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Abstract

The shuffle model of Differential Privacy (DP) is an enhanced pri-
vacy protocol which significantly amplifies the central DP guaran-
tee by anonymizing and shuffling the local randomized data. Yet,
deriving a tight privacy bound is challenging due to its complicated
randomization protocol. While most existing works focused on uni-
form local privacy settings, this work focuses on a more practical
personalized privacy setting. To bound the privacy after shuffling,
we need to capture the probability of each user generating clones
of the neighboring data points and quantify the indistinguishability
between two distributions of the number of clones on neighboring
datasets. Existing works either inaccurately capture the probability
or underestimate the indistinguishability. We develop a more pre-
cise analysis, which yields a general and tighter bound for arbitrary
DP mechanisms. Firstly, we derive the clone-generating probability
by hypothesis testing, which leads to a more accurate characteriza-
tion of the probability. Secondly, we analyze the indistinguishability
in the context of f-DP, where the convexity of the distributions
is leveraged to achieve a tighter privacy bound. Theoretical and
numerical results demonstrate that our bound remarkably outper-
forms the existing results in the literature. The code is publicly
available at https://github.com/Emory-AIMS/HPS git.
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1 Introduction

The shuffle model [2] with Differential Privacy (DP) [7] is an ad-
vanced privacy protection protocol for distributed data analysis
[4, 13, 21, 25]. An intermediate trusted server shuffler is introduced
between local randomizer [10] and central analyzer [8]. By permut-
ing locally randomized data before sending to the central analyzer,
the shuffler brings extra randomness with a privacy amplification
effect, i.e., central privacy guarantee after shuffling is significantly
stronger than the original local privacy achieved by perturbation.

Many efforts have been put on converting the randomness to
a formal privacy guarantee [1, 9, 11, 12, 14]. While most studies
achieve privacy bound by assuming a uniform privacy level for all
users, this work focuses on a more practical but less studied setting
with personalized privacy, where users have different privacy levels
on local data points due to different policies or privacy preferences
[17-19, 24]. Fig. 1 shows the personalized setting where local data
point x; is associated with a personalized privacy level €;, d;.

A classic privacy analysis for shuffle model amplifies the pri-
vacy by leveraging the confounding effect of clones of neighboring
data points generated by each user [11, 12]. Specifically, for any
neighboring datasets that differ by x1, the noisy data point from
each user could generate a clone of randomized x; with a certain
probability p. The clones together help to hide the existence of x1;
then the difference of the number of clones on neighboring datasets
is estimated for final privacy bounds.

However, driving the probability p and the difference of number
of clones is challenging, especially under Personalized Local Dif-
ferential Privacy (PLDP). Approximating p with the conventional
way that reduces any DP randomized mechanism to the worst-case
randomized response leads to inaccurate results. Additionally, vari-
ous privacy parameters exaggerate the complexity of the overall
distributions of the number of clones. Existing works [3, 24] approx-
imating it by central limit theorem cause relaxations on privacy
bound, especially when the number of users is not large enough.

Motivated by this, we develop a more precise analysis on privacy
amplification of shuffle model under both pure- and approximate-
PLDP for arbitrary local randomizers. Firstly, we quantify different
p contributed by each user with personalized privacy parameters in
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Figure 1: Procedure of shuffle model with personalized pri-
vacy. Each user data x; is randomized locally. Privacy parame-
ters (¢;, 5;) and perturbed %; are shuffled. Analyzer aggregates
X; for further statistics or model training.

a more accurate manner. In specific, p is derived by conducting hy-
pothesis testing on the distribution of current noisy data point and
the distribution of noisy neighboring data point. By computing the
hypothesis testing error, we accurately identify the probability of
any data points being wrongly-recognized as x;. Our method allows
computing p on heterogeneous privacy parameters and arbitrary
DP local randomizer. Secondly, we analyze the indistinguishability
between two overall distributions of the number of clones in the
context of f-DP [6]. We depict the overall distributions by Multi-
Bernoulli and Binomial distribution. Then inspired by [26], the
convexity of the distribution is further exploited to closely charac-
terize the properties of the overall distributions, thus leading to a
tighter upper bound on the privacy after shuffling.
Our main contributions are summarized as follows:

e We provide a more precise analysis for privacy amplification
effect on the shuffle model for personalized privacy. Con-
founding effect of individuals and overall distributions are
characterized by analytical expressions, which leads to a
tighter privacy bound.
Our work offers a general method to quantify confounding
effect of PLDP with hypothesis testing, which enables our
analysis to address arbitrary locally differentially private
mechanisms and heterogeneous privacy parameters.
e We verify the proposed analysis with numerical results,
which demonstrates that our privacy bound significantly
exceeds the SOTAs on both pure- and approximate-PLDP.

