxfordblue7/FedSCem.
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Figure 5: Ablation studies.
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for training a good neighbor generator (it shows reasonable perfor-

mance on Pubmed with relatively large ego-networks). We provide

more detailed analyses below.

5.2.2 Ablation Study. The paired comparisons of FedSCem with

the corresponding baselines are in Figure 5a. For all datasets, adding

FedSCem to a baseline apparently improves the performance, demon-

strating the e�ects of FedSCem on both standalone self-training

and model sharing based FL methods. Although the optimization

of model sharing may diverge from that of embedding sharing,

combining both methods can reach an agreement between their

optimization trajectories therefore still surpassing the baselines.

We also conduct an ablation study for FedSCem and its variants

FedSCem ğĪěĨ and FedSCem-. FedSCem ğĪěĨ iteratively train mod-

els for the downstream task and the contrastive learning, while

FedSCem- and FedSCem co-train them and FedSCem includes one

more local training epoch before co-training within a communica-

tion round. From Figure 5b, in general, FedSCem performs better

than FedSCem ğĪěĨ and FedSCem-.

5.2.3 Hyper-parameterAnalysis. FedSCem introduces twomore

hyperparameters g and ` from contrastive loss and co-training with

contrastive learning, respectively. The study of g can be found

in [6]. Here, we study the e�ects of combinations of ` and g on

FedSCem varying within [0.5, 10] and [0.01, 10], respectively (see

Figure 6a). It indicates that the performance is minimally a�ected

by the varying hyperparameters with a relatively large range.

5.3 Computational E�ciency Analysis

In addition to the theoretical analysis of the e�ciency of our pro-

posed methods in Section 4.4.1, we analyze the real time and mem-

ory costs empirically. Overall, from Figure 7, our methods increase

the elapsed time per round andGPUmemory allocated for processes

compared with baselines (LocalSage+ and FedSage+ encounter Out-

of-Memory issues due to a large number of clients and are run
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Table 3: Accuracy on 100 2-hop distributed ego-networks per dataset. Bold represents the best results while underline represents the second.

The metric elap./r evaluates the process averaging run time per round (sec./round), and the metric mem. records the process GPU memory allocated (%).

Dataset Cora Citeseer Pubmed LastFM-Asia

Metric avg. acc. elap./r mem. avg. acc. elap./r mem. avg. acc. elap./r mem. avg. acc. elap./r mem.

Self-training 0.8006 (± 0.0028) 1.260 2.95 0.7913 (± 0.0060) 1.251 3.02 0.8207 (± 0.0037) 1.245 2.97 0.8678 (± 0.0013) 1.236 3.53

FedAvg 0.7982 (± 0.0012) 1.605 3.50 0.8142 (± 0.0075) 1.596 4.42 0.8178 (± 0.0026) 1.575 3.16 0.8582 (± 0.0006) 1.581 6.45

FedProx 0.7991 (± 0.0013) 1.665 3.50 0.8161 (± 0.0069) 1.629 4.42 0.8172 (± 0.0032) 1.611 3.16 0.8594 (± 0.0027) 1.641 6.45

LocalSage+ 0.7234 (± 0.1531) 0.601* 94.54* 0.8260 (± 0.0056) 2.183 94.54 0.8189 (± 0.0041) 0.601 94.54 0.8559 (± 0.0055) 5.990 95.06

FedSage+ 0.6752 (± 0.0670) - OOM 0.7128 (± 0.0155) - OOM 0.8008 (± 0.0219) - OOM 0.6822 (± 0.0330) - OOM

FedSCem ğĪěĨ 0.8182 (± 0.0006) 3.867 13.21 0.8389 (± 0.0023) 3.666 6.63 0.8356 (± 0.0012) 6.186 97.36 0.8704 (± 0.0014) 3.909 16.98

FedSCem- 0.8294 (± 0.0014) 2.799 13.23 0.8382 (± 0.0005) 2.649 6.58 0.8338 (± 0.0019) 5.115 97.36 0.8735 (± 0.0003) 2.991 15.74

FedSCem 0.8288 (± 0.0021) 3.795 13.21 0.8402 (± 0.0018) 3.696 6.63 0.8509 (± 0.0010) 6.069 97.36 0.8754 (± 0.0012) 3.960 16.98

FedAvg+FedSCem 0.8044 (± 0.0030) 3.825 13.24 0.8189 (± 0.0051) 3.645 6.77 0.8222 (± 0.0028) 6.054 97.36 0.8653 (± 0.0013) 3.930 16.98

FedProx+FedSCem 0.8058 (± 0.0026) 3.909 13.24 0.8220 (± 0.0047) 3.765 6.77 0.8216 (± 0.0035) 6.261 97.36 0.8651 (± 0.0031) 4.020 16.98

* The elap./r and mem. of LocalSage+ on all datasets are evaluated standalone using only one client due to out-of-memory (OOM) issues when running with all clients.
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Figure 7: E�ciency analysis for all methods.

with CPUs, thus their GPU runtimes are not available3). Figure 7a

shows the elapsed time per round for all methods. All the four out

of �ve of our methods (except FedSCem-) take about two times of

run time of the baselines, which is because both FedSCem ğĪěĨ and

FedSCem include one extra task training within each round. How-

ever, this can also lead to faster convergence which will reduce the

time cost to some extent, as demonstrated in Figure 6b. In contrast,

FedSCem- does not include the extra local training and its elapsed

time obviously drops. Refer to Figure 5b, FedSCem- can be compa-

rable to FedSCem in some cases, therefore there can be an option of

using FedSCem- to trade o� between the time e�ciency and utility.

Regarding the percentages of GPU memory allocated, our meth-

ods require a similar amount of memory for the smaller datasets

(Citeseer) but require much more memory when the graph size

grows large, as denoted in Figure 7b.

To investigate how the graph size impacts the e�ciency, we de-

pict the correlations between elapsed time/memory allocated and

the number of nodes/edges of all ego-networks. From Figure 8c and

8b, the elapsed time signi�cantly increases when the ego-network

size grows beyond a certain threshold. Similarly, when the size

exceeds some value, our methods require a higher amount of GPU

memory allocated, from Figure 8c and 8d. This is currently a limita-

tion of our methods which we have discussed in details in Section

4.4.1 together with the potential solutions. Moreover, both the time

and memory costs rise slowly as the graph size grows within a

certain range, which further empirically demonstrates that the time

and memory cost of our methods is only sub-linear to the total

number of nodes.

3The GPU runtime of LocalSage+ is reported from running on a single client/ego-
network, which cannot be fairly compared.
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Figure 8: The e�ects of graph size on e�ciency.

6 Conclusion

This work studies the novel problem setting of FGL over distributed

ego-networks, and aims to resolve its unique challenge of incom-

plete local neighborhood information, through our proposed se-

cure contrastive embedding sharing method. Our method can con-

trastively learn local and global aggregated embedding fusion there-

fore mitigating the gaps of incomplete local neighborhood informa-

tion. Meanwhile, we propose a secure embedding sharing protocol

that can protect the local node identity information and real embed-

dings from leaking sensitive local information. The comprehensive

experiments and analysis demonstrate the e�ectiveness of our pro-

posed method. Furthermore, we provide detailed discussions on

the potential drawbacks of our method w.r.t. e�ciency and privacy,

as well as the future exploration to mitigate these drawbacks.
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