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Abstract— Federated learning (FL) is a useful tool that enables

the training of machine learning models over distributed data

without having to collect data centrally. When deploying FL in

constrained wireless environments, however, intermittent connec-

tivity of devices, heterogeneous connection quality, and non-i.i.d.

data can severely slow convergence. In this paper, we con-

sider FL with arbitrary device participation probabilities for

each round and show that by weighing each device’s update

by the reciprocal of their per-round participation probability,

we can guarantee convergence to a stationary point. Our bound

applies to non-convex loss functions and non-i.i.d. datasets and

recovers state-of-the-art convergence rates for both full and

uniform partial participation, including linear speedup, with

only a single-sided learning rate. Then, using the derived con-

vergence bound, we develop a new online client selection and

power allocation algorithm that utilizes the Lyapunov drift-plus-

penalty framework to opportunistically minimize a function of

the convergence bound and the average communication time

under a transmit power constraint. We use optimization over

manifold techniques to obtain a solution to the minimiza-

tion problem. Thanks to the Lyapunov framework, one key

feature of the algorithm is that knowledge of the channel

distribution is not required and only the instantaneous channel

state information needs to be known. Using the CIFAR-10

dataset with varying levels of data heterogeneity, we show

through simulations that the communication time can be signif-

icantly decreased using our algorithm compared to uniformly

random participation, especially for heterogeneous channel

conditions.

Index Terms— Federated learning, Lyapunov stochastic opti-

mization, client selection.
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I. INTRODUCTION

F
EDERATED learning (FL) enables the training of
machine learning (ML) models over decentralized data.

Instead of transmitting data from all devices to a centralized
location, model training is accomplished through a collabo-
rative procedure in which the participants train on their own
locally collected datasets and periodically share their model
parameters. This ML technique is immensely powerful for
protecting the privacy of the users’ data since raw data never
leaves the devices. Furthermore, two other key features of
FL, partial device participation and multiple local iterations,
help reduce the communication burden by communicating
less information less often compared to centralized learning
or other distributed training techniques. Accordingly, FL is
most advantageous in instances where full data transmission
is infeasible or otherwise restricted in some way.

In this paper, we consider the scenario where training
is coordinated by a central aggregator that communicates
with each device over a wireless network. The aggregator is
responsible for choosing devices, accumulating their models,
and disseminating the aggregated global model back to the
devices. We use device and node interchangeably throughout
the paper. A block diagram of the wireless network running
FL can be found in Fig. 1. Each node n is a device that
has a unique dataset and an uplink channel to the aggregator
with channel gain ht

n at time t. The orchestration of FL over
large-scale wireless networks such as this is a challenging task
due to the dynamics of the channel. In mobile edge computing
(MEC) environments, for example, poor channel quality and
intermittent connectivity can completely derail training. In the
original FL algorithm, FedAvg [2], devices are selected uni-
formly at random in each round. Although this strategy has
been shown to converge [3],[4],[5], in practice, it may lead to
poor performance since it is completely agnostic to the com-
munication medium as well as many other practical factors.
For example, if devices with poor channels are naively chosen,
the model will converge much slower in terms of wall-clock
time since it will take longer to communicate the parameters
in each aggregation round. On the other hand, if such devices
are ignored, convergence will also be negatively affected since
those devices’ data will not be used. The end result is the
consumption of more network resources than is necessary due
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Fig. 1. Block diagram of the uplink communication in federated learning
over a wireless network.

to longer training times. Thus, a more intelligent approach
to device selection is needed to optimize network resource
consumption and minimize wall-clock convergence time.

Before designing such an approach, though, the effect of
arbitrary device selection probabilities on convergence must
be understood to ensure convergence to a good model. There-
fore, in this paper, we first derive a convergence bound for
non-convex loss functions with arbitrary device selection prob-
abilities for each round and do not assume uniform bounded
gradients as is sometimes done, e.g., [1], [3], [6], and [7].
In fact, we show that we can achieve linear speedup [8] with
only a single-sided learning rate. We then use that bound
to inform the development of a device selection and power
allocation policy that greatly speeds up wall-clock convergence
time. More specifically, our upper bound shows that as long as
all devices have a non-zero probability of participating in each
round, then FL will converge in expectation to a stationary
point of the loss function. We then use the knowledge of how
the selection probabilities affect the convergence bound to
formulate a stochastic optimization problem that determines
the optimal transmit powers and selection probabilities for
a nonuniform sampling with replacement selection strategy.
Optimality in this case means it minimizes a weighted sum
of the convergence bound and the time spent communicating
model parameters while satisfying constraints on the peak and
time average transmit power of each device. The form of
the convergence bound and our novel problem formulation
allow us to utilize the Lyapunov drift-plus-penalty framework
to solve the problem in an online and greedy fashion with
optimality and constraint satisfaction guarantees. A key advan-
tage of our new device selection algorithm is that it is able
to make decisions according to current channel conditions
without knowledge of the underlying channel statistics due
to the structure of the Lyapunov framework.

To show the performance of our algorithm, we run numer-
ous experiments on the CIFAR-10 dataset with varying levels
of data and channel heterogeneity to demonstrate the saved
training time using our developed algorithm. We compare our
results to the uniform selection policy of FedAvg and show
that the time required to reach a target accuracy can be sped
up by up to 8.5x. In summary, our main contributions are as
follows:

1) We derive an upper bound for the convergence of
non-convex loss functions using FL with arbitrary
selection probabilities and no uniform bounded gradi-
ent assumption. We recover state-of-the-art convergence
rates, including linear speedup with respect to the number

of devices participating, with only a single-sided learning
rate.

2) We formulate a novel stochastic optimization problem
that minimizes a weighted sum of the convergence bound
and the amount of communication time spent on transmit-
ting parameter updates, while satisfying transmit power
constraints.

3) Using the Lyapunov drift-plus-penalty framework,
we derive an optimal online greedy solution that does
not require knowledge of the channel statistics. We solve
the problem by decoupling device selection from power
allocation to obtain a combination of an analytical solu-
tion and a Riemannian manifold optimization problem
that requires a solver due to a non-convex constraint.

4) We provide experimental results that demonstrate a com-
munication savings of up to 8.5→ compared to traditional
uniform selection strategies and examine numerous sce-
narios involving varying levels of heterogeneity in both
the data and the wireless channels.

The rest of the paper is organized as follows. First,
we present some related work in Section II before formally
presenting our problem formulation in Section III. Then,
convergence analysis is provided in IV and the device schedul-
ing policy is developed in Section V. Finally, we present
experimental results in Section VI.

II. RELATED WORKS

Since its introduction via the FedAvg algorithm in [2],
FL has garnered a lot of attention in both industry and
academia. Drawn by the promise of privacy, much work
has been done to formally guarantee privacy [9], [10], [11],
characterize convergence [3], [4], [5], [6], [12], and minimize
communication overhead [13]. For the latter, some strategies
and analyses utilize model compression via sparsification [14],
[15] and quantization [16], [17], [18] to decrease the com-
munication load while others have focused on optimizing
device participation [19], [20], [21], for example. Naively
applying these approaches, e.g., biased compression or device
selection, however, can lead to poor performance due to model
skew which causes the model to drift away from the globally
optimal solution. The presence of heterogeneity in the system
is the main cause of the skew which inhibits successful imple-
mentation of communication-efficient techniques like device
selection at scale if not adequately addressed. Heterogeneity
can come in the form of differences in network and computa-
tional resources as well as from non-identical data distributions
across the devices. Overly relying on high-performing nodes
during training is one way in which model skew can be
unintentionally induced, resulting in a final model that works
well for those nodes, but not for the lesser nodes whose data
is ignored.

