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Abstract

The shu�e model of Di�erential Privacy (DP) is an enhanced pri-
vacy protocol which signi�cantly ampli�es the central DP guaran-
tee by anonymizing and shu�ing the local randomized data. Yet,
deriving a tight privacy bound is challenging due to its complicated
randomization protocol. While most existing works focused on uni-
form local privacy settings, this work focuses on a more practical
personalized privacy setting. To bound the privacy after shu�ing,
we need to capture the probability of each user generating clones
of the neighboring data points and quantify the indistinguishability
between two distributions of the number of clones on neighboring
datasets. Existing works either inaccurately capture the probability
or underestimate the indistinguishability. We develop a more pre-
cise analysis, which yields a general and tighter bound for arbitrary
DP mechanisms. Firstly, we derive the clone-generating probability
by hypothesis testing, which leads to a more accurate characteriza-
tion of the probability. Secondly, we analyze the indistinguishability
in the context of 5 -DP, where the convexity of the distributions
is leveraged to achieve a tighter privacy bound. Theoretical and
numerical results demonstrate that our bound remarkably outper-
forms the existing results in the literature. The code is publicly
available at https://github.com/Emory-AIMS/HPS.git.
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1 Introduction

The shu�e model [2] with Di�erential Privacy (DP) [7] is an ad-
vanced privacy protection protocol for distributed data analysis
[4, 13, 21, 25]. An intermediate trusted server shu�er is introduced
between local randomizer [10] and central analyzer [8]. By permut-
ing locally randomized data before sending to the central analyzer,
the shu�er brings extra randomness with a privacy ampli�cation
e�ect, i.e., central privacy guarantee after shu�ing is signi�cantly
stronger than the original local privacy achieved by perturbation.

Many e�orts have been put on converting the randomness to
a formal privacy guarantee [1, 9, 11, 12, 14]. While most studies
achieve privacy bound by assuming a uniform privacy level for all
users, this work focuses on a more practical but less studied setting
with personalized privacy, where users have di�erent privacy levels
on local data points due to di�erent policies or privacy preferences
[17–19, 24]. Fig. 1 shows the personalized setting where local data
point G8 is associated with a personalized privacy level n8 , X8 .

A classic privacy analysis for shu�e model ampli�es the pri-
vacy by leveraging the confounding e�ect of clones of neighboring
data points generated by each user [11, 12]. Speci�cally, for any
neighboring datasets that di�er by G1, the noisy data point from
each user could generate a clone of randomized G1 with a certain
probability ? . The clones together help to hide the existence of G1;
then the di�erence of the number of clones on neighboring datasets
is estimated for �nal privacy bounds.

However, driving the probability ? and the di�erence of number
of clones is challenging, especially under Personalized Local Dif-
ferential Privacy (PLDP). Approximating ? with the conventional
way that reduces any DP randomized mechanism to the worst-case
randomized response leads to inaccurate results. Additionally, vari-
ous privacy parameters exaggerate the complexity of the overall
distributions of the number of clones. Existing works [3, 24] approx-
imating it by central limit theorem cause relaxations on privacy
bound, especially when the number of users is not large enough.

Motivated by this, we develop a more precise analysis on privacy
ampli�cation of shu�e model under both pure- and approximate-
PLDP for arbitrary local randomizers. Firstly, we quantify di�erent
? contributed by each user with personalized privacy parameters in
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Figure 1: Procedure of shu�le model with personalized pri-

vacy. Each user data G8 is randomized locally. Privacy parame-

ters (n8 , X8 ) and perturbed G̃8 are shu�led. Analyzer aggregates

G̃8 for further statistics or model training.

a more accurate manner. In speci�c, ? is derived by conducting hy-
pothesis testing on the distribution of current noisy data point and
the distribution of noisy neighboring data point. By computing the
hypothesis testing error, we accurately identify the probability of
any data points being wrongly-recognized as G1. Our method allows
computing ? on heterogeneous privacy parameters and arbitrary
DP local randomizer. Secondly, we analyze the indistinguishability
between two overall distributions of the number of clones in the
context of 5 -DP [6]. We depict the overall distributions by Multi-
Bernoulli and Binomial distribution. Then inspired by [26], the
convexity of the distribution is further exploited to closely charac-
terize the properties of the overall distributions, thus leading to a
tighter upper bound on the privacy after shu�ing.

