Check for
Updates

Federated Node Classification over Distributed Ego-Networks
with Secure Contrastive Embedding Sharing

Han Xie
han.xie@emory.edu
Emory University
Atlanta, GA, United States

Abstract

Federated learning on graphs (a.k.a., federated graph learning— FGL)
has recently received increasing attention due to its capacity to en-
able collaborative learning over distributed graph datasets without
compromising local clients’ data privacy. In previous works, clients
of FGL typically represent institutes or organizations that possess
sets of entire graphs (e.g., molecule graphs in biochemical research)
or parts of a larger graph (e.g., sub-user networks of e-commerce
platforms). However, another natural paradigm exists where clients
act as remote devices retaining the graph structures of local neigh-
borhoods centered around the device owners (i.e., ego-networks),
which can be modeled for specific graph applications such as user
profiling on social ego-networks and infection prediction on con-
tact ego-networks. FGL in such novel yet realistic ego-network
settings faces the unique challenge of incomplete neighborhood
information for non-ego local nodes since they likely appear and
have different sets of neighbors in multiple ego-networks. To ad-
dress this challenge, we propose an FGL method for distributed
ego-networks in which clients obtain complete neighborhood infor-
mation of local nodes through sharing node embeddings with other
clients. A contrastive learning mechanism is proposed to bridge
the gap between local and global node embeddings and stabilize
the local training of graph neural network models, while a secure
embedding sharing protocol is employed to protect individual node
identity and embedding privacy against the server and other clients.
Comprehensive experiments on various distributed ego-network
datasets successfully demonstrate the effectiveness of our proposed
embedding sharing method on top of different federated model
sharing frameworks, and we also provide discussions on the poten-
tial efficiency and privacy drawbacks of the method as well as their
future mitigation.
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1 Introduction

Federated learning (FL) is a distributed learning paradigm designed
to facilitate collaborative model training without sharing local data,
in the considerations of data privacy, difficulty in centralizing data,
and lack of high-quality data to train promising local models (e.g.,
data scarcity, imbalance, and bias) [20, 31, 31, 57, 64]. Recently,
FL with graph data, a.k.a., federated graph learning (FGL), has at-
tracted a lot of attention due to the emergence of vast amounts of
real-world graphs and their properties distinguished from general
Euclidean data [9, 16, 27]. In FGL, graphs can be distributed in dif-
ferent ways according to real scenarios. For example, for molecule
studies in the biochemical domain, local clients such as biomedi-
cal institutes possess sets of entire molecular graphs and aim for
graph-level downstream applications like predicting the property
of molecules [17, 28, 29, 66]. For healthcare, finance, or businesses,
local clients such as hospitals, banks, or e-commerce platforms,
usually possess only parts of a global patient or customer network
and desire to collectively train models with distributed subgraphs
for downstream graph tasks like node classification and link predic-
tion [26, 41, 43, 51]. FGL over distributed subgraphs presents more
challenges due to the information missing across clients and entity
alignments among clients. Recent works of FGL have been devoted
to resolving these issues [1, 13, 24, 58, 61, 63].

Apart from FGL across distributed sets of entire graphs and
distributed subgraphs, there exists another essential real-world sce-
nario where each client represents an individual or remote device
and possesses an ego-network that only includes the neighborhood
information centered on the ego itself, and many such clients want
to collaboratively train better local models. This setting, i.e., FGL
over distributed ego-networks, is realistic and crucial as it aims to
protect users’ personal information while enhancing the utilities
of downstream applications. For example, in a heterogeneous e-
commerce network of customers and sellers, user profiling is a
critical application that can identify various user attributes such
as habits and interests of customers towards better product rec-
ommendations. However, customers may not want their personal
data such as browsing behaviors and purchasing histories to be
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Figure 1: Toy examples of distributed ego-networks.

freely shared among different sellers for privacy concerns; here-
with, the sellers (as clients) can aggregate secure versions of the
missing data from other clients’ ego-networks to achieve better
local utilities for recommendation. A toy example can be seen from
Figure 1- if the information of customer i is incomplete in seller
a’s ego-network while customer i also interacts with seller b, then
seller a can aggregate information about customer i from seller b to
improve his/her local modeling of customer i. Another real scenario
is infection prediction in local contact networks. During pandemics,
it is crucial that individuals can assess the infection risks in their
contact networks to avoid certain contacts that may further spread
the diseases. As also shown in Figure 1, individual a wants to assess
the infection risk of individual j, but j also contacts with other
individuals in individual ¢’s ego-network. The assessment of a can
thus benefit from information about j obtained from c.

Besides the generic challenges of FL such as local data scarcity,
imbalance, and bias (which encourages the federated sharing of
models across clients), FGL over distributed ego-networks faces
an additional unique challenge of incomplete information of lo-
cal nodes (which encourages the federated sharing of embeddings
across clients). In the context of graph learning, the information of
each local node can be incomplete regarding both their own node
features and the features and link structures of their neighboring
nodes. Thus, our key insight is, sharing models such as the graph
neural networks (GNNs) cannot effectively bridge this gap of incom-
plete local neighborhood information. In Table 1, we empirically
illustrate the impact of such incomplete information in distributed
local ego-networks. We sample 100 nodes as local clients with two
hops of ego-networks from the commonly used network datasets
of Cora[30] and LASTFM-AsIA[35], and evaluate standard GCN
models [23] trained with different mechanisms towards local node
classification tasks. It is obvious that locally trained models (i.e.,
Local) perform worse than the globally trained model (i.e., Global),
possibly due to insufficient local data samples or incomplete lo-
cal neighborhood information. However, FL with model-sharing
mechanisms (i.e., FedAvg [31] and FedProx [25]) has no effect in
improving over the locally trained models, showcasing that simply
increasing local data samples (training with more local data sam-
ples by engaging more clients in FL collaboration) is not beneficial
and model-sharing cannot mitigate incomplete local neighborhood
information.

