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Abstract—In a typical formulation of the private information

retrieval (PIR) problem, a single user wishes to retrieve one out

of K files from N servers without revealing the demanded file

index to any server. This paper formulates an extended model

of PIR, referred to as multi-message private computation (MM-

PC), where instead of retrieving a single file, the user wishes to

retrieve P > 1 linear combinations of files while preserving the

privacy of the demand information. The MM-PC problem is a

generalization of the private computation (PC) problem (where

the user requests one linear combination of the files), and the

multi-message private information retrieval (MM-PIR) problem

(where the user requests P > 1 files). A baseline achievable

scheme repeats the optimal PC scheme by Sun and Jafar P
times, or treats each possible demanded linear combination as an

independent file and then uses the near optimal MM-PIR scheme

by Banawan and Ulukus. In this paper, we propose a new MM-

PC scheme that significantly improves upon the baseline schemes.

In doing so, we design the queries inspired by the structure in

the cache-aided scalar linear function retrieval scheme by Wan et
al., which leverages the dependency between linear functions to

reduce the amount of communications. To ensure the decodability

of our scheme, we propose a new method to benefit from the

existing dependency, referred to as the sign assignment step. In

the end, we use Maximum Distance Separable matrices to code

the queries, which allows the reduction of download from the

servers, while preserving privacy. By the proposed schemes, we

characterize the capacity within a multiplicative factor of 2.

Index Terms—Private computation, multi-message private in-

formation retrieval, multiple linear combinations

I. INTRODUCTION

In the private information retrieval (PIR) problem [2], a
user wishes to download a file by sending different queries to
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a group of N non-colluding servers each storing the same K

files, while keeping the identity of the desired file secret from
the servers. The information-theoretic capacity is defined as
the maximum number of bits of desired information decoded
per one bit of downloaded information. The authors in [2]
show that the capacity of PIR is given by 1→1/N

1→1/NK .
Following the seminal PIR result in [2], a large number of

works have considered extended models of PIR. In particular,
in [3], [4], the problem of private computation (PC)

is proposed. In general, linear and multivariate polynomial
operations are widely used as fundamental primitives for
building the complex queries that support online big-data
analysis and data mining procedures. In these scenarios, it is
too resource-consuming to locally download all input variables
in order to compute the desired output value. Based on
this motivation, the PC problem is considered in [3], [4],
where instead of retrieving a single file, the user requests a
(scalar) linear combination of the files among M possible
linear combinations, where each linear combination is called
a message. An optimal PC scheme has been proposed in [3].
It is interesting to note that the capacity of the PC problem
is exactly the same as that of the PIR problem, which is
independent of M . Several extended models of the PC problem
have been considered, including PC with coded storages at the
servers [5]–[7], private sequential function retrieval [8] (where
the user wants to compute a fixed set of linear combinations
while hiding the computation order), PC with polynomial
functions [9], [10], cache-aided PC [11], single-server PC [12],
PC with arbitrary non-linear file dependencies [13], Private
Monomial Computation (PMC) (where they consider arbitrary
multivariate monomials of messages [14]), and more.

Another line of work in PIR is the multi-message PIR

(MM-PIR) proposed in [15]. Instead of retrieving a single
file, in the MM-PIR problem, the user aims to retrieve P > 1
files. A near-optimal MM-PIR scheme has been proposed
in [15]. It is also interesting to note that, even if the requested
files are independent, designing the MM-PIR scheme by
jointly considering the multi-request (as in [15]) leads to a
significant increase in the retrieval rate compared to simply
repeating the Sun and Jafar PIR scheme P times. Other works
related to MM-PIR include [16], where the problem assuming
that the user has private side information is studied, and
[17], [18], which consider the MM-PIR problem with side
information in the single-server case.

In this paper, we formulate a new problem, referred to
as the MM-PC problem, which covers the PC and MM-PIR
problems as special cases. In this setting, there are N non-
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colluding servers, each storing a library of K messages, with
the possibility of querying M linear combinations of these
K messages. The user wants to retrieve a set of P linearly
independent messages from the servers, while keeping the
identity of the requested messages secret from each server.

Two recent problems are similar to our formulated MM-
PC problem. The private linear transformation (PLT) problem
has been considered in [19]–[22]. In the PLT problem, the
user also wants to retrieve P linear combinations of K̃ < K

files while preserving the privacy of the indices of the K̃

files. The private distributed computing problem has been
considered in [23]–[30], where the user wants to compute a
matrix multiplication ABi where B1, B2, . . . are matrices with
uniform i.i.d. elements while preserving the privacy of the
index i. In our considered problem, the results for the above
two problems cannot be applied (or are highly inefficient).1
A very recent work on private multiple linear computation
appeared in [31], where the problem is to compute multiple
linear combinations of some messages, which are replicated on
multiple servers, by considering the case of colluding and non-
responsive servers. While keeping the privacy of the requests,
the scheme in [31] attains a tradeoff between the communi-
cation and computation costs, where the communication cost
also includes the upload cost. However, when applied to the
MM-PC problem considered here, the scheme of [31] achieves
the rate N→1

N , which can also be achieved by repeating the PIR
scheme in [32] P times. The main challenge addressed in our
work is how to improve the repetition strategy.

Contributions: An achievable scheme by a direct extend-
ing of the optimal PC scheme in [3] or the near optimal MM-
PIR scheme in [15], is proposed which we refer to as the
baseline scheme.

However, the direct combination of the PC scheme in [3]
and the MM-PIR scheme in [15] is not possible. Hence, we
propose a new scheme that improves over the baseline scheme,
by leveraging some features of the optimal PC and near
optimal MM-PIR schemes and incorporating some non-trivial
novel ideas. More precisely, while each message is divided
into multiple symbols and the queries are essentially linear
combinations of these symbols, to exploit the dependency
between messages, we may need to assign a specific sign
to each symbol involved, referred to as sign assignment. To
ensure decodability, and inspired by [33], we propose a new
sign assignment method which makes some of the queries
linear combinations of others, and then by using Maximum
Distance Separable (MDS) coding, we can reduce the amount
of download, while preserving symmetry and thus privacy. It
is essential to mention that the redundancy appears as a result
of the novel sign and index assignment method. Numerical
evaluations show that the improved scheme provides large
performance gains with respect to the baseline scheme for a
wide range of system parameters.

1More precisely, the PLT schemes cannot be applied to our problem, since
in our problem the linear combinations are over all files, and we aim to
preserve the privacy of the coefficient matrix instead of chosen files. The
private distributed computing schemes are very inefficient to be applied to
our problem, since we should treat each possible set of linear combinations
as an “independent” demand matrix, and thus there is a huge number of such
possible demand matrices.

Notation: For a → N the notation [a] represents set
{1, . . . , a}, and notation [a : b] for a, b → N represents set
{a, a+ 1, . . . , b}. In addition, we denote the difference of two
sets A, B as A\B, that means the set of elements which belong
to A but not B.

II. PROBLEM SETTING

Consider N non-colluding servers with K files which are
replicated on all servers. For each i → [K], the i

th file is a
vector of large enough size L, denoted by Wdi → FL

q , whose
symbols take on values over a finite field Fq . Additionally, files
are independently and randomly generated with i.i.d. symbols
such that

H(Wd1) = · · · = H(WdK ) = L, (1a)
H(Wd1 , · · · ,WdK ) = H(Wd1) + · · ·+H(WdK ). (1b)

Note that in this paper, the log used for information measures
in the entropy function is base-q. A user wants to retrieve P of
M possible messages from the servers, where each message
is a linear combination of the K files. For each m → [M ], the
m

th message is defined as,

Wm := vm[Wd1 , . . . ,WdK ]T (2a)
= vm(1)Wd1 + · · ·+ vm(K)WdK , (2b)

where vm(i) is the i
th entry of the coefficient vector vm for

i → [K], and all operations are taken in Fq . Without loss of
generality, we assume that M ↑ K and the first K messages
are replicas of the K independent files, i.e., (W1, . . . ,WK) =
(Wd1 , . . . ,WdK ). For the sake of future convenience, each
message in W1, . . . ,WK is called an independent message;
each other message is called a dependent message, since it is
a linear combination of independent messages.

Unlike [3] where the user requires only one message, in
the MM-PC problem, the user privately generates a set of
P indices I = {ω1, . . . , ωP }, where I ↓ [M ] and ωi ↔= ωj

for each i, j → [P ] where i ↔= j. The user wishes to
compute WI := (Wω1 , . . . ,WωP ) while keeping I secret
from each server. Without loss of generality, we assume that
Wω1 , . . . ,WωP are linearly independent; otherwise, we can
just reduce P and let the user demand linearly indepen-
dent combinations.2 To do so, the user generates N queries
Q

I
1 , . . . , Q

I
N and sends each Q

I
n to the corresponding server.

These queries are generated when the user has no knowledge
of the realizations of the messages, so the queries should be
independent of the messages, i.e.,

I(QI
1 , . . . , Q

I
N ;W1, . . . ,WM ) = 0. (3)

Upon receiving Q
I
n, each server n → [N ] generates

and sends the answer A
I
n which is a function of Q

I
n and

W1, . . . ,WM , i.e.,

H(AI
n|QI

n,W1, . . . ,WM ) = 0, n → [N ]. (4)

2So in this paper we only need to consider the case P → K. In addition,
if P = K, the optimal solution is trivially to download all the files.
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Finally, the user must retrieve the desired WI from the servers’
answers A

I
n and the queries Q

I
n with vanishing error3, i.e.,

H(WI |AI
1 , . . . , A

I
N , Q

I
1 , . . . , Q

I
N ) = o(L), (5)

where limL↑↓ o(L)/L = 0.
The MM-PC scheme should be designed to keep the demand

information I secret from all servers; i.e., the following
privacy constraint must be satisfied,

(QI1
n , A

I1
n ,W1, . . . ,WM ) ↗ (QI2

n , A
I2
n ,W1, . . . ,WM ), (6)

for all I1, I2 → ! and all servers n → [N ], where ! is the
set of all possible I, and ↗ indicates that these two random
vectors follow the same distribution.

The MM-PC rate, denoted by R, is defined as the number
of symbols recovered collectively from all the demanded
messages per one downloaded symbol,

R :=
PL

D
, (7)

where D is the expected value over random queries of the
total downloaded symbols from all the servers by the user.
The objective is to find to the supremum of all achievable
rates, denoted by R

ε.
III. MAIN RESULTS

In this section, we present the baseline scheme and the main
results for the proposed MM-PC problem.