2 Preliminaries

2.1 Central and Local Differential Privacy

Differential privacy (DP) [8] provides a rigorous privacy guarantee
for raw data by introducing random noises to the computation
process. The notion is typically applied in a central setting where
a trusted server can access the raw data. For the settings without
trusted server, local differential privacy (LDP) [10] is proposed. LDP
is capable of providing a stronger privacy guarantee than DP, as
it protects data against stronger adversaries who have access to
every (perturbed) data point in the dataset. Therefore, it is suitable
for distributed data collection or publishing [5, 22, 23, 27]. Yet, LDP
also suffers from a dissatisfying data utility due to a large amount
of noise injection.
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DEFINITION 1 (DIFFERENTIAL PRIVACY). Foranye,§ > 0, a ran-
domized algorithm R : D — Z is (¢, 8)-DP if for any neighboring
datasets D,D’ € D and any subsets S C Z, Pr[R(D) € S] <
e Pr[R(D’) € S] +6.

DEFINITION 2 (LOoCcAL DIFFERENTIAL PRIVACY). Foranye,§ > 0,
a randomizerR: D — Z is (¢,8)-LDP if Vx,x’ € D andVz € Z,
Pr[R(x) = z] < e€Pr[R(x") = z] + 6.

€ denotes the privacy level, the lower the stronger privacy. §
denotes the failure probability of the randomizer. § = 0 is pure-LDP,
and § > 0 is approximate-LDP.

2.2 Shuffle-based Privacy

Shuffle model [2] is proposed to strengthen central privacy while
preserving local user privacy. Given dataset D, each x; € D owned
by user i is perturbed locally by a randomizer R to ensure (ef, 51{ )-
LDP and sent to shuffler. Shuffler S, a trusted third party, permutes
all data points and sends them to an untrusted analyzer A for fur-
ther computation. Based on the anonymity from shuffling, existing
works obtain a strong privacy amplification effect. Most works
[1,9, 11, 12, 14, 20, 26] focus on uniform local privacy setting, Feld-
man et al. [12] improves privacy bound by generating clones from
neighbor data points. Wang et al. [26] applies f-DP and achieves a
tighter bound under uniform LDP. As a more common and practical
setting, some works [3, 24] focus on personalized settings, while
leaving a loose privacy bound due to reduction or approximation.

3 Privacy Analysis

In this section, we first introduce the confounding effect, which
captures the randomness introduced by shuffler and serves as the
foundation of amplification effect analysis. Then we provide an
analytical expression of confounding effect with hypothesis testing,
which yields a precise description and results in a stronger amplifi-
cation effect. At last, we develop our analysis in the context of f-DP.
By exploiting the convexity of the mixed distribution generated by
the shuffler, we further derive a tighter bound.

3.1 Confounding Effect p

We consider neighboring data points x(l) and xl1 € D. As noted
in [11], after perturbing and shuffling each data point, the output
of randomizer on each data point could be seen as samples from
the output distribution of randomizer on x? or x} with certain
probability. And each local randomizer R(x,€) : D — Z can also
be represented as: R(x?) =(1- p)Q(x?) + pQ(x}) and R(x%) =
pQ(x(l)) +(1- p)Q(x(l)), where Q : {x(l),x%} — S is a randomized
algorithm. Hence the following decomposition is given by [11]:

R(xY) = e“pQ(xd) + pQ(x}),  R(x}) = pO(x)) +e€pQ(x]) (1)
Vie[2n], R(xi)=pR(x)) +pR(x{) + (1-2p)LO; (2)

where LO; is the leftover distributions. The decomposition above
suggests that each output from R(x;) could be wrongly recognized

as coming from x(l) or x| with probability p. In other word, p is the

confounding effect of R(x;) on x{’, where b = 0 or 1, and stronger
privacy is achieved with a larger p. Existing works derive p by
reducing the LDP mechanism to random response [15], which un-
derestimates the confounding effect of most LDP mechanisms.
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Figure 2: Green area represents Pr[R(x;) € Up], output of

R(x;) is wrongly recognized from x(l) ; Yellow area represents
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Pr[R(x;) € U1], output of R(x;) is mistaken from x

In this work, we achieve a precise p. By conducting hypothesis
testing on distributions R(x;) and R(xlb ) 1, the type I error captures
the probability of wrongly recognizing the output of R(x;) as an
output of R(x%7 ), which is exactly p. For clarity, we derive the value
of p for the neighboring data point x{’ and the rest data point x; in
Section 3.2.1 and 3.2.2 respectively.