In fact, one of the first works specifically targeting device
selection [19] suffers from this problem. In this study, they
report poor performance, especially for non-i.i.d. datasets,
since they only aggregate models from devices that respond
the quickest during each training round. This underlines the
importance of accounting for and guaranteeing convergence
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in device scheduling algorithms. Some other empirical studies
without convergence results include [22], [23]. When dealing
with heterogeneity, the challenge is how to quickly and suffi-
ciently learn from all nodes to converge to a good global model
without straining resources. Therefore, in this paper, we first
focus on ensuring convergence of the global loss function
before designing our device selection and power allocation
algorithm.

Most theoretical works on the convergence of non-convex
loss functions in FL assume uniform device participation
via sampling with and without replacement [3],[4],[6],[8]
which does not allow for more intelligent device selection.
Meanwhile, other papers analyze more sophisticated selection
schemes, but often with strict assumptions. Among these
is [24], which analyzes the performance of three different
scheduling policies but only contains convergence results for
simple linear regression tasks. In [20], the authors analyze
the convergence of a general, possibly biased, device selec-
tion strategy, but only for strongly convex loss functions
and uniformly bounded gradients. Importantly, their bound
introduces a non-vanishing term to the convergence bound due
to selection bias and thus their strategy is not guaranteed to
converge to a stationary point of the loss function. Both [25]
and [26] also consider convergence, but again only for strongly
convex loss functions. Uniquely, though, the work in [26] con-
siders cases where devices may compute incomplete updates,
become inactive/unavailable, depart early, or arrive late, but
does not provide specific selection strategies. Finally, [27]
considers arbitrary participation probabilities for each device,
but in their case study, these probabilities are held constant
throughout training and are not a design parameter. In fact, the
probabilities used in the experiments match the fraction of data
samples each node has which follows the traditional FedAvg
approach. Additionally, in [27], all devices must participate
in the first round for convergence. A more recent theoretical
treatment of arbitrary participation can be found in [28].
We improve upon these results by considering non-convex
loss functions and derive a bound with an easily managed
non-vanishing term under the condition that all devices have an
arbitrary non-zero probability of participating in each round.

The results most similar to ours can be found in [21].
In the paper, a “clustered” sampling approach is proposed
where a multinomial distribution is used to sample devices.
This framework allows for the device selection probabilities
to change with each draw in a given round. In order to remain
unbiased, however, the probabilities must be chosen such that
in each round, each node is selected on average proportional
to their data ratio. In our approach, by modifying the weights
during the global aggregation step, we can maintain unbiased
updates while allowing arbitrary participation probabilities
at every round without restricting the values. The increased
flexibility enables us to choose probabilities depending on
the state of the network to increase communication efficiency
while still guaranteeing convergence.

As for FL over wireless networks, some works [29],
[30] develop frameworks that jointly optimize convergence
and communication. Similarly to our approach, they derive
a convergence bound and then minimize it by finding the
optimal parameter values. For example, in [29], the FL

loss is minimized while meeting the delay and energy con-
sumption requirements via power allocation, user selection,
and resource block allocation. Both papers, however, make
the unrealistic assumption that the channel remains constant
throughout the training process which we do not assume here.
In [31], stochastic optimization is used to determine an optimal
scheduling and resource block policy that simultaneously
minimizes the FL loss function and CSI uncertainties. The loss
function considered, though, is simple linear regression and
does not readily apply to neural network models. Stochastic
optimization is also considered for FL in [32] and [33], but
not to design an optimal device selection policy that guar-
antees convergence of non-convex loss function. In summary,
unlike previous work, our approach guarantees convergence of
non-convex loss functions with arbitrary participation prob-
abilities and uses the results to develop a device selection
and transmit power allocation policy. By leveraging Lyapunov
optimization, we provide a partially analytical solution that
increases communication efficiency of FL.

III. PROBLEM FORMULATION

We now explain the FL optimization problem in more detail.
Consider a system with N clients, where each client n ↑

{1, 2, . . . , N} has a possibly non-convex local objective fn(x)
with parameter x ↑ Rd. We would like to solve the following
finite-sum problem:

min
x

f(x) :=
1
N

N∑

n=1

fn(x). (1)

Note that for simplicity, we assume that each node has the
same amount of data and thus have uniform weights, i.e., 1

N ,
in (1). When this is not the case, it can be easily accounted for
by selecting appropriate weights for each local loss function
in the sum and carrying it through the analysis.

To solve (1), we follow the typical FedAvg [2] FL paradigm,
but modify it to allow for arbitrary device participation in each
round. In our algorithm, which can be found in Algorithm 1,
participation is dictated by qt

n ↑ (0, 1] which is the probability
that device n participates in round t. To maintain unbiased
updates, we weigh each device’s gradient update inversely
proportional to the participation probability of that device,
as seen in Line 7 of Algorithm 1. Intuitively, this ensures
that devices that participate less frequently are weighed more
heavily such that they have sufficient influence over the
global model when they do participate and vice versa. While
knowledge of qt

n is required for aggregation, we treat it as a
design parameter rather than a property of the environment
and thus can conceptually develop an algorithm that chooses
its value at each round. We leave cases where qt

n is dictated
by the environment to future work where it can be estimated.
With this in place, we adjust its value for each device and
aggregation round to optimize other aspects of the process
such as system resource usage. Analyzing the convergence
behavior of FedAvg with arbitrary probabilities enables the
ability to measure the impact of stochastic scheduling on
training in order to better design device selection policies.

We now explain Algorithm 1 in further detail. First,
Iltn ↑ {0, 1} denotes the random binary variable that rep-
resents whether client n is selected in round t, where
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Algorithm 1 FedAvg With Client Sampling
Input: ω, x0, K, T , {qt

n}

Output: {xt}

1 for t ↓ 0, . . . , T ↔ 1 do

2 Sample Iltn ↗ qt
n,↘n;

3 for n ↓ 1, . . . , N in parallel do

4 yn
t,0 ↓ xt;

5 for i ↓ 0, . . . ,K ↔ 1 do

6 yn
t,i+1 ↓ yn

t,i ↔ ωgn(yn
t,i);

7 xt+1 ↓ xt + 1
N

∑N
n=1

Iltn
qt

n

(
yn

t,K ↔ yn
t,0

)
;

// global parameter update

qt
n := Pr{Iltn = 1}. Next, after Iltn is realized and the current

global model is broadcasted, each device performs K rounds
of stochastic gradient descent (SGD) on its local dataset where
gn(x) denotes the stochastic gradient of fn(x) for device n
and ω > 0 is the local learning rate. This repeats for T total
aggregation rounds. We use the variable yn

t,i to represent the
intermediate local model updates between global aggregation
rounds where i indexes the local SGD iteration. In the last step,
only the selected devices’ gradient updates are aggregated.
Note that even though this algorithm shows all N devices
performing SGD each round, it is logically equivalent to one
in which only the selected clients via Iltn receive the global
model, compute gradient updates, and transmit back to the
aggregator.

IV. CONVERGENCE ANALYSIS

In this section, we provide an upper bound on the conver-
gence of (1) using Algorithm 1 for non-convex loss functions.
We assume that Iltn and Iltn→ are independent through time, and
that drawing from Iltn is independent of SGD noise, i.e., Iltn and
gn are independent. We also make the following assumptions
on the local loss functions.

Assumption 1 (L-smoothness).

≃⇐fn(y1)↔⇐fn(y2)≃ ⇒ L≃y1 ↔ y2≃ (2)

for any y1, y2 and some L > 0.