Contributions. In this work, we propose Secure Contrastive
Embedding Sharing (a.k.a., FedSCem) for federated node classifica-
tion over distributed ego-networks. To bridge the gap of incom-
plete local neighborhood information in FL with distributed ego-
networks, we propose to share node embeddings across clients.
Analogous to model sharing based on FedAvg [31], this process in-
volves clients uploading locally computed node embeddings to the

2608

Han Xie, Li Xiong, and Carl Yang

Table 1: Learning on distributed ego-networks suffers from
incomplete local neighborhood information.

Avg. Accuracy ‘ Cora LAasTFM-Asia

Local 0.8006 (+ 0.0028) 0.8678 (& 0.0013)
FedAvg 0.7982 (+ 0.0012)  0.8582 (+ 0.0006)
FedProx 0.7991 (« 0.0013)  0.8594 (% 0.0027)
Global 0.8399 (+ 0.0081) 0.8792 (x 0.0038)

server, and the server computing the globally aggregated node em-
beddings and sending them back to clients. Furthermore, we design
a contrastive learning mechanism to bridge the gap between locally
computed and globally aggregated embeddings during each FL iter-
ation to stablize the local training of GNN models. To address the
privacy issues of embedding sharing, we employ a secure sharing
protocol and proves its capabilities of protecting important private
information regarding individual node identities and embeddings
in each local client against the server and other clients. Finally, we
also provide comprehensive discussions regarding the potential
efficiency and privacy limitations of our method and suggestions
on their future mitigation.

Our work contributes to both problem innovation and technique
designs:

o We study the novel problem setting of FGL over distributed ego-
networks and its essential challenge, which motivates a novel
FGL framework based on node embedding sharing, as orthogonal
to traditional FGL through model sharing.

o We design a contrastive learning mechanism for stabilized em-
bedding sharing and employ a secure sharing protocol to protect
individual local node identities and embeddings. We also con-
duct detailed discussions about the potential drawbacks of our
proposed methods and their future mitigation.

e We conduct comprehensive experiments and in-depth analysis on
four real-world graph datasets to demonstrate the effectiveness of
our proposed methods over different model-sharing mechanisms
and against SOTA baselines.

2 Related Works
2.1 Node Classification

Node classification is a pivotal graph mining task that can be applied
across numerous real-world scenarios for diverse applications. The
traditional data mining techniques for node classification include
graph kernels [39, 44, 53, 54], which measure similarity between
graphs and identify the recurring patterns or motifs for classifying
nodes; label propagation [52, 65] by which the label or informa-
tion of nodes are propagated through graph edges iteratively till
convergence for node class inference; shallow embeddings [11, 33]
which incorporate random walk algorithms to generate numerical
embeddings that preserve local neighborhood information of each
node, and these node embeddings can be used for downstream node
classification.

Recently, more advanced techniques for learning on graphs have
emerged and gained extensive attention, such as the graph neural
networks (GNNs) of GCN [23, 36] and graph transformers [19, 56].
GCNis can iterative update node representations by aggregating
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information from nodes’ neighbors through message-passing mech-
anisms. For a node classification task, GNNs can be trained with
the supervision of labeled nodes to predict unlabeled nodes. Graph
transformers adapt the transformer architecture to learn on graphs
by computing the connectivity via self-attentions. It can realize
a long-distance dependency within graphs therefore learning the
entire graph information, which improves the effectiveness for
downstream tasks including node classification.

2.2 Federated Learning with Graph Data

Federated learning (FL) is developed for realizing information shar-
ing among distributed data. In many real-world scenarios where
graphs are distributed, FL can be employed as an effective ap-
proach to allow collaboration among these graphs while preserving
their data privacy, which is denoted as federated graph learning
(FGL). Recently, many works have started to study FGL which inte-
grates GNN techniques with FL algorithms for downstream graph
tasks like node classification [3, 12, 45, 50], graph classification
[16, 42, 49, 51], and link prediction [18, 32].

Among them, FGL for node classification is an important ap-
plication and mainly lies in the setting of FL with subgraphs [1,
24, 55, 58, 60, 61]. Previous works in FGL with subgraphs mainly
aim to address 1) the missing links across distributed subgraphs
[24, 58, 61, 63], or 2) graph data heterogeneity and distribution shift
[1, 13]. Our setting of FGL over distributed ego-networks is closer to
the setting of the former due to the consideration and mitigation of
incomplete local information, while orthogonal to the latter which
focuses on better ways to share models. However, these subgraph
FGL studies focus on the disjoint subgraphs and try to recover the
missing links by learning the neighbor distributions, but these miss-
ing links do not exist in any clients’ graph and no real supervision
can be used to guide the learning of real missing links. In contrast,
our setting studies the distributed overlapping ego-networks where
the missing information of one ego-network actually exists in other
ego-networks, and we study the sharing of such real information
across ego-networks via embeddings. Recently, there have emerged
several works studying federated embedding sharing [4, 5, 46, 59],
but they are mostly designed for vertical FL settings with different
types of relations on knowledge graphs and are divergent from our
FGL over ego-network setting.