3.2 Quantifying p with Hypothesis Testing

3.2.1 Hypothesis Testing on Neighboring Data Point‘x{7 . In this sec-
tion, we demonstrate our hypothesis testing based approach for
deriving p at x{’, where the confounding of R(x{’) only depends
on the the privacy budget (€1, §1). Given a random output Z from
R(xf), we set the hypothesis testing as follows:
Hy: Z came from x(l), H;i: Z came from x%.

Then we conduct likelihood ratio test by examining the ratio be-
tween probability p(l) = Pr[R(x?) = 7| and p% = Pr[R(x}) =Z],
and reject Hy when p? /p} < 1. The rejection region is defined as

S = {z| Pr[R(x?) = z] < Pr[R(x]) = 2]}.
According to Neyman-Pearson lemma [16], likelihood ratio test is
the most powerful way to distinguish two distributions. Hence with
such S, we achieve the lower bound of p. As for approximate-DP,
the privacy protection fails when outputs z € T where
Ts = {z| Pr[R(x) = z] < =6/2 or Pr[R(x) =z] > 1-5/2}.
After removing the failure set T, the p is lower bounded by
0 01 _ Iy e\l —
Pr[R(x]) € S\Tal] =Pr[R(xy) € S\T51] =

0
1
with &1, T1 is on x with 8. Then Eq (1) is rewritten as Eq. (3). By
further cons1der1ng the distribution of concrete DP mechanisms,
we are able to achieve the exact expression of p.

R(x)) = A-p)R(x))+p1R(x}), R(x}) = piR(x})+A-p)R(x]) (3)

where § is the complement of S, T0 denotes the failure set on x

3.2.2 Hypothesis Testing on Rest Data Points x;. We then extend
the method to x; for i € [2,n]. The main difference lies in the
confounding effect that involves heterogeneous privacy parameters
(€1,61) and (ej, 6;) now. Given a random output Z of R(x;, €;, 8;)
and R(x{’, €1, 81), we set hypothesis testing:

Hy: Z came from x;, H;i: Z came from x{’.
!For convenience, we use the simplified notation R(x;) instead of R(x;, €;, §;) when

it is clear from the context, as (¢€;, §;) is always binding with x;.
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within [x},x]]. The fluctuation on or-
ange line suggests the different confound-
ing patterns under personalized privacy.

Figure 3: Confounding effect p under personalized privacy.

Noticing that H; indicates Z came from x(l) or x%, with likelihood
ratio test, we set the rejection region as

U = {2| Pr[R(x;) = z] < max(Pr[R(x?) = z], Pr[R(x]) = z])}

Therefore, with Pr[R(x;) € U] null hypothesis is true but rejected,
i.e, R(x;) is wrongly recognized as R(xf). U could be further parti-
tioned into two subsets Uy and U;:

Up ={z| Pr[R(x;)=z] <Pr[R(x§)):z] and Pr[R(x%):z] <Pr[R(x?):z]}
={z| Pr[R(x;)=z] <Pr[R(x11):z] and Pr[R(x?):z] <Pr[R(x11):z]}

where Uy UU; = U (Cf. Fig. 2). Similar with Section 3.2.1, the failure
set due to J; is removed from U. Accordingly, the probabilities of
type I error on x? and x} are defined as:

pY =Pr[R(x;) € UO\TaiL_], pi =Pr[R(x;) € Ul\Téi]

where T(é( represents the failure set on x; with §;.

We observe that p? and p} change as x; changes (Cf. Fig. 3(a)).
As x(l) <x; < x}, the worst-case happens when x; = x? (orx; = x}).
Considering the fact that privacy is breached at the weakest spot,
we adopt minimal p; to describe the confounding effect of R(x;).

Hence Eq.(2) is rewritten with p; = min(p?,pl.l):

Vi € [2,n], R(x;) = piR(x]) + piR(x}) + (1= 2pi)LO(x;).  (4)

3.3 Privacy Amplification with f-DP

In this section, we achieve a tighter privacy bound of shuffle model
under (€;, 8;)-PLDP with f-DP.

After deriving p, the clones of R(x{7 ) by shuffling are generated.
Based on [11], the overall distributions of number of clones on Dy
and D are denoted as P and Q, with w = py,

P=(1-w)Pp+wQy and Q= (1-w)Qp+wPy.

where Py ~ (A+1,C—-A), Qo ~ (A,C—-A+1) with A ~ Bin(C, 1/2).
Considering pi varies under PLDP, we have C; ~ Bern(2p;), C =
pIaw Cl Following the idea in [26] that mixed distributions are
more indistinguishable when indices are unknown, the lower bound
of trade-off function of overall distribution could be derived by es-
tablishing trade-off function on sub-distributions for each possible
situation with certain weights. Speciﬁcally, Py is the mixture of
{(Ai+1,i - A; )}” o With weights w Pr[C i], Qo is the mix-
ture of {(A;,i—A; + 1)}?:01 with the same wl. and A; ~ Bin(i,1/2).
Let f;, F; be the probability mass function and distribution function
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Table 1: PLDP privacy parameters e, 5! (5! = 0 for pure PLDP).
U, N represent Uniform and Gaussian Distribution respec-
tively. 8° after shuffling is 107>,

