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ABSTRACT

Federated learning (FL) enhanced by differential privacy has emerged
as a popular approach to better safeguard the privacy of client-side

data by protecting clients’ contributions during the training process.
Existing solutions typically assume a uniform privacy budget for all

records and provide one-size-fits-all solutions that may not be ade-
quate to meet each record’s privacy requirement. In this paper, we

explore the uncharted territory of cross-silo FL with record-level

personalized differential privacy. We devise a novel framework

named rPDP-FL, employing a two-stage hybrid sampling scheme

with both uniform client-level sampling and non-uniform record-
level sampling to accommodate varying privacy requirements.

A critical and non-trivial problem is how to determine the ideal
per-record sampling probability q given the personalized privacy
budget e. We introduce a versatile solution named Simulation-
CurveFitting, allowing us to uncover a significant insight into the
nonlinear correlation between g and ¢ and derive an elegant mathe-
matical model to tackle the problem. Our evaluation demonstrates
that our solution can provide significant performance gains over the
baselines that do not consider personalized privacy preservation.
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1 INTRODUCTION

Federated Learning (FL) [23, 41] is a recent machine learning (ML)
framework that was motivated by data privacy. In comparison to
centralized ML, it eliminates the need for centralized data sharing
and has the potential to harness decentralized data for powerful pre-
dictive models while alleviating individual privacy concerns. The
distinctive feature is its decentralized architecture, where multiple
institutions (e.g., hospitals or banks) or devices (e.g., smartphones,
IoT devices [6, 15, 38]) collaborate in training a joint model un-
der the coordination of a central server while keeping the data
local. This paper primarily focuses on the former case, also known
as cross-silo FL [36], where each client (institution) holds a local
dataset comprising personal data records. For simplicity, we assume
each record is associated with a single user (e.g. patient or customer)
who does not contribute the same record or multiple records to
multiple clients simultaneously.

Although data are not directly shared in FL, potential adversaries
(e.g., the honest-but-curious server or untrusted clients) might en-
gage in indirect privacy violations via reconstruction or inference
attacks [21, 37, 46, 51, 53, 57-59]. Differential privacy (DP), known
as the de facto standard for private data analysis, has been intro-
duced to FL algorithm design [13, 14, 32, 34, 35, 39, 40, 56]. This
integration ensures rigorous privacy protection for participants
(clients or records) by introducing controlled perturbation into
the computation of the intermediate model parameters transferred
between clients and the server [42]. While standard DP provides
the means to quantify the extent of privacy protection through a
positive real-valued parameter ¢ (aka privacy budget), it imposes
identical privacy safeguards on every participant involved. This
uniformity cannot reflect the reality of diverse privacy expectations
among people and can lead to significant utility costs [3, 11, 22]. It
is desirable to allow each participant to set their expected privacy
budgets reflecting their personal privacy preferences.

With this objective in mind, personalized differential privacy
(PDP) [11, 22] was introduced and has been investigated in various
scenarios including statistical analysis [5, 11, 22], centralized ma-
chine learning (ML) [3, 12], and federated learning [33]. For FL, Liu
et al. [33] proposed the concept of heterogeneous DP in FL, where
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Figure 1: An illustration of the cross-silo federated learning with
record-level personalized differential privacy. In this framework,
each user is given the autonomy to independently opt for a person-
alized privacy preference (specified by a personalized differential
privacy (PDP) budget ¢) for their respective records. The goal is to
train a private global model that satisfies record-level PDP.

records within a single client (institution) share the same privacy
budget, but different clients may have varying privacy budgets.
We refer to this specific setting as client-level PDP-FL for clarity.
In contrast, this paper introduces a broader setting where even
records within the same client may have distinctive privacy prefer-
ences, referred to as record-level PDP-FL (rPDP-FL in short). Figure
1 provides an illustrative example of the latter case in a healthcare
context. To the best of our knowledge, record-level PDP-FL has not
yet been investigated.

From a technical standpoint, the essence of implementing record-
level PDP lies in ensuring each record’s accumulative privacy cost
aligns with its predetermined privacy budget during the entire
training process. This emphasizes the need for an effective privacy
budget allocation strategy. When it comes to achieving PDP in a
centralized ML setting (centralized PDP), some studies [12, 47] use
even privacy budgets across all records during every iteration of
training, and records with smaller privacy budgets will be filtered
out of the training process once their privacy budgets run out. This
approach may trigger catastrophic forgetting [18, 26], a situation
where the learned model could potentially “forget” the knowledge
from records that terminate early, eventually leading to degraded
model performance. A more promising strategy involves achiev-
ing simultaneous depletion of privacy budgets for all records by
developing DP mechanisms coupled with non-uniform sampling
[3, 22]. The fundamental theory underlying it is the “privacy am-
plification by random sampling” theorem [1, 2, 29, 52, 60] which
implies individuals with lower inclusion (sampling) probabilities
q will incur less privacy cost (leading to smaller privacy budget).
Boenisch et al. [3] introduced a binary search-based approach to
determine an approximate optimal g € [0, 1] for each record with
a specific privacy budget ¢. The computation of the accumulative
privacy cost for each record is based on Mironov et al. [44] in which
Rényi Differential Privacy (RDP) [43, 44] is employed for tight pri-
vacy accounting. However, their approach is impractical when all
records’ privacy budgets are distributed continuously and can cover
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a spectrum of values, due to the scalability and computational costs
associated with the per-record search process.

Overall, there exist significant research gaps in achieving record-
level PDP-FL. First, the existing theoretical findings on RDP-based
privacy accounting [44, 60] are no longer adequate for the needs
of analyzing each record’s accumulative privacy cost in FL applica-
tions. Intuitively, the two-stage sampling process, i.e., client-level
and record-level sampling, will further increase uncertainty for
potential adversaries to infer whether a “target” record is a member
of a client and hence further amplify the privacy protection. Sec-
ond, the existing binary search-based approach [3] for finding the
optimal sampling probability g in centralized PDP is not efficient. A
desirable way is to directly compute a sampling probability given a
privacy budget for each record. However, it’s non-trivial to derive
an explicit closed-form solution due to the highly nonlinear and
less interpretable RDP-based privacy accounting.

Contributions. Our key contributions are outlined as follows.

(1) We formalize a real-world problem in federated learning con-
cerning record-level personalized differential privacy. To solve
this problem, we propose a novel framework called rPDP-FL. The
essence of this framework is a two-stage hybrid sampling scheme
which comprises a uniform client-level sampling process and
a non-uniform record-level sampling process. Specifically, the
per-client sampling probability is assumed as a hyperparameter
and publicly known by both the server and all clients, while the
per-record sampling probability is proportional to each record’s
privacy budget and determined by the client to which it belongs.

(2) We formally analyze the enhanced privacy amplification effect
of the two-stage hybrid sampling scheme. This RDP-based theo-
retical investigation fills a gap in existing research and facilitates
a more favorable trade-off between privacy and utility.

(3) We devise an efficient and general strategy named Simulation-
CurveFitting (SCF) to identify the sampling probabilities for all
records given their personalized privacy budgets. Our simula-
tions with varying sampling probabilities enable the identifica-
tion of an elegant mathematical function discerning the rela-
tionship between per-record sampling probabilities and their
accumulative privacy costs. An important insight arises: the
tight upper bound on the accumulative privacy cost of rPDP-
FL can be modeled by a simple exponential function w.r.t. its
record-level sampling probability.

(4) We simulate three potential personalized privacy scenarios and
conduct a comprehensive evaluation on two real-world datasets.
We first show that our SCF strategy outperforms the existing
PDP methods for centralized ML [3, 12] in model utility and
computational efficiency. Additionally, we demonstrate that
rPDP-FL significantly enhances the utility of the global model
compared to baseline methods that do not incorporate person-
alized privacy preservation.

2 RELATED WORK

Personalized Differential Privacy. The concept of personalized
DP (PDP) was initially introduced by Ebadi et al. [11] and Jorgensen
et al. [22], focusing on basic private statistical analysis tasks with
the standard e-DP framework. Notably, the Sample mechanism pro-
posed in [22] demonstrated the feasibility of implementing PDP by
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combining DP mechanisms (e.g., Laplace or Gaussian mechanism)
with non-uniform record-level sampling.