Additionally, several recent studies have explored settings some-
what relevant to FL with ego-networks [27, 34, 47, 48]. However, our
work intrinsically distinguishes itself from these existing studies in
several key aspects. While these prior works focus on applying FL
to bipartite graphs for recommendations, characterized by specific
graph schemas, user-item interactions, and downstream tasks, our
research investigates FL on (generic) ego-networks. Another key
distinguishing aspect is our aim to address the unique challenges
posed by the natural incompleteness inherent in both ego node fea-
tures and the features and link structures of the ego’s neighboring
nodes. Moreover, our work focuses on the node embedding sharing
approach, as well as the interrelated privacy-preserving concerns,
an aspect that has been limited explored in previous studies.

3 Problem Formulation

Distributed Ego-networks. This work studies the novel prob-
lem setting of FGL over distributed ego-networks. In this FGL
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system, suppose there exist a server and m clients C = {C}™,
each client C, € C representing a user/individual (a.k.a., ego) who
possesses its ego-network g, = (Vg, Eq, X4, Ya, Iz), where V,; and
E, represent the node set and edge set, respectively, X, and y,
are node features and labels w.r.t. V, and I, is the set containing
the unique identities corresponding to V;. From the global level,
I, Cg I", where I" represents the unique identities of overall n
nodes across all ego-networks G = {g}™. The existing of global
identities is realistic yet common in various scenarios like a user-
name in e-commerce or phone number in the contact network. For
a client Cyg, its ego-network g, will always overlap with one or
more ego-networks in other clients, such that g, and its overlapped
ego-network g have

gaNgp #2:VanNVy={v:veVando € V},}.

For a node v € V; NV}, its neighbors Ny (v) in g, and neighbors
Np(v) in g have

Na(v) N Np(v) So Na(v) or Ny ().
In practice, N (v) and Ny, (v) can hardly be equal.

Node Classification. Node classification is an important graph
learning task in the scenarios of FGL over distributed ego-networks.
In this work, we focus on federated node classification across ego-
networks. We employ GNNs for learning on local ego-networks G,
which in general can be formulated as:

RO g([w”) age ({hﬁz);u c N(U)}),Bmh;l)]),vl e [o,L),

(1)
where hz(,lﬂ) represents the node embeddings of v at the (I + 1)
layer out of the total L layer, o(-) and agg(-) refer to activation func-

tion and aggregation function, respectively, and @gnn = [W, B] are

parameters of GNNs. The node embeddings hl(,lﬂ) are computed by
aggregating its own information (embeddings) and the information
h,(f) propagated from its neighbors u € N(v) from the previous
layer I. On top of the GNNs, we adopt linear layers as node classi-
fiers © ¢ = [w, b], which take node embeddings generated from
GNNs and predict the class of nodes, i.e.,

Jo = wW'hy +b.

@)

The local empirical risk Ry, is the cross-entropy loss for node clas-
sification:

Ra(Og;ga) = Lnc = — Z Yo log(7o), )
[

where @4 = [Ognn,, Oir, ]. For each client Cg, the local model ©4

is trained with a training node set V¥ by optimizing the local risk,

©

Federated Learning. Federated learning (FL) involves infor-
mation sharing which is usually realized by sharing local models.
Regarding the model sharing-based FL methods, the goal is to opti-
mize models by minimizing the global empirical risk R:

R(©:;G):= E [Ra(Og;ga)l-
a1

m]

@} = argmin R;(04;94).

©)
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Figure 2: Overview of FedSCem. Each client possesses a node identity set I and securely communicates with the server to obtain the aligned view of the

node identities I’ () secure alignment)!. Based on I’, the local embeddings H are rearranged and encrypted for secure aggregation (3)). After receiving the

global embeddings, clients perform contrastive learning for local and global embedding fusion (D).

4 Methods

FGL over distributed ego-networks confronts the unique challenge
of natural incompleteness of local graphs which impedes the model
sharing-based FGL methods. To address it, we propose a novel ap-
proach that aims to share actual graph information across clients
by sharing the node embeddings of local ego-networks (Section
4.1). To technically realize the embedding sharing, we introduce a
contrastive embedding sharing method that guides the local models
by contrastive learning between local embeddings and global em-
beddings (Section 4.2). Moreover, regarding the privacy concerns of
sharing embeddings, we propose a secure embedding sharing pro-
tocol comprising secure alignment and secure aggregation that can
protect the local node identities and local embeddings (Section 4.3).
Additionally, despite the less focus on the efficiency improvement
of our proposed methods, we theoretically and empirically ana-
lyze the efficiency of our methods, discuss the potential efficiency
and privacy risks, and propose future directions for improvements
(Section 4.4).

4.1 Embedding Sharing for Federated Node
Classification across Ego-networks

The unique challenge of incomplete local neighborhood informa-
tion in FGL with distributed ego-networks necessitates the sharing
of actual graph information, which can help complete the miss-
ing neighborhood information across clients that simply sharing
models cannot capture. We note that a recent work FedSage+ [61]
studies the problem of missing links across disjoint distributed
subgraphs in the cross-silo FGL setting. It incorporates a missing
neighbor generator to simulate the missing links across disjoint
subgraphs from the local distributions. The original intention of
the missing neighbor generator is to recover those cross-subgraph
missing links; however, the real cross-subgraph links that should
be utilized to supervise the process of link generation do not exist
in FedSage+’s setting. Therefore, the missing neighbor generator
can only generate virtual neighbors that might be similar to the
learned node feature distributions from other clients, which can

!The aligned views of node identities I’ shown in the figure do not represent the actual
alignment order. Instead, we provide a simplified demonstration of I” for clarity. For a
detailed explanation of the exact alignment process, please refer to Section 4.3.1.
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be wildly inaccurate and lead to noisy neighborhoods. In contrast,
in this work, we aim to retrieve information about the real neigh-
bors across clients and share the actual local graph information by
sharing node embeddings. Through this approach, local clients can
retain accurate distributions of those neighbors that are missing in
their local ego-networks.