Theorem 1 (Baseline scheme). For the MM-PC problem, in
case P ↘ K, the following rate is achievable,

R1 = max

{
1≃ 1

N

1≃ ( 1
N )K

, CM,P

}
, (8)

where CM,P represents the achieved rate of the MM-PIR
scheme in [15] with M files in the library and P requests
from the user. When P ↑ M

2 ,

CM,P =
1

1 + M→P
PN

, (9)

and when P ↘ M
2 ,

CM,P =

∑P
i=1 εir

M→P
i [(1 + 1

ri
)M ≃ (1 + 1

ri
)M→P ]

∑P
i=1 εir

M→P
i [(1 + 1

ri
)M ≃ 1]

, (10)

in which

ri =
e
j2ϑ(i→1)/P

N1/P ≃ ej2ϑ(i→1)/P
, ⇐i → [P ], (11)

and ε = (ε1, ..., εP )T is the solution of the system of
equations




r
→P
1 r

→P
2 ... r

→P
P

r
→P+1
1 r

→P+1
2 ... r

→P+1
P

...
... ...

...
r
→1
1 r

→1
2 ... r

→1
P









ε1

ε2
...
εP




=





(N ≃ 1)M→P

0
...
0




.

(12)

3The MM-PC scheme proposed in this paper however, has zero probability
of error.

The first rate in (8) is achieved by simply repeating the
single-message private computation scheme (PC scheme) in
[3]. The second rate in (8) is achieved by treating each possible
demanded linear combination as an independent message,
and then using the MM-PIR scheme in [15]. The following
theorem shows the order optimality of the baseline scheme.

Theorem 2 (order-optimality of the baseline scheme). The
baseline scheme in Theorem 1 is order-optimal within a
multiplicative gap of 2.

The order optimality proof could be found in Appendix C.

Remark 1 (asymptotic optimality of the baseline scheme).
Based on Theorem 2, the gap between the optimal scheme
and the baseline scheme is bounded by 1

1→ 1
N

, which for large
N converges to 1. This shows the asymptotic optimality of the
baseline scheme for large N .

Even though the baseline scheme (which treats each linear
function as one file and uses the optimal PIR scheme P

times) is order-optimal within 2, it can be further improved by
carefully leveraging the connection among the linear functions.
The achieved rate of our improved scheme is listed in the fol-
lowing theorem, and its description is presented in Section V.

Theorem 3 (Proposed scheme). For the MM-PC problem, in
case P ↘ K, the following rate is achievable,

R2 =
P
∑M→P+1

i=1 ϑi

(M→P
i→1

)

∑M→P+1
i=1 ϑi

((M→P
i

)
≃
(M→K

i

)
+ P

(M→P
i→1

)) , (13)

where ϑM→P+2 = · · · = ϑM = 0, ϑM→P+1 = (N ≃ 1)M→P ,
and

ϑi =
1

N ≃ 1

P∑

m=1

(
P

m


ϑi+m, i → [1 : M ≃ P ]. (14)

The proofs of decodability and privacy of the proposed
scheme for Theorem 3 are provided in Appendices A and B,
respectively. Fig. 1 compares the baseline scheme with the
proposed scheme, for the case where K = 7, N = 2,
M → {10, 15}, and P → [2 : 6]. As shown in Fig. 1, when
P = 2, the baseline scheme is slightly better than the proposed
scheme; when P > 2, the improvement over the baseline
scheme becomes more significant as P increases. Note that
the rate of the proposed scheme has very little dependence on
M , since the solid red line and the dashed red line almost
coincide. This can be also observed in Fig. 2, sweeping on M

does not change much the rate for the proposed scheme.

Remark 2. When P = 1, the rate of the proposed scheme
in Theorem 3 equals that of PC capacity 1→ 1

N

1→( 1
N )K

in [3].
However, the scheme itself would be different from that of [3],
since the sign assignment method is different. Therefore, the
proposed scheme for P = 1 introduces a new capacity-
achieving PC scheme.

Remark 3. When K ⇒ ⇑, the asymptotic capacities of the
PIR and also the PC problems are both 1≃1/N . When K ⇓
P , the asymptotic capacity of the MM-PIR is also 1≃1/N . In
addition, when K ⇓ P (which also means that M ⇓ P ), the
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Fig. 1: Comparison of the rates. Red lines represent the
proposed scheme and blue lines the baseline scheme, for
values K = 7, N = 2. P and M changes as in the figure.
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Fig. 2: Comparison of the rates. Red line represents the
proposed scheme and blue line the baseline scheme, for values
K = 7, N = 2, P = 5 and M changes as in the figure. The
dependency of the proposed scheme on M is almost zero.

asymptotic achieved rate by the baseline scheme of this paper
(see the first term in (8), 1→ 1

N

1→( 1
N )K

) is also 1≃ 1/N . Note that
the capacity of the MM-PIR problem is also a converse bound
of the considered MM-PC problem. Hence, when K ⇓ P the
asymptotic capacity of the considered MM-PC problem is also
1≃ 1/N .

IV. NEW PROPOSED MM-PC SCHEME THROUGH AN
EXAMPLE

For the sake of clarity, we illustrate the scheme through an
example and provide the general description afterwards.

The step-by-step example in this section considers M = 5,
K = 3, P = 2, and N = 2. The messages are denoted
by letters {a, b, c, d, e}, where {a, b, c} are the independent
files and {d, e} are any desired linear combinations of the
independent files in the given finite field Fq . In this example,
the demanded files are I = {a, b}. Each message is partitioned
into L = 68 symbols and the i

th symbol of each message is
denoted by subscript (index) i, e.g., ai denotes the i

th symbol
of message a. Note that the general relation between the
system parameters and the subpacketization level L follows
L = N

∑M→P+1
i=1 ϑi

(M→P
i→1

)
, where the exact calculation

appears in Appendix A.
Step 1: Permutation and Relabeling. A permutation

function ϖ(·) on [L] is chosen uniformly at random over
all the L! possibilities. The symbols of every message are
permuted by ϖ. For simplicity, the permuted messages are
denoted by the same letters {a, b, c, d, e}, e.g., message a =
(a1, a2, ..., a68) turns into a = (aϑ(1), aϑ(2), ..., aϑ(68)). Fur-
thermore, we define the variables ϱi → {≃1, 1}, ⇐i → [L],
referred to as multiplicative factors, each chosen uniformly
i.i.d. For all messages, the symbol of position i is multi-
plied by ϱi. For example, the message a is transformed into
a = (ϱ1aϑ(1),ϱ2aϑ(2), ...,ϱ68aϑ(68)). We assume that the
permutation is (1, 2, . . . , 68) and that ϱi = 1, ⇐i → [68].

We also perform a relabeling on the message labels 1, ...,M ,
such that the first P labels of messages (i.e., W1, ...,WP ) are
the demanded messages. Furthermore, we change the set of
independent messages, such that they contain the P demanded
messages. We prove in Appendices A and B that these actions
will not hurt the decodability and privacy. In this example, this
is already the case and there is no change needed.

Step 2: Query Structure and Number of Repetitions.

The queries to servers are linear combinations of symbols from
different messages. They are categorized into multiple rounds,
where round i contains queries summing i different symbols.
Each round itself is also split into multiple stages. Each stage
of round i contains all

(M
i

)
choices of i messages from the

total M . For instance for a stage of round 2, the queries are of
the form {a↔+b↔, a↔+c↔, a↔+d↔, a↔+e↔, b↔+c↔, b↔+d↔, b↔+
e↔, c↔+d↔, c↔+e↔, d↔+e↔}, which covers all

(5
2

)
= 10 ways of

choosing 2 messages from the total 5. Note that the subscript
⇔ denotes some specific symbol index. The number of stages
of round i denoted by ϑi, follows (14). The explanation to
calculate ϑi is provided in Section V, Step 2. For our example
we have ϑ5 = 0,ϑ4 = 1,ϑ3 = 2,ϑ2 = 5,ϑ1 = 12.4

Step 3: Initialization. This step corresponds to queries of
round 1 (single symbols). Since ϑ1 = 12, from each server the
user queries 12 symbols of each message, depicted in Table I.

Step 4: Index Assignment. Since the general structure of
queries is known from Step 2, i.e., the number of stages in each
round and that each stage of round i contains all possible i-
sums, we need to determine the symbol indices for each query.
The index assignment is inspired by the delivery phase of the

4The number of stages calculated here is completely different from that
of [15]. The main reason is that in the scheme [15], every query containing
symbols of demanded messages contributes to decoding new demanded sym-
bols, while in the proposed scheme because of the special index assignment,
designed in cooperation with the sign assignment, this is not possible.
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Round Stage Server 1 Server 2

round 1
stage 1 a1, b1, c1, d1, e1 a13, b13, c13, d13, e13

...
...

...
stage 12 a12, b12, c12, d12, e12 a24, b24, c24, d24, e24

TABLE I: Round 1 queries.

coded caching scheme in [34]. Note that the construction of
this coded caching scheme is completely symmetric over files
if the number of files is equal to the number of users and each
user requests a distinct file.

Consider the first stage of round 2 queries to server 1. There
are

(5
2

)
= 10 queries of the form {a↔+b↔, a↔+c↔, a↔+d↔, a↔+

e↔, b↔ + c↔, b↔ + d↔, b↔ + e↔, c↔ + d↔, c↔ + e↔, d↔ + e↔}.
Let us first determine the indices of the queries in {a↔ +

c↔, a↔ + d↔, a↔ + e↔}, where the indices of c↔, d↔, e↔ in
{a↔ + c↔, a↔ + d↔, a↔ + e↔} should be the same (treated
as the side information to decode new symbols of message
a). In addition, these symbols c↔, d↔, e↔ should have been
downloaded previously. Hence, we can let these queries be
{a25 + c13, a26 + d13, a27 + e13}, where {25, 26, 27} are new
indices of message a (the first 24 indices are already used in
round 1) and the remaining parts are symbols with index 13,
already received from queries to server 2 in round 1. Similarly
in the same stage, for the demanded message b the queries
should be {b25+c14, b26+d14, b27+e14}, which use symbols
c14, d14, e14 as side information.

We then determine the indices in the remaining queries
{a↔ + b↔, c↔ + d↔, c↔ + e↔, d↔ + e↔}. Recall that the symbols
which are treated as side information to decode a are with
index 13, and the symbols which are treated as side infor-
mation to decode b are with index 14. Hence a↔ + b↔ should
be a14 + b13. In addition, the symbols which are treated as
side information to (virtually) decode c, d, e are with indices
25, 26, 27, respectively. Thus these remaining queries should
be {a14 + b13, c26 + d25, c27 + e25, d27 + e26}.

For the first stage of round 2 queries to server 2, the same
process repeats using symbols with indices 1 and 2 acting
as side information and decoding new symbols with indices
{28, 29, 30} for messages a and b. The other 4 stages of round
2 follow the same procedure, given in Table II.