Recent work studied PDP in centralized ML [3] built on top of the
non-uniform sampling strategy and proposed a binary search-based
approach to find a suitable sampling probability g as a decimal value
within the range of [0, 1] for each record given a target privacy
budget ¢. It is, however, computationally demanding for the more
realistic settings where records’ privacy budgets are distributed
continuously (e.g., follow a Gaussian or Pareto distribution) and can
cover a range of values. Another line of work [12, 47] considered
all records’ privacy budgets to be uniform during each iteration of
the training process. Two individual privacy accounting techniques
named privacy odometer and privacy filter are designed to moni-
tor and restrict accumulative privacy costs for individual records
throughout the training process so that a record will be excluded
from the subsequent training iterations once its privacy budget
is exhausted. This poses a potential risk of catastrophic forgetting
[18, 26] and may lead to downgraded model performance.
Federated Learning with DP and Personalized DP. We discuss
existing work on FL with DP in two aspects: (1) the granularity of
the DP guarantee, i.e., what information is protected (each client or
each record), and (2) the level of personalization for DP, i.e., who
has the right to specify the privacy budget (the central server, each
client, or each record).

o Client- vs. record-level privacy protection. There is rich literature
exploring the DP-FL framework concerning potential adversaries.
Specifically, these adversaries may be either solely recipients of
the global model parameters (i.e., the other untrusted clients
or third parties) or recipients of local model updates (i.e. the
honest-but-curious central server). Within this framework, two
categories of DP guarantees are recognized: client- and record-
level DP. The former is achieved by adding random Gaussian
noise to the aggregated local model updates to hide a single
client’s contribution [16], while the latter requires clients to per-
turb their computed gradients locally to obscure a single record’s
contribution [36, 42, 54]. Our primary focus lies on achieving
record-level protection against both attack scenarios.

e Client- vs. record-level privacy personalization. As mentioned ear-
lier, the majority of approaches offer uniform privacy guarantees
for all records involved, based on the one-sided considerations
of the central server. Only a few studies recognize the necessity
of privacy personalization within FL applications. Liu et al. [33]
introduced the concept of heterogeneous DP and developed a
projection-based framework to accommodate diverse privacy
budgets among different clients. Although the work [36] also
proposed a similar notion known as silo-specific sample-level DP,
it primarily focused on addressing data heterogeneity challenges
and did not address varying privacy needs. Liu et al. [35], on the
other hand, centered on cross-device FL and achieved person-
alized local differential privacy (PLDP) for clients’ local model
gradients. However, it requires a large number of clients for
reasonable utility. Our research represents the first attempt to
explore record-level privacy personalization in cross-silo FL.

Tight Privacy Analysis for DP-FL. Conducting a tight analysis
of the accumulative privacy cost is crucial for designing DP algo-
rithms effectively. The predominant focus of research on this issue
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centers around centralized ML [1, 44, 52, 60], with limited attention
directed towards the FL scenarios [17, 45] where the employment
of both data and client sampling may lead to an enhanced privacy
amplification effect. Girgis et al. [17] investigated a related issue
but focused on offering local differential privacy (LDP) guarantees
for clients’ gradients. In their framework, only one step of the local
Stochastic Gradient Descent (SGD) update is executed per client
per round, whereas our algorithm allows for multiple local updates.
Noble et al. [45] adopted RDP to track the privacy cost over the local
SGD iterations, while using (&, §)-DP to evaluate privacy costs over
global communication rounds. This conventional privacy notion
is often considered suboptimal in practical applications. Our work
extends existing findings by leveraging RDP tools to estimate the
gain of privacy caused by client sampling, see Section 5.

3 PRELIMINARIES

Differential Privacy (DP) is a robust and mathematically rigorous
definition of privacy. It allows for the quantification of the informa-
tion leaked by an algorithm about its input data. Note that when two
datasets D and D’ differ by only one record!, denoted as D ~ D’,
we refer to them as adjacent datasets.

Definition 1 ((¢, §)-Differential Privacy [8, 9]). A randomized al-
gorithm A : D — O satisfies (¢, §)-DP if for any pair of adjacent
datasets D, D’ € D and any subsets of outputs o C O, it holds that

Pr[A(D) € o] < e“Pr[A(D’) € 0] +6.

The privacy guarantee is controlled by the “privacy budget” ¢ > 0
and the parameter § > 0 which captures the probability that the
pure &-DP (i.e., (¢, 0)-DP) is broken. While the standard (¢, §)-DP is
widely used in a broad range of literature, it may not be suitable for
some settings. The following are two notable limitations associated
with (g, §)-DP recognized in literature:

(1) (¢, 8)-DP provides uniform privacy guarantees for the entire
dataset regardless of the individuals’ preferences;

(2) (&, 6)-DP offers a relatively loose composition bound and thus it
is not suitable to track and analyze the overall privacy cost of
complex iterative algorithms which will lead to poor privacy
and utility trade-off.

In this study, our aim is to design a finely tailored algorithm with
personalized privacy that effectively tackles the aforementioned
challenges in the context of FL applications. We first review the
notions of personalized differential privacy (PDP) and Rényi dif-
ferential privacy (RDP), both of which form building blocks for
our privacy analysis and algorithm design. More specifically, PDP
tailors the level of privacy protection based on the specific privacy
preferences of each record. RDP offers a versatile framework for
tight privacy accounting and better privacy-utility trade-offs.

3.1 Personalized Differential Privacy

Personalized DP is a variation of DP that bounds the individual
privacy cost for each record in the dataset. For example, the privacy
guarantee for a specific record d; is defined over all pairs of adjacent
datasets that differ by d;, denoted as D <D_ j- For clarity, we refer
!In this work, we consider the presence/absence model of privacy, where protection

is w.r.t. the presence/absence of a record in the analyzed dataset, e.g., D’ = D \ {d},
instead of the replacement of a record with another.
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to this variant as record-specific adjacent datasets and we have the
relationship {(D,D—;)} c {(D,D’)}.

Definition 2 ((&, §)-Personalized Differential Privacy [22]). Given
a dataset D with each record d; € D corresponding to a specific
privacy budget ¢j > 0.Let & = {¢;} je[n]. A randomized algorithm
A : D — O satisfies (&, §)-personalized differential privacy (PDP)
if it guarantees (¢;, §)-DP w.r.t. the specific record d;. That is, for
any pair of record-specific adjacent datasets D, D_; € D and any
subsets of output o C O, it holds that

Pr[A(D) € o] < e Pr[A(D_;) € o] +8.

Remark 1. Although ¢ is also an important DP parameter and
technically its value could be randomly specified like ¢, we assume
all records share a common § with a small, positive default value
in this paper based on the following two considerations.

o On the one hand, § is commonly taken to be “sub-polynomially
small”, that is, a rule-of-thumb is that it should be much smaller
than the inverse of any polynomial in the size of the dataset [9, 10].
Since individuals may not have access to the complete dataset
or information about its size, it becomes difficult for them to
properly set a value for § that meets the desired privacy budgets.

e On the other hand, the choices of ¢ and the choices of § are
statistically independent, that is, for two different records di, d» €
D, if &7 > €, it is not necessarily always §; > 2 (and vice
versa). We argue this issue is complicated and leave it as an open
problem.

The Sample Mechanism. Building upon the findings of privacy
amplification by random sampling [1, 2, 29, 52, 60], Jorgensen et
al. [22] proposed the Sample mechanism. It achieves (&, 0)-PDP by
applying an arbitrary mechanism that satisfies ¢-DP on a subset of
data records which is obtained by a non-uniform Poisson sampling
procedure. Our work is inspired by this idea but encounters greater
challenges due to the utilization of RDP, detailed in Section 4.2.

Definition 3 (Poisson Sampling [60]). Given a dataset D with
size N and a set of per-record sampling probabilities q = {gi|q; €
[0,1],i € [N]}, the Poisson sampling procedure outputs a subset
{di|fi = 1,i € [N]} by sampling a Bernoulli random variable
Bi ~ Ber(q;) independently. Here f; € {0, 1} denotes an indicator
that depicts each individual’s participation in the dataset.

Definition 4 (Poisson-Sampled Gaussian (PoiSG) mechanism). Let
D € D be an input dataset and q = {q1, ..., gn} denote the set of
sampling probabilities of each record d; € D. Consider a function f :
D — O with #;-sensitivity L, then the Poisson-Sampled Gaussian
(PoiSG) mechanism is defined as:

PoiSGqs(D) = f(S)+{, { ~N(0,0°L?),

where each element d; € S C D is selected via Poisson sampling,
and N (0, 0°L?) is a Gaussian distribution with standard deviation
oL. Note that we assume L = 1 throughout the rest of this paper.