For sharing embeddings, clients first obtain their node embed-
dings H, by passing the original node features X, into GNNs, as in
Equation 1, and then upload these node embeddings to the server.
The server receives the shared local node embeddings and aggre-
gates them to compute the global node embeddings:

agg ({Ha}),

ac[1,m]

H= (6)
where aggregation function agg(-) can be adapted to various algo-
rithms. We employ averaging for aggregation in this work because
it is basic and intuitive. As each local client possesses a different
set of nodes V,, we compute the average global embeddings of a
node v if it appears in multiple local ego-networks, i.e.:

hy = E(ha,), where ¥ = {a € [1,m] FIRA! )
The aggregated global node embeddings H will then be sent back
to local clients.

Embedding Sharing v.s. Model Sharing. The approach of em-
bedding sharing in FGL diverges from traditional model sharing
techniques, which focus on disparate problems and serve to tackle
generic challenges for FGL. For instance, in the FGL setting where
local clients contend with inadequate data for training unbiased lo-
cal models yet target congruent task objectives, model sharing can
confer advantages to the local clients. Conversely, when local clients
possess adequate data and target incongruent task objectives, the
utility of model sharing becomes trivial and even detrimental. The
model sharing methods are specifically devised to study these prob-
lems of trading off between personalization (i.e., self-training) and
sharing (i.e., FL) which arise from distinct scenarios characterized
by varying datasets and tasks. Unlike the model sharing methods,
our embedding sharing method tackles the distinctive obstacle of
absent neighborhood information within ego-networks in the FGL
setting, which is orthogonal to the model sharing methods. Hence,



Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing

the embedding sharing method can be integrated with other model
sharing methods to further enhance utility, particularly in the FGL
scenarios where local graph information remains incomplete.

4.2 Contrastive Learning for Local and Global
Embedding Fusion

The embedding sharing procedure can be analogous to the basic
FedAvg [31] method, as described in Section 4.1. However, after
local clients receive the aggregated global embeddings, how should
the local clients adapt the global embeddings into their local model
training? Straightforwardly, it seems plausible that local clients
substitute their original embeddings with global embeddings, akin
to how clients update local models in FedAvg. However, this way
is in fact infeasible due to the gap between global embeddings and
local embeddings and models, that is, unlike the models, embed-
dings encapsulate real graph information and cannot be seamlessly
swapped out. Specifically elaborating, the local models are trained
on local distributions to output the local embeddings, while the
global embeddings aggregate these outputs of local models and are
unsuitable as inputs for training these same models. To this end, we
propose a contrastive embedding sharing method by incorporating
contrastive learning [14] that can guide the local models to generate
local embeddings approaching the globally aggregated embeddings
for the same nodes while separating the different nodes, therefore
realizing the adaption of global graph information into local models.
The procedure is depicted in Figure 2 on the right.

After the server computes the aggregated global node embed-
dings H (to be explained in Section 4.3), client C will receive partial
H comprising the aggregated global embeddings of those nodes in
ge that also appear in other ego-networks, i.e., He. To contrastively
learn between the local embeddings H, and global embeddings H,
for making the same nodes similar while diverging different nodes,
we first incorporate a multilayer perception (MLP) as a projection
head f(-) to transform H, and H, into the corresponding metric
embeddings Z. and Z., respectively:

ZC = f(I:IC;Gmlp): ZC = f(HC;Gmlp) (8)

The nonlinear projection head f(-) is added on the top of a GNN
to enhance the representation quality of the preceding convolu-
tional layer through nonlinear transformations [6], and it will be
discarded after training is complete. The metric embeddings Z and
Z. are then used to compute the contrastive loss L, for which
we incorporate the commonly used NT-Xent loss [6]. For a node j
in client C, the NT-Xent contrastive loss between its local metric
embedding zj = f(h;) and its global metric embedding z; = f(ftj)
is calculated by

exp(sim(zj,%;)/7)

t(zj,%;) = —log ©)

212(|:Vlc| 1(ksj) exp(sim(zj, z¢) /7)

where 7 is the temperature hyperparameter, and sim(-) uses a co-
sine similarity function % 1(k#j] € {0,1} is an indicator
function that only returns 1 when k # j. Hereby, the contrastive
loss for the positive pair (zj,Z;) is computed by contrasting all
negative pairs {(zj, z), (2}, zx) ’ k € V.} (V. represents the node
set of ego-netowrk on client C;), aiming to maximize the agreement
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Figure 3: Securely aligning node identities.

between the same nodes and minimize the agreement between dif-
ferent nodes, as depicted by (D in Figure 2. Overall, the contrastive
loss L for client Cg is

L= Z (zj,25).

JjeVe

(10)

The local GNN is then updated end-to-end by the backpropagation
of L. As this procedure is trained unsupervised and invariant to
the downstream task, we integrate the node classification loss Ln¢
with L for co-training the local models. Thus, for a client C, its
local empirical risk is

Re(Oc; 9¢) = Lours = Z —Yj log(ﬁj) +px f(zj,fj))
JeVe

(11)

where 7; is the predicted node label, and z; and Z; are the metric
embeddings of node j’s local and global node embeddings. We
introduce a hyperparameter u to weight the contrastive loss L.

4.3 Secure Embedding Sharing among Clients
and the Server

Given that node embeddings encapsulate sensitive original graph
data, sharing them directly invokes privacy concerns regarding
potential local data leakage. Moreover, considering that clients’
ego-networks vary in size and node sets, the information regarding
how many and which nodes a client possesses is also private and
requires privacy protection.