Our main contributions are summarized as follows:

• We provide a more precise analysis for privacy ampli�cation
e�ect on the shu�e model for personalized privacy. Con-
founding e�ect of individuals and overall distributions are
characterized by analytical expressions, which leads to a
tighter privacy bound.

• Our work o�ers a general method to quantify confounding
e�ect of PLDP with hypothesis testing, which enables our
analysis to address arbitrary locally di�erentially private
mechanisms and heterogeneous privacy parameters.

• We verify the proposed analysis with numerical results,
which demonstrates that our privacy bound signi�cantly
exceeds the SOTAs on both pure- and approximate-PLDP.

2 Preliminaries

2.1 Central and Local Di�erential Privacy

Di�erential privacy (DP) [8] provides a rigorous privacy guarantee
for raw data by introducing random noises to the computation
process. The notion is typically applied in a central setting where
a trusted server can access the raw data. For the settings without
trusted server, local di�erential privacy (LDP) [10] is proposed. LDP
is capable of providing a stronger privacy guarantee than DP, as
it protects data against stronger adversaries who have access to
every (perturbed) data point in the dataset. Therefore, it is suitable
for distributed data collection or publishing [5, 22, 23, 27]. Yet, LDP
also su�ers from a dissatisfying data utility due to a large amount
of noise injection.

Definition 1 (Differential Privacy). For any n, X g 0, a ran-

domized algorithm ' : D → Z is (n, X)-DP if for any neighboring

datasets �,�′ ∈ D and any subsets ( ¦ Z, Pr['(�) ∈ (] f

4n Pr['(�′) ∈ (] + X .

Definition 2 (Local Differential Privacy). For any n, X g 0,

a randomizer ' : D → Z is (n, X)-LDP if ∀G, G ′ ∈ D and ∀I ∈ Z,

Pr['(G) = I] f 4n Pr['(G ′) = I] + X .

n denotes the privacy level, the lower the stronger privacy. X
denotes the failure probability of the randomizer. X = 0 is pure-LDP,
and X > 0 is approximate-LDP.

2.2 Shu�le-based Privacy

Shu�e model [2] is proposed to strengthen central privacy while
preserving local user privacy. Given dataset � , each G8 ∈ � owned
by user 8 is perturbed locally by a randomizer ' to ensure (n;8 , X

;
8 )-

LDP and sent to shu�er. Shu�er ( , a trusted third party, permutes
all data points and sends them to an untrusted analyzer � for fur-
ther computation. Based on the anonymity from shu�ing, existing
works obtain a strong privacy ampli�cation e�ect. Most works
[1, 9, 11, 12, 14, 20, 26] focus on uniform local privacy setting, Feld-
man et al. [12] improves privacy bound by generating clones from
neighbor data points. Wang et al. [26] applies 5 -DP and achieves a
tighter bound under uniform LDP. As a more common and practical
setting, some works [3, 24] focus on personalized settings, while
leaving a loose privacy bound due to reduction or approximation.

3 Privacy Analysis

In this section, we �rst introduce the confounding e�ect, which
captures the randomness introduced by shu�er and serves as the
foundation of ampli�cation e�ect analysis. Then we provide an
analytical expression of confounding e�ect with hypothesis testing,
which yields a precise description and results in a stronger ampli�-
cation e�ect. At last, we develop our analysis in the context of 5 -DP.
By exploiting the convexity of the mixed distribution generated by
the shu�er, we further derive a tighter bound.

3.1 Confounding E�ect ?

We consider neighboring data points G0
1
and G1

1
∈ � . As noted

in [11], after perturbing and shu�ing each data point, the output
of randomizer on each data point could be seen as samples from
the output distribution of randomizer on G0

1
or G1

1
with certain

probability. And each local randomizer '(G, n) : � → / can also
be represented as: '(G0

1
) = (1 − ?)& (G0

1
) + ?& (G1

1
) and '(G1

1
) =

?& (G0
1
) + (1 − ?)& (G0

1
), where & : {G0

1
, G1

1
} → ( is a randomized

algorithm. Hence the following decomposition is given by [11]:

'(G0
1
) = 4n?& (G0

1
) + ?& (G1

1
), '(G1

1
) = ?& (G0

1
) + 4n?& (G1

1
) (1)