3.2 Rényi Differential Privacy

Rényi differential privacy (RDP) utilizes the asymmetric measure
of Rényi divergence to quantify the privacy guarantee. Note that
with a controlling parameter & # 1, the Rényi divergence of order
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Du(PIQ) = 5 toeEo |55 |

Let P = A(D) and Q = A(D’), then (o, p)-RDP is achieved by
simultaneously bounding the Rényi divergence of two directions,
denoted by D3’ (P||Q) = max{Dg (P||Q), Da(QIIP)}.

a from distribution Q to P is:

Definition 5 ((@, p)-Rényi Differential Privacy [43]). A randomized
mechanism A satisfies («, p)-RDP with order a € (1, o) if for any
pair of adjacent datasets D, D’ € D, it holds that

Dy’ (AD)||A(D)) < p. (1)

Different from the traditional (¢, §)-DP, which measures privacy
leakage by utilizing the max divergence of two output distributions,
RDP allows for a continuous spectrum of privacy measures. More
specifically, as @ — 0, Doo (A(D)||A(D’)) is equal to the max
divergence [9]; and limy—1 Do (A(D)||A(D’)) can be verified to
be equal to the expected value of the privacy cost random variable

c(0;A,D,D’) £ 1In % [43]. This characteristic enables
RDP to provide a sharper privacy quantification and become one of
the most popular privacy analysis tools, especially adept at handling
composite mechanisms like differentially private stochastic gradient
descent (DP-SGD) [1].

We provide the following useful lemmas which are important

primitives for the design of our FL algorithm and privacy analysis.

LEmMA 1 (TrRANSITION FROM RDP To DP [43]). IfA is an (a, p)-
log 1/5 8)-DP forany0 < § < 1.

a-1 ">

RDP mechanism, it also satisfies (p +

LEMMA 2 (ADAPTIVE SEQUENTIAL COMPOSITION [43]). If A; :
D — Oy is (a, p1)-RDP and Az : D X 01 — Oy is (@, p2)-RDP, then
the composed mechanism A = A1 o Ay : D — 01 X O3 satisfies
(@, p1 + p2)-RDP.

LEMMA 3 (POST-PROCESSING [43]). If A is (a, p)-RDP and F :
O — Q' is an arbitrary data-independent randomized mapping, then
F o A is (a, p)-RDP.

LEMMA 4 (PRIVACY AMPLIFICATION VIA (UNIFORM) POISSON sAM-
PLING FOR GAUSSIAN MECHANISM [44, 60]). Consider a PoiSG mech-
anism and a uniform sampling probability g among all records. For
all pairs of adjacent datasets D,D’ and integer o > 1, we have?

1
a-—1

(24 a B B
+;([)(1_q)a ttelt-1p |

Note that p(a) = 5% foranya > 1.

proisc(@, q) < log {(1-q)* "(ag—q+1)

@)

Privacy Bounds Visualization. The privacy guarantee under
RDP can be depicted as a curve of Rényi divergence, aka., the RDP
budget curve, over the continuous range of a values [43]. For a
clear understanding, we visualize the RDP budget curve of the
PoiSG mechanism with uniform sampling probability g in Figure 2

’Note that [44] and [60] demonstrated similar RDP upper bounds for the PoiSG
mechanism. The presented Lemma 3 is mainly rooted in the findings of [60]. Specifically,
when we work with the Gaussian mechanism, Proposition 10 [60] implies Theorem 8
holds and the lower bound in Theorem 6 is a tighter RDP upper bound for the PoiSG
mechanism.
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Figure 2: The RDP and DP budget curves w.r.t. order « and sampling
probability g of a sequential combination of T=100 PoiSG mecha-
nisms with noise multiplier 0=1.0 and §=1e-3.

(left). When g = 1, the PoiSG mechanism is reduced to a standard
Gaussian mechanism whose RDP budget curve is a straight line
[43]. For the RDP budget curves with g < 1, there exists a phase
transition that happens around age” (@) ~ g1 [60]. As q gets larger,
this transition tends to appear earlier and get more indistinct.

Based on Lemma 1, we can obtain the corresponding DP budget
curve given a desired § and then find the smallest ¢ by solving the
optimization problem below [1]:

5

&2 m;n {p + 710g(1/5) } .

a-1 ®)

Corollary 38 in [52] proves the unimodality/quasi-convexity of this
optimization problem. Figure 2 (right) demonstrates the existence
of an optimal order a*, corresponding to the minimum &*.

Remark 2. Instead of exploring an infinite range of real numbers
a € (1, 00), practitioners often opt to predefine a finite collection
of RDP orders to effectively capture the minimum &*. This trick
has been implemented in leading DP libraries such as Opacus?,

Tensorflow Privacy4, etc.

4 FEDERATED LEARNING WITH
RECORD-LEVEL PERSONALIZED DP

We target the typical supervised FL task with a central server and
a set of M clients C = {Cy,...,Cps}. Consider each client C; € C
holds a private training dataset D; = {d;1,...,d; n, }. Each record
d; j € D is associated with a privacy budget ¢; ; > 0, which reflects
the privacy preference of the record’s owner. Our goal is to learn
a globally shared model with parameters x € R? by solving the
following empirical risk problem

M
. A 1
E@{L(m 2 M;Li(x;Di)}, )
1
where £;(x;D;) = A ; I(x,d;j), (5)

with the privacy guarantee of record-level personalized differential
privacy (as stated in Definition 6 below). Here I(-) denotes the loss
function used for local optimization.

3https://github.com/pytorch/opacus
“https://github.com/tensorflow/privacy
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! Initialization

1 @ Server obtains the sampling probability

: estimator F via the SCF strategy (Alg. 2) and
1 broadcast it to all clients.

: @ Each client C; computes the per-record

: sampling probability g; ; in parallel according
: to the respective privacy budgets €; ;.

Note: Step @ is completely isolated from
the sensitive information related to local
datasets, e.g., raw data, statistics, or privacy
budgets, and detached from the follow-up
training process. The results of Step @ will
be stored locally and concealed from the
untrusted server and other clients.

Client C;
q=F()

Sampling q;1 42 qt,/

Private local
model updates

Prob.

Privacy
: budgets

fete tr

€i1 €i2 €ij

PDP-FL
global model

Data dist.

Global orchestration (Server) : : Local training (Client)

1
' i
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. a random subset of clients Gt are selected to ! : a mini-batch of data are drawn from the whole I
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| ® Average all local upddtes and dispatch the | " | © Repeat 7 iterations of DPSGD and upload the :

up-to-date global model x* to Gt. ! ' noisy model updates A to the server. I

\p ottt o d 0. el mott gl Mot Y

Figure 3: A step-by-step illustration of the rPDP-FL algorithm.

Definition 6 (Federated Learning with Record-level Personalized
Differential Privacy) Given § > 0. Let D = UM D; and & =
Ul 11¢ij}je[N;]- A randomized FL algorithm App : D — O satis-
fies (&, 6)- record level personalized differential privacy (rPDP) if it
guarantees (&, j, §)-DP w.r.t. the specific giecord d; j, i.e., for any pair
of record-specific adjacent datasets D ~' D_; ; and any subsets
of output o C O, it holds that

Pr[ArL (D) € o] < eftJ Pr[ﬂFL(D—i,j) €o0]+56, 6)

where D—i,j = Di,—j U {Um;tij} and Di,—j = D; \ {di,j}~

FedAvg and Two-stage Sampling Scheme. The most fundamen-
tal approach for solving the non-private optimization problem in
Eq. (4) is federated averaging (FedAvg) [41]. Despite numerous
improved methods being proposed to tackle FedAvg’s limitations
like data heterogeneity or communication efficiency [19, 24, 30, 31],
most of them still adhere to a two-stage sampling scheme (i.e., outer
client sampling followed by the inner record sampling) together
with SGD-based learning paradigm. Given the primary aim of this
work is the establishment of a record-level personalized privacy
protection mechanism, we choose FedAvg as the backbone of our
FL framework and adopt DP-SGD [1] during each client’s local
training process to achieve record-level protection. We expect our
proposed rPDP-FL to be extendable to work with other two-stage
sampling FL methods listed above.

4.1 Solution Overview

We employ a two-stage hybrid sampling scheme within the FedAvg
algorithm to obtain a global model using clients’ local datasets while
ensuring diverse individual privacy preferences. This innovative
framework for private FL, termed rPDP-FL, differs from the classic
approach in three key aspects:

o Initialization: Each client allocates a customized sampling prob-
ability g; j to every record in its local dataset, tailored to the
record’s specific privacy budget.
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Algorithm 1: Record-level Personalized Differentially Pri-
vate Federated Learning (rPDP-FL, Pseudocode)

: M clients with their local datasets (Dq, ..., Dyr); the
total communication round T and the local SGD step 7;
the client-level sampling probability A.