As discussed in Section 4.1, the procedure of embedding shar-
ing among clients involves: 1) the server aligns the overlapped
local node embeddings across the clients according to original node
identities, 2) the server aggregates these local embeddings based
on alignment and computes the global node embeddings, and 3)
the server sends back the globally aggregated node embeddings to
clients. The potential privacy concerns arise from: 1) the number
of nodes and the node identities within the clients being exposed
to the server, 2) the local data information being leaked through
actual embeddings to the server, 3) the client’s local data informa-
tion being leaked through aggregated global embeddings to other
clients. To address these privacy concerns, we propose a secure
embedding sharing protocol that can prevent these information
leakages among clients and the server. Specifically, we utilize a
secure alignment method to ensure that the server does not learn
the node identity belongings of clients and a secure aggregation
method by which the shared local embeddings are encrypted for
aggregation in the server. Regarding the privacy concern in down-
loading the globally aggregated embeddings, differential privacy
techniques can be adapted, which we discuss in Section 4.4.2.

4.3.1 Secure Alignment of Node Identities. Motivated by [21]
designed for computational phenotyping that aims to align clinical
concepts (phenotypes) before aggregating model gradients, we
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adapt the idea of the secure alignment of phenotypes into our node
embedding sharing setting to realize the secure alignment of node
identities before embedding aggregation, which can protect the size
of node sets and the node identities within each client from the
server.

As illustrated by (i) in Figure 3, clients differ in node sets V
leading to non-aligned node identity sets I. To prevent the exposure
of local node identities to the server, each client C, first encrypts
the node identity set I, to a polynomial (function) ps(y) = (y —
Ya) * - (Y=Yay, ), Wwhere yq, € I andanode identity y belongs to I,
if and only if p4(y) = 0. To avoid factorization of the polynomials
for preventing the server from inspecting the identities, clients
compute the polynomial p}; by multiplying p, with (y — £) using
a prime random number ¢ and compute its modulus (%) using a
prime random number S,

Pa(y) = [pa(y) * (y = &)] % p, where & ¢ I,. (12)

Then a node identity y belongs to I, if and only if pj(y) =
0. The server receives the uploaded polynomials {p*}" from m
clients and finds the pair-wise intersection I, N I, between two
clients C4 and Cjp by computing the sum of their polynomials
[pa(y) + p,(y)] % B, from which a node identity y € I N I if
[pi(y) + p;;(y)] % B = 0. The server then sends back (m — 1)
polynomial to each client, and the client can check whether each of
its node identity y is in the intersections with others’ node identity
sets. Referring to the protocol in [21], the server collects the sizes
of all combinations of intersections and has all clients agree on the
same order of all intersections (with a total length of n), and the
size of every combination of intersections is allocated. Herewith,
clients can align their nodes according to the agreed global ordering.
For example, in (ii) of Figure 3, considering two clients C, and Cp,
given the global ordering Io NIy, Ia N I}, I N I, and the size of each
intersection, clients can rearrange these nodes correspondingly
to obtain the aligned view I’ of I (nodes within the sections are
sorted). The alignment is secure because clients are ignorant of the
elements of others’ I’, and the server cannot inspect the elements
of all intersections. With the alignment, each client uploads the
transformed version of local node embeddings based on I’ by filling
empties with 0 (see (iii) in Figure 3). Since the secure alignment
of node identities is computed only once with implementations
like utilizing modulus and sparse tensors, it will not lead to extra
burdens on time and memory efficiency.

4.3.2 Secure Aggregation for Local Embeddings. After secure
alignment, the clients need to upload the local node embeddings
based on the aligned order for aggregation. The local node em-
beddings are sensitive information because they encode not only
the nodes’ features but also the feature and link information of
their neighbors. To prevent the potential exposure risk of local data
information to the server via local embeddings, we incorporate a
secure aggregation protocol. An existing work [2] improves previ-
ous secure aggregation protocols by reducing the transmitted data
(w.r.t. efficiency) and resolving the privacy risks of clients’ dropout.
Motivated by it, we design a secure aggregation protocol to securely
obtain the averaging aggregation of the local node embeddings.
In this protocol, we have clients agree on the pair-wise Diffie-
Hellman key agreement [7] for encrypting local embeddings, in
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which clients share a public generator ¢ and a prime modulus
B while each client C, keeps its own secret key k4. The public
generator ¢ (% f) pairs with Cg’s secret key to generate the public
key ¢*a for client C4, which is safe to reveal. The server then
collects all m public keys from m clients and sends all other (m — 1)
public keys to each client. Client C,, raises the received public key
" from client C}, to the power of its secret key x, to get the
shared secret ¢*¢*a with client Cj. These pair-wise shared secret
keys applied to local embeddings will then be canceled out during
the sum aggregation.

As the local node embeddings are transformed and uploaded
after secure alignment whose non-overlapping nodes’ positions
are filled with zeros, simply averaging them can yield incorrect
global embedding for these non-overlapping nodes. To address it,
we employ an additional activation mask o, = {0,1}" for each
I}, of client C, which indicates whether a position in I, has node
identity. We also apply secure aggregation for the activation masks
{0}™ to ensure the security of node identities and their alignments.
Finally, the averaged global embeddings are computed by dividing
the sum aggregation of local embeddings by the sum aggregation
of activation masks.

Regarding the privacy risks of client dropout in secure aggrega-
tion, the idea of double-masking in [2] can be integrated into our
protocol. Besides, the potential privacy concerns can also arise from
the aggregated global embeddings. For these privacy concerns, we
provide more discussion in Section 4.4.2.