A stage of round 3 contains all
(5
3

)
ways of choosing 3

messages out of 5, i.e., {a↔ + b↔ + c↔, a↔ + b↔ + d↔, a↔ + b↔ +
e↔, a↔ + c↔ + d↔, a↔ + c↔ + e↔, a↔ + d↔ + e↔, b↔ + c↔ + d↔, b↔ +
c↔ + e↔, b↔ + d↔ + e↔, c↔ + d↔ + e↔}.

The queries {a↔ + c↔ + d↔, a↔ + c↔ + e↔, a↔ + d↔ + e↔}, are
used to decode new symbols of a. Consider the first stage of
round 3 queries to server 1. The new indices for the symbols
of the demanded message a are {55, 56, 57}, since the first 54
symbols of a have already appeared in the first two rounds.
The side information part is duplicated from the first stage of
round 2 queries to server 2, i.e., {c29+d28, c30+e28, d30+e29}.
Therefore, these queries would be {a55+c29+d28, a56+c30+
e28, a57 + d30 + e29}. Similarly for decoding new symbols of
b, the queries are {b55+ c35+d34, b56+ c36+e34, b57+d36+
e35}, where the side information parts are duplicated from the
second stage of round 2 queries to server 2. One observes
that when c and d appear together in a query, the indices of

Round Stage Server 1 Server 2

round 2

stage 1

a25 + c13 a28 + c1
a26 + d13 a29 + d1
a27 + e13 a30 + e1
b25 + c14 b28 + c2
b26 + d14 a29 + d2
b27 + e14 b30 + e2
a14 + b13 a2 + b1
c26 + d25 c29 + d28
c27 + e25 c30 + e28
d27 + e26 d30 + e29

stage 2

a31 + c15 a34 + c3
a32 + d15 a35 + d3
a33 + e15 a36 + e3
b31 + c16 b34 + c4
b32 + d16 a35 + d4
b33 + e16 b36 + e4
a16 + b15 a4 + b3
c32 + d31 c35 + d34
c33 + e31 c36 + e34
d33 + e32 d36 + e35

stage 3

a37 + c17 a40 + c5
a38 + d17 a41 + d5
a39 + e17 a42 + e5
b37 + c18 b40 + c6
b38 + d18 a41 + d6
b39 + e18 b42 + e6
a18 + b17 a6 + b5
c38 + d37 c41 + d40
c39 + e37 c42 + e40
d39 + e38 d42 + e41

stage 4

a43 + c19 a46 + c7
a44 + d19 a47 + d7
a45 + e19 a48 + e7
b43 + c20 b46 + c8
b44 + d20 a47 + d8
a20 + b19 b48 + e8
a6 + b5 a8 + b7
c44 + d43 c47 + d46
c45 + e43 c48 + e46
d45 + e44 d48 + e47

stage 5

a49 + c21 a52 + c9
a50 + d21 a53 + d9
a51 + e21 a54 + e9
b49 + c22 b52 + c10
b50 + d22 a53 + d10
b51 + e22 b54 + e10
a22 + b21 a10 + b9
c50 + d49 c53 + d52
c51 + e49 c54 + e52
d51 + e50 d54 + e53

TABLE II: Round 2 of queries.
the other involved symbols are the same, i.e., in {a55 + c29 +
d28, b55+c35+d34}, both a and b have index 55. When a and d

appear together, the indices of the other involved symbols are
both 29; see {a55+c29+d28, a57+d30+e29}. One can verify
that the same structure holds for any two messages appearing
together. It is also interesting to see that this phenomenon also
exists in the coded caching scheme in [34], which is the core
to preserve the privacy.

Among the remaining queries {a↔+b↔+c↔, a↔+b↔+d↔, a↔+
b↔+e↔, c↔+d↔+e↔}, first consider a↔+b↔+c↔. To determine
the index of a, we search for a query containing both b and c,
e.g., b55 + c35 + d34. Since b55 + c35 + d34 and a↔ + b↔ + c↔
both contain b and c, the indices of a and d should be the
same, which is 34. To determine the index of b, since in the
query a55 + c29 + d28 containing both a and c, b should have
the same index as d28, which is 28. To determine the index of
c, there has not been any query containing both a and b in this
stage yet. Note that a34 and b28 have already been recovered
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Round Stage Server 1 Server 2

round 3

stage 1

a55 + c29 + d28 a58 + c26 + d25
a56 + c30 + e28 a59 + c27 + e25
a57 + d30 + e29 a60 + d27 + e26
b55 + c35 + d34 b58 + c32 + d31
b56 + c36 + e34 b59 + c33 + e31
b57 + d36 + e35 b60 + d33 + e32
a34 + b28 + c23 a31 + b25 + c11
a35 + b29 + d23 a32 + b26 + d11
a36 + b30 + e23 a33 + b27 + e11
c57 + d56 + e55 c60 + d59 + e58

stage 2

a61 + c41 + d40 a64 + c38 + d37
a62 + c42 + e40 a65 + c39 + e37
a63 + d42 + e41 a66 + d39 + e38
b61 + c47 + d46 b64 + c44 + d43
b62 + c48 + e46 b65 + c45 + e43
b63 + d48 + e47 b66 + d45 + e44
a46 + b40 + c24 a43 + b37 + c12
a47 + b41 + d24 a44 + b38 + d12
a48 + b42 + e24 a45 + b39 + e12
c63 + d62 + e61 c66 + d65 + e64

round 4 stage 1

a67 + c60 + d59 + e58 a68 + c57 + d56 + e55
b67 + c66 + d65 + e64 b68 + c63 + d62 + e61
a64 + b58 + c53 + d52 a61 + b55 + c50 + d49
a65 + b59 + c54 + e52 a62 + b56 + c51 + e49
a66 + b60 + d54 + e53 a63 + b57 + d51 + e50

TABLE III: Rounds 3 and 4 of queries.

by the user from the previous transmissions. Hence, we use
symbol c23 transmitted in the first round of queries to server
2, such that the whole sum a34+ b28+ c23 could be recovered
by the previous rounds and thus redundant, which could be
removed later in Step 6 to reduce the transmissions. Let us
then consider the indices of a↔ + b↔ + d↔. a↔ should have the
same index as c35 in b55+ c35+d34. b↔ should have the same
index as c29 in a55+c29+d28. d↔ should have the same index
as c23 in a34+b28+c23. Thus we fix a↔+b↔+d↔ = a35+b29+
d23. Similarly, we can subsequently determine the indices of
a↔ + b↔ + e↔, c↔ + d↔ + e↔ as a36 + b30 + e23, c57 + d56 + e55.

By this approach, Round 3 and 4 queries are obtained as
shown in Table III.

So far, the only operation used in queries is addition. To
exploit the dependency between messages, we may need to
also use negation, referred to as sign assignment. It will
be proved later that by the proposed sign assignment, in a
stage of round i, out of

(M
i

)
total queries,

(M→K
i

)
of them

are redundant and can be written as linear combinations of
others. We should point out that this redundancy result is also
achieved by the PC scheme in [3]. However, due to the fact that
we attempt to retrieve multiple messages instead of one, it is
not possible to utilize the sign assignment in [3] to achieve the
same amount of redundancy. Instead, we propose a new sign
assignment approach resulting in this amount of redundancy
while guaranteeing the decodability.

Step 5: Sign assignment. The messages in each query
should be sorted based on the lexicographic order of the
messages. In round 2, for each query with one symbol from
{a, b, c} and one symbol from {d, e}, a plus sign is used in
between the symbols; for each other query in this round, a
minus sign is used. For instance, the queries in the first stage
of round 2 sent to Server 1 would be as Table IV.

Among these queries, the query q10 = d27 ≃ e26 can be
written as a linear combination of the other queries, thus being
redundant. To show this, suppose d = a+b and e = b+c; one

q1 = a25 ↑ c13
q2 = a26 + d13
q3 = a27 + e13
q4 = b25 ↑ c14
q5 = b26 + d14
q6 = b27 + e14
q7 = a14 ↑ b13
q8 = c26 + d25
q9 = c27 + e25
q10 = d27 ↑ e26

TABLE IV: First stage of round 2 queries to Server 1 after
sign assignment.

can check that the equation q10 = q3+q6≃q5≃q8+q7+q1+q4

holds.
In general for sign assignment, each query is first divided

into two parts. The first part contains symbols of independent
messages and the second part symbols of dependent messages,
which are called independent symbols and dependent symbols,
respectively. So each query q is written as

q = (independent symbols)± (dependent symbols), (15)

where in each parenthesis, symbols are ordered based on the
label of the message (ranging from 1 to M ), from lowest to
highest. The signs in each parenthesis are changing alterna-
tively between + and ≃, with the first symbol taking +. When
the plus sign is used in (15), the sign assignment is called
structure plus; when minus sign is used, it is called structure
minus. Round 2 queries use structure plus, then round 3 uses
minus, and round 4 again uses plus. This is the most non-
trivial step in the proposed sign assignment. Note that besides
alternating signs in each parenthesis in (15), we also alternate
the signs between the two parenthesis in each query according
to the round numbers. The latter sign alternating is needed to
ensure the decodability of the scheme which will be proved in
Appendix A. After these steps, each query is solely randomly
multiplied by a +1 or ≃1, uniformly at random, referred to as
switching random variables. This is to ensure the existence
of mapping of queries for two different sets of demanded
messages by a choice of {ϱi} and these switching RVs, which
is required in the privacy proof in Appendix B. We assume
all to be +1 in the example. After the sign assignment, the
queries follow Tables VI and VII. Notice that the multiplicative
matrices G in the tables are due to the following step.

Step 6: Reducing Download. In the first stage of round 2,
as pointed out in the previous step, among the queries
{q1, q2, ..., q10}, q10 is redundant. On the other hand, since
both a14 and b13 are downloaded in the first and second
stages of round 1 from Server 2, q7 = a14 ≃ b13 is also
redundant. However, it is not possible to simply delete this
query since it jeopardizes the symmetry and consequently
the privacy. Instead, we use a coding strategy as follows.
Instead of sending the 10 queries {q1, q2, ..., q10}, the 8 queries
q = G8↗10[q1, q2, ..., q10]T are sent, where G8↗10 is an MDS
matrix of size 8↖10. By receiving all 8 queries in q, the user is
able to decode all non-redundant queries. Similarly, all queries
are depicted in Tables V, VI, and VII.

Step 7: Shuffling. The order of queries to each server
and also the order of the symbols appearing in each query are
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shuffled, each uniformly at random, to avoid the information
leakage from the query orders and the symbol orders.

Remark 4 (independence of the proposed rate of M ). As
shown in Fig. 2, the proposed rate is almost independent of
M . This is due to the fact that in every stage, the queries
only containing symbols of the M ≃ K dependent messages
are redundant and their burden is removed in Step 6. On the
other hand, part of the remaining queries include the ones
containing two or more symbols from the demanded messages
and the M≃K dependent messages. These are part of useless
queries and their burden is also removed in Step 6 as in the
example. The redundancy removement helps with eliminating
the effect of M≃K dependent messages in the scheme, which
has proved to be effective in Fig. 2. Note that for the original
private computation problem in [3] (i.e., the case of P = 1),
it was proved that the optimal rate is absolutely independent
of M , which is also due to the redundancy removement.

