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ABSTRACT

Federated learning (FL) enhanced by di�erential privacy has emerged

as a popular approach to better safeguard the privacy of client-side

data by protecting clients’ contributions during the training process.

Existing solutions typically assume a uniform privacy budget for all

records and provide one-size-�ts-all solutions that may not be ade-

quate to meet each record’s privacy requirement. In this paper, we

explore the uncharted territory of cross-silo FL with record-level

personalized di�erential privacy. We devise a novel framework

named rPDP-FL, employing a two-stage hybrid sampling scheme

with both uniform client-level sampling and non-uniform record-

level sampling to accommodate varying privacy requirements.

A critical and non-trivial problem is how to determine the ideal

per-record sampling probability @ given the personalized privacy

budget Y. We introduce a versatile solution named Simulation-

CurveFitting, allowing us to uncover a signi�cant insight into the

nonlinear correlation between @ and Y and derive an elegant mathe-

matical model to tackle the problem. Our evaluation demonstrates

that our solution can provide signi�cant performance gains over the

baselines that do not consider personalized privacy preservation.
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1 INTRODUCTION

Federated Learning (FL) [23, 41] is a recent machine learning (ML)

framework that was motivated by data privacy. In comparison to

centralized ML, it eliminates the need for centralized data sharing

and has the potential to harness decentralized data for powerful pre-

dictive models while alleviating individual privacy concerns. The

distinctive feature is its decentralized architecture, where multiple

institutions (e.g., hospitals or banks) or devices (e.g., smartphones,

IoT devices [6, 15, 38]) collaborate in training a joint model un-

der the coordination of a central server while keeping the data

local. This paper primarily focuses on the former case, also known

as cross-silo FL [36], where each client (institution) holds a local

dataset comprising personal data records. For simplicity, we assume

each record is associated with a single user (e.g. patient or customer)

who does not contribute the same record or multiple records to

multiple clients simultaneously.

Although data are not directly shared in FL, potential adversaries

(e.g., the honest-but-curious server or untrusted clients) might en-

gage in indirect privacy violations via reconstruction or inference

attacks [21, 37, 46, 51, 53, 57–59]. Di�erential privacy (DP), known

as the de facto standard for private data analysis, has been intro-

duced to FL algorithm design [13, 14, 32, 34, 35, 39, 40, 56]. This

integration ensures rigorous privacy protection for participants

(clients or records) by introducing controlled perturbation into

the computation of the intermediate model parameters transferred

between clients and the server [42]. While standard DP provides

the means to quantify the extent of privacy protection through a

positive real-valued parameter Y (aka privacy budget), it imposes

identical privacy safeguards on every participant involved. This

uniformity cannot re�ect the reality of diverse privacy expectations

among people and can lead to signi�cant utility costs [3, 11, 22]. It

is desirable to allow each participant to set their expected privacy

budgets re�ecting their personal privacy preferences.

With this objective in mind, personalized di�erential privacy

(PDP) [11, 22] was introduced and has been investigated in various

scenarios including statistical analysis [5, 11, 22], centralized ma-

chine learning (ML) [3, 12], and federated learning [33]. For FL, Liu

et al. [33] proposed the concept of heterogeneous DP in FL, where
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Figure 1: An illustration of the cross-silo federated learning with

record-level personalized di�erential privacy. In this framework,

each user is given the autonomy to independently opt for a person-

alized privacy preference (speci�ed by a personalized di�erential

privacy (PDP) budget Y) for their respective records. The goal is to

train a private global model that satis�es record-level PDP.

records within a single client (institution) share the same privacy

budget, but di�erent clients may have varying privacy budgets.

We refer to this speci�c setting as client-level PDP-FL for clarity.

In contrast, this paper introduces a broader setting where even

records within the same client may have distinctive privacy prefer-

ences, referred to as record-level PDP-FL (rPDP-FL in short). Figure

1 provides an illustrative example of the latter case in a healthcare

context. To the best of our knowledge, record-level PDP-FL has not

yet been investigated.