4.4 Discussions on Efficiency and Privacy

4.4.1 Efficiency Analysis. This work does not focus on efficiency
improvement. The main efficiency concerns can arise from sharing
node embeddings with a large number of nodes. Here, we analyze
the potential efficiency burdens that can be brought by node shar-
ing with contrastive learning and secure protocol, as well as the
potential future exploration to mitigate the efficiency issues.

Extra Costs of Contrastive Embedding Sharing. Compared to
the model sharing FL methods like FedAvg, our contrastive learning-
based embedding sharing method only increases the computation
cost from the projection head, which can be a one-layer MLP with
small hidden states and will not cause extra computation burden.
Regarding communication and memory cost, as our method only
transmits node embeddings, it relieves the cost of model transmis-
sion and the memory cost of model storage in the server, but it
can encounter overwhelming communication costs with a large
number of total nodes n, which could be O(m * n) for m clients at
the worst case.

Extra Costs of Secure Embedding Sharing. With the secure
alignment protocol, it can incur extra O (m) computation cost for
all clients to compute intersections and O(m * n) memory cost
for all clients to store the aligned view of node identity sets. The
extra communication cost is O(m?) for transmitting all intersec-
tions between clients and the server. However, the aligning process
is computed once ahead, which will not cause strong efficiency
drawbacks. For the secure aggregation, each client costs O(1) for
key agreements and encrypting local embeddings and activation
masks which leads to an extra O(m) computation cost, and the
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Table 2: Statistics of ego-networks from four datasets.

f total nodes {f total edges

100 ego-networks

Dataset features f classes  densit .
nodes edges H featu ¢ Y avg. fnodes avg. ff edges avg. ff classes avg. density
Cora 1,523 3,006 1,433 7 1.97 66.88 117.51 3.86 1.76
CITESEER 1,081 2,192 3,703 6 2.03 43.68 87.76 3.40 2.01
PUBMED 6,977 19,129 500 3 2.74 176.93 451.58 2.76 2.55
LASTFM-Asia 3,671 15,083 7,842 18 4.11 96.45 375.05 5.96 3.89
60 40 40 60
40 2 .30 = 40 0
é 1 # nodes § 20 1 # nodes § 20 I # nodes § 1 # nodes ém B Cupseer
20 # edges # edges # edges 20 # edges B Pubhmed
- 10 10 2 O LastFM-Asia
ol o ol o gﬁﬁﬁ%ﬂ“
0 200 400 600 0 100 200 300 400 0 500 1000 1500 2000 2500 0 250 500 750 1000 o 25 50 ) 75 100 125 150 _], s
Value Value Value # lables
(a) Cora (b) CITESEER (c) PuBMED (d) LAsTFM-Asia (e) Label distirbution

Figure 4: Distributions of ego-networks w.r.t. the numbers of nodes, edges, and labels on all datasets.

additional activation masks lead to extra O(m * n) memory and
communication costs. Similarly, the key agreements and activation
masks are computed once and will not impose strong computation
burdens.

Potential Mitigation. As the main efficiency concerns arise
from large numbers of clients and nodes, apart from the generic im-
provement regarding communication cost like sampling participat-
ing clients and reducing the frequency of sharing, more dedicated
techniques can be designed w.r.t. a large number of nodes such as
prototyping nodes and only sharing the local embedding of proto-
types, which can reduce the communication and memory burdens.
Furthermore, from the perspective of FL, clustering clients and
conducting within-cluster sharing can also be a possible solution
to improve efficiency.

4.4.2 Privacy Analysis. Although our secure embedding sharing
protocol protects the node identities and actual local embeddings
for aggregation, the global embeddings broadcast to local clients
can be vulnerable to inference attacks. Additionally, our method
does not have a specific privacy protocol designed for local models
because no model is shared if our method is used directly based on
local self-trained models. However, when integrating our method
with other FL methods based on model sharing, the aggregated
global model can be exposed to attacks. Furthermore, our problem
setting studies FGL over distributed ego-networks, which often
follows the cross-device setting where the number of clients is
large and certain client sampling techniques are usually employed
or clients can fall off-line. This can raise privacy concerns during
secure aggregation regarding clients dropping out, i.e., the paired
shared secret masked on a sampled client’ local embeddings cannot
be canceled out during aggregation because of the absence of the
client sharing the paired secret with the sampled client.

Potential Mitigation. Regarding the risk of broadcasting global
embeddings, a potential approach to address it can be incorporating
differential privacy techniques [8, 15, 62] that add noise to the local
embeddings therefore protecting the embeddings from inference
attacks, which can be easily adapted into our method to prevent
the potential data leakage from the aggregated global embeddings.
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To address the privacy risk from unprotected models when com-
bining our methods with model sharing, a possible solution is to
use a secure aggregation protocol to encrypt the shared local mod-
els/gradients and use differential privacy to protect the downloaded
aggregated models/gradients. For the issue of client dropout, the
double-masking techniques in [2] which generate additional in-
dividual keys for clients and rely on Shamir’s ¢-out-of-n [38] for
secret sharing can be engaged, so that the server can reconstruct
the shared or individual keys and starts to cancel out the masks
even when some of the clients are dropout. Furthermore, as the
secure aggregation focuses only on protecting the clients in a single
round, more advanced techniques like [40] can be leveraged to
further secure the secure aggregation for multiple rounds of FL.