Remark 5 (Rate calculation). After Step 6, there are 3 queries
in each stage of round 1, 8 in each stage of round 2, 7 in each
stage of round 3, and 2 in each stage of round 4, summing to
the total of 184 symbols. Since L = 68, the proposed scheme
achieves the rate R2 = 0.74, while the baseline scheme
achieves R1 = 0.61.

Remark 6 (Privacy). Intuitively, the privacy of the proposed
scheme follows from the fact that the scheme yields symmetric
queries to each server. In every stage, all possible i-sums
appear, and from the view point of each message, the in-
dex structure is symmetric. Besides, using the multiplicative
variables ϱi, we prove in Appendix B that the symbols signs
appeared in each query have a one to one mapping for
different sets of demanded messages; keeping the demanded
messages hidden from the viewpoint of each server.

Remark 7 (Outline of the proposed scheme). After the ini-
tialization steps (Steps 1-3), the proposed scheme in Step 4
designs the queries similar to the delivery phase of coded
caching in terms of designing the indices of symbols (whose
detailed explanation will be provided in Lemma 1). Then using
the sign assignment strategy in Step 5, we let some transmitted
messages be linear combinations of others, such that this
redundancy could be removed by using an MDS matrix in
Step 6. As a result, the number of transmissions is reduced.
Note that Step 2 is designed such that the number of side
information queries needed is satisfied.

Remark 8. (Why ϑ5 = 0) Note that in each informative query
(i.e., the query which contains symbols from the demanded
messages), there exists only one new symbol from all the
demanded messages, which has not been decoded. In this
example, since there are totally 5 messages, 2 of which are
demanded, summation of 5 symbols (each from a different
message) has two demanded symbols and cannot contribute
to decoding any demanded symbols. This is the reason the
scheme continues till round 4.

Remark 9. (Number of stages) The last round is round 4 with
1 stage. These queries are of the form a↔+c↔+d↔+e↔ where
c↔ + d↔ + e↔ is treated as side information, or of the form

b↔ + c↔ + d↔ + e↔ where again c↔ + d↔ + e↔ is treated as side
information, or of the form a↔+b↔+{c↔+d↔, c↔+e↔, d↔+e↔}
where {c↔+d↔, c↔+e↔, d↔+e↔} are treated as side information.
Based on this observation, a stage of round 4 needs 2 stages
of round 3 and 1 stage of round 2, to get the side information.
Similarly, for a stage of round 3, the queries are of the form
a↔+{c↔+d↔, c↔+e↔, d↔+e↔} where {c↔+d↔, c↔+e↔, d↔+e↔}
are treated as side information, or of the form b↔ + {c↔ +
d↔, c↔ + e↔, d↔ + e↔} where {c↔ + d↔, c↔ + e↔, d↔ + e↔} are
treated as side information, or of the form a↔+b↔+{c↔, d↔, e↔}
where {c↔, d↔, e↔} are treated as side information. Based on
this observation, a stage of round 3 needs 2 stages of round
2 and 1 stage of round 1, to get the side information. By a
similar argument, round 2 needs 2 stages of round 1 to get the
side information. Considering all this together, the number of
stages in each round is determined as ϑ5 = 0,ϑ4 = 1,ϑ3 =
2,ϑ2 = 5,ϑ1 = 12. For instance, for the 12 stages of round
1, 10 of them are used as side information in round 2, which
has 5 stages and each of which needs 2 stages of round 1 as
side information; the remaining 2 are used in round 3 with 2
stages, since each of which needs 1 stage of round 1 as side
information.

V. NEW PROPOSED MM-PC SCHEME: THE GENERAL
CASE

In this section, following the main idea of the example in
Section IV, we describe the general MM-PC scheme proposed
in this paper. Note that each message is divided into L

symbols. The j
th symbol of Wi is denoted by Wi(j). The

proofs of decodability and privacy of the proposed scheme
are provided in Appendices A and B, respectively.

Step 1: Permutation and Relabeling. In this step, the
symbols in each message are permuted by a single permutation
function ϖ(·) over [L] and multiplied by the multiplicative
variable ϱi → {+1,≃1} for the symbol index i → [L]. We
denote the alternated message of Wm by um as follows.

um(i) := ϱiWm(ϖ(i)),m → [M ], i → [L]. (16)

Both the permutation function ϖ and the multiplicative vari-
ables ϱi are uniformly and independently distributed. These
functions are independent of message label m → [M ].

Furthermore, we change the initial labeling of the messages
such that the first P labels are the demanded messages;
i.e., (ω1, ω2, ..., ωP ) = (1, 2, ..., P ). We expand the new basis
with K ≃ P more independent messages with the new labels
from P + 1 to K, and then label the others (which are the
new dependent ones) from K + 1 to M . Notice that this is
possible with the assumption that the demanded messages are
independent. This relabeling (or permutation on messages) is
done privately by the user and unknown to the servers.

Step 2: Number of Stages. This step is inspired from the
second MM-PIR scheme in [15] (for case P ↘ M

2 ). The
query structure to each server is split into M ≃P +1 rounds,
where each round i contains the queries summing i different
symbols. Each round may also be split into multiple stages.
Each stage of round i queries contains all

(M
i

)
possible choices

of messages; i.e., summations with the form uj1(⇔)+uj2(⇔)+
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Round Stage Server 1 Server 2

round 1

stage 1 G
(1,1)
3→5 ↓





a1
b1
c1
d1
e1




G

(1,1)
3→5 ↓





a13
b13
c13
d13
e13





stage 2 G
(1,2)
3→5 ↓





a2
b2
c2
d2
e2




G

(1,2)
3→5 ↓





a14
b14
c14
d14
e14





stage 3 G
(1,3)
3→5 ↓





a3
b3
c3
d3
e3




G

(1,3)
3→5 ↓





a15
b15
c15
d15
e15





stage 4 G
(1,4)
3→5 ↓





a4
b4
c4
d4
e4




G

(1,4)
3→5 ↓





a16
b16
c16
d16
e16





stage 5 G
(1,5)
3→5 ↓





a5
b5
c5
d5
e5




G

(1,5)
3→5 ↓





a17
b17
c17
d17
e17





stage 6 G
(1,6)
3→5 ↓





a6
b6
c6
d6
e6




G

(1,6)
3→5 ↓





a18
b18
c18
d18
e18





stage 7 G
(1,7)
3→5 ↓





a7
b7
c7
d7
e7




G

(1,7)
3→5 ↓





a19
b19
c19
d19
e19





stage 8 G
(1,8)
3→5 ↓





a8
b8
c8
d8
e8




G

(1,8)
3→5 ↓





a20
b20
c20
d20
e20





stage 9 G
(1,9)
3→5 ↓





a9
b9
c9
d9
e9




G

(1,9)
3→5 ↓





a21
b21
c21
d21
e21





stage 10 G
(1,10)
3→5 ↓





a10
b10
c10
d10
e10




G

(1,10)
3→5 ↓





a22
b22
c22
d22
e22





stage 11 G
(1,11)
3→5 ↓





a11
b11
c11
d11
e11




G

(1,11)
3→5 ↓





a23
b23
c23
d23
e23





stage 12 G
(1,12)
3→5 ↓





a12
b12
c12
d12
e12




G

(1,12)
3→5 ↓





a24
b24
c24
d24
e24





TABLE V: Round 1 of queries. Informative queries are de-
noted with black and side information queries with red.

Round Stage Server 1 Server 2

round 2

stage 1 G
(2,1)
8→10 ↓





a25 ↑ c13
a26 + d13
a27 + e13
b25 ↑ c14
b26 + d14
b27 + e14
a14 ↑ b13
c26 + d25
c27 + e25
d27 ↑ e26





G
(2,1)
8→10 ↓





a28 ↑ c1
a29 + d1
a30 + e1
b28 ↑ c2
a29 + d2
b30 + e2
a2 ↑ b1
c29 + d28
c30 + e28
d30 ↑ e29





stage 2 G
(2,2)
8→10 ↓





a31 ↑ c15
a32 + d15
a33 + e15
b31 ↑ c16
b32 + d16
b33 + e16
a16 ↑ b15
c32 + d31
c33 + e31
d33 ↑ e32





G
(2,2)
8→10 ↓





a34 ↑ c3
a35 + d3
a36 + e3
b34 ↑ c4
a35 + d4
b36 + e4
a4 ↑ b3
c35 + d34
c36 + e34
d36 ↑ e35





stage 3 G
(2,3)
8→10 ↓





a37 ↑ c17
a38 + d17
a39 + e17
b37 ↑ c18
b38 + d18
b39 + e18
a18 ↑ b17
c38 + d37
c39 + e37
d39 ↑ e38





G
(2,3)
8→10 ↓





a40 ↑ c5
a41 + d5
a42 + e5
b40 ↑ c6
a41 + d6
b42 + e6
a6 ↑ b5
c41 + d40
c42 + e40
d42 ↑ e41





stage 4 G
(2,4)
8→10 ↓





a43 ↑ c19
a44 + d19
a45 + e19
b43 ↑ c20
b44 + d20
a20 + b19
a6 ↑ b5
c44 + d43
c45 + e43
d45 ↑ e44





G
(2,4)
8→10 ↓





a46 ↑ c7
a47 + d7
a48 + e7
b46 ↑ c8
a47 + d8
b48 + e8
a8 ↑ b7
c47 + d46
c48 + e46
d48 ↑ e47





stage 5 G
(2,5)
8→10 ↓





a49 ↑ c21
a50 + d21
a51 + e21
b49 ↑ c22
b50 + d22
b51 + e22
a22 ↑ b21
c50 + d49
c51 + e49
d51 ↑ e50





G
(2,5)
8→10 ↓





a52 ↑ c9
a53 + d9
a54 + e9
b52 ↑ c10
a53 + d10
b54 + e10
a10 ↑ b9
c53 + d52
c54 + e52
d54 ↑ e53





TABLE VI: Round 2 of queries. Informative queries, useless
queries, and side information queries are denoted with black,
blue, and red respectively.