// Initialization
1 foreach client C; € C do in parallel
2 {4i.j}je(ip;)) < (pre-computation of sampling probabilities

input

| for all records)

3 fort € [T] do

// Client-level Poisson sampling with the uniform
sampling probability A

4 C! « (a random subset drawn from [M])
5 foreach client C; € C* do in parallel
6 forr € [7] do

// Record-level Poisson sampling with
non-uniform sampling probabilities
{9ij}jenpill

7 S” « (a random mini-batch drawn from D;)

// Differentially private SGD

// The central server averages the collected noisy
model updates and obtains the updated global
model parameters

o Stage 1: Client-level Poisson sampling (uniform): at the
beginning of round ¢ € [T], the central server selects a random
subset of clients C? via Poisson sampling with uniform per-client
sampling probability A € [0,1] and dispatches the up-to-date
global model x* to these selected clients.

o Stage 2: Record-level Poisson sampling (non-uniform): each
client selected in the above stage performs a certain number of
DP-SGD iterations locally and independently and uploads the
model updates to the central server. During each iteration, the
mini-batches are drawn from the whole local dataset via Poisson
sampling with non-uniform per-record sampling probabilities.

It’s worth highlighting that rPDP-FL solely alters the sampling
processes (except for the initialization step) and remains detached
from the intricacies associated with the learning process. This fea-
ture enables its broader applicability to any non-private FL frame-
works that incorporate a two-stage sampling process, as illustrated
in Figure 3. The pseudocode is presented in Algorithm 1 and the
complete version will be shown in Algorithm 3.

4.2 Challenges

To offer reasonable personalized privacy guarantees while maintain-
ing the utility of the global model, the development of Algorithm 1
faces a dual challenge in both theory and practice.

o The privacy analysis challenge. From a theoretical perspective,
it is essential to establish as “tight” upper bounds as possible for
the overall privacy cost of each individual to enhance the trade-
off between privacy and utility.

o The parameter estimation challenge. For practical purposes,
an efficient and effective parameter estimation strategy must be
adopted to select appropriate hyperparameters for the privacy
algorithm, i.e., determining sampling probabilities for all records.
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Our research aims to explore the mathematical relationship be-
tween privacy cost and their sampling probabilities. In particular,
we provide the privacy analysis given the sampling probability of
each record, as detailed in Section 5. Furthermore, we outline our
approach for deriving the sampling probabilities in accordance with
the predetermined individualized privacy budgets in Section 6.

5 PRIVACY ANALYSIS
5.1 Privacy Objectives and Key Results

We will analyze the upper bound of the accumulative privacy cost
for any single record d; j in Algorithm 1, assuming its sampling
probability g; ; is given. This can be broken down into the following
three basic nested routines:

(1) Local multi-step update, which can be abstracted as an adaptive
combination of 7 PoiSG mechanisms.

(2) Global parameter aggregation, which can be seen as a multi-
phase procedure involving uniform client sampling and data-
independent post-processing of the results derived from the
local update performed by the chosen clients.

(3) Global multi-round update, which can be perceived as an adap-
tive combination of T parameter aggregation mechanisms above.

Symbolic Representations. Without loss of generality, our focus
will be primarily on the first record di,;; € D; of client C;. For the
sake of conciseness, we use the symbolic representations as follows.

e D= UM D;j: the federated dataset.

o D, D_1: the adjacent ]Sederated datasets concerning a specific
datarecord dyq,ie., D ~ D_q;.

® D1, Dj,_1: the adjacent local datgsets at client C; concerning a
specific data record dy 1, ie., D1 ~ Dj 1.

e CSamp, (D1, ...,Dp): client sampling using uniform Poisson
sampling, where A € (0, 1] denotes the sampling probabilities for
all clients.

* RSampg, (D1): record sampling at client C; using non-uniform
Poisson sampling, where q1 = {q1,1,...,q1,|p,|} denotes the set
of sampling probabilities of each record dy,; € D;.

o Ac(-) = f(-) + N(0,0%T): the Gaussian mechanism satisfying
(a, pG)-RDP, where pg(a) = and L is the the sensitivity of
function f [43]. For simplicity, We assume that L = 1 through the
rest of this section.

e A(:) = Ag (RSampql (+)): the PoiSG mechanism.

o Ain(-) £ A% = (A1), A(A1(), ), A(AL(), ..
local multi-step update.

o Aour(+) = Avg(CSamp, o Ajy): global parameter aggregation.

o App(-) £ Aoyr (-)®: global multi-round update.

)

To enjoy the strength of tight privacy accounting offered by
the RDP privacy analysis framework, we need to overcome the
incompatibility challenge that all existing PDP techniques fail to
provide tight privacy analysis under the RDP framework. In detail,
we consider analyzing the RDP bound of Afy first, and then convert
it into the form of a standard DP guarantee by applying Lemma 1.
For example, in order to show that Ay, satisfies (1,1, §)-DP w.r.t.
d1,1, we need to show that for any pair of adjacent federated datasets
D, D_4,1 and arbitrary output o, we have

D(AFL(D) | AFL(D-11)) < pFL,



Cross-silo Federated Learning with Record-level Personalized Differential Privacy
log(1/6
s.t. min{pFL+M} < 1. (7)
a>1 a-1 ’
Privacy Objectives. As previously discussed in Section 2, FL sce-
narios typically account for two distinct types of potential adver-

saries. Consequently, the objectives of privacy analysis can be cate-

gorized into the following.

(1) Type I privacy analysis against the honest-but-curious server
(which has access to the intermediate model updates): given
the local model parameter xi ~ Ain(D1) uploaded by Client
C1, the individual RDP privacy bound of Ay, for record dy ; is

Do (ArL (D) || AFL(D-1,1))
= AT - Do (Ain(D1) | Ain(D1,-1)) < pr-

(2) Type II privacy analysis against untrusted clients or third parties
(which have access to the intermediate or final global model):
for any global model parameter x! ~ Ary (D), the individual
RDP privacy bound of Afy for record dy ; is

Do (ArL(D) | AFL(D-11))
=T Do (Aout (D) || Aour (D-1,1)) < pi1-

Key Results. The key results are presented below. The detailed
proofs will be presented in the next subsection.

LEMMA 5. Suppose that C is a subset of clients selected at round
t € [T]. The simple average operation Avg(-) over all outputs o; ~
Ain(Dj), where C; € Ct, will not incur any extra privacy cost to all
records d; j € D.

ProorF. The proof follows from the fact that the RDP guarantee
is preserved under post-processing, as shown in Lemma 3. O

LEMMA 6 (ENHANCED PRIVACY AMPLIFICATION BY TWO-STAGE
HYBRID SAMPLING). Assume the sampling probability for any clients
is A € (0,1], and the sampling probability for data record d; j € D; is
gi,j € (0,1]. If a random algorithm A;p, (D;, x!71) satisfies (a, pl?:j)-

RDP w.r.t d; j, then the algorithm Aoy (D) satisfies (a, piT’;l)—RDP
w.r.t. d; j, where

pitagiy) < In {1 - A+ 26l PL @G0 ang

a-—1

T
a-1

In{(1-q;))% " (aqij - qij+1)

o
o — —
S (o= v

THEOREM 1 (INDIVIDUAL PRIVACY ANALYSIS IN FEDERATED LEARN-
ING). For any § € (0,1), the random algorithm Apr (D) satisfies
(E;kj, 6)-DP w.r.t. a specific record d; j € D, where

pijla.qij) <

In(1/8)
= ) ®)

&+ min (,DFL(O" qij) +
Note that: (1) for untrusted clients or third parties, prr (e, qij) =
TPiT!]-A(Oc, qi,j); (2) for the honest-but-curious server, prr (e, qi,j) =
/’lTpl.T,j (a,qi,5).
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5.2 Detailed Proofs

We first use a special case to explain the enhanced privacy effects at
different stages and extend the conclusion to more general scenarios.
Consider that a server collaborates with two clients, C; and Cy,
to collectively train an FL model. Here C; is assumed to be an
adversary and aims to infer whether dj 1 is contained in Dj.

Considering the sequential composition of RDP as in Lemma 2,
our major objective will be analyzing the increment of the individual
RDP parameter between two successive rounds, that is,

D(ﬂout (D) ||ﬂ0ut (D—l,l))

L1 log E Pr[Aout (D) € o] “
= a1 g ONﬂout(Dﬂ,]) Pr[ﬂout(D_l’l) c O] .

5.2.1 Local Multi-step Update. According to Fact 1 below which
aligns with the decentralized nature of FL, the privacy analysis of
the local multi-step update process essentially follows the existing
theoretical results based on the typical DP-SGD algorithm. The
only difference is that now we need to characterize the privacy cost
for each record since the sampling probabilities of the records are
different from each other.

FACT 1. Once the initial model parameters x' =1 are fixed at the
beginning of round t € [T], each client performs local update in-
dependently, i.e., the distribution of the output xf ~ Ain (x*71, D)
(i=2,...,M) is independent of any data records in D;.