Assumption 2 (Unbiased stochastic gradients).

E [gn(y)|y] = ⇐fn(y), (3)

for any y.

Assumption 3 (Bounded stochastic gradient noise).

E
[
≃gn(y)↔⇐fn(y)≃2

]
⇒ ε2,↘y, n (4)

for some ε > 0.

Assumption 4 (Bounded gradient divergence).

≃⇐fn(y)↔⇐f(y)≃2 ⇒ ϑ2,↘y, n (5)

for some ϑ > 0.

While the first three assumptions are standard in non-convex
optimization, the fourth is unique to FL and other distributed
SGD techniques, as used in [6], [8], [34], and [35]. It bounds

the differences between the local loss functions across clients
due to having non-i.i.d. datasets. The i.i.d. case is recovered
when ϑ = 0. Now, we state our convergence theorem in
Theorem 1.

Theorem 1. Let Assumptions 1–4 hold with ω, T , K, N , and
qt
n defined as above. Then, if ω ⇒

qmin
8LK , where we assume

the existence of a minimum participation probability qmin such
that such that qmin ⇒ qt

n for all n, t, Algorithm 1 satisfies

1
T

T→1∑

t=0

E
[
≃⇐f(xt)≃

2
]
⇒

2 (E [f(x0)]↔ E [f(xT )])
cωKT

+ !1 +
!2

TN

T→1∑

t=0

1
N

N∑

n=1

1
qt
n

, (6)

where !1 = 1
c5ω2KL2

(
ε2 + 6Kϑ2

)
, !2 = 2Lωε2

c , and c is a
constant.

Proof: The full proof can be found in Appendix A. The
proof utilizes the assumption that the client sampling random
variable Iltn is independent of the stochastic gradient noise in
gn and that E

[
Iltn

]
= qt

n Thus, the weighted averaging of 1
qt

n

in Step 7 of Algorithm 1 ensures that the gradient estimate
remains unbiased. That is, E

[
Iltn
qt

n
gn(x)

]
= ⇐fn(x).

Another key assumption is the existence of a constant
0 < qmin ⇒ qt

n for all n, t. This is reasonable since, otherwise,
qt
n ⇑ 0 for at least one n, which would cause the weight in the

averaging step to go to infinity, trivially causing divergence.
Additionally, qmin can be viewed as a design parameter, e.g.,
to control fairness. ↭

Our convergence bound consists of three terms. The first
vanishes as T increases and, while the second and third are
non-vanishing, they can be managed with appropriate selection
of ω (see Corollary 1). The non-vanishing terms are separated
into ones that are not amplified by partial participation, !1,
and ones that are, !2. The convergence bound increases when
participation probabilities are small. This follows with the
intuition that sampling fewer participants in a round leads to
a noisier estimate of the full gradient and thus more iterations
will be required to converge to a desired loss.

Interestingly, the level of data heterogeneity, as measured
by ϑ2, does not amplify the effect of partial participation.
This suggests that partial participation affects convergence
solely through increasing the variance of the gradient estimate
and not by a biasing of the model towards the minima of
the more frequent participants. This decoupling is due to the
inverse-proportional weighting of participation probabilities in
the aggregation step of Algorithm 1 which ensures unbiased
gradient estimates. It essentially compensates for infrequent
participants by taking larger steps towards their local minima
in the low-probability event that they are called upon. Sim-
ilarly, the upper bound on step size requires that when the
minimum participation probability, qmin, is small, the step size
must also be small. This makes sense intuitively since larger
steps would also heavily skew the model towards the more
frequent participants’ local stationary points.

In the bound, the partial participation term can be trivially
minimized by setting qt

n = 1 for all n and t, i.e., full partici-
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pation, but it is impractical to assume that every device can or
will participate in every round. This necessitates a selection
strategy that minimizes the time average 1

T

∑T→1
t=0

1
N

∑N
n=1

1
qt

n

under some constraints. Before introducing our approach to
this problem, we present two corollaries to further exam-
ine convergence behavior and show that linear speedup is
achieved.

Corollary 1. If we choose ω = min{ qmin
8LK ,

↑
Nqmin↑
TKL

}, then we
have

1
T

T→1∑

t=0

E
[
≃⇐f(xt)≃

2
]

⇒ O

(
L

qminT
+

L
⇓

TNKqmin
+

Nqminϑ2

TK
+
⇓

qminε2Q
⇓

TNK

)
,

(7)

where Q = 1
T

∑T→1
t=0

1
N

∑N
n=1

1
qt

n
⇒

1
qmin

.

Proof: The order terms can be obtained by plugging in
the step size in (6) and noting that max{x, y} ⇒ x + y. ↭
Corollary 2. In the full participation scenario,
i.e., qt

n = 1↘n, t, the convergence rate of Algorithm 1
is 1

T

∑T→1
t=0 E

[
≃⇐f(xt)≃

2
]
⇒ O

(
1↑

TNK

)
.

Furthermore, for uniform sampling with and with-
out replacement, the convergence rate of Algorithm 1 is
1
T

∑T→1
t=0 E

[
≃⇐f(xt)≃

2
]
⇒ O

(
1↑

TmK

)
.

Proof: For the full participation and uniform sampling
without replacement scenarios, the corollary can be obtained
by noting that qmin = qt

n = 1 and qmin = qt
n = m/N for

all n, t, for each scenario, respectively, and then applying
Corollary 1 with Q = 1/qmin.

For the uniform sampling with replacement scenario,
we note that qmin = qt

n = 1 ↔ (1 ↔ 1/N)m. To show the
result, we first prove that 1/qmin = O(N/m) for sampling
with replacement and then the result follows from the sampling
without replacement strategy.

First, consider the case where m ⇔ N ,1 then we have

1↔
(

1↔
1
N

)m

⇔ 1↔ e→m/N
⇔ 1↔ e→1.

Next, consider the case where m ⇒ N and let r = m/N such
that r ⇒ 1. Observe, then, that the derivative with respect
to r of (1 ↔ (1 ↔ r/m)m)/r is always negative and thus is
minimized when r = 1. Then, we have

(
1↔

(
1↔

1
N

)m)
N

m
= (1↔ (1↔ r/m)m)/r

⇔ 1↔ (1↔ 1/m)m

⇔ 1↔ e→1,

which gives

1↔
(

1↔
1
N

)m

⇔
m

N
(1↔ e→1).

1In sampling with replacement, since devices can be re-selected each draw,
you can continue to sample beyond the number of devices and thus it is
possible for m → N . For sampling without replacement, m = N would
result in full participation and no more draws can be made.

Combining the two cases, we have a final bound of

1↔
(

1↔
1
N

)m

⇔
min{m, N}

N
(1↔ e→1),

and thus,

1/qmin =
1

1↔
(
1↔ 1

N

)m = O

(
N

m

)
.

The result then follows simply via Corollary 1. Finally,
we note that if m > N , then the m in the order term is
replaced with N .

↭
Corollary 2 shows that we recover the state-of-the-art con-

vergence rate in [3] and [4] that indicates a linear speedup
in terms of the number of clients for both full and partial
participation. This is achieved without the use of a two-sided
learning rate2 which prior methods require. Linear speedup
is desired since the number of iterations required to reach a
given loss can be reduced by proportionally increasing the
number of clients in a given round. This behavior ensures
that our algorithm fully leverages the parallelism of federated
learning, even with non-i.i.d. data. For general participation
probabilities, the speedup is in terms of Nqmin. Interestingly,
with the choice of step size in Corollary 1, if qmin ⇒ 1/N ,
then speedup is lost.