5 Experiments

5.1 Experimental Settings

5.1.1 Data. To experimentally demonstrate our methods in the
unique yet novel setting of FGL over distributed ego-networks, we
randomly sample 100 2-hop ego-networks for each of the four public
benchmarking datasets, including three publication networks Cora
[30], CrTESEER [10], PUBMED [37], and a social network LASTFM-
AsiA [35]. We employ these public datasets because of the lack of
access to real social networks (most open-source social networks
are preprocessed w.r.t. the consideration of privacy and lead to dis-
torted information like fake density, adding noise, etc.), as well as
the three publication datasets are used by most node classification
works and are also used for simulating social networks. Addition-
ally, since our setting only requires ego-networks from an entire
graph to be distributed to local clients, given a certain number of
clients/egos, the size of an entire graph does not necessarily affect
the distributions of ego-networks. The data statistics are presented
in Table 2. The first five columns provide an overview of the entire
dataset statistics, while the next five columns present the average
statistics for 100 ego-networks. Additionally, we further analyze
the data distribution for the sample ego-networks from all datasets.
Figure 4 displays the distributions of numbers of nodes, edges, and
labels for ego-networks. From Figure 4a-4d, most ego-networks
in the four datasets contain less than 200 nodes. Additionally, Fig-
ure 4e indicates the heterogeneity w.r.t. labels where some clients



CIKM 24, October 21-25, 2024, Boise, ID, USA

can possess only a part of the total labels, which is realistic and we
intentionally retrain in our setting.

5.1.2 Compared Baselines. We compare our methods with five
baselines including: Self-training (i.e., “Local” in Table 1) in which
local models are trained standalone, FedAvg [31] in which local
models are aggregated by averaging, FedProx [25] which advances
FedAvg by adding a proximal term to the local training loss for
addressing data heterogeneity issues, LocalSage+ [61] in which the
local GNN models are trained together with local NeighGen for
generating “virtual” links, and FedSage+ [61] in which the local
GNN models and NeighGen models are federated trained. We do
not include global training as a baseline due to the lack of a global
model in our setting.

5.1.3 Our Models. We denote our model as FedSCem which co-
trains the contrastive learning with node classification. Besides, we
also experiment with two variants including FedSCem ;¢ which
trains node classification and contrastive learning iteratively by
batch, and FedSCem- which removes the local training step from
FedSCem that is trained before the cotraining within a communica-
tion round. Additionally, we adapt FedSCem to model sharing based
FL methods, i.e., FedAvg+FedSCem and FedProx+FedSCem.

5.1.4 Hyper-parameter settings. For all the methods, we utilize
a 2-layer GCN [23] model and a linear layer as a node classifier, both
with the hidden size of 64. For the projection head for contrastive
learning, we use a 1-layer MLP with the output dimension of 32.
We incorporate Adam [22] optimizer for model updating with the
learning rate of 0.0005 and the weight decay of 5e — 5. The local
epoch for FL is set to 1, and the hyperparameter weighting the
proximal term in FedProx is set to 0.01. For our methods, we tune y
and 7 within [0.5, 1,5, 10] and [0.01,0.1, 1, 5, 10], respectively, and
set (u = 5,7 = 10) for Cora, (u = 10,7 = 1) for PUBMED, and
(g =1,7=0.1) for CrTeSEER and LASTFM-Asi1A datasets. We run
all experiments for 3 repeats with different seeds on a server with
eight 48GB NVIDIA Quadro RTX 8000 GPUs. All codes and data
are provided in this repository?.

5.2 Performance Analysis

5.2.1 Overall Performance. Table 3 displays the comprehen-
sive results of utilities (average accuracy) and efficiency (elapsed
time per round and GPU memory allocated) evaluating all meth-
ods on four datasets each with 100 ego-networks. It is obvious that
FedSCem and its variants (FedSCem ;s and FedSCem-) show promis-
ing improvement from self-training and outperform FedAvg and
FedProx on all datasets. FedAvg+FedSCem and FedProx+FedSCem
perform worse than FedSCem because 1) model sharing can fail
when local information is incomplete and 2) the gap exists between
embedding sharing and model sharing and sharing both can lead
the performance to optimize towards the betweenness of them.
LocalSage+ and FedSage+ are originally designed for cross-silo dis-
jointed subgraphs (where the subgraphs are relatively large) and
applying them directly to the distributed ego-networks is deteri-
orative, due to the lack of enough data at the local ego-networks

Zhttps://github.com/Oxfordblue7/FedSCem.
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for training a good neighbor generator (it shows reasonable perfor-
mance on PUBMED with relatively large ego-networks). We provide
more detailed analyses below.

5.2.2 Ablation Study. The paired comparisons of FedSCem with
the corresponding baselines are in Figure 5a. For all datasets, adding
FedSCem to a baseline apparently improves the performance, demon-
strating the effects of FedSCem on both standalone self-training
and model sharing based FL methods. Although the optimization
of model sharing may diverge from that of embedding sharing,
combining both methods can reach an agreement between their
optimization trajectories therefore still surpassing the baselines.

We also conduct an ablation study for FedSCem and its variants
FedSCem jser and FedSCem-. FedSCem j;, iteratively train mod-
els for the downstream task and the contrastive learning, while
FedSCem- and FedSCem co-train them and FedSCem includes one
more local training epoch before co-training within a communica-
tion round. From Figure 5b, in general, FedSCem performs better
than FedSCem ;¢ and FedSCem-.

5.2.3 Hyper-parameter Analysis. FedSCemintroduces two more
hyperparameters 7 and y from contrastive loss and co-training with
contrastive learning, respectively. The study of 7 can be found
in [6]. Here, we study the effects of combinations of ; and 7 on
FedSCem varying within [0.5, 10] and [0.01, 10], respectively (see
Figure 6a). It indicates that the performance is minimally affected
by the varying hyperparameters with a relatively large range.