Round Stage Server 1 Server 2

round 3

stage 1 G
(3,1)
7→10 ↓





a55 ↑ c29 ↑ d28
a56 ↑ c30 ↑ e28
a57 ↑ d30 + e29
b55 ↑ c35 ↑ d34
b56 ↑ c36 ↑ e34
b57 ↑ d36 + e35
a34 ↑ b28 + c23
a35 ↑ b29 ↑ d23
a36 ↑ b30 ↑ e23
c57 ↑ d56 + e55





G
(3,1)
7→10 ↓





a58 ↑ c26 ↑ d25
a59 ↑ c27 ↑ e25
a60 ↑ d27 + e26
b58 ↑ c32 ↑ d31
b59 ↑ c33 ↑ e31
b60 ↑ d33 + e32
a31 ↑ b25 + c11
a32 ↑ b26 ↑ d11
a33 ↑ b27 ↑ e11
c60 ↑ d59 + e58





stage 2 G
(3,2)
7→10 ↓





a61 ↑ c41 ↑ d40
a62 ↑ c42 ↑ e40
a63 ↑ d42 + e41
b61 ↑ c47 ↑ d46
b62 ↑ c48 ↑ e46
b63 ↑ d48 + e47
a46 ↑ b40 + c24
a47 ↑ b41 ↑ d24
a48 ↑ b42 ↑ e24
c63 ↑ d62 + e61





G
(3,2)
7→10 ↓





a64 ↑ c38 ↑ d37
a65 ↑ c39 ↑ e37
a66 ↑ d39 + e38
b64 ↑ c44 ↑ d43
b65 ↑ c45 ↑ e43
b66 ↑ d45 + e44
a43 ↑ b37 + c12
a44 ↑ b38 ↑ d12
a45 ↑ b39 ↑ e12
c66 ↑ d65 + e64





round 4 stage 1 G
(3,2)
2→5 ↓





a67 ↑ c60 + d59 ↑ e58
b67 ↑ c66 + d65 ↑ e64
a64 ↑ b58 + c53 + d52
a65 ↑ b59 + c54 + e52
a66 ↑ b60 + d54 ↑ e53




G

(3,2)
2→5 ↓





a68 ↑ c57 + d56 ↑ e55
b68 ↑ c63 + d62 ↑ e61
a61 ↑ b55 + c50 + d49
a62 ↑ b56 + c51 + e49
a63 ↑ b57 + d51 ↑ e50





TABLE VII: Rounds 3 and 4 of queries. Informative queries,
useless queries, and side information queries are denoted with
black, blue, and red respectively.
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...+uji(⇔), ⇐{j1, j2, ..., ji} ↓ [M ]. The symbol indices ⇔ will
be carefully chosen, explained in Step 4. In each round, the
number of stages will be determined as follows. Consider a
stage of round i queries to server 1. The queries are partitioned
based on the number of symbols from the demanded messages
involved. For the queries containing only 1 symbol from the
demanded messages, there are

(P
1

)
= P types; for each

type, one stage of round i ≃ 1 is needed to provide the side
information part. Note that these P stages of round i ≃ 1
(used for providing side information) are from the other N≃1
servers, i.e., servers 2 to N , for the sake of privacy. Generally,
for the queries containing i1 → [min{i, P}] symbols from the
demanded messages, there are

(P
i1

)
types; for each type, one

stage of round i≃ i1 is needed from the other N ≃ 1 servers
to provide the side information part.

The number of stages in each round j queries to each server
is denoted by ϑj , for j → [M ≃P +1]. The number of stages
of round j to servers 2 to N would be (N ≃ 1)ϑj .

(P
1

)
ϑj+1

of these stages will be used as the side information in ϑj+1

stages of round j + 1 queries to server 1.
(P
2

)
ϑj+2 of these

stages will be used as the side information in ϑj+2 stages
of round j + 2 queries to server 1, and so on, leading to
the equation (14). Furthermore, as seen in the example, only
queries containing one symbol from the demanded messages
contribute to decoding new demanded symbols. Thus, after
round M ≃ P + 1, since each query would have at least two
symbols from the demanded messages, the scheme continues
til round M ≃ P + 1; ϑj = 0, ⇐j → [M ≃ P + 2 : M ].

After the general structure of the queries is set, the next
step would be to determine which indices should be used for
the symbols in each query.

Step 3: Initialization. In this step, the queries of
round 1 (single symbols) are downloaded from the servers. Let
new(um) be a function that starting from um(1), returns the
next symbol index of um each time it is called, i.e., the first
time the function new(um) is called, it returns um(1), next
time it returns um(2) and so on. Starting from server 1, the
functions new(u1), . . . ,new(uM ) are called as the queries to
the server. This is one stage of round 1 and should be repeated
ϑ1 times in total for each server.

Next we determine the indices of symbols in the queries.
Notice that the ultimate goal of index assignment, is to exploit
the redundancy between messages and reduce the total number
of queries, hence increasing the rate.

Step 4: Index assignment. The indexing structure follows
the following lemma.

Lemma 1 (Index structure). In a stage in round i, for any set
of i≃1 messages (assumed to be {u1, u2, . . . , ui→1}) and any
other two messages (assumed to be ui1 , ui2 ), in the queries
with the form ui1(k1) + u1(⇔) + · · ·+ ui→1(⇔) and ui2(k2) +
u1(⇔)+ · · ·+ui→1(⇔), it should have k1 = k2 (i.e., the symbol
indices of ui1 , ui2 in the two queries are the same.).

The indexing structure in Lemma 1 is inspired from the
delivery phase of the seminal coded caching scheme in [34].

Our objective is to design the index assignment satisfying
Lemma 1. To accomplish this, we divide the queries in each
stage into three groups: (1) informative queries, (2) side

information queries, and (3) useless queries. The description
of the design comes as follows.

4.1: Informative Queries. These queries are used to
decode new symbols of demanded messages. Each informative
query only contains one symbol from demanded messages,
which is added to some side information obtained from the
previous round, and thus can be decoded using this side
information. Formally, these queries for round i are with the
form qϖ = uω(⇔) + uj1(⇔) + ...+ uji→1(⇔) where ω → [P ] and
{j1, ..., ji→1} ↙ [M ] \ [P ] and ε denotes the set of message
indices, i.e. ε = {ω, j1, ..., ji→1}. The part uj1(⇔) + ... +
uji→1(⇔) is treated as side information directly obtained from
some stage in round i ≃ 1 dedicated for the usage of side
information for uω. The symbol uω(⇔) is a previously not-
decoded symbol for uω, i.e. new(uω). So the queries involving
uω is the set {qω↘ϖ↑ = new(uω) + uj1(⇔) + ... + uji→1(⇔) :
⇐ε≃ = {j1, ..., ji→1} ↙ [M ] \ [P ]} where we choose ε

≃ in
a lexicographic order. By the structure of queries, in each
stage of round i,

(M→P
i→1

)
new symbols of each demanded

message is decoded, which equals the number of ways of
choosing the set {j1, ..., ji→1} ↙ [M ] \ [P ]. Note that for any
given ε

≃ = {j1, ..., ji→1} → [M ] \ [P ], in the set of queries
{qω↘ϖ↑ = uω(⇔) + uj1(⇔) + ... + uji→1(⇔) : ⇐ω → [P ]}, all
uω(⇔) where ω → [P ] have the same index, since for each uω

the queries have been built on the lexicographic order of ε
≃,

consequently satisfying the index structure in Lemma 1.
Let us go back to the example in Section IV. In one stage of

round 2, we first determine the query a↔+c↔, then a↔+d↔, and
then a↔+e↔. These queries would be a25+c13, a26+d13, and
a27+e13 for the first stage of round 2 queries to server 1, where
a25, a26, a27 are new symbols of message a, and c13, d13, e13

have been downloaded symbols in round 1 treated as the side
information in round 2.

4.2: Side Information Queries. These queries do not
contain any symbols from demanded messages. Consider
the query qϖ = uj1(⇔) + · · · + uji(⇔) in round i where
ε = {j1, ..., ji} → [M ] \ [P ]. To determine the symbol index
for uk where k → ε, by Lemma 1, the index of this symbol
should be determined by any informative query in the same
stage (determined in Step 4.1) containing symbols of messages
ε \ {k}, qω↘ϖ\{k} for any ω → [P ]; i.e., the index should be
the same as the symbol index of the demanded message uω in
qω↘ϖ\{k}. By the definition, the number of the side information
queries in a stage in round i is

(M→P
i

)
.

Let us go back to the example in Section IV. In the first
stage of round 2, the symbol indices in c↔+d↔ are determined
based on the informative queries a25 + c13 and a26 + d13. So
c is added to a symbol with index 25 and d is added to a
symbol with index 26; i.e., the resulting query is c26 + d25.

4.3: Useless Queries. These queries contain more than
one symbol from the demanded messages. Starting with the
queries containing two demanded messages, consider the
query qϖ = uω1(⇔) + uω2(⇔) + uj1(⇔) + ... + uji→2(⇔) where
ε = {ω1, ω2, j1, . . . , ji→2}, and ω1, ω2 → [P ], j1, ...ji→2 →
[M ]\ [P ]. The part uj1(⇔)+ ...+uji→2(⇔) is a side information
obtained from a stage in round i ≃ 2. Therefore, it remains
to determine the indices of uω1 and uω2 . To determine the
index of uω1 , based on Lemma 1, the index of this symbol
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should be determined by any informative query in the same
stage (determined in Step 4.1) containing symbols of messages
{uω2 , uj1 , ..., uji→2}, qϖ↑ where ε

≃ = ω
≃
1 ∝ {ω2, j1, . . . , ji→2}

for any ω
≃
1 → [M ] \ [P ]; i.e., the index should be the same

as the symbol index of uω↑
1
(⇔) in qϖ↑ . It is important to note

that since uω↑
1
(⇔) comes from a side information query in a

stage of round i≃1, uω1 with the same symbol index has also
appeared in the same stage in an informative query, and thus
has already been decoded there. Consequently, these queries
cannot contribute to decoding new symbols for demanded
messages, nor serve as side information. We observe that
to determine symbol indices containing two symbols from
the demanded messages, queries containing one are used.
Similarly, to determine symbol indices for queries containing
three symbols from demanded messages, queries containing
two are used, with a similar process explained. This process
continues until all queries in this group have been indexed.

Let us go back to the example in Section IV. In the first
stage of round 1, to determine the indices in a↔+ b↔, we need
to check the queries a25 + c13 and b25 + c14. So a is added
to a symbol with index 13 and b to a symbol with index 14;
i.e., the resulting query is a14 + b13.

As a result, by Step 4, the indices of all the symbols are
determined. The next step would be to assign the signs (+1 or
≃1) to symbols in the queries, such that there would be some
queries being linear combinations of other queries.

Step 5: Sign assignment. The sign assignment step, from
round 2 to the last round, includes two sub-steps: (1) choosing
between structure plus or minus and (2) performing random
sign switching, which are described as follows.