Now equipped with an understanding of how device selec-
tion probability qt

n affects FL convergence, we will design an
optimization problem that adaptively determines both qt

n and
transmit power allocations in order to minimize communica-
tion overhead while guaranteeing convergence.

V. COMMUNICATION-EFFICIENT SCHEDULING POLICY

In this section, we propose a novel device selection and
transmit power allocation policy that minimizes communica-
tion overhead while guaranteeing convergence. The policy is
based on solving a stochastic optimization problem that min-
imizes a time average function consisting of the convergence
bound in (6) and the average time spent communicating model
updates, while satisfying time average transmission power con-
straints for each device. This optimization problem is formally
stated in Section V-B. The output of the optimization problem
is the selection probabilities qt

n used in Algorithm 1 and the
transmit powers P t

n used in each round. The communication of
multiple devices’ model updates over many rounds may cause
a huge bottleneck in FL, especially in heterogeneous environ-
ments, which is why we focus on minimizing the time spent
during this phase. Unlike previous work, we speed up training
in terms of wall-clock time, minimizing the burden on the
network, while still theoretically guaranteeing convergence.
The natural form of the bound allows us to formulate the
problem in terms of time averages. This lends itself perfectly to
the application of the Lyapunov drift-plus-penalty framework
which specifically deals with this class of problems. A major
benefit of the approach is that it does not require knowledge
of the exact dynamics or statistics of the channel; only the
instantaneous channel state information (CSI) is needed.

2Although, our weighted averaging step in (7) may be viewed as a per-
device, per-round learning rate that becomes a global learning rate in the
uniform sampling scenario.
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A. Communication Model
In our model, we consider a simple wireless star network

where all devices have direct uplink and downlink channels
to the global aggregator (see Figure 1). Each device has
its own channel ht

n to the aggregator, but must take turns
in transmitting their parameters with transmit power P t

n via
time-division multiple access (TDMA). For simplicity, we only
consider the uplink communication time as the downlink is a
broadcast of common information by a highly capable base
station which takes much less time. By assuming that we can
transmit at capacity, the communication time for device n in
a given round t is

ϖ comm
n (t) =

ϱ Iltn
B log2

(
1+|ht

n|
2 P t

n
N0

) , (8)

where ϱ is the size of the model in bits, B is the bandwidth,
and log2(·) denotes the base 2 logarithm. We assume that
the aggregator has current CSI in the form of channel gain
|ht

n|
2 and noise power N0 at each round t in order to calculate

this, but not the underlying distributions.
Next, as is typical in FL [2], [4], [8], we assume that the

aggregator is using sampling with replacement with m draws.
With this policy, a minimum of one client and a maximum
of m clients are selected in each round. More specifically, the
aggregator draws from a multinomial distribution where each
device has probability ςt

n of being chosen in each of the m
draws such that

∑N
n=1 ςt

n = 1 for every round t. Our goal is to
determine ςt

n such that communication time is minimized and
convergence is guaranteed. However, since our convergence
bound is in terms of arbitrary marginal probabilities qt

n,
we must relate ςt

n to qt
n in order to measure the policy’s impact

on convergence. For m draws, the relationship is

qt
n = 1↔ (1↔ ςt

n)m, (9)

where we now require
N∑

n=1

ςt
n =

N∑

n=1

1↔ (1↔ qt
n)1/m = 1 (10)

to be satisfied in order to obtain a valid multinomial dis-
tribution. In practice, sampling without replacement can be
used, but expressing qt

n in terms of arbitrary ςt
n and m is not

tractable and thus difficult to optimize directly.

B. Problem Formulation
Similar to some prior works, such as [1], [12], [36], [37],

and [38], we minimize the convergence bound (6) as a proxy
for the actual convergence loss since the direct effect that
parameters have on loss is generally unknown. Simultaneously,
we also wish to minimize the time spent communicating the
parameters, as in (8), to decrease wall-clock training time.
The former is minimized when all devices participate in every
round while the latter is minimized when fewer devices par-
ticipate. Thus, to balance the competing goals, we formulate
our objective function as the weighted sum between the two:

y0(t, qt
n, P t

n) :=
N∑

n=1

(
1

Nqt
n

+ φ·ϖ comm
n (t)

)
, (11)

where φ > 0 is a user-defined, tunable parameter that controls
the trade-off. The parameter also subsumes the coefficients in
the last term in (6) such that L and ε, for example, can be
ignored in the following optimization problem.

Finally, we wish to limit the power expenditure of commu-
nication over time to a given time-average threshold, P̄n, and
instantaneous power Pmax. Thus, we formulate our optimiza-
tion problem as

min
{qt

n},{P t
n}

lim
T↓↔

1
T

T→1∑

t=0

E [y0(t)]

s.t. lim
T↓↔

1
T

T→1∑

t=0

P t
nqt

n ⇒ P̄n, ↘n = 1, . . . , N

0 ⇒ P t
n ⇒ Pmax, n = 1, . . . , N

N∑

n=1

1↔ (1↔ qt
n)1/m = 1

qt
n ↑ (0, 1], (12)

where

E [y0(t)] = E
[
y0(t, qt

n, P t
n)

]

=
N∑

n=1



 1
Nqt

n

+ φ·
ϱ qt

n

B log2

(
1+|ht

n|
2 P t

n
N0

)



 . (13)

The first two constraints limit the time average and peak
power, respectively, where P t

nqt
n = E

[
P t

nIltn
]

is the expected
power usage in round t by device n. The third constraint
ensures that a proper multinomial distribution is found for
sampling with replacement. In its current state, (12) is difficult
to solve as it is not possible to know the behavior of the
channel ht

n for all t ahead of time.

C. Lyapunov Formulation

The novelty of our convergence bound and formulation
comes from the fact that both the effect of qt

n on convergence
and the communication time are in the form of a time
average. This allows us to leverage the Lyapunov stochastic
optimization framework [39] to reformulate (12) into a form
that we can solve greedily at each round with optimality
guarantees. By converting our transmission power constraints
into a set of virtual queues, we can apply the Lyapunov
theory to analyze our problem and derive an online solution.
The practical implications of stabilizing virtual queues will be
explored at the end of this section and its effect will be further
illustrated in the experiments of Section VI.

To put our optimization problem into the Lyapunov drift-
plus-penalty framework and using standard notation, we turn
the first time-average constraint in (12) into a virtual queue
Zt

n for each client n such that

Zt+1
n = max[Zt

n + yn(t), 0] , (14)

where

yn(t) = P t
nqt

n ↔ P̄n . (15)
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Since we have no actual queues, the Lyapunov function is

L(!t) :=
1
2

N∑

n=1

(Zt
n)2 , (16)

where !t represents the current queue states, which in this
case, is just {Zt

n : ↘n}. Next, we define the Lyapunov drift:

”t+1 = L
t+1

↔ L
t, (17)

where we drop !t for simplicity. Finally, we have the Lya-
punov drift-plus-penalty function that we aim to minimize:

”t + V E
[
y0(t)|!t

]
, (18)

where V > 0 is another arbitrarily chosen weight that
controls the fundamental trade-off between queue stability and
optimality of the objective functions (the effect of which is also
explored in Section VI).