For the local dataset D; with a size of N, let s = (s1,...,sN) C
{0, 1}N be the indicator vector of the record sampling outcome, i.e.,
sj=1ifdyjis selected”. It is evident the probability that s appears
is ps = vazl(qj)sf(l - qj)l_sf and the total number of possible
values of s is 2V, For example, if N = 3 and s = [1,0, 1], then
ps = q1(1—g2)qs3 and total number of possible values of s is 8. Then
for any pair of adjacent local datasets D1, D;,—1 and any subsets of
output o C O, the output distributions of a single DP-SGD step can
be represented as:

Pr[A(D;y) € 0] = Zps Pr[Ac(s) € o]

=(1-q) Y psPrlAG(s) € olsy = 0]

s:51=0

+q1 Y, psPrlAG(s) € ofsi = 1]

s:s1=1
Pr[A(D1-1) €0l = Y psPr[Ac(s) € ols; = 0]
s:51=0

As the local multi-step update process A, can be viewed as a
7-fold adaptive composition of a PoiSG mechanism, we have the
following Lemma 7 by directly applying the existing RDP compo-
sition and amplification results as shown in Lemma 2 and Lemma
4. The distinction lies in the privacy guarantee provided by Ay, is
specific to individual records, instead of being established on the
wider scope of the adjacent datasets D1 and D7.

LEMMA 7. Forany client C;, if the sampling probability of a specific
record dij € D; is qij € (0,1], then the local multi-step update
process Ain(D;) satisfies (a, pl.Tj)—RDP w.r.t. di j, where

©)

5For notational convenience, we suppress the dependence on the client identifier i.

Pij = T ppoisG(a: D, Di—j. qij)
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5.2.2  Global Parameter Aggregation. We consider the output dis-
tribution of Ayys on the adjacent federated datasets D, D_1; in
the context of the above special case. Let P; = Pr[A;,(D;) € o;]
(i = 1,2) and P; = Pr[A;n(D1,-1) € o1]. It can be observed
that for the federated dataset D, the underlying distribution ® £
Pr[Aou: (D) € 0] can be represented as

e a mixture of P; and P,, denoted as Hig, if both C; and C; are
selected;

o the same as Pj, denoted as Hjy, if only C is selected;

o the same as Py, denoted as Hoj, if only C; is selected;

e independent of both, denoted as Hyo, if neither C; nor Cy is
selected.

Similarly, the distribution ¥ = Pr[Apy: (D-1,1) € o] will be

denoted as H/,, if both C; and Cy are

e a mixture of P{ and Py, 5

selected;
o the same as P;, denoted as H{O, if only Cj is selected;
e the same as Hyj, if only C; is selected;
e the same as Hyy, if neither C; nor C, is selected.

Remark 3. Note that here we focus on the individual privacy cost
for PDP which is measured on all pairs of record-level adjacent
datasets w.r.t. the “target” record dy,;. In the context of traditional
(uniform) DP, we cannot simply assume the output from other
clients 0, ..., 05 are constants when analyzing the impact of an
individual record on the worst-case privacy cost, as the output
distribution of Avg(-) is highly dependent on each record in D.

Let w € (w1,...,wp) € {0,1} be the indicator vector of the
outcome of client sampling and w; = 1 denotes that Client C; is
selected. Then we have

®=A(1—-A)Hyg +A2Hyq + (1 — A)%Hyo + (1 — 1) AHo1,
= Z Pme'*' Z pwHw-
w:w1=1 w:w1=0

WY = A(1 - A)Hjy +A2Hj, + (1 = A)?Hyo + (1 — A)AHy;.
= Z poH,, + Z PowHe.
wiw1=1 w:w1=0

Now we try to bound Ey [(®/¥)%] by means of decomposition
and simplification. More specifically, we have

By [(@/9)7] < BBy [(@/%)]0]

=Eo, {AE% [(Ho/H,) o1 = 1] + (1 = VEqy [(Ho/H,,)* |1 = OJ}

= /UEH[’U [(H(<>/H(/‘))a|w1 = 1] +(1-2)

@ /\a

< AEp/ [(P/PD*]+(1-2)

= Je(@ D Da(Ain (D1 Ajn (D1,-1)) 4 (1-2)
< 2 VP4 (1= 2),

where the inequality (1) follows from the Jensen’s inequality
and Lemma 22 in [52] which proves bivariate function f(x,y) =
x%/y*~1 is jointly convex on R for all @ > 1; the inequality (2)
follows from Lemma 5 which implies that the individual privacy
guarantee for dj 1 is immune to post-processing, i.e.,

Da(Hw”H:u) < Da(ﬂin(Dl)”ﬂin(Dl,—l)) < PiT,j~

The equality holds if each client’s sampling probability 1 = 1.
Similarly, we can also have

Eo [(¥/®)%] < e @D Da(Ain(Dy,-D)IIAin (D1)) 4 1-1
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Stage I: Simulation

Figure 4: An illustration of Simulation-CurveFitting.

<2 *7VPL 4 (1= ).
Now we have completed the proof of Lemma 6.

5.2.3 Global Multi-round Update. Putting all the pieces together,
the proof of Theorem 1 can be further derived by leveraging the
adaptive composition theorem of RDP as shown in Lemma 2.

6 SELECTING SAMPLING PROBABILITY

In this section, we explore how to select a sampling probability
for every single record to achieve an estimated privacy cost that
closely aligns with the desired privacy budget, on the condition
that the other factors (e.g., T, 7, o, and §) remain constant.

6.1 Simulation-CurveFitting

Given the theoretical result in Theorem 1, it would be ideal if we
could directly derive a sampling probability for each record given its
predetermined personalized privacy budget. Yet, it is non-trivial to
derive an explicit closed-form expression due to the complexity aris-
ing from the optimization process and the highly nonlinear nature
of the tight bound ppy . Existing approaches utilize numerical meth-
ods to handle this absence of closed-form issue and approximately
obtain the sampling probability, e.g., by binary search algorithm
[3]. However, these strategies become computationally demanding
when applied to our case. We introduce a new and effective strategy
termed Simulation-CurveFitting (SCF). As the name suggests, this
approach consists of the following two stages, and the specific steps
are illustrated in Figure 4 and outlined in Algorithm 2.

Stage I: Simulation. We aim to elucidate the relationship be-
tween g and £° through a series of simulation experiments. In the
beginning, we establish two finite sets of candidate values: the first
consists of various sampling probabilities, which we refer to as IT;
the second consists of a sequence of discrete RDP orders denoted as
A. For each g € II, we compute the DP budget curves and then find
the corresponding minimum value ¢*. For illustration, we show a
series of DP budget curves for the rPDP-FL algorithm in Figure 5

®For notational convenience, we suppress the dependence on the record identifier i, j.
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DP budget curves (A=0.5) The best-fit model
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Figure 5: The DP budget curves w.r.t. order « (left) and the optimum
DP budget w.r.t. sampling probability g (right) of a rPDP-FL algo-
rithm with parameters T=20, 7=5, 1=0.5, 0=1.0, and 5=1e-3.

(left), corresponding to varying values of g. The minimum value
on each curve is then used to plot the optimum DP budget w.r.t.
the corresponding sampling probability on the right figure. The
pseudocode is illustrated in lines 3-6 of Algorithm 2.

Stage II: CurveFitting. In Figure 5 (right), we depict the one-
to-one correspondence between the optimum DP budgets and their
respective sampling probabilities (represented as a series of dots)
across various parameter settings (represented by different colors).
This visualization reveals a compelling observation — a mathemat-
ical function may potentially model the tight upper bound on the
accumulative privacy cost w.r.t. its sampling probability. Armed with
this insight, we employ curve-fitting tools® to approximate the cor-
relation between g and ¢. The best-fit solution obtained is a simple
exponential function in the form

Exflg et e

as stated in Line 7 of Algorithm 2. Our best-fit function is more con-
cise and elegant than the one given in Eq.(8) in Theorem 1, allowing
inverse computation of the sampling probability q given the privacy
cost. We refer to the inverse function as sampling probability esti-
mator, denoted as F(¢), which takes a privacy budget ¢ > 0 as input
and outputs a valid sampling probability q € [0, 1]. In particular, if
an input ¢ exceeds the optimum DP budget corresponding to g=1.0,
denoted as £*(1.0), the output probability q is projected to be 1.0.
See Line 8 of Algorithm 2 for more details.

Measures for goodness-of-fit. We utilize the R? value (also
known as the coefficient of determination) to quantify how well the
estimated privacy cost by the curve fitting function matches the pri-
vacy cost derived from the privacy accounting, ranging from 0 (no
correlation) to 1 (perfect positive correlation). As per the empirical
results illustrated in Figure 5 (right), the best-fit model exhibits an
R? value exceeding 99%. This demonstrates strong evidence of the
model’s ability to derive the sampling probability for each record
based on their desired privacy budgets.