5.1: Structure Plus/Minus. Each query is first divided into
two parts. The first part contains symbols from independent
messages and the second part symbols from dependent mes-
sages. So each query q is written as

q = (independent symbols)± (dependent symbols). (17)

The sign + is referred to as structure plus and the sign ≃
is referred to as structure minus. In round 2, a structure plus
is used in each query. The structure is successively switched
for the next rounds, i.e. for round 3, a structure minus is
used in each query; for round 4, a structure plus is used in
each query; and so on. Additionally, in each parenthesis, after
ordering the symbols based on the lexicographic order of the
corresponding messages, the first symbol is assigned by a plus
sign and this successively alternates until the last symbol in the
parenthesis. In other words, if the independent symbols in (17)
are ui1(⇔), ui2(⇔), . . . , uij (⇔) where i1 < i2 < · · · < ij , then
(independent symbols) in (17) should be

(independent symbols) = (ui1(⇔)≃ ui2(⇔) + ui3(⇔)≃ · · · ).

Similarly, if the dependent symbols in (17) are
uk1(⇔), uk2(⇔), . . . , ukj (⇔) where k1 < k2 < · · · < kj ,
then (dependent symbols) in (17) should be

(dependent symbols) = (uk1(⇔)≃ uk2(⇔) + uk3(⇔)≃ · · · ).

5.2: Random Sign Switching: In this step, each query
solely is multiplied by +1 or ≃1, uniformly and independently
at random.

Remark 10. As studied in [33] in the cache-aided scalar
linear function retrieval problem, in order to reduce the load
in the delivery phase of a caching system in which each user
requests a linear combination of messages, it is needed that
symbols get multiplied by a minus or a plus based on certain
rules. For sign assignment, we are inspired from the sign
assignment in [33]. Particularly, the caching scheme in [33]
always uses the structure plus between independent symbols
and dependent symbols. This is natural since they have one
stage (and also only one round) of delivery. However, since
we have multiple delivery stages and rounds, which are are
inter-connected; i.e. a side information query in one stage is
used in another stage, to ensure the decodability of the scheme,
we have to use the plus and minus structures alternatively in
rounds.

Lemma 2. By the end of Step 5, each stage of round i has(M→K
i

)
linearly redundant queries from the total

(M
i

)
queries,

and can be written as linear combinations of the others.
Linearly redundant queries are those which do not contain
any symbols from independent messages.

The proof is given in Appendix D.
By the end of Step 5, we summarize that in each stage there

are two disjoint sets of redundant queries: the set of useless
queries and the set of linearly redundant queries. Furthermore,

• The useless queries are redundant since they are the
summation of some side information and some symbols
of demanded messages which are all previously decoded.

• The set of linearly redundant queries by Lemma 2 are
among the side information queries, which are some
linear combinations of all remaining queries.

Hence, we further reduce the amount of download summations
by removing the redundancy. However, removing these queries
directly from the set of queries jeopardizes privacy. Step 6
introduces a way to reduce download while preserving privacy.

For a stage of round i → [M≃P+1], the number of informa-
tive queries, side information queries, and useless queries are
n
(i)
iq = P

(M→P
i→1

)
, n

(i)
sq =

(M→P
i

)
, n

(i)
uq =

(M
i

)
≃ n

(i)
iq ≃ n

(i)
sq ,

respectively. The number of linearly redundant queries is
n
(i)
rq =

(M→K
i

)
.

Step 6: Reducing Download. For each round i and each
stage s, if the queries are q1, . . . , q(Mi )

, we denote q(i,s) =

[q1, . . . , q(Mi )
]T . We multiply q(i,s) on the left by the MDS

matrix G(i,s) of size r ↖
(M

i

)
, where r is defined as r =(M

i

)
≃ n

(i)
uq ≃ n

(i)
rq = P

(M→P
i→1

)
+

(M→P
i

)
≃

(M→K
i

)
, to reach

the final set of queries in this stage as the elements of q(i,s)
f ,

q(i,s)
f := G(i,s)

r↗(Mi )
q(i,s)

. (18)

This is done for all rounds i and stages s.
The reason we can decode all

(M
i

)
queries in q(i,s) by q(i,s)

f

is as follows. We first partition q(i,s) into three parts as

q(i,s) =




q(i,s)
1

q(i,s)
2

q(i,s)
3



 , (19)
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where q(i,s)
3 ,q(i,s)

2 ,q(i,s)
1 represent linearly redundant queries,

useless queries, and other queries, respectively. Since q(i,s)
3 is

a linear combination of the other two, there exists a full rank
matrix G≃ such that

q(i,s) =




q(i,s)
1

q(i,s)
2

q(i,s)
3



 = G≃


q(i,s)
1

q(i,s)
2


. (20)

Thus, (18) turns into

q(i,s)
f = G↔


q(i,s)
1

q(i,s)
2


, (21)

for some full rank matrix G↔ = G(i,s)

r↗(Mi )
G≃. Since the queries

in q(i,s)
2 have already been decoded from the previous rounds,

together with q(i,s)
f we can decode q(i,s)

1 .
Step 7: Shuffling. Finally, we shuffle the order of queries

sent to each server and also, shuffle the order of the messages
appearing in each query. The shufflings are uniformly and
independently at random. This is to prevent servers from
guessing any orders between messages and queries.

Decodability and rate. Intuitively, the decodability simply
follows since the informative queries are composed of the
desired symbol added to some previously downloaded side
information; the most-non-trivial step to guarantee this is the
alternative structure plus and structure minus across different
rounds. The overall rate is computed as the ratio of the number
of informative queries to all queries. The formal proof of the
decodability and rate computation is given in Appendix A.

Privacy. Intuitively, privacy is satisfied since the queries
are symmetric with respect to each message through the index
assignment structure. Besides, the sign assignment step does
not reveal the identity of the demanded messages since there
is a mapping of symbol signs for different demand scenarios
with the help of random variables involved, including the
multiplicative factors in Step 1 and sign switching variables
in Step 5.2. As a consequence, all possible symbol signs for
different demand scenarios will be equally likely. Furthermore,
the MDS coding step trivially does not jeopardise privacy. The
formal proof of the privacy is given in Appendix B.

VI. CONCLUSION

In this paper, we studied the multi-message private com-
putation problem which is an extension to the PC problem
of [3] and the MM-PIR of [15]. Our design is based on
breaking the scheme into multiple rounds and stages such that
round i corresponds to queries in the form of summations
of i different symbols. By designing the index and sign of
each symbol involved, we were able to reduce the amount
of downloaded summations since some of the queries are
linear combinations of the others. Furthermore, to use this
redundancy while preserving privacy, we used an MDS coding
method so that each server cannot distinguish between the
redundant and non-redundant queries. Numerical evaluations
demonstrated that the rate of the proposed scheme has signifi-
cant improvements over the baseline scheme for a wide range
of system parameters, thus inheriting the order-optimality of
the baseline scheme within a multiplicative factor of 2. It is

also important to point out that the rate of the proposed scheme
has very little dependence on M , as suggested by Fig. 2, while
this is not the case for the baseline scheme. This is important
since we expect that as long as K is fixed, changing only
the number of possible linear combinations should not affect
the rate for an order optimal scheme. We observe the same
behaviour for the optimal PC scheme in [3].

On-going works include deriving the converse bound specif-
ically for the MMPC problem and designing new MMPC
schemes with low subpacketization level.

APPENDIX A
PROOF OF DECODABILITY AND RATE CALCULATION

By the end of Step 4 (index assignment), it is straightfor-
ward to decode the new symbols of demanded messages, since
these new symbols only exist in informative queries which
are built by the addition of these symbols to some already
known side information. But after Step 5 (sign assignment),
some symbol signs alter to a minus. Since in each stage,
the informative and useless queries are build up using some
side information from earlier rounds, we should check if
after the sign assignment step, these side information queries
remain consistent regarding the symbol signs. For the sake of
simplicity, we assume other than the first P labels, the other
K ≃P independent messages are labeled from from P +1 to
K. Also for the sake of simplicity, we denote symbols just by
the message letter and not using (⇔) in front of it.

In round i, for some informative query q = uω + qsi

where ω → [P ], the side information part qsi within this query
should remain consistent on symbol signs compared to the
corresponding query in round i ≃ 1 after sign assignment.
Without loss of generality, assume we use structure plus for
round i≃1 and structure minus for round i. Also assume from
the i≃1 symbols in qsi, v of them are symbols of independent
messages; i.e., qsi = uj1 + ... + ujv + ujv+1 + ... + uji→1 ,
where {j1, ...jv} ↓ [P + 1 : K], jv+1, ...ji→1 ↓ [K + 1 : M ].
If v is even, then after sign assignment for query qsi in
round i ≃ 1, uj1 would have a plus sign and uj2 a minus
sign and so on, until a minus sign for ujv . Since structure
plus is used for this round, ujv+1 starts with a plus sign and
the other signs follow the alternating structure; leading to
q
≃
si = uj1 ≃ uj2 + ... ≃ ujv + ujv+1 ≃ ujv+2 + ... ± uji→1 ,

where q
≃
si is qsi after sign assignment. In sign assignment

for the query q in round i, uω starts with a plus sign, uj1

would have a minus sign, uj2 a plus sign up until ujv with a
plus sign. Then, since structure minus is used in this round,
ujv+1 would start with a minus sign and so on; leading to
q
≃ = uω≃uj1+uj2≃...+ujv≃ujv+1+ujv+2≃...±uji→1 , where
q
≃ is q after sign assignment. It is evident that q≃ = uω ≃ q

≃
si,

and therefore, the signs are consistent after sign assignment
and q

≃
si can be cancelled out to decode for uω. We can similarly

prove the case for v being odd. This completes the proof of
consistency for informative queries.

We should prove the consistency for useless queries too.
Consider the useless query q = uωl1

+ ... + uωln + qsi in
round i with n symbols from the demanded messages, i.e.
{ωl1 , ..., ωln} ↓ [P ] and the side information part has v

symbols from demanded messages, i.e. qsi = uj1 + ... +
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ujv + ujv+1 + ... + uji→n , where {j1, ...jv} → [P + 1 :
K], jv+1, ...ji→n → [K + 1 : M ]. Assume without loss of
generality, in round i ≃ n structure plus is used for sign
assignment. For the case v is odd, after sign assignment for
query qsi, uj1 would have a plus sign, uj2 a minus and
so on, until ujv with a plus sign. ujv+1 would have a plus
sign and the rest change their signs alternatively, leading to
q
≃
si = uj1 ≃ ...+ujv +ujv+1 ≃ ...±uji→n , where q

≃
si is qsi after

sign assignment. There are two cases for n, both of which need
to be checked. For the case n is even, for round i structure plus
will be used again. After sign assignment for the query q, uωl1
would have a plus sign, uωl2

a minus sign and so on, up to uωln
with a minus sign. Also, uj1 would have a plus, uj2 a minus,
up until ujv with a plus. Furthermore, ujv+1 would have a
plus sign and the rest change their signs alternatively, leading
to q

≃ = uωl1
≃ ...≃uωln +uj1 ≃ ...+ujv +ujv+1 ≃ ...±uji→n ,

where q
≃ is q after sign assignment. Thus, it is evident that

q
≃ = uωl1

≃ uωl2
+ ...≃ uωln + q

≃
si. Therefore, again the signs

remain consistent after sign assignment. For the case n is odd,
similarly it will be resulted that q≃ = uωl1

≃uωl2
+ ...+uωln ≃

q
≃
si, where again the consistency is evident. For the case v is

even, one can verify the sign consistency similarly. Therefore,
we have proved the consistency of signs after sign assignment.
Notice that in the proof, for convenience, we have assumed
the sign switching variables in Step 5.2 are all 1 and this does
not jeopardize the generality, since only the relative symbol
signs are important. This completes the proof of decodability.