Now, by utilizing Lemma 4.6 from [39] and assuming that
the random event, i.e., channel gain |ht

n|
2, is i.i.d.3 with respect

to t, we can upper bound (18):

”t + V E
[
y0(t)|!t

]
⇒ C + V E

[
y0(t)|!t

]

+
N∑

n=1

Zt
nE

[
yn(t)|!t

]
(19)

where C > 0 is a constant. Next, according to the Min
Drift-Plus-Penalty Algorithm, we opportunistically minimize
the expectation in the right hand side of (19) at each time step
t:

min
{ϑt

n},{P t
n}

f(qt
n, P t

n) := V y0(t) +
N∑

n=1

Zt
nyn(t)

s.t. 0 ⇒ P t
n ⇒ Pmax, ↘n = 1, . . . , N

N∑

n=1

ςt
n = 1

qt
n = 1↔ (1↔ ςt

n)m

ςt
n ↑ (0, 1] . (20)

We now have the problem in a form that is decoupled in time
allowing for a greedy optimization approach.

D. Solving the Problem (20)
First, we utilize the fact that (20) is convex with respect to

P t
n and that the optimal value for P t

n is independent of qt
n to

produce the following analytical expression in Theorem 2.

Theorem 2. The P t
n that optimizes (20) is independent of qt

n

and is given by either the endpoint, i.e., P t,opt
n = Pmax, or by

P t,opt
n =

N0

|ht
n|

2



A

4
W0


A

4

→2

↔ 1



 (21)

where A = V ϖϱ|ht
n|2(log(2))2

N0BZt
n

and W0(·) is the principal branch
of the Lambert W function.

3We make this assumption out of simplicity. Additional analyses can show
that the algorithm converges even when this doesn’t hold, including for non-
ergodic processes [39].

Proof: The proof can be found in Appendix B. ↭
Optimizing over qt

n is trickier because of the additional
constraint. We first note that the problem (20) can be simplified
to the following form

min
{ϑt

n}

N∑

n=1

(
At

n

(
qt
n

)→1 + Bt
nqt

n + Ct
n

)

s.t.
N∑

n=1

ςt
n = 1

qt
n = 1↔ (1↔ ςt

n)m

ςt
n ↑ (0, 1] , (22)

where At
n = V

N , Bt
n = V ϖϱ

B log2

(
1+|ht

n|2 P
t,opt
n
N0

) + Zt
nP t,opt

n ,

Ct
n = ↔Zt

nP̄n, and P t,opt
n is the optimal P t

n determined
by (21). While the objective function is convex, we have
introduced a non-convex equality constraint which makes this
problem significantly more difficult to solve. Additionally, the
constraint creates a coupling of the individual device selection
probabilities and cannot be solved independently.

A natural approach to solving this optimization problem
is to use the Lagrangian multiplier method. Unfortunately,
however, the gradient of the Lagrangian of (22) does not
have a simple closed form solution, so we must resort to
numerical solvers. The feasible region of this problem is the
probability simplex which is a Riemannian manifold. To solve
this problem, we use Manopt [40] which is a toolbox for
optimization on manifolds.

E. Optimality Guarantees
Theorem 4.8 in [39], Theorem 2, and assuming we obtain

the optimal value for qt
n from the solver guarantee that this

algorithm satisfies

lim sup
T↓↔

1
T

T→1∑

t=0

E [y0(t)] ⇒ yopt
o +

C + D

V
, (23)

where yopt
o is the minimum of yo, D ⇔ 0 is a constant

whose existence is guaranteed in Theorem 4.8, and C ⇔ 0 is
a constant that bounds the expected difference between the
optimal value of (20) and the value given by an approximately
optimal decision. Since the subproblem in (22) is non-convex,
we may choose a local optimum, so C ↖= 0 but is finite. The
theorem also guarantees that the time-average transmit power
constraint is satisfied as t ⇑ ↙. The user-defined parameter
V that traditionally controls the trade-off between the average
queue backlog and the gap from optimality now controls the
speed of convergence in addition to the optimality gap in (23).

In (21), we can see that when there is a large virtual
queue Zt

n, the transmission power is decreased in order to
satisfy the constraint. In this way, the virtual queue represents
how far from the time average constraint we are. As V is
increased, the effect that the current virtual queue has on
selection becomes less important and it takes longer to satisfy
the average power constraint. This is also explored experi-
mentally in Section VI-F. A large φ favors the minimization of
communication time rather than the convergence bound which
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naturally leads to more unbalanced qt
n, whereas small φ will

results in more uniform qt
n.

VI. EXPERIMENTS

In our experiments, we trained a convolutional neural net-
work (CNN) on the CIFAR-10 benchmark [41] with data
spread across N = 100 clients. We examine the convergence
behavior over wall-clock time for numerous scenarios with
varying levels of data and channel heterogeneity, number of
clients draws m, and values for hyperparameter φ. We then
compare our device scheduling algorithm with the uniform
selection baseline to demonstrate the speedup in convergence
ours provides. Since the cost of an iteration/aggregation round
is variable, analyzing convergence in terms of wall-clock time
instead of iterations gives more insights into how the algo-
rithms will perform in practice. The standard assumption that
it is better to converge in fewer iterations does not necessarily
hold if the cost of each iteration is large. The wall-clock
time consists of both communication time and computation
time where communication time is calculated as in (13) and
computation time is chosen to be a constant. It is assumed
that computation is performed in parallel and each device
completes all K local iterations at the same deterministic time
as opposed to communication which occurs sequentially via
TDMA.

A. Setup
The CIFAR-10 dataset consists of 60,000 color images

of 10 classes where 10,000 images are reserved for testing.
We assign each device 500 samples from the dataset. In order
to simulate a non-i.i.d. data distribution among devices, we use
the approach presented in [42] where the distribution of the
10 classes among each client is determined by a categorical
distribution with a Dirichlet prior. This allows for the level
of heterogeneity to be quantified by a single parameter ↼.
More specifically, for each experiment and client, we draw the
probabilities for the categorical distribution via c ↗ Dir(↼e)
where e is a uniform probability vector. We can then vary
↼ to produce different levels of heterogeneity. For example,
at the extremes, we have ↼ ⇑ 0 which results in very non-
i.i.d. data where c becomes a one-hot vector such that each
client is assigned samples from only one class. Meanwhile,
on the other hand, when we have ↼ ⇑ ↙, we encounter the
i.i.d. case where each client gets an even distribution of all
classes. Then, after obtaining c for each client, we draw from
the resulting categorical distribution 500 times to determine
the class of each sample. When the class is determined, one
sample from that class is uniformly drawn from the dataset.
We note that this does allow for the possibility of certain
samples to be assigned more than once or not at all, but this
approach provides the most randomness and flexibility.

For training, we use the same CNN model as in [1] which
contains d = 555, 178 parameters. Assuming 32-bit floating
point numbers, we accordingly set ϱ = 32d. We also set the
minibatch size to 32, ω = 0.01, I = 10, and B = 22 → 106

to simulate WiFi bandwidth. The power constraints are set to
P̄n = 1 and Pmax = 35 dB and noise power is normalized

to N0 = 1. We set V = 100 in our selection algorithm and
justify this choice later in Section VI-F. For the channel model,
we assume each device experiences Rayleigh fading such that
|ht

n| is distributed as a Rayleigh random variable. In the first
set of experiments, we examine the heterogeneous channel
case such that each device experiences a different level of
fading. In particular, we assign the Rayleigh parameters in a
linear increasing fashion from ↽ = 0.1 to ↽ = 10 for the
100 devices. For the next set of experiments, we examine
the homogeneous channel case such that each device has
↽ = 1. Note that our algorithm only requires knowledge
of the instantaneous |ht

n| and not the underlying distribution,
requiring only that it is i.i.d. across time slots.