"This figure closely resembles Figure 2 (right) which depicts results obtained in cen-
tralized settings. However, a key distinction is that the minimum values £* across all
the curves in Figure 2 (right) are consistently greater than those in Figure 5 (left). This
highlights the enhanced effect of privacy amplification resulting from the client-level
sampling procedure in FL framework.

8SciPy: https:/scipy.org/.
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Algorithm 2: The Simulation-CurveFitting (SCF) strategy

input : The noise multiplier o, the gradient clipping bound L,
and the target DP parameter &.
output : The sampling probability estimator

// Initialize two candidate lists of a,q
1 A « a candidate list of RDP order a € (1, )
2 IT « a candidate list of sampling probability q € [0, 1]
3 foreach g € IT do
// Numerical simulation analysis of PoiSGM with
sampling probability ¢
4 prL(a, q) < (the RDP budget curve w.r.t. order & € A

calculated based on Theorem 1)

5 e(a,8,q) = prr(a,q) + 105%/16

order a € A calculated based on Lemma 1)

« (the DP budget curve w.r.t.

6 £°(8,q) = mingea e(a, 5, q) «— (the optimum DP budget w.r.t.
sampling probability q)

// Curve fitting
7 f(q) « (the best-fit mathematical model to the generated
observations {(q, €*) }gen)
// The sampling probability estimator

Fe Fle), 0<e<e(1.0)
- 1.0, &> £°(1.0)

return F

6.2 Complete Algorithm of rPDP-FL

The SCF strategy has been further integrated into Algorithm 1,
with some tweaks in the initialization and sampling procedures. A
comprehensive outline of rPDP-FL is provided in Algorithm 3.

The per-record sampling probability initialization. At the
onset of the learning process, the server will compute the sampling
probability estimator F and distribute it to all clients. Note that
this computation does not rely on personal data from sensitive
records stored locally, so there is no risk of compromising the
privacy of these records. On the client side, the per-record sampling
probabilities will be calculated by directly plugging in their privacy
budgets ¢; ; into the received sampling probability estimator. All
clients then employ non-uniform Poisson sampling to randomly
select a subset of records based on these probabilities, and apply
the DP-SGD algorithm [1] for local model updates.

The per-record privacy budget accountant. Another impor-
tant task for completing rPDP-FL is to keep track of the usage of
the privacy budget for each of the records in the course of training.
Once the privacy budget runs out, individuals can opt out of the
remaining training. In our work, we introduce a monitoring module,
called the budget accountant, which is in charge of privacy budget
accounting: (1) Pre-check at the beginning of the communication
round if an individual has sufficient privacy budget to participate in
the current round; (2) Compute and update the accumulated privacy
cost of an individual after the current communication round is over.

6.3 Discussions

Generalization of the SCF strategy. A distinct characteristic of
the SCF strategy lies in its independence from the inherent complex-
ities of specific processes. While this paper primarily focuses on FL
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Algorithm 3: Record-level Personalized Differentially Pri-
vate Federated Learning (rPDP-FL, complete version)

input :M clients with their local datasets D;c[ar) and
pre-specified privacy budgets {¢; ; }ic|p;| je[s]; the
total communication rounds T, the client-level
sampling probability A. Parameters shared by all
clients: the local training steps 7; the learning rate 7;
the gradient clipping bound L, the noise multiplier o
and the target DP parameter 8.
// Initialization
1 C « (all participating clients with size M)
// Pre-computation
2 F « (the sampling probability estimator obtained through Alg. 2)
3 foreach C; € C do in parallel
4 {qij = F(eij) }je[lDiH « (the per-record sampling
probabilities)

5 x* « (Initialize randomly)

¢ fort € [T] do
// Client-level Poisson sampling with the uniform
sampling probability A

7 C! « (arandom subset drawn from M clients)
8 foreach C; € C! do in parallel
9 x:’o =xt
10 forr € [7] do
// Record-level Poisson sampling with the
derived sampling probability {qi;}je[p;|]

11 S” « (a random mini-batch drawn from Dj;)
12 foreach microbatch & € S” do
13 57— Ve(xP"; €) - min(l, —L——

L 3 (x;"5¢) - min(l, ()
“ R (z gL+ N, UZLZ))
15 | xf.’”l —x" - ng"
16 B Ax; = xf’f - xlt.’o
17| x'*! « (taking the average of all the local updates)

applications, the SCF approach serves as a versatile plug-in mod-
ule applicable to a broad spectrum of tasks that incorporate data
sampling and Gaussian mechanism, including private statistical
analysis and other SGD-based optimization tasks.
Sampling/Noise trade-offs. In highly privacy-sensitive scenarios,
the majority of individuals (e.g., patients) prefer stronger privacy
protections, and thus their sensitive personal records are less likely
to be included in analysis. We argue that this issue is not about our
methodology itself, but an inevitable consequence of the personal
privacy decision. One remedy is to adjust the parameters of the
Gaussian mechanism, for example, setting a larger noise multiplier
o such that a higher level of Gaussian noise is used in the com-
putation, resulting in universally increased sampling probabilities
for everyone. In Figure 6, we illustrate the relationship between
optimum DP budgets and their corresponding q (represented as a
series of dots) across various o (represented by different colors).
Essentially, there is a trade-off between sampling probability and
perturbation noise. However, this approach should be treated with
extreme caution, as an improper ¢ could lead to a significant degra-
dation in model performance.
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Figure 6: The optimum DP budget w.r.t. sampling probability g and
noise multiplier o of a rPDP-FL algorithm with parameters T=20,
=5, and S=1e-5.

The utility risks of the potentially suboptimal F. As a result of
the intrinsic traits of the numerical simulation method, the obtained
sampling probability estimator F could be suboptimal and lead to
utility risks for certain records, e.g., slightly unused budget (due
to low sampling probability) or early stop (due to high sampling
probability). However, both cases have statistically insignificant
effects since the best-fit curve achieves more than 99.9% R? value
as shown in Figure 6.

7 EXPERIMENTAL EVALUATION

In this section, we conduct a thorough empirical analysis to eval-
uate the performance of both the SCF strategy and the rPDP-FL
algorithm. In Subsection 7.1, we focus on evaluating the effective-
ness of SCF by comparing it with the other two existing strategies
employed for achieving PDP in centralized ML settings. Given the
absence of alternative implementations achieving record-level PDP
in the context of FL, we assess the utility improvement of rPDP-FL
by contrasting it with two conventional methods that do not in-
corporate personalized privacy preservation in Subsection 7.2. The
source code, data, and other artifacts have been made available®.
Privacy Preference Distributions. We simulate different scenar-
ios where users have diverse privacy preferences for their data.

e ThreeLevels: each record has the option to select a preferred
privacy budget from three distinct choices (categories) {e1, €2, €3}
where &1 < €2 < €3, each denoting strong, moderate, and weak
privacy protection, respectively. This simulates practical PDP
implementation scenarios where the users can choose from a few
predefined privacy categories.

¢ BoundedPareto: each record has an arbitrary ¢; ; € [0.1, 10] that

approximately follows a Pareto distribution. This simulates the

scenario where a majority of individuals lean towards stringent
privacy safeguards, while a smaller subset opts for less restrictive
protections in exchange for improved services or other incentives.

BoundedMixGauss: each record has an arbitrary &; j € [0.1, 10]

that approximately follows a mixture of three Gaussian distribu-

tions with means {ey, £2, 3} where &1 < &3 < e3. This simulates
the scenarios where the privacy choices are multi-modal as in

many other complex social systems [48, 49, 55].

Datasets and Models. We consider four classification tasks with
the consistent objective of training a global model privately on the

“https://github.com/Emory-AIMS/rPDP-FL.git
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Table 1: Overview of the datasets and baseline models used in our experiments.

. # examples . . # params Training steps Client-level
- #
Dataset Non-/IID | # clients # features labels (per client) Train/Test split Model (trainable) | (local 7/ global T) | samp. prob. A
Heart-Disease [50] | Non-IID 4 13 2 303/ 261/ 46 / 130 66% / 34% Logistic Regression 20 10715 1.0
(training from scratch)
Two-Layer CNN
MNIST [28] Non-/IID 10 28X28X1 10 % 6,000 66% / 34% _wo-Layer 26,010 50/15 05
(training from scratch)
CIFAR10 [27] D 10 32x32X3 10 5,000 66% / 34% ResNet-18 20] 11,181,642 50 /30 05
(training from scratch)
Premise- .
) Pretrained BERT [7
SNLI [4] D 10 hypothesis 3 54,936 95% / 5% re (rgt‘]:iumng) 7] 7,680,771 50/ 15 05
pairs

federated Heart Disease [50], MNIST [28], CIFAR10 [27], and SNLI
[4], separately. Note that Heart-Disease is a real healthcare dataset
comprising records from 920 patients across four hospitals in Cleve-
land, Hungary, Switzerland, and Long Beach V. On the other hand,
MNIST and CIFARI10 are two commonly used benchmarks for image
classification tasks, while the SNLI dataset is a benchmark for natu-
ral language inference (NLP) tasks. In these cases, we apply the IID
and non-IID partitioning strategies introduced in [41] to split total
training examples into M = 10 subsets. For a more comprehensive
overview of the datasets, along with details on the corresponding
baseline models, please refer to Table 1.