To calculate the rate, we first calculate the message length
L. To do so, we count the number of informative queries
corresponding to each demanded message, since these are the
only queries that generate new indices, which as calculated in
Step 4.1, equals

(M→P
i→1

)
for a stage in round i. Furthermore,

the number of stages in round i is ϑi which follows (14).
Therefore, collectively from all servers, for each message,
Nϑi

(M→P
i→1

)
new symbols appear in round i. Therefore,

L = N

M→P+1∑

i=1

ϑi

(
M ≃ P

i≃ 1


. (22)

Next, we calculate the total download D from all servers.
Based on Step 6, in a stage in round i, a total of r =

(M→P
i

)
≃(M→K

i

)
+
(P
1

)(M→P
i→1

)
symbols is downloaded. Therefore,

D =

N

M→P+1∑

i=1

ϑi

((
M ≃ P

i


≃
(
M ≃K

i


+ P

(
M ≃ P

i≃ 1


.

(23)

For the rate defined in (7), using (22) and (23), we get the
rate in Theorem 3.

APPENDIX B
PROOF OF PRIVACY

To prove privacy, we must show no matter the choice of
I, the realization of the queries for each server has the same
probability space. Notice that after the index assignment step,
the queries to each server are completely symmetrical. This is
because the queries are partitioned to multiple stages, and in
each stage of round i, all the possible

(M
i

)
types of queries

appear. Besides, the indexing structure in Lemma 1 is also
symmetrical from the viewpoint of each message, as discussed
earlier. To proceed, we first state the following lemma.

Lemma 3. In a stage of queries to one server, the symbol
indices appearing are disjoint from those of other stages in
the same server.

Proof. We go through all 3 types of queries in a stage. Notice
that since the side information queries to a server duplicate the
new symbol indices of demanded messages in the same stage,
and since these new indices do not appear in the same server
in any other stage by definition, these queries have completely
disjoint indices compared to other stages in the same server.
Furthermore, the side information parts of informative and
useless queries have also disjoint indices, since these parts
are duplicated from queries to other servers and are used
only once in queries to each server, so they do not appear
anywhere else in the same server. Additionally, the symbols
of demanded messages in useless queries duplicate the new
indices of demanded messages in the same server, indicating
they do not appear twice in queries to the same server.

With Lemma 3 and the symmetry of indices from the
perspective of each message, it is readily concluded that for
any two choices of demanded messages I1 and I2 where
I1 ↔= I2, the indices of symbols in queries to one server have
a one to one mapping by a choice of permutation function ϖ.

The proposed scheme has two permutations: one on symbol
indices and the other on message indices, where the latter
is referred to as relabeling as stated in the first step of the
scheme. So far we have shown that the permutation function
ϖ on symbol indices preserves privacy. To complete the proof,
it only remains to show that the sign assignment step does not
jeopardize the symmetry of the queries, in the sense that it does
not reveal the private relabeling of the messages, otherwise
some information on the requested messages would be leaked.
We indicate this by showing that the signs of symbols in
queries to one server for two choices of demanded messages
I1 and I2 where I1 ↔= I2, have an one to one mapping by a
particular choice of multiplicative variables ϱi, i → [L] and
sign switching variables in Step 5.2. Remember that these
variables are chosen by the user and private to the server.

We now introduce an algorithm, by which the sign mapping
from I1 to I2 will be possible. By each step, the necessary
explanations are immediately followed. Notice that since we
have proved the one to one mapping of indices, we do not
present the indices for ease of understanding.

We indicate the multiplicative variables in the setting I1
with ϱis and in the setting I2 with ϱ

≃
is. Based on a fixed choice

of ϱis, we choose the values of ϱ≃
is such that the symbol signs

in corresponding queries match. The algorithm is as follows.
Step 1. Choose the messages with randomly chosen la-

bels j1, j2, ..., ji. Compare the query containing these mes-
sages when I2, i.e. q

(2)
1 = ±ϱ

≃
j2j3...jiWj1 ± ϱ

≃
j1j3...jiWj2 ±

... ± ϱ
≃
j1j2...ji→1

Wji , to the query when I1, i.e. q
(1)
1 =

±ϱj2j3...jiWj1 ± ϱj1j3...jiWj2 ± ... ± ϱj1j2...ji→1Wji . Simply
choose ϱ

≃
is in q

(2)
1 such that the sign of each symbol matches

with the corresponding one in q
(1)
1 .
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Step 2. All the variables ϱ≃
i that were fixed in Step 1, appear

also in some other queries, but not together. Go through all
these queries, and fix other ϱ

≃
is involved relative to the other

already-fixed variable in Step 1.

Consider the query containing message labels j0, j2, ..., ji,
i.e. q(2)2 = ±ϱ

≃
j2j3...jiWj0±ϱ

≃
j0j3...jiWj2±...±ϱ

≃
j0j2...ji→1

Wji .
The already-fixed variable ϱ

≃
j2j3...ji appears in this query too.

Compare this query to its corresponding one when I1, i.e.
q
(1)
2 = ±ϱj2j3...jiWj0 ± ϱj0j3...jiWj2 ± ... ± ϱj0j2...ji→1Wji .

Fix the other variables ϱ
≃
j0j3...ji , ...,ϱ

≃
j0j2...ji→1

, relative to the
already-fixed ϱ

≃
j2j3...ji such that either q

(2)
2 = q

(1)
2 or q

(2)
2 =

≃q
(1)
2 .

After fixing these queries (fixing the ϱ
≃
is inside), one has

the concern whether the fixed ϱ
≃
is are consistent among the

other queries they appear in simultaneously. For example,
take the queries q

(2)
1 and q

(2)
2 fixed in Steps 1 and 2. In

q
(2)
1 the message labels j1, j2, ..., ji and in q

(2)
2 the message

labels j0, j2, ..., ji appear. In these two queries, the variables
ϱ
≃
j1j3...ji and ϱ

≃
j0j3...ji are fixed. We should check in the query

containing both of these together, i.e. containing message
labels j0, j1, j3, ..., ji, whether their relative values remains
consistent. In general we should prove, and this will also be
needed in the following steps, whether any two variables of
ϱ
≃
is, when fixed in two different queries, maintain a correct

relative value concerning in the query in which both of them
appear. This is proved in the following lemma.

Lemma 4. The already-fixed variables ϱ≃
j1j3...ji and ϱ

≃
j0j3...ji ,

fixed in queries q
(2)
1 and q

(2)
2 , maintain a correct relative sign

when they appear together in another query.

Proof. We prove the lemma for one setting of the labels
j0, j1, j2 for each case of I1 and I2, since all other ones
is proved similarly. For simplicity, assume that every ϱi = 1
when I1. Assume when I1, the messages with labels j0, j1, j2
are all in the independent set with the ordering j0 < j1 <

j2. Additionally, assume among independent messages in
j1, j2, ..., ji, there is an odd number of messages between j1

and j2. Moreover among independent messages in j0, j2, ..., ji,
there is again an odd number of messages between j0 and
j2. Based on this setting, after sign assignment we have the
following queries for the three set of labels {j1, j2, ..., ji},
{j0, j2, ..., ji}, and {j0, j1, j3, ..., ji} respectively,

q
(1)
1 = Wj1 +Wj2 ± · · · (24)

q
(1)
2 = Wj0 +Wj2 ± · · · (25)

q
(1)
3 = Wj0 ≃Wj1 ± · · · (26)

For I2, we consider the case where labels j1 and j2 are
among the independent messages which have odd number
of independent messages in between based on the ordering
among j1, j2, ..., ji. Additionally we assume j0 is among
dependent messages. With this setting, if we assume the

relative sign between Wj0 and Wj2 in q
(2)
2 is minus, then,

q
(2)
1 = ϱ

≃
j2j3...jiWj1 + ϱ

≃
j1j3...jiWj2 ± · · · (27)

q
(2)
2 = ϱ

≃
j2j3...jiWj0 ≃ ϱ

≃
j0j3...jiWj2 ± · · · (28)

q
(2)
3 = ϱ

≃
j1j3...jiWj0 + ϱ

≃
j0j3...jiWj1 ± · · · (29)

To fix the variables in q
(2)
1 and q

(2)
2 , we should set

ϱ
≃
j2j3...ji = ϱ

≃
j1j3...ji = 1 and ϱ

≃
j0j3...ji = ≃1. This leads to

q
(2)
3 = Wj0 ≃Wj1 ± ..., which as can be seen, automatically

matches with q
(1)
3 . So the relative signs remain consistent and

the lemma is proved.

Remark 11. The reason why only the relative values of ϱ≃
is

are important, is because of the sign switching variables of
Step 5.2 in the scheme. When the relative signs of symbols
are correct, to match these signs between two corresponding
queries of different labelings I1 and I2, we only need to
multiply the whole query with a ≃1 or a +1.

In Step 2, we fixed all the queries that are within 1 message
distance from the first randomly chosen query q

(2)
1 ; meaning

the queries in Step 2 have i ≃ 1 messages in common with
that of q(2)1 and are only different in 1 message. In Step 3, we
fix the queries with distance 2 from q

(2)
1 .

Step 3. Consider all the queries with distance 2 from q
(2)
1 .

Fix the variables ϱ
≃
is within these queries relative to the

already-fixed ones in the first two steps.
Consider the query containing messages with labels

j
≃
1, j

≃
2, j3, ..., ji, which is in distance 2 from q

(2)
1 . The variables

ϱ
≃
j↑2,j3,...,ji

and ϱ
≃
j↑1,j3,...,ji

have been already fixed in Step 2 of
the algorithm, and they both appear in the mentioned query.
We should prove their relative value remains correct in this
new query. This is proved in the following lemma.

Lemma 5. The already-fixed values of ϱ≃
is within queries in

previous steps, maintain the correct relative values in Step 3.

Proof. Take two queries containing the message labels
j
≃
1, j2, ..., ji and j

≃
2, j2, ..., ji. These queries are fixed in Step 2,

so the values for ϱ
≃
j↑2,j3,...,ji

and ϱ
≃
j↑1,j3,...,ji

, are already fixed
in these two queries. Exactly like the proof in Lemma 4, the
relative signs of these variables remain correct in the query
with labels j≃1, j≃2, j3, ..., ji, which contains both variables.