∀8 ∈ [2, =], '(G8 ) = ?'(G0
1
) + ?'(G1

1
) + (1 − 2?)!$8 (2)

where !$8 is the leftover distributions. The decomposition above
suggests that each output from '(G8 ) could be wrongly recognized
as coming from G0

1
or G1

1
with probability ? . In other word, ? is the

confounding e�ect of '(G8 ) on G1
1
, where 1 = 0 or 1, and stronger

privacy is achieved with a larger ? . Existing works derive ? by
reducing the LDP mechanism to random response [15], which un-
derestimates the confounding e�ect of most LDP mechanisms.
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Figure 2: Green area represents Pr['(G8 ) ∈ *0], output of

'(G8 ) is wrongly recognized from G0
1
; Yellow area represents

Pr['(G8 ) ∈ *1], output of '(G8 ) is mistaken from G1
1
.

In this work, we achieve a precise ? . By conducting hypothesis
testing on distributions '(G8 ) and '(G11 )

1, the type I error captures
the probability of wrongly recognizing the output of '(G8 ) as an
output of '(G1

1
), which is exactly ? . For clarity, we derive the value

of ? for the neighboring data point G1
1
and the rest data point G8 in

Section 3.2.1 and 3.2.2 respectively.

3.2 Quantifying ? with Hypothesis Testing

3.2.1 Hypothesis Testing on Neighboring Data Point G1
1
. In this sec-

tion, we demonstrate our hypothesis testing based approach for
deriving ? at G1

1
, where the confounding of '(G1

1
) only depends

on the the privacy budget (n1, X1). Given a random output / from
'(G1

1
), we set the hypothesis testing as follows:

�0: / came from G0
1
, �1: / came from G1

1
.

Then we conduct likelihood ratio test by examining the ratio be-
tween probability ?0

1
= Pr['(G0

1
) = / ] and ?1

1
= Pr['(G1

1
) = / ],

and reject �0 when ?0
1
/?1

1
< 1. The rejection region is de�ned as

( = {I | Pr['(G0
1
) = I] < Pr['(G1

1
) = I]}.

According to Neyman–Pearson lemma [16], likelihood ratio test is
the most powerful way to distinguish two distributions. Hence with
such ( , we achieve the lower bound of ? . As for approximate-DP,
the privacy protection fails when outputs I ∈ )X where

)X = {I | Pr['(G) = I] < −X/2 or Pr['(G) = I] > 1 − X/2}.

After removing the failure set )X , the ? is lower bounded by

Pr['(G0
1
) ∈ (\) 0

X1
] = Pr['(G1

1
) ∈ (̄\) 1

X1
] = ?1 .

where (̄ is the complement of ( , ) 0

X1
denotes the failure set on G0

1

with X1, ) 1

X1
is on G1

1
with X1. Then Eq.(1) is rewritten as Eq. (3). By

further considering the distribution of concrete DP mechanisms,
we are able to achieve the exact expression of ? .

' (G0

1
) = (1−?1)' (G

0

1
) +?1' (G

1

1
), ' (G1

1
) = ?1' (G

0

1
) + (1−?1)' (G

1

1
) (3)

3.2.2 Hypothesis Testing on Rest Data Points G8 . We then extend
the method to G8 for 8 ∈ [2, =]. The main di�erence lies in the
confounding e�ect that involves heterogeneous privacy parameters
(n1, X1) and (n8 , X8 ) now. Given a random output / of '(G8 , n8 , X8 )
and '(G1

1
, n1, X1), we set hypothesis testing:

�0: / came from G8 , �1: / came from G1
1
.

1For convenience, we use the simpli�ed notation ' (Gğ ) instead of ' (Gğ , nğ , Xğ ) when
it is clear from the context, as (nğ , Xğ ) is always binding with Gğ .
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ing patterns under personalized privacy.
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(b) Fix n1 = 3, ?ğ changes as nğ varies. ?ğ
is highest at around n1 = 1, as the testing
error maximizes when ' (Gğ ) is almost
covered by ' (G0

1
) and ' (G1

1
) .

Figure 3: Confounding e�ect ? under personalized privacy.