Implementations. Our implementation utilizes the Opacus library.
All experiments are conducted on a machine with one NVIDIA A40
GPU running on Ubuntu with 256 GB memory. Given that the model
training is a randomized process, we repeat all the experiments five
times and report the mean test accuracy across all clients.

7.1 Comparison of SCF with Existing Strategies

In this section, we show the effectiveness and efficiency of our
SCF strategy in terms of model utility and computational cost by
comparing it with the following representative approaches:

o Filter: also known as Rényi privacy filter (Algorithm 3 in [12]),
is an individual privacy accounting method that monitors the
accumulation of squared gradient norms Byorm for each record
during the training process. The record will be filtered out if this
accumulation exceeds a pre-specified threshold.

BinarySearch: also known as Individual DP-SGD (IDP-SGD)
with the Sample mechanism (Algorithm 2 in [3]), is a binary
search-based approach aiming for finding the optimal sampling
probability within the range of [0, 1] for a target privacy budget.

Given that both approaches were initially tailored for centralized
ML scenarios, our experiments adhere to this context to maintain
fairness in comparisons. Specifically, we implement a variant of
the DP-SGD [1] algorithm, incorporating refinements in the pre-
determination of record-level sampling probabilities through the
SCF strategy. Note that here the RDP budget curve (line 4 in Alg. 2)
should be calculated based on Lemma 4 instead of Theorem 1.

7.1.1  Comparison of SCF with Filter. While both SCF and Filter
share a common objective of achieving personalized privacy pro-
tection, they significantly differ in the definition of “budgets”: Filter
considers a budget for the accumulative squared gradient norms for
the records in the training process, while we focus on the DP privacy
budget ¢ for the accumulative privacy cost. Achieving a smooth
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Table 2: Comparison of SCF with Filter in centralized ML.

. . . Runti
Priv. Pref. Dist. Dataset Method Batch Size Test Acc untime
(s/step)
ThreeLevels: Heart-Disease Filter 486 0.7717 0.0128
&1 = 2.0 (70%) (pooled) SCF 32 (Expected) 0.8189 0.0050
&9 ~ 4.7 (20%) MNIST Filter 60000 0.8411 7.1016
&3 ~ 11.8 (10%) (pooled) SCF 64 (Expected) 0.9477 2.1824
Fed-Heart-Disease (pooled) MNIST (pooled)
500 | .45.486, £=0.9) 60000 | -¢460000, £=2.0)
s |
g 400 50000
a
S 40000
3 300
3
% 30000
© 200
2 _1\.420,150, £=1.8) 20000 | 1| ¢20,18000, £=4.7)
E}
Z 100
$100,49, £=4.2) 10000 4100,6042, £=11.8)
0 fi— 0 [ —
0 50 100 150 0 50 100 150
Step Step

Figure 7: Number of active records during one run of private GD
with Filter evaluated on the pooled Fed-Heart-Disease dataset (left)
and MNIST (right). The red points indicate the specific steps that
records with different privacy budgets start to get filtered.

transition between the two quantities is challenging!®. Therefore,
our evaluation only focuses on a simplified personalized privacy
scenario ThreeLevels, where the percentage of records with ¢y, 2,
and e3 is 70%, 20%, and 10%, respectively. We incorporate Filter into
the private gradient descent algorithm!! as implemented in [12].
Then we assess the model utility and computational efficiency of
both approaches on the pooled Heart-Disease and MNIST datasets.

Number of active records. In Figure 7, we plot the number of
active records during one run of private GD with Filter, i.e. those
that have not yet exhausted their privacy budgets. The results
reveal that in scenarios where personalized privacy protection is
implemented, particularly when a significant portion of the records
adheres to conservative privacy preferences, a considerable number
of records undergo early filtration in the training process, which

10We highlight that the final privacy budget ¢ depends on the sampling probability g,
noise multiplier o, and the number of training steps 7. However, in Filter, different
records could have varying values of 7 even though they share the same “squared
norm budget” Bporm. As a result, adjusting the hyperparameters of B,m to align
with a specific ¢ for each record, and vice versa, becomes challenging, particularly in
general personalized privacy scenarios like BoundedMixGauss or BoundedPareto.
1t computes noisy gradients using the entire training dataset in each iteration, which
is different from DP-SGD.
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Table 3: Comparison of SCF with BinarySearch in centralized ML.

Priv. Pref. Dist. Method Test Acc Runtime (s)
Group-3: 3 unevenly sized privacy groups BinarySearch 0.7274 1.69
(54%-37%-9%) with privacy budgets [1., 2., 3.] SCF 0.7240 13.11
Group-100: 100 evenly sized privacy groups BinarySearch 0.8135 52.50
with privacy budgets [1., 1.05, ..., 5.95] SCF 0.8134 13.32
Individual-1000: per-record privacy budgets BinarySearch 0.6858 597.82
drawn from BoundedMixGauss SCF 0.6861 14.10

restricts the model’s capacity to learn from the dataset effectively.
As shown in Table 2, our experimental results demonstrate that our
SCF outperforms Filter in terms of test accuracy.

Computational efficiency and privacy amplification. Due
to the requisite computation of per-example gradient norms at each
iteration, Filter no longer retains the benefits of SGD for improving
speed and memory efficiency [12]. In contrast, the Poisson sampling
procedure involved in our approach could yield mini-batches of
size 3 je|p| ¢j < |D| in expectation. We report the average time
cost for each training step in Table 2, revealing SCF achieves a 2x
or 3x speedup compared to Filter in our assessments. Moreover, the
absence of the random data subsampling procedure in private GD
with Filter also leads to the loss of privacy amplification effect for
individual records.

7.1.2 Comparison of SCF with BinarySearch. As discussed in Sec-
tion 2, BinarySearch faces a significant limitation in terms of ef-
ficiency when dealing with records’ privacy budgets that cover
values within a continuous range, rather than a discrete subset.
To illustrate this, we carry out a small-scale experiment where a
private model is trained on a subset of 1,000 examples randomly
selected from the MNIST dataset using DP-SGD. Three different
personalized privacy scenarios are being investigated to evaluate
the efficiency and utility of BinarySearch and SCF, as outlined in
Table 3. Note that both Group-3 and Group-100 are privacy setups
concerned in [3], where all records are split into limited privacy
groups and those within one privacy group share the same privacy
budget. The Individual-1000 represents the privacy scenario con-
sidered in this paper, where the privacy budgets are assigned on
an individual basis. We report the test accuracies and the runtimes
to obtain the per-record sampling probabilities (averaged over 5
trials). Our experiment results demonstrate that SCF significantly
enhances efficiency compared to BinarySeach in the more general
scenarios while achieving a comparable model performance. Here
we did not evaluate BinarySearch in a parallel manner as this im-
plementation was not discussed in [3] and is not the focus of this

paper.

Remark 4. Boenisch et al. [3] also proposed a Scale mechanism
that aims at scaling the noise added to each gradient by setting
individualized clipping bounds. The optimal clipping bound is still
found in a binary-search style. According to Table 16-17 in [3], Scale
leads to a comparable overall performance with Sample (regarding
runtime and test accuracy). Thus, both Sample and Scale share
similar limitations against our method.
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7.2 Utility Improvement through Privacy
Personalization

In this section, we evaluate the effectiveness of our rPDP-FL algo-
rithm in providing record-level personalized DP while optimizing
for model accuracy. Given the absence of alternative implementa-
tions achieving record-level PDP in the FL setting, we established
three DP-FedAvg-based baseline methods as follows:

e Minimum: DP-FedAvg ensuring the most stringent uniform
(émin, 6)-DP guarantees, where emin = min;e[um), je[|D;|] €ij-

e Dropout: DP-FedAvg providing moderate uniform (¢,,44, 5)-DP
guarantees for a subset of individuals whose privacy budgets ¢; ;
are larger than a predefined threshold ¢,,,; and dropping out
those with privacy budgets below the threshold. Here, ¢,,,4 is
determined as the empirical sample mean of ﬁ 2i,j €ij-

e PrivacyFree: The vanilla FedAvg [41] without DP guarantees,
which serves as a benchmark for assessing the reduction in global
model utility.

Note that both Minimum and Dropout ensure the accumulative
privacy costs of all records remain at/below their specified privacy
budgets throughout the training process but lead to a significant
waste for records with large privacy budgets. All three types of
privacy preference distributions are considered for a comprehensive
evaluation of all methods’ performance.