5.3 Computational Efficiency Analysis

In addition to the theoretical analysis of the efficiency of our pro-
posed methods in Section 4.4.1, we analyze the real time and mem-
ory costs empirically. Overall, from Figure 7, our methods increase
the elapsed time per round and GPU memory allocated for processes
compared with baselines (LocalSage+ and FedSage+ encounter Out-
of-Memory issues due to a large number of clients and are run
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Table 3: Accuracy on 100 2-hop distributed ego-networks per dataset. Bold represents the best results while underline represents the second.

The metric elap./r evaluates the process averaging run time per round (sec./round), and the metric mem. records the process GPU memory allocated (%).

Dataset Cora CITESEER PuBMED LASTFM-Asia

Metric avg. acc. elap./r mem. avg. acc. elap./r mem. avg. acc. elap./r mem. avg. acc. elap./r mem.
Self-training 0.8006 (+ 0.0028)  1.260 2.95 0.7913 (+ 0.0060)  1.251 3.02  0.8207 (£ 0.0037)  1.245 297  0.8678 (+0.0013)  1.236 3.53

FedAvg 0.7982 (+ 0.0012)  1.605 3.50 0.8142 (+ 0.0075)  1.596 442  0.8178 (£ 0.0026)  1.575 3.16  0.8582 (+ 0.0006)  1.581 6.45

FedProx 0.7991 (+ 0.0013) 1.665 3.50 0.8161 (+ 0.0069) 1.629 4.42 0.8172 (+ 0.0032) 1.611 3.16 0.8594 (+ 0.0027) 1.641 6.45

LocalSage+ 0.7234 (£ 0.1531)  0.601* 94.54* 0.8260 (x 0.0056) 2.183 94.54  0.8189 (+ 0.0041) 0.601 9454  0.8559 (+ 0.0055) 5.990  95.06
FedSage+ 0.6752 ( 0.0670) - OOM  0.7128 ( 0.0155) - OOM  0.8008 (+ 0.0219) - OOM 06822 (+ 0.0330) - OOM
FedSCem jter 0.8182 (+ 0.0006)  3.867  13.21  0.8389 (% 0.0023)  3.666 6.63  0.8356 (+0.0012)  6.186  97.36  0.8704 (+ 0.0014)  3.909  16.98
FedSCem- 0.8294 (+ 0.0014)  2.799 13.23  0.8382 (% 0.0005) 2.649 6.58 0.8338 (+ 0.0019) 5.115 97.36  0.8735 (+ 0.0003) 2.991 15.74
FedSCem 0.8288 (+ 0.0021)  3.795 13.21  0.8402 (+ 0.0018)  3.696 6.63  0.8509 (+ 0.0010) 6.069 97.36 0.8754 (+ 0.0012) 3.960  16.98
FedAvg+FedSCem | 0.8044 (+ 0.0030)  3.825 13.24  0.8189 (+ 0.0051)  3.645 6.77  0.8222 (+0.0028)  6.054 97.36  0.8653 (+ 0.0013)  3.930  16.98
FedProx+FedSCem | 0.8058 (+ 0.0026) 3.909 13.24  0.8220 (% 0.0047) 3.765 6.77 0.8216 (+ 0.0035) 6.261 97.36  0.8651 (+ 0.0031)  4.020  16.98

The elap./r and mem. of LocalSage+ on all
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Figure 7: Efficiency analysis for all methods.

with CPUs, thus their GPU runtimes are not available3). Figure 7a
shows the elapsed time per round for all methods. All the four out
of five of our methods (except FedSCem-) take about two times of
run time of the baselines, which is because both FedSCem j;¢r and
FedSCem include one extra task training within each round. How-
ever, this can also lead to faster convergence which will reduce the
time cost to some extent, as demonstrated in Figure 6b. In contrast,
FedSCem- does not include the extra local training and its elapsed
time obviously drops. Refer to Figure 5b, FedSCem- can be compa-
rable to FedSCem in some cases, therefore there can be an option of
using FedSCem- to trade off between the time efficiency and utility.
Regarding the percentages of GPU memory allocated, our meth-
ods require a similar amount of memory for the smaller datasets
(C1TESEER) but require much more memory when the graph size
grows large, as denoted in Figure 7b.

To investigate how the graph size impacts the efficiency, we de-
pict the correlations between elapsed time/memory allocated and
the number of nodes/edges of all ego-networks. From Figure 8c and
8b, the elapsed time significantly increases when the ego-network
size grows beyond a certain threshold. Similarly, when the size
exceeds some value, our methods require a higher amount of GPU
memory allocated, from Figure 8c and 8d. This is currently a limita-
tion of our methods which we have discussed in details in Section
4.4.1 together with the potential solutions. Moreover, both the time
and memory costs rise slowly as the graph size grows within a
certain range, which further empirically demonstrates that the time
and memory cost of our methods is only sub-linear to the total
number of nodes.

3The GPU runtime of LocalSage+ is reported from running on a single client/ego-
network, which cannot be fairly compared.
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datasets are evaluated standalone using only one client due to out-of-memory (OOM) issues when running with all clients.
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Figure 8: The effects of graph size on efficiency.

6 Conclusion

This work studies the novel problem setting of FGL over distributed
ego-networks, and aims to resolve its unique challenge of incom-
plete local neighborhood information, through our proposed se-
cure contrastive embedding sharing method. Our method can con-
trastively learn local and global aggregated embedding fusion there-
fore mitigating the gaps of incomplete local neighborhood informa-
tion. Meanwhile, we propose a secure embedding sharing protocol
that can protect the local node identity information and real embed-
dings from leaking sensitive local information. The comprehensive
experiments and analysis demonstrate the effectiveness of our pro-
posed method. Furthermore, we provide detailed discussions on
the potential drawbacks of our method w.r.t. efficiency and privacy,
as well as the future exploration to mitigate these drawbacks.
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