From a technical standpoint, the essence of implementing record-

level PDP lies in ensuring each record’s accumulative privacy cost

aligns with its predetermined privacy budget during the entire

training process. This emphasizes the need for an e�ective privacy

budget allocation strategy. When it comes to achieving PDP in a

centralized ML setting (centralized PDP), some studies [12, 47] use

even privacy budgets across all records during every iteration of

training, and records with smaller privacy budgets will be �ltered

out of the training process once their privacy budgets run out. This

approach may trigger catastrophic forgetting [18, 26], a situation

where the learned model could potentially “forget” the knowledge

from records that terminate early, eventually leading to degraded

model performance. A more promising strategy involves achiev-

ing simultaneous depletion of privacy budgets for all records by

developing DP mechanisms coupled with non-uniform sampling

[3, 22]. The fundamental theory underlying it is the “privacy am-

pli�cation by random sampling” theorem [1, 2, 29, 52, 60] which

implies individuals with lower inclusion (sampling) probabilities

@ will incur less privacy cost (leading to smaller privacy budget).

Boenisch et al. [3] introduced a binary search-based approach to

determine an approximate optimal @ ∈ [0, 1] for each record with

a speci�c privacy budget Y. The computation of the accumulative

privacy cost for each record is based on Mironov et al. [44] in which

Rényi Di�erential Privacy (RDP) [43, 44] is employed for tight pri-

vacy accounting. However, their approach is impractical when all

records’ privacy budgets are distributed continuously and can cover

a spectrum of values, due to the scalability and computational costs

associated with the per-record search process.

Overall, there exist signi�cant research gaps in achieving record-

level PDP-FL. First, the existing theoretical �ndings on RDP-based

privacy accounting [44, 60] are no longer adequate for the needs

of analyzing each record’s accumulative privacy cost in FL applica-

tions. Intuitively, the two-stage sampling process, i.e., client-level

and record-level sampling, will further increase uncertainty for

potential adversaries to infer whether a “target” record is a member

of a client and hence further amplify the privacy protection. Sec-

ond, the existing binary search-based approach [3] for �nding the

optimal sampling probability @ in centralized PDP is not e�cient. A

desirable way is to directly compute a sampling probability given a

privacy budget for each record. However, it’s non-trivial to derive

an explicit closed-form solution due to the highly nonlinear and

less interpretable RDP-based privacy accounting.

Contributions. Our key contributions are outlined as follows.

(1) We formalize a real-world problem in federated learning con-

cerning record-level personalized di�erential privacy. To solve

this problem,we propose a novel framework called rPDP-FL. The

essence of this framework is a two-stage hybrid sampling scheme

which comprises a uniform client-level sampling process and

a non-uniform record-level sampling process. Speci�cally, the

per-client sampling probability is assumed as a hyperparameter

and publicly known by both the server and all clients, while the

per-record sampling probability is proportional to each record’s

privacy budget and determined by the client to which it belongs.

(2) We formally analyze the enhanced privacy ampli�cation e�ect

of the two-stage hybrid sampling scheme. This RDP-based theo-

retical investigation �lls a gap in existing research and facilitates

a more favorable trade-o� between privacy and utility.

(3) We devise an e�cient and general strategy named Simulation-

CurveFitting (SCF) to identify the sampling probabilities for all

records given their personalized privacy budgets. Our simula-

tions with varying sampling probabilities enable the identi�ca-

tion of an elegant mathematical function discerning the rela-

tionship between per-record sampling probabilities and their

accumulative privacy costs. An important insight arises: the

tight upper bound on the accumulative privacy cost of rPDP-

FL can be modeled by a simple exponential function w.r.t. its

record-level sampling probability.

(4) We simulate three potential personalized privacy scenarios and

conduct a comprehensive evaluation on two real-world datasets.

We �rst show that our SCF strategy outperforms the existing

PDP methods for centralized ML [3, 12] in model utility and

computational e�ciency. Additionally, we demonstrate that

rPDP-FL signi�cantly enhances the utility of the global model

compared to baseline methods that do not incorporate person-

alized privacy preservation.