To fairly compare to the uniform selection baseline, we set
qt
n to be the appropriate values for the aggregation weights

in Algorithm 1 and we set P t
n to maximally satisfy the

transmit power constraint in (12). So, for uniform sampling
with replacement, we set qt

n = 1
1→(1→1/N)m and P t

n =
min{Pmax, P̄n · qt

n}. To avoid big outliers that likely would
not be chosen by either selection policy in practice, we lower
bound the possible values for |ht

n|
2
⇔ .001. This is very gener-

ous to the uniform case as it is agnostic to channel conditions
and would greatly suffer from choosing a device in deep fade.
Finally, since the total elapsed time varies across runs at each
communication round, we perform linear interpolation for each
run to generate points at uniform time intervals. This allows
for us to more easily average the performance of the 3 runs for
each scenario. We then perform a rolling average to smooth
the curves to better see the convergence trends.

B. Exploring the Impact of Computation Time
First, we give an illustrative example of how the optimal

number of sampling with replacement draws m in each round
is impacted by increasing computation time. In Fig. 2, we plot
the time to reach a target accuracy of 0.775 versus computation
time per round for a basic scenario with m = 1, 5, and
10 draws using our algorithm. In this scenario, there are
three clear regions in which a different number of draws
reaches the target accuracy quickest. It can be seen that as
computation time increases, the optimal number of device
draws also increases. In the first region, scheduling only one
device per round is optimal despite the fact that it takes more
iterations to converge than the other cases (depicted later in
Fig. 5). However, since the communication phase in each
iteration takes less time, due to the aggregator only needing to
wait for 1 device in a sequential communication process, the
lower quality gradient estimates are overcome by the quick
communication. On the other hand, when computation time
is comparatively larger than communication, drawing more
devices per round is optimal. This is because as computation
time increases, it begins to dominate the total time, so com-
municating additional devices’ updates in each round has a
smaller comparative impact on total time. Thus, it is more
advantageous to schedule more devices in each round in order
to leverage the parallelism of computation and obtain more
informative updates.

We expect that as computation time continues to increase,
the optimal number of draws will continue to increase up to a
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Fig. 2. The optimal number of devices chosen each round depends on
computation time.

certain point. It is hard to predict this point as it is related to
optimal minibatch sizes. This is a similarly unsolved problem
where the generalizability of smaller minibatches generally
outweighs the benefits of more accurate gradient estimates
obtained from larger batch sizes [43]. Additionally, at a certain
point Amdahl’s Law must be taken into consideration for very
large computation times. Even though our algorithm still tech-
nically provides an advantage over uniform, if communication
only accounts for a small percentage of the total time, then
optimizing communication alone cannot speed up performance
significantly.

C. Best Hyperparameters
Next, in Table I, we identify the best hyperparameters

for both our algorithm and the uniform baseline for 3 dif-
ferent levels of data heterogeneity over computation time
ranges. We see similar trends for all three levels of data
heterogeneity and both selection policies where, again, higher
computation time results in a greater number of draws. It is
also interesting to note the optimal φ values. For large φ,
minimizing communication time is favored over minimizing
the convergence bound. Here, we see that as computation
time increase comparative to communication time, lower φ
values become optimal. This is because as the percentage of
total time due to computation time increases, communication
time becomes less important. Thus, it is better to choose
devices in a more uniform manner in order to avoid client
drift toward devices with better channels. We will use these
optimal hyperparameter ranges in the following results, but we
note that we only tested a discrete subset of hyperparameters
so they are not necessarily truly optimal.

D. Heterogeneous Channels
In this section, we investigate the convergence behavior

of our algorithm over wall-clock time and compare it to the
uniform baseline. We begin with the heterogeneous channels
case where some devices have very good channels on average
while others do not. In Fig. 3, we show how top-1 accuracy
and training loss are affected by different sampling with
replacement draws m. In Figs. 3a and 3c, we show the results
for instantaneous computation such that the total time only
consists of communication time while in Figs. 3b and 3d, the
computation time is set to 2 seconds. The plots clearly show
that our algorithm outperforms uniform, especially when the

TABLE I
BEST HYPERPARAMETERS FROM EXPERIMENTS FOR DIFFERENT COMPU-

TATION TIME RANGES AND LEVELS OF DATA HETEROGENEITY

Fig. 3. Comparison of total communication time for uniform selection vs
proposed algorithm on CIFAR-10 dataset.

number of draws is large. In fact, for the m = 10 regime,
we see a very large speedup of 8.5→ to reach a target accuracy
of 0.775 where our policy takes 5, 339 seconds on average
and uniform takes 45, 748 seconds. The speedup is lesser for
the m = 1 case which is about 1.3→ for the same target.
In these first two plots, where only communication time is
taken in consideration, scheduling just one device per round
is quickest. As explained in the previous section, this is a
scenario where it is better to quickly aggregate updates from
fewer devices since the shorter communication time per round
outweighs the higher variance of each update.
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Fig. 4. Convergence for heterogeneous data.

In the second set of plots, we show the same scenario
but with parallel computation time of two seconds per round.
This causes the optimal number of draws to change to m =
5 with a speedup of 1.31→ over uniform. The speedup in
the m = 10 case remains large, however. Since optimizing
communication time only affects the fraction of the total time
due to communication, the speedup is less significant when
computation times are large.

Next, in Fig. 4, we examine the effect of heterogeneity
in the data through parameter ↼. As ↼ increases, the data
distribution across devices becomes more homogeneous such
that each device has access to samples of more classes. For
this experiment, we set the computation time to one second,
m = 10, and φ = 100. We chose a one second computation
time since the optimal hyperparameters for all three ↼ levels
is the same as seen in Table I. The results again show that
our algorithm outperforms the uniform baseline, but that the
advantage is lesser for higher degrees of heterogeneity in
the data. This intuitively makes sense since a more uniform
sampling approach will help avoid client shift in the model as
each node will contribute equally on average. Still, though, our
algorithm provides an advantage by avoiding nodes with poor
instantaneous channels. The general trend of slower conver-
gence for higher non-i.i.d.-ness also holds. The convergence
speed for ↼ = 0 is especially bad since each device only has
access to samples from one class.

Finally, in Fig. 5, we plot the same results as in Fig. 3
but in terms of communication rounds rather than wall-clock
time. This is shown to demonstrate how cases like m =
1 take more iterations to converge and are slowest in the
traditional accuracy per iteration/epoch convergence metric.
However, since these iterations can occur so quickly with
less time spent communicating in each round, these cases
are much better in practice. As computation time increases
and begins to dominate the total time, though, the trends over
total time will begin to match the ones shown here. Although,
we reiterate again that simply setting m = N = 100 does not
guarantee the best performance when computation is high as
the generalization of minibatch sizes comes into play [43].

E. Homogeneous Channels
In this section, we briefly explore the convergence behavior

for homogeneous channels where each device has the same
Rayleigh fading parameter of ↽ = 1. We produce a table

Fig. 5. Convergence over communication rounds/iterations.

TABLE II
BEST HYPERPARAMETERS FROM EXPERIMENTS FOR DIFFERENT COMPU-

TATION TIME RANGES AND LEVELS OF DATA HETEROGENEITY

of optimal hyperparameters in Table II and plot convergence
results in Figure 6. We plot in terms of top-1 testing accu-
racy and training loss and for two different levels of data
heterogeneity. The table contains the same trends as in Table I.
In Fig. 6, it can be seen that our algorithm still outperforms
the uniform baseline, especially for i.i.d. data, but the speedup
is not as significant. For example, the time to target accuracy
of 0.775 for ↼ = ↙ and m = 1, achieves a 1.24x speedup.
For fair comparison, we picked m such that both selection
policies are optimal for the same value according to Table II.
For different levels of m, the speedup is more significant since
the probability of choosing a slow device increases with more
draws when using the uniform sampling policy. For example,
when m = 10, there is a speed up of 6.7→ (not pictured
here) over uniform as compared to 8.5→ in the heterogeneous
channels case.