Noticing that �1 indicates / came from G0
1
or G1

1
, with likelihood

ratio test, we set the rejection region as

* = {I | Pr['(G8 ) = I] < max(Pr['(G0
1
) = I], Pr['(G1

1
) = I])}

Therefore, with Pr['(G8 ) ∈ * ] null hypothesis is true but rejected,
i.e., '(G8 ) is wrongly recognized as '(G1

1
).* could be further parti-

tioned into two subsets *0 and*1:

*0 = {I | Pr[' (Gğ ) =I ]<Pr[' (G0

1
) =I ] and Pr[' (G1

1
) =I ]<Pr[' (G0

1
) =I ] }

*1 = {I | Pr[' (Gğ ) =I ]<Pr[' (G1

1
) =I ] and Pr[' (G0

1
) =I ]<Pr[' (G1

1
) =I ] }

where*0∪*1 = * (Cf. Fig. 2). Similar with Section 3.2.1, the failure
set due to X8 is removed from * . Accordingly, the probabilities of
type I error on G0

1
and G1

1
are de�ned as:

?08 = Pr['(G8 ) ∈ *0\)
8
Xğ
], ?18 = Pr['(G8 ) ∈ *1\)

8
Xğ
]

where ) 8
Xğ

represents the failure set on G8 with X8 .

We observe that ?08 and ?18 change as G8 changes (Cf. Fig. 3(a)).

As G0
1
f G8 f G1

1
, the worst-case happens when G8 = G0

1
(or G8 = G1

1
).

Considering the fact that privacy is breached at the weakest spot,
we adopt minimal ?8 to describe the confounding e�ect of '(G8 ).
Hence Eq.(2) is rewritten with ?8 = min(?08 , ?

1

8 ):

∀8 ∈ [2, =], '(G8 ) = ?8'(G
0

1
) + ?8'(G

1

1
) + (1 − 2?8 )!$ (G8 ). (4)

3.3 Privacy Ampli�cation with 5 -DP

In this section, we achieve a tighter privacy bound of shu�e model
under (n8 , X8 )-PLDP with 5 -DP.

After deriving ? , the clones of '(G1
1
) by shu�ing are generated.

Based on [11], the overall distributions of number of clones on �0

and �1 are denoted as % and & , withF = ?1,

% = (1 −F)%0 +F&0 and & = (1 −F)&0 +F%0 .

where %0 ∼ (�+1,� −�),&0 ∼ (�,� −�+1) with� ∼ �8=(�, 1/2).
Considering ?8 varies under PLDP, we have �8 ∼ �4A=(2?8 ), � =∑=−1
8=1 �8 . Following the idea in [26] that mixed distributions are

more indistinguishable when indices are unknown, the lower bound
of trade-o� function of overall distribution could be derived by es-
tablishing trade-o� function on sub-distributions for each possible
situation with certain weights. Speci�cally, %0 is the mixture of
{(�8 + 1, 8 − �8 )}

=−1
8=0 with weights F0

8 = Pr[� = 8], &0 is the mix-

ture of {(�8 , 8 −�8 + 1)}=−18=0 with the sameF0

8 and �8 ∼ �8=(8, 1/2).
Let 58 , �8 be the probability mass function and distribution function
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Table 1: PLDP privacy parameters n; , X; (X; = 0 for pure PLDP).

U, N represent Uniform and Gaussian Distribution respec-

tively. XB after shu�ling is 10−5.

Name nĢ = {nĢ
ğ
}ğ∈ [Ĥ] XĢ = {XĢ

ğ
}ğ∈ [Ĥ] clip range

Uniform1 U(0.05, 1) 0, 10−10 [0.05, 1]

Gauss1 N(0.8, 0.5) 0, 10−10 [0.05, 1]

Uniform2 U(0.5, 2) 0, 10−10 [0.5, 2]

Gauss2 N(1.5, 0.5) 0, 10−10 [0.5, 2]

of �8=(8, 1/2) respectively. By Lemma 3.1 in [26], we achieve trade-
o� function 5B under both pure-PLDP (let X8 = 0) and approximate-
PLDP settings (X8 > 0).