2 RELATEDWORK

Personalized Di�erential Privacy. The concept of personalized

DP (PDP) was initially introduced by Ebadi et al. [11] and Jorgensen

et al. [22], focusing on basic private statistical analysis tasks with

the standard Y-DP framework. Notably, the Sample mechanism pro-

posed in [22] demonstrated the feasibility of implementing PDP by
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combining DP mechanisms (e.g., Laplace or Gaussian mechanism)

with non-uniform record-level sampling.

Recent work studied PDP in centralizedML [3] built on top of the

non-uniform sampling strategy and proposed a binary search-based

approach to �nd a suitable sampling probability@ as a decimal value

within the range of [0, 1] for each record given a target privacy

budget Y. It is, however, computationally demanding for the more

realistic settings where records’ privacy budgets are distributed

continuously (e.g., follow a Gaussian or Pareto distribution) and can

cover a range of values. Another line of work [12, 47] considered

all records’ privacy budgets to be uniform during each iteration of

the training process. Two individual privacy accounting techniques

named privacy odometer and privacy �lter are designed to moni-

tor and restrict accumulative privacy costs for individual records

throughout the training process so that a record will be excluded

from the subsequent training iterations once its privacy budget

is exhausted. This poses a potential risk of catastrophic forgetting

[18, 26] and may lead to downgraded model performance.

Federated Learning with DP and Personalized DP. We discuss

existing work on FL with DP in two aspects: (1) the granularity of

the DP guarantee, i.e., what information is protected (each client or

each record), and (2) the level of personalization for DP, i.e., who

has the right to specify the privacy budget (the central server, each

client, or each record).

• Client- vs. record-level privacy protection. There is rich literature

exploring the DP-FL framework concerning potential adversaries.

Speci�cally, these adversaries may be either solely recipients of

the global model parameters (i.e., the other untrusted clients

or third parties) or recipients of local model updates (i.e. the

honest-but-curious central server). Within this framework, two

categories of DP guarantees are recognized: client- and record-

level DP. The former is achieved by adding random Gaussian

noise to the aggregated local model updates to hide a single

client’s contribution [16], while the latter requires clients to per-

turb their computed gradients locally to obscure a single record’s

contribution [36, 42, 54]. Our primary focus lies on achieving

record-level protection against both attack scenarios.

• Client- vs. record-level privacy personalization. As mentioned ear-

lier, the majority of approaches o�er uniform privacy guarantees

for all records involved, based on the one-sided considerations

of the central server. Only a few studies recognize the necessity

of privacy personalization within FL applications. Liu et al. [33]

introduced the concept of heterogeneous DP and developed a

projection-based framework to accommodate diverse privacy

budgets among di�erent clients. Although the work [36] also

proposed a similar notion known as silo-speci�c sample-level DP,

it primarily focused on addressing data heterogeneity challenges

and did not address varying privacy needs. Liu et al. [35], on the

other hand, centered on cross-device FL and achieved person-

alized local di�erential privacy (PLDP) for clients’ local model

gradients. However, it requires a large number of clients for

reasonable utility. Our research represents the �rst attempt to

explore record-level privacy personalization in cross-silo FL.

Tight Privacy Analysis for DP-FL. Conducting a tight analysis

of the accumulative privacy cost is crucial for designing DP algo-

rithms e�ectively. The predominant focus of research on this issue

centers around centralized ML [1, 44, 52, 60], with limited attention

directed towards the FL scenarios [17, 45] where the employment

of both data and client sampling may lead to an enhanced privacy

ampli�cation e�ect. Girgis et al. [17] investigated a related issue

but focused on o�ering local di�erential privacy (LDP) guarantees

for clients’ gradients. In their framework, only one step of the local

Stochastic Gradient Descent (SGD) update is executed per client

per round, whereas our algorithm allows for multiple local updates.

Noble et al. [45] adopted RDP to track the privacy cost over the local

SGD iterations, while using (Y, X)-DP to evaluate privacy costs over

global communication rounds. This conventional privacy notion

is often considered suboptimal in practical applications. Our work

extends existing �ndings by leveraging RDP tools to estimate the

gain of privacy caused by client sampling, see Section 5.