Name el = {ef}ie[n] sl = {5£}i6[n] clip range
Uniform1  74(0.05,1) 0,10710 [0.05,1]
Gaussl1 N(0.8,0.5) 0,10710 [0.05,1]
Uniform2 ~ U(0.5,2) 0,10710 [0.5,2]
Gauss2 N(1.5,0.5) 0,10710 [0.5,2]

of Bin(i, 1/2) respectively. By Lemma 3.1 in [26], we achieve trade-
off function f; under both pure-PLDP (let §; = 0) and approximate-
PLDP settings (5; > 0).

THEOREM 1 (TRADE-OFF FUNCTION). The trade-off function of
shuffling process is defined as fs(a(t)), fort > 0, each a(t) =
Z;‘:_Ol W?Fi(i — 1y ¢ [0,1]. The function f; at a(t) is

+1
Fla() =(1-8) 2w(i-a()+(1-2w) Y P WlF;)+8,(1-a (1)
where F; is the abbreviation of F;i(i + 1 — % .

Then we convert it to DP based on primal-dual perspective [6].

THEOREM 2 (ENHANCED PRIvacY BounD). The shuffling process
(with randomizer, shuffler, and analyzer) Ro S o A is (¢, 55(€)) — DP
for any € > 0 with

8s(6) = (= + (1= 2w+ o[y ' wiFi(i- ;11)]
CRLICEER R ~= Y

where te = inf{t : (1-81)(-2w+(1-2w)l(t))-61 = —e®}, w = p1,
(1) = -Si5 wifi(li+ 1= F7 D/ wifi(li - £3 D).

Here we bound the worst case: user 1 with x{’ adopts weakest
privacy budget, €; = max(¢;). (Considering §; is negligible in usual
setting, 01 is the corresponding parameter).

4 Experiment Results

We show the privacy bound with various personalized privacy
settings, and the different number of users.

Experiment Setting. We evaluate several PLDP parameter settings
as Tab.1. Baselines include: for pure DP, BBGN [1], FV [12], CCC
[3], LZX [24]; for approximate DP, FV [12], CCC [3]. Notice that
BBGN and FV lack the analysis on personalized privacy, only the
approximate bound is demonstrated by using max(¢;) for all data
points. We set the same 8! for all users for convenience, as FV
is easy to be unbound with large 8L, For our bound, we select
Laplace Mechanism and Gaussian Mechanism for evaluating pure
and approximate-PLDP respectively. In practical applications, our
analysis allows any personalized §; and local randomizers.
Privacy Amplification with fixed &°. Fig.4 provides the numeri-
cal evaluations for privacy amplification effect with various PLDP
settings and the number of users. We made two observations. (1)
Our bound achieves the strongest privacy amplification effect. The
results come from a precise p with hypothesis testing on the con-
crete mechanism, and sharp bound with f-DP. (2) Compared to
pure-PLDP, the bound on approximate-PLDP is tighter. It is reason-
able from two aspects: first, Gaussian Mechanism is much more
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Figure 4: Privacy bounds with various number of data points
and privacy parameters, for pure- and approximate-PLDP.

Table 2: §° after shuffling comparison under (¢!, 5')-PLDP
with Uniform2, n = 10000.

€’ 0.01 0.03 0.05 0.08 0.1

5% [12] 0.0083  0.0029 0.0008 6x107°  1x107°
5% [3] 0.0042  0.0007 5x107° 3x1077 3x107°
8% (Ours) 0.0007 2x107% 3x10710 1x107® 1x107%

noisy (larger variance) than Laplace Mechanism under the same e.
Hence the confounding effect p is larger on approximate-PLDP; sec-
ond, f-DP precisely characterizes the Gaussian distribution, hence
the bound is tighter on approximate-PLDP.

Privacy Amplification with fixed €°. Tab.2 presents values of 6°
after shuffling with different fixed €* values. Due to limited space
we only show the result of approximate-PLDP, the performance on
pure-PLDP is similar. Notably, under the same €°, our bound on §
is significantly smaller than baselines.

5 Conclusion

This work achieves a refined privacy bound on shuffle model for
both pure- and approximate-PLDP. To tighten the bound, we pro-
vide a full analysis on the confounding effect of perturbed individual
data point and the overall distributions. Our bound on € is up to 5
times tighter than SOTAs.
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