Unless otherwise specified, the default setup of ThreeLevels com-
prises 1 = 0.1, &2 = 1.0 and €3 = 5.0 with corresponding proportion
0f 70%, 20%, and 10%. Similarly, the BoundedMixGauss distribution is
defined as a mixture of N;(0.1,0.01), N2(1.0,0.05) and N3(5.0,0.5)
with weights of 0.7, 0.2 and 0.1. For the BoundedPareto case, we
consider a specific Pareto distribution with a shape value of 1.0
and a lower bound of 0.1. These parameters are chosen to simulate
realistic scenarios where the majority of users have strict privacy
requirements. Examples of 1,000 records’ privacy preferences are
illustrated in the first column of Figure 8. In the context of training
a larger ResNet-18 model from scratch on the CIFAR-10 dataset,
where the total number of trainable parameters exceeds 11M, we
opt for more liberal privacy settings to maintain acceptable model
utility. Specifically, we set &7 = 1.0, &2 = 3.0, and ¢3 = 10.0 for
both the ThreeLevels and BoundedMixGauss setups while keeping
the ratios the same. For the BoundedPareto distribution, the lower
bound is adjusted to 1.0.

Hyperparameters. For the Fed-Heart-Disease experiments, we
fix the per-client sampling probability 1=1.0 and d=1e-3; for the
other experiments, we fix A1=0.5 and d=1e-4. The total communi-
cation rounds T and the number of local training steps per round
7 for different tasks are detailed in Table 1. We explore a variety
of constant learning rates (e.g., [0.1, 0.05, 0.01, 0.005, 0.001]) and
clipping thresholds (e.g., [0.5, 1.0, 3.0, 5.0]) for the best results.

Model Utility. The evaluation results under various privacy
preference distributions, as shown in Figure 8, consistently demon-
strate the superiority of our rPDP-FL method over both Minimum
and Dropout across diverse FL datasets. Specifically, the advantages
over the Minimum method suggest that the model benefits from
records with larger privacy budgets, while its advantages over the
Dropout method imply that even records with conservative privacy
budgets contribute positively to the training process. These findings
underscore the crucial role of personalized privacy integration in
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Figure 8: Evaluation of rPDP-FL (labeled as Ours) across diverse privacy preference distributions and datasets in federated learning.

achieving a more favorable trade-off between privacy and utility,
particularly in scenarios where most individuals exhibit a strong
emphasis on privacy concerns.

Upon comparing the results between MNIST-IID and MNIST-
NIID, we observed a consistent reduction in test accuracy in the
non-IID case across Minimum, Dropout, and our proposed method.
This decline arises from the inherent limitations of the DP-FedAvg
algorithm under a heterogeneous environment [45]. Despite this
deterioration, it’s noteworthy that the utility advantages stemming
from incorporating privacy personalization remain.

8 CONCLUSION AND FUTURE WORK

In this paper, we studied an unexplored real-world challenge to
enable record-level personalized differential privacy in federated
learning. Our proposed solution is a novel framework called rPDP-
FL, which employs a two-stage hybrid sampling scheme with non-
uniform record-level sampling. We devise an efficient strategy, re-
ferred to as Simulation-CurveFitting (SCF), to estimate the individ-
ual sampling probabilities for all records associated with varying
privacy budgets. Our investigation uncovers a valuable insight re-
garding rPDP-FL, i.e., a one-to-one correspondence between the
sampling probabilities of records and their accumulative privacy
costs which can be mathematically expressed through a simple
exponential function. Empirical demonstrations show that our so-
lutions yield significant performance enhancements compared to
baselines that overlook personalized privacy preservation.

As an early exploration into FL with personalized privacy protec-
tion, our work lays a foundation for future in-depth investigations
and highlights several promising directions, such as:

e User-level (device-level) PDP in cross-silo (cross-device)
FL. In FL scenarios, individual users (or devices) might possess
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multiple records or contribute data to various clients simultane-
ously [25]. Intuitively, a single user may have distinct privacy
preferences for their records, which poses significant challenges
in establishing user-level personalized privacy protection.

e Effective learning on non-IID data with data-dependent
privacy budgets. In Appendix A, we offer a brief discussion
on a more complex scenario where the privacy budgets of users
are directly linked to their raw data (e.g., dependent on their
labels). Our findings point out the deficiencies in the current
privacy personalization methods to yield substantial utility gain
for groups that have significantly smaller privacy budgets and are
a minority in the population. We highlight the need to address
this challenge effectively in future research endeavors.
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Table 4: Evaluation of the per-class test accuracy of a CNN model trained on MNIST with data-dependent privacy budgets for 100 iterations.

MNIST 0 1 2 3 4 5 6 7 8 9 Overall
Budget (¢) 0.5 0.75 2.0 2.6 4.1 2.1 2.05 3.0 3.1 6.1 B
rPDP-SGD 9349 | 959 | 87.45 | 90.83 | 95.1 | 90.37 | 94.74 | 92.13 | 88.62 | 92.64 | 92.55

DP-SGD (¢=0.5) | 93.63 | 95.81 | 87.26 | 87.18 | 89.67 | 85.89 | 93.73 | 88.71 | 85.74 | 82.19 | 89.08

DP-SGD (¢=3.0) | 94.24 | 96.09 | 89.75 | 89.71 | 92.01 | 89.37 | 9454 | 90.5 | 84.78 | 85.2 90.69
VanillaSGD | 99.1 | 99.6 | 97.11 | 98.33 | 99.1 | 98.65 | 98.27 | 99.07 | 9587 | 941 | 98.06

—— Overall (fPDP-SGD)
/ == Normal (£=0.5)
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—~ Normal (£=0.1)
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—— Overall (DP-SGD)
—— Normal (£=0.05)
Abnormal (£=0.05)

Test Acc

0o 2 4 6 8 10 12 14 16 18

Steps

Figure 9: Evaluation of the per-class test accuracy of a logistic regres-
sion model trained on the Heart-Disease dataset with data-dependent
privacy budgets (¢=0.5 for normal patients and £=0.05 for abnormal
patients) for 20 iterations.

A ADDITIONAL EVALUATION RESULTS

Learning with data-dependent privacy bdugets. In this study,
we focus on a general personalized privacy scenario in which indi-
vidual privacy budgets follow a random distribution, independent
of other factors such as the raw data. Nonetheless, there are scenar-
ios where individuals with particular attributes (or labels) might
exhibit different privacy concerns. For example, heart disease pa-
tients might demand more stringent privacy safeguards when their
health records are utilized in training ML models.

To examine the utility improvement through privacy personal-
ization on different groups, we carry out preliminary experiments
by training centralized ML models on the Heart-Disease and MNIST
datasets. In each experiment, we apply DP-SGD and a variant of
DP-SGD that incorporates the SCF strategy for achieving rPDP,
which we denoted as rPDP-SGD. We allocate distinct privacy bud-
gets to each class. For the Heart-Disease dataset, “normal” patients
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are assigned a privacy budget of £=0.5, whereas “abnormal” records
are given a more conservative budget of £=0.05. For the MNIST
dataset, we adhere to the setup described in [3].

In Figure 9, we visualize per-class and overall test accuracy (av-
eraged over 10 trials) for the logistic regression model trained on
the Heart-Disease dataset. Due to the inherent simplicity of the
dataset, both rPDP-SGD and baselines (¢=0.05 and 0.1 for all classes)
achieve convergence to perfect accuracy (1.0) within 20 iterations.
In this experiment, we do not observe a discernible utility gain of
rPDP-SGD compared to the baselines for the “abnormal” records
(as indicated by the three dotted lines in the figure). This lack of
utility improvement could stem from the unbalancedness of data
distribution, together with the fact that “abnormal” records are

sampled less frequently than “normal” records, causing the model
to primarily learn from “normal” records during the initial phases

of training.

Table 4 displays the final test accuracy (averaged over 5 trials)
for 10 evenly sized classes of the MNIST dataset. It can be observed
that for classes with privacy budgets below 3.0 (Classes 3, 5, 6, and
7), their test accuracy of rPDP-SGD significantly surpass those of
the other two baselines. For classes with much lower privacy bud-
gets (Classes 0, 1, and 2), rPDP-SGD demonstrates performance
on par with that of DP-SGD (£=3.0). Our findings indicate that the
sampling-based method does not yield substantial utility improve-
ments for groups that have significantly smaller privacy budgets
and are a minority in the population. As discussed in Section 7.1, cur-
rent methods such as Filter and BinarySearch also fail to adequately
address this issue. This suggests that an efficient and effective so-
lution for this challenge has yet to be developed, leaving it as an
open question for further investigation.
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