The rest of the algorithm is evident, as follows.
Step 4. Each time increase the distance of queries from

q
(2)
1 by one, and fix the not-yet-fixed ϱ

≃
is within these queries.

Continue this process until the last step, where the distance is
i. Then, all the queries will be exhausted and fixed.

The correctness of relative signs of the already-fixed vari-
ables in each step is proved similar to the previous steps.

It is immediately resulted by our algorithm, that if the
mapping of symbol signs from the setting I2 to I1 is done
by the values {ϱ≃↔

i } and sign switching variables in vector
s, then there would be another set of answers {≃ϱ

≃↔
i } and

≃s and there exists no other set of answers. This proves that
the mapping from all possible setting to the setting I1, is
uniformly random, thus hiding the private labeling in Step
1 of the scheme. This completes the proof the privacy.
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q1 = a55 ↑ c29 ↑ d28
q2 = a56 ↑ c30 ↑ e28
q3 = a57 ↑ d30 + e29
q4 = b55 ↑ c35 ↑ d34
q5 = b56 ↑ c36 ↑ e34
q6 = b57 ↑ d36 + e35
q7 = a34 ↑ b28 + c23
q8 = a35 ↑ b29 ↑ d23
q9 = a36 ↑ b30 ↑ e23
q10 = c57 ↑ d56 + e55

TABLE VIII: First stage of round 3 queries to Server 1 for
the demand set {a, b}.

ω55cω(55) ↑ ω29eω(29) ↑ ω28aω(28)
ω56cω(56) ↑ ω30eω(30) ↑ ω28bω(28)
ω57cω(57) ↑ ω30aω(30) + ω29bω(29)
ω55dω(55) ↑ ω35eω(35) ↑ ω34aω(34)
ω56dω(56) ↑ ω36eω(36) ↑ ω34bω(34)
ω57dω(57) ↑ ω36aω(36) + ω35bω(35)
ω34cω(34) ↑ ω28dω(28) + ω23eω(23)
ω35cω(35) ↑ ω29dω(29) ↑ ω23aω(23)
ω36cω(36) ↑ ω30dω(30) ↑ ω23bω(23)
ω57eω(57) ↑ ω56aω(56) + ω55bω(55)

TABLE IX: First stage of round 3 queries to Server 1 for
demand set {c, d}.

A. Example for Privacy Using the Proposed Algorithm

Let us return to the example in section IV and illustrate
the proof of the privacy. Consider the case that the demands
are {a, b}, the lexicographic order of the messages is as
(a, b, c, d, e), the permutation function ϖ is the identity per-
mutation which maps each input to itself, the multiplicative
variables are all 1; ϱi = 1, ⇐i → [68], and the sign switching
variables in Step 5.2 of the scheme are all 1. For this case,
the first stage of queries in round 3 for Server 1 (before Step
6 of the scheme) is as in Table VIII.

Now consider another case where the demands are {c, d}
and the lexicographic order of the messages is as (c, d, e, a, b).
For this case, again consider the first stage of queries in round
3 for Server 1. Before Step 6 of the scheme, the queries would
be as in Table IX.

Our goal is to depict the one-to-one mapping of these two
sets of queries with a choice of permutation function ϖ and
the multiplicative variables ϱis. To do so, we first reorder
the queries in Table IX so that the corresponding lines have
symbols from the same messages, making it easier to find the
mapping. The reordered queries would be as Table X.

Now the same lines in Tables X and VIII are corresponding
queries. By the following index mapping, the indices in

q↑1 = ↑ω23aω(23) + ω35cω(35) ↑ ω29dω(29)
q↑2 = ↑ω28aω(28) + ω55cω(55) ↑ ω29eω(29)
q↑3 = ↑ω34aω(34) + ω55dω(55) ↑ ω35eω(35)
q↑4 = ↑ω23bω(23) + ω36cω(36) ↑ ω30dω(30)
q↑5 = ↑ω28bω(28) + ω56cω(56) ↑ ω30eω(30)
q↑6 = ↑ω34bω(34) + ω56dω(56) ↑ ω36eω(36)
q↑7 = ↑ω30aω(30) + ω29bω(29) + ω57cω(57)
q↑8 = ↑ω36aω(36) + ω35bω(35) + ω57dω(57)
q↑9 = ↑ω56aω(56) + ω55bω(55) + ω57eω(57)
q↑10 = ω34cω(34) ↑ ω28dω(28) + ω23eω(23)

TABLE X: First stage of round 3 queries to Server 1 for
demand set {c, d} after reordering.

corresponding queries would be the same.

ϖ(23) = 55,ϖ(28) = 56,ϖ(34) = 57,

ϖ(29) = 28,ϖ(35) = 29,ϖ(55) = 30,

ϖ(30) = 34,ϖ(36) = 35,ϖ(56) = 36. (30)

Now that the indices are the same, and it remains to choose
the ϱis such that the corresponding queries are either equal or
equal with a ≃1 factor. As the algorithm suggests in Step 1,
we first compare q1 to q

≃
1. It is obvious that if ϱ23 = ≃1,ϱ35 =

≃1,ϱ29 = +1, then q
≃
1 = q1.

Following Step 2 of the algorithm, we compare q
≃
4 to q4.

Since ϱ23 = ≃1, we set the other ϱis in q
≃
4 such that q≃4 = q4,

which leads to ϱ36 = ≃1,ϱ30 = +1. Next we compare q
≃
10

to q10. Since ϱ23 = ≃1, we choose ϱ34 = ≃1,ϱ28 = ≃1
such that q

≃
10 = ≃q10. After that we compare q

≃
3 to q3, and

since ϱ35 = ≃1, we choose ϱ34 = ≃1,ϱ55 = ≃1 which
leads q

≃
3 = q3. Comparing q

≃
8 to q8 when ϱ35 = ≃1, we set

ϱ36 = ≃1,ϱ57 = ≃1 to get q
≃
8 = q8. Then we compare q

≃
2

to q2 and since ϱ29 = +1, we set ϱ28 = ≃1,ϱ55 = ≃1 so
that q

≃
2 = q2. In the end of Step 2 we compare q

≃
7 to q7.

Since ϱ29 = +1, we choose ϱ30 = +1,ϱ57 = ≃1 which leads
q
≃
7 = ≃q7. It is noteworthy to see that in Step 2 each of the

fixed ϱis has actually been fixed two times, which both match
and this is a result of Lemma 4.

There are three remaining queries q
≃
5, q

≃
6, q

≃
9 for Step 3 of

the algorithm. By setting ϱ56 = ≃1, we get q
≃
5 = q5, q

≃
6 =

q6, q
≃
9 = q9. At the end of Step 3, there are no ϱis left to set.

In the end, if we denote the sign switching variables in Step
5.2 of the scheme for the 10 queries q

≃
1, ..., q

≃
10 by s1, ..., s10,

then by choosing s7 = ≃1, s10 = ≃1 and the other ones
equal to 1, we get that q

≃
i = qi, ⇐i → [10]. Naturally if we

multiply all fixed ϱis and sis by ≃1, we get another set of
answers that leads to q

≃
i = qi, ⇐i → [10]. In general for any two

sets of demands, we would have one choice of the mapping
function ϖ and two choices for the random variables such that
the queries are the same.

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, we first note that the capacity of the
MM-PIR problem in [15] for K total messages is an upper
bound (i.e., converse bound) to our problem, since this setting
assumes independency among all messages and the MM-PC
problem allows for requesting not only messages themselves,
but also their linear combinations. For the case P ↘ K

2 , the
upper bound for the MM-PIR problem would be R

ε ↘ Ru =
1→ 1

N

1→( 1
N )↓

K
P

↔ . Note that the achieved rate in (8) is no less than
1→ 1

N

1→( 1
N )K

, which is achieved by using the PC scheme in [3] P
times. Thus

Ru

R1
↘

1→ 1
N

1→( 1
N )↓

K
P

↔

1→ 1
N

1→( 1
N )K

=
1≃ ( 1

N )K

1≃ ( 1
N )⇐

K
P ⇒

↘ 1

1≃ 1
N

↘ 2. (31)
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For the case P ↑ K
2 , the capacity of MM-PIR follows Ru =

1
1+K→P

PN

. Thus

Ru

R1
↘

1
1+K→P

PN

1→ 1
N

1→( 1
N )K

↘ 1

1≃ 1
N

↘ 2. (32)

APPENDIX D
PROOF OF LEMMA 2

We first point out that the structure of the queries in each
stage, up until the end of Step 4 (index assignment), is exactly
like the structure of the multicast messages in the delivery
phase of the MAN coded caching scheme with M files and
M users in which every user demands a different file; thus all
the files are requested. To restate the index structure in Lemma
1, take a stage in round i and choose any i≃1 messages. The
set of queries with these messages have the same index for
the other symbol involved in the query. This is the exact same
structure as in the delivery phase of the MAN scheme when
t = i≃ 1, where each multicast message includes t+1 users.

In [33], the authors show that when some of the demanded
files are linear combinations of the others, by carefully de-
signing the signs of each symbol in the delivery phase, some
of the multicast messages are linear combinations of the other
ones, and thus redundant. In their paper, the users requesting
independent messages are called leaders, and the other ones
non-leaders. Therefore in our scheme, the independent mes-
sages correspond to the leaders, and the dependent ones to the
non-leaders. In [33, Appendix B] they show using the structure
plus in sign assignment, the multicast messages which do not
include any leaders, are redundant and can be derived by other
multicast messages. This is the first part of the proof.

On the other hand, in a stage, we can take a slight modi-
fication on the composition of the multicast messages in [33,
Eq. 54], where the sign between the required blocks by the
leaders and the non-leaders is changed from +1 (structure
plus) to ≃1 (structure minus) such that the new composition
of XS becomes

XS =
∑

i⇑[|LS |]

(≃1)i→1
BLS(i),S\{LS(i)}

≃
∑

j⇑[|NS |]

(≃1)j→1
BNS(j),S\{NS(j)}. (33)

By the new multicast message composition in (33), we can
still prove the [33, Eq. (57a)] holds, which refers to the
redundancy of some multicast messages, but with sightly
modified decoding coefficients

ςA,S = (≃1)1+Tot(IndS)+|S\A|det(D≃
A\S,LS

). (34)

The proof of [33, Eq. (57a)] with new multicast message
composition in (33) and decoding coefficients in (34) directly
follows the same steps as in [33, Appendix B], and thus we
do not repeat it. This proves the same redundancy exists with
the structure minus of sign assignment. Notice that the sign
switching variables in Step 5.2 clearly does not affect the
redundancy. This completes the proof of the theorem.
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