Theorem 1 (Trade-off function). The trade-o� function of
shu�ing process is de�ned as 5B (U (C)), for C g 0, each U (C) =∑=−1
8=0 F0

8 �8 (8 −
8+1
C+1 ) ∈ [0, 1]. The function 5B at U (C) is

5ĩ (U (C ) ) = (1−X1 ) (2F (1−U (C ) ) + (1−2F )
∑

Ĥ−1

ğ=0
F0

ğ
�ğ ) +X1 (1−U (C ) )

where �8 is the abbreviation of �8 (8 + 1 − 8+1
C+1 ).

Then we convert it to DP based on primal-dual perspective [6].

Theorem 2 (Enhanced Privacy Bound). The shu�ing process

(with randomizer, shu�er, and analyzer) ' ◦ ( ◦� is (n, XB (n)) −�%

for any n > 0 with

XB (n) = (−4n + (1 − X1)2F + X1) [
∑=−1

8=1
F0

8 �8 (8 −
8 + 1

Cn + 1
)]

+ (1 − X1) (1 − 2F) [
∑=−1

8=1
F0

8 �8 (8 + 1 −
8 + 1

Cn + 1
)] (5)

where Cn = inf{C : (1−X1) (−2F +(1−2F); (C))−X1 g −4n } ,F = ?1,

; (C) = −
∑=−1
8=1 F0

1
58 (+8 + 1 − 8+1

C+1 ,)/
∑=−1
8=1 F0

1
58 (+8 −

8+1
C+1 ,).

Here we bound the worst case: user 1 with G1
1
adopts weakest

privacy budget, n1 = max(n8 ). (Considering X8 is negligible in usual
setting, X1 is the corresponding parameter).

4 Experiment Results

We show the privacy bound with various personalized privacy
settings, and the di�erent number of users.
Experiment Setting.We evaluate several PLDP parameter settings
as Tab.1. Baselines include: for pure DP, BBGN [1], FV [12], CCC
[3], LZX [24]; for approximate DP, FV [12], CCC [3]. Notice that
BBGN and FV lack the analysis on personalized privacy, only the
approximate bound is demonstrated by using max(n8 ) for all data
points. We set the same X; for all users for convenience, as FV
is easy to be unbound with large X; . For our bound, we select
Laplace Mechanism and Gaussian Mechanism for evaluating pure
and approximate-PLDP respectively. In practical applications, our
analysis allows any personalized X8 and local randomizers.
Privacy Ampli�cation with �xed XB . Fig.4 provides the numeri-
cal evaluations for privacy ampli�cation e�ect with various PLDP
settings and the number of users. We made two observations. (1)
Our bound achieves the strongest privacy ampli�cation e�ect. The
results come from a precise ? with hypothesis testing on the con-
crete mechanism, and sharp bound with 5 -DP. (2) Compared to
pure-PLDP, the bound on approximate-PLDP is tighter. It is reason-
able from two aspects: �rst, Gaussian Mechanism is much more
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l
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(a) nĢ
ğ
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ğ
∈ [0.05, 1].
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ğ
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ğ
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ğ
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Figure 4: Privacy bounds with various number of data points

and privacy parameters, for pure- and approximate-PLDP.

Table 2: XB after shu�ling comparison under (n; , X; )-PLDP

with Uniform2, = = 10000.

nĩ 0.01 0.03 0.05 0.08 0.1

Xĩ [12] 0.0083 0.0029 0.0008 6 × 10
−5

1 × 10
−5

Xĩ [3] 0.0042 0.0007 5 × 10
−5

3 × 10
−7

3 × 10
−9

Xĩ (Ours) 0.0007 2 × 10
−6

3 × 10
−10

1 × 10
−18

1 × 10
−25

noisy (larger variance) than Laplace Mechanism under the same n .
Hence the confounding e�ect ? is larger on approximate-PLDP; sec-
ond, 5 -DP precisely characterizes the Gaussian distribution, hence
the bound is tighter on approximate-PLDP.
Privacy Ampli�cation with �xed nB . Tab.2 presents values of XB

after shu�ing with di�erent �xed nB values. Due to limited space
we only show the result of approximate-PLDP, the performance on
pure-PLDP is similar. Notably, under the same nB , our bound on X

is signi�cantly smaller than baselines.

5 Conclusion

This work achieves a re�ned privacy bound on shu�e model for
both pure- and approximate-PLDP. To tighten the bound, we pro-
vide a full analysis on the confounding e�ect of perturbed individual
data point and the overall distributions. Our bound on n is up to 5

times tighter than SOTAs.
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