Since all devices are equally likely to have good channels
in the homogeneous channel case, device selection in our
algorithm is more uniform. Therefore, we expect the impact
of data heterogeneity to be lessened as compared to the het-
erogeneous channel case. However, this does not appear to be
the case. The reasoning for this is that even though the devices
with higher ↽ are chosen more often in the heterogeneous case
(see Section VI-F), all 10 classes are still present among those
top choices. So, even with skewed sampling, the algorithm
is learning from all classes. If the distribution of classes is
dependent on channel quality, however, then the decrease in
convergence would be expected to be more pronounced.
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Fig. 6. Convergence for homogeneous channels.

Fig. 7. The convergence of the constraint for different values of V . The
larger the V , the more rounds it takes until the constraint is satisfied. Here,
the constraint is P̄n = 1 for all n.

F. Additional Convergence and Statistical Insights

In this section, we further explore the behavior of our
client sampling algorithm. First, we show how the choice
of parameter V affects convergence of satisfying the time
average power constraint. From (23), we know that V controls
the gap in optimality where larger values result in a smaller
gap. Normally, V also conversely controls the queue backlog
lengths, but since we only deal with virtual queues, the
behavior is slightly different. In Figure 7, we plot the expected
time average transmit power 1

T

∑T→1
t=0 P t

nqt
n over the course of

multiple communication rounds. We see here that increased V
causes the constraint of P̄ = 1 to be satisfied at a slower rate.
For example, V = 105 does not reach P̄ = 1 within a realistic
number of rounds. This is important because even though
it is guaranteed to converge asymptotically, the FL training
will have to terminate in finite time in practice. Similarly
for V = 1, the constraint may be violated at a given finite
termination time T due to its oscillatory behavior despite
offering the worst optimality gap. Our algorithm sacrifices
initial constraint violation in finite time in order to make
early gains in performance. The improvements over uniform
are not solely attributed to this, however. For the previous
experiments, we chose V = 100 since it satisfies the constraint
without extreme advantage over uniform.

Last, we examine the device selection statistics of our
algorithm versus uniform in Fig. 8. Since we mainly plotted
the φ = 100 case in the previous sections, we show here how
other values affect the device selection process. In Fig. 8a,
we show a histogram of the selection frequency of all N =
100 devices in the heterogeneous case for various φ values.
The x axis displays each device’s Rayleigh fading parameter in
increasing order. When φ is larger, minimizing communication
time is prioritized over the convergence bound. Thus, for
φ = 100, there is a large skew in selecting the devices

Fig. 8. Device selection statistics.

with better channels on average. As φ decreases, the selection
becomes more uniform where φ = 1 and uniform have
similar distributions. Next, in Figure 8b, we investigate how
φ affects the number of devices chosen per round when using
a sampling with replacement policy. Since a device can be
drawn more than once, the actual number of devices scheduled
in a given round may not equal m, even in the uniform case.
Here, you can see that lower φ results in probabilities closer to
uniform, whereas when φ = 100, it is much more common to
schedule only 3 to 5 devices despite drawing m = 10 times.
Through the selection probabilities, our algorithm is able to
adaptively change how many devices are chosen depending on
current channel conditions.

VII. CONCLUSION

In this paper, we explored the impact of device scheduling
over wireless links in federated learning and proposed a novel
scheduling algorithm that leverages stochastic optimization
theory. Our experiments saw up to 8.5x speedup over the
uniform baselines in some cases. The first contribution of our
work was developing a convergence bound for non-convex FL
loss functions with arbitrary device participation probabilities
without a bounded gradient assumption. We showed that
it recovers the state-of-the-art convergence rate with linear
speedup. We then used the bound to formulate a time average
optimization problem with a time average power constraint
that can be solved using the Lyapunov drift-plus-penalty
framework. The resulting online algorithm can be solved at
each communication round without requiring knowledge of
channel statistics. Our experiments show impressive perfor-
mance over the uniform baseline in terms of wall-clock time.
We explored many scenarios such varying levels of data and
channel heterogeneity as well as varying computation time
and hyperparameters. Depending on the scenario, we showed
that it is sometimes better to perform quicker, less informative
updates than slower, more informative updates as seen in
the fantastic performance of the m = 1 regime for low
computation time. There are very interesting trade-offs to
consider when the cost of each training iteration is variable
which is the subject of future research.

APPENDIX

We use the following inequalities throughout the conver-
gence proof.
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Preliminary (in)equalities. We will use Jensen’s inequality:


1
M

M∑

m=1

ym



2

⇒
1
M

M∑

m=1

≃ym≃
2 (24)



M∑

m=1

ym



2

⇒ M
M∑

m=1

≃ym≃
2 , (25)

and the Peter-Paul inequality:

∝y1,y2′ ⇒
⇀ ≃y1≃

2

2
+
≃y2≃

2

2⇀
(26)

for ⇀ > 0. We also use

∝x,y′ =
1
2

(
≃x≃2 + ≃y≃2 ↔ ≃x↔ y≃2

)
(27)

A. Proof of Theorem 1
First, we note that via Algorithm 1, we have

xt+1 ↔ xt =
1
N

N∑

n=1

Iltn
qt
n

(yn
t,K ↔ yn

t,0)

= ↔
ω

N

N∑

n=1

Iltn
qt
n

K→1∑

i=0

gn(yn
t,i).

Let Et[·] := E[·|xt, {qt
n}], which denotes the expectation

over the randomness of SGD and client sampling. From L-
smoothness, we have

Et [f(xt+1)]
⇒ f(xt) + ∝⇐f(xt), Et [xt+1 ↔ xt]′

+
L

2
Et

[
≃xt+1 ↔ xt≃

2
]

= f(xt)↔


⇐f(xt), Et


1
N

N∑

n=1

Iltn
qt
n

K→1∑

i=0

ωgn(yn
t,i)



+
Lω2

2N2
Et






N∑

n=1

Iltn
qt
n

K→1∑

i=0

gn(yn
t,i)



2




(a)
= f(xt)↔


⇐f(xt), Et


ω

N

N∑

n=1

K→1∑

i=0

⇐fn(yn
t,i)



+
Lω2

2N2
Et






N∑

n=1

Iltn
qt
n

K→1∑

i=0

gn(yn
t,i)



2


 , (28)

where (a) uses the independence between Iltn and gn, the
fact that E

[
Iltn

xt

]
= E

[
Iltn

]
= qt

n, and the total expec-
tation E

[
gn(yn

t,i)
xt

]
= E

[
E

[
gn(yn

t,i)
yn

t,i,xt

]xt

]
=

E
[
⇐fn(yn

t,i)
xt

]
.

We now bound the terms in (28) separately. We begin with
the second term and note that

↔


⇐f(xt), Et


ω

N

N∑

n=1

K→1∑

i=0

⇐fn(yn
t,i)



= ↔


⇐f(xt), ωEt


1
N

∑N
n=1

∑K→1
i=0 ⇐fn(yn

t,i)
↔K⇐f(xt) + K⇐f(xt)



=


⇐f(xt),↔ωEt


1
N

N∑

n=1

K→1∑

i=0

⇐fn(yn
t,i)↔K⇐f(xt)



↔ ωK ≃⇐f(xt)≃
2

=



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⇓

ω

N
⇓

K
Et


N∑

n=1

K→1∑

i=0

(
⇐fn(yn

t,i)
↔⇐fn(xt)

)

↔ ωK ≃⇐f(xt)≃
2

(a)
=

ω

2N2K
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



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(
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)


2




↔
ω

2N2K
Et






N∑
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

2




↔
ωK

2
≃⇐f(xt)≃

2

(b)
⇒

ωKL2

2

(
5Kω2

(
ε2 + 6Kϑ2

)
+ 30K2ω2

≃⇐f(xt)≃
2
)

↔
ω

2N2K
Et






N∑

n=1

K→1∑

i=0

⇐fn(yn
t,i)



2




↔
ωK

2
≃⇐f(xt)≃

2

=
5ω3K2L2

2
(
ε2 + 6Kϑ2

)

+
(

15ω3K3L2
↔

ωK

2

)
≃⇐f(xt)≃

2

↔
ω

2N2K
Et






N∑
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K→1∑
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⇐fn(yn
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

2


 ,

where (a) is due to (27) and (b) is from

Et






N∑

n=1

K→1∑

i=0

(
⇐fn(yn

t,i)↔⇐fn(xt)
)


2




⇒ NK
N∑

n=1

K→1∑

i=0

Et

[(
⇐fn(yn

t,i)↔⇐fn(xt)
)2

]

⇒ NKL2
N∑

n=1

K→1∑

i=0
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[xt ↔ yn
t,i

2
]

⇒ N2K2L2
(
5Kω2

(
ε2 + 6Kϑ2

)

+ 30K2ω2
≃⇐f(xt)≃

2
)

(29)

which utilizes Lemma A.1 for the final inequality.
Next, we bound the third term in (28) as

Et






N∑

n=1

Iltn
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n

K→1∑
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gn(yn
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


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


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qt
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(
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2




⇒ 2Et




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N∑
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⇐fn(yn
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2

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+ 2Et




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n=1

K→1∑

i=0

Iltn
qt
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(
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2



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(a)
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
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2


 + 2NKQtε
2,

where (a) is due to the fact that {gn(yn
t,i) ↔ ⇐fn(yn

t,i)} is
independent over n and is a martingale difference sequence
over i such that Et

[
≃
∑

x≃2
]

=
∑

Et

[
≃x≃2

]
, [4, Lemma

4]. The final inequality is from Assumption 3 and we define
Qt = 1

N

∑N
n=1

1
qt

n
.

Before returning to (28), we note a few more inequalities.
Let zn =

∑K→1
i=0 ⇐fn(yn

t,i) and suppose that there exists a
qmin ⇒ qt

n for all n, t. Then, we have
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
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where we use the fact that sampling and gradient estimation
are independent, and we use Cauchy-Schwarz inequality such
that
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]

=

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t
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Returning to (28) and applying the previous bounds,
we have
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)
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where the last inequality uses (30) such that
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2

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if ω < qmin
2LK .

Continuing from (31), we have

Et [f(xt+1)]

⇒ f(xt) +
5ω3K2L2

2
(
ε2 + 6Kϑ2

)
+

Lω2KQt

N
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+
(
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↔
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2
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2
(
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)
+

Lω2KQt

N
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↔ c
ωK
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2 , (33)

where the final inequality holds since there exists a constant
c > 0 such that

(
1↔ 30ω2K2L2

)
> c > 0 if we assume that

ω < 1
6LK .

Finally, taking total expectation and then rearranging and
summing t from 0 to T ↔ 1, we have

1
T

T→1∑

t=0

E
[
≃⇐f(xt)≃

2
]
⇒

2 (E [f(x0)]↔ E [f(xT )])
cωKT

+ !1 +
!2
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T→1∑

t=0

Qt , (34)

where !1 = 1
c5ω2KL2

(
ε2 + 6Kϑ2

)
and !2 = 2Lωε2

c .

Lemma A.1 ([35, Lemma 3]). If ω ⇒ 1
8LK , then

Et

[yn
t,i ↔ xt

2
]

⇒ 5Kω2
(
ε2 + 6Kϑ2

)
+ 30K2ω2

≃⇐f(xt)≃
2 . (35)

Proof: This lemma is a slight variation of Lemma
3 in [35] where instead of taking the arithmetic average over
all N clients, we instead bound uniformly across all n. This
change is straightforward, so we omit details for space. ↭
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B. Proof of Theorem 2

Since the objective function is an independent sum over n
and has independent boundary constraints for P t

n, we can find
the minimizing values P t

n by finding the roots of the gradient
of the objective function and ensuring that they are within the
upper and lower bounds. If no roots are within that set, one
of the end points will minimize the function, so we only need
to check those points.

To find the roots, we compute the gradient of the objective
function for each n in (20)

⇐f(qt
n, P t

n)

=





↔
V

N(qt
n)2 + V ϖϱ

B log2

(
1+|ht

n|2 P t
n

N0

) + Zt
nP t

n

→V ϖϱ|ht
n|2

N0B
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n|2 P t
n

N0

)(
log2

(
1+|ht

n|2 P t
n

N0

))2 qt
n + Zt

nqt
n



 .

(36)

We first look at the partial derivative with respect to P t
n and

note that setting it equal to zero and dividing by qt
n gives

0 =
↔V φϱ|ht

n|
2/(N0B)

(
1 + |ht

n|
2 P t

n
N0

) (
log2

(
1 + |ht

n|
2 P t

n
N0

))2 + Zt
n

which does not depend on qt
n. Next, let A = V ϖϱ|ht

n|2(log(2))2

N0BZt
n

and x = 1 + |ht
n|

2 P t
n

N0
, then we have something in the form of

A = x (log(x))2 = x (log (1/x))2 .

By dividing both sides by 1/4, letting x↗ =


A
4

1↑
x

, and
rearranging, we have


A/4 = x↗ex→

that has a known solution of x↗ = Wk

(
A
4

)
where Wk(·)

is the Lambert W function which solves w exp w = z for w.
To get the critical point for P t

n, we unwrap and substitute
P t

n = N0
|ht

n|2 (x↔ 1), to get

P t,opt
n =

N0

|ht
n|

2



A

4
Wk


A

4

→2

↔ 1



 (37)

which has a single root at k = 0 since


A
4 ⇔ 0.

ACKNOWLEDGMENT

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] J. Perazzone, S. Wang, M. Ji, and K. S. Chan, “Communication-efficient
device scheduling for federated learning using stochastic optimization,”
in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), May 2022,
pp. 1449–1458.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, 2017,
pp. 1273–1282.

[3] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. Int. Conf. Learn. Represent.,
Jan. 2020, pp. 1–26.

[4] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for feder-
ated learning,” in Proc. 37th Int. Conf. Mach. Learn., vol. 119, Jul. 2020,
pp. 5132–5143.

[5] A. Mitra, R. H. Jaafar, G. J. Pappas, and H. Hassani, “Linear
convergence in federated learning: Tackling client heterogeneity and
sparse gradients,” in Proc. Adv. Neural Inf. Process. Syst., Jan. 2021,
pp. 14606–14619.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. 3rd
Mach. Learn. Syst. Conf., vol. 2, 2020, pp. 429–450.

[7] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proc. Conf. Artif. Intell. (AAAI), 2019,
vol. 33, no. 1, pp. 5693–5700.

[8] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial
worker participation in non-IID federated learning,” in Proc. ICLR,
Jan. 2021, pp. 1–23.

[9] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated learn-
ing,” Future Gener. Comput. Syst., vol. 115, pp. 619–640, Feb. 2021.

[10] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[11] S. Truex et al., “A hybrid approach to privacy-preserving federated
learning,” in Proc. 12th ACM Workshop Artif. Intell. Secur., Nov. 2019,
pp. 1–11.

[12] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.
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