3 PRELIMINARIES

Di�erential Privacy (DP) is a robust and mathematically rigorous

de�nition of privacy. It allows for the quanti�cation of the informa-

tion leaked by an algorithm about its input data. Note that when two

datasets � and �′ di�er by only one record1, denoted as � ∼ �′,

we refer to them as adjacent datasets.

De�nition 1 ((Y, X)-Di�erential Privacy [8, 9]). A randomized al-

gorithm A : D → O satis�es (Y, X)-DP if for any pair of adjacent

datasets �, �′ ∈ D and any subsets of outputs > ¦ O, it holds that

Pr[A(�) ∈ >] f 4Y Pr[A(�′) ∈ >] + X.

The privacy guarantee is controlled by the “privacy budget” Y > 0

and the parameter X g 0 which captures the probability that the

pure Y-DP (i.e., (Y, 0)-DP) is broken. While the standard (Y, X)-DP is

widely used in a broad range of literature, it may not be suitable for

some settings. The following are two notable limitations associated

with (Y, X)-DP recognized in literature:

(1) (Y, X)-DP provides uniform privacy guarantees for the entire

dataset regardless of the individuals’ preferences;

(2) (Y, X)-DP o�ers a relatively loose composition bound and thus it

is not suitable to track and analyze the overall privacy cost of

complex iterative algorithms which will lead to poor privacy

and utility trade-o�.

In this study, our aim is to design a �nely tailored algorithm with

personalized privacy that e�ectively tackles the aforementioned

challenges in the context of FL applications. We �rst review the

notions of personalized di�erential privacy (PDP) and Rényi dif-

ferential privacy (RDP), both of which form building blocks for

our privacy analysis and algorithm design. More speci�cally, PDP

tailors the level of privacy protection based on the speci�c privacy

preferences of each record. RDP o�ers a versatile framework for

tight privacy accounting and better privacy-utility trade-o�s.

3.1 Personalized Di�erential Privacy

Personalized DP is a variation of DP that bounds the individual

privacy cost for each record in the dataset. For example, the privacy

guarantee for a speci�c record3 9 is de�ned over all pairs of adjacent

datasets that di�er by 3 9 , denoted as �
3 9
∼ �− 9 . For clarity, we refer

1In this work, we consider the presence/absence model of privacy, where protection
is w.r.t. the presence/absence of a record in the analyzed dataset, e.g., � ′ ≜ � \ {3 },
instead of the replacement of a record with another.
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to this variant as record-speci�c adjacent datasets and we have the

relationship {(�,�− 9 )} ¢ {(�, �
′)}.

De�nition 2 ((E, X)-Personalized Di�erential Privacy [22]). Given

a dataset � with each record 3 9 ∈ � corresponding to a speci�c

privacy budget Y 9 > 0. Let E = {Y 9 } 9∈[# ] . A randomized algorithm

A : D→ O satis�es (E, X)-personalized di�erential privacy (PDP)

if it guarantees (Y 9 , X)-DP w.r.t. the speci�c record 3 9 . That is, for

any pair of record-speci�c adjacent datasets �,�− 9 ∈ D and any

subsets of output > ¦ O, it holds that

Pr[A(�) ∈ >] f 4Y 9 Pr[A(�− 9 ) ∈ >] + X.

Remark 1. Although X is also an important DP parameter and

technically its value could be randomly speci�ed like Y, we assume

all records share a common X with a small, positive default value

in this paper based on the following two considerations.

• On the one hand, X is commonly taken to be “sub-polynomially

small”, that is, a rule-of-thumb is that it should be much smaller

than the inverse of any polynomial in the size of the dataset [9, 10].

Since individuals may not have access to the complete dataset

or information about its size, it becomes di�cult for them to

properly set a value for X that meets the desired privacy budgets.

• On the other hand, the choices of Y and the choices of X are

statistically independent, that is, for two di�erent records31, 32 ∈

� , if Y1 g Y2, it is not necessarily always X1 g X2 (and vice

versa). We argue this issue is complicated and leave it as an open

problem.

The Sample Mechanism. Building upon the �ndings of privacy

ampli�cation by random sampling [1, 2, 29, 52, 60], Jorgensen et

al. [22] proposed the Sample mechanism. It achieves (E, 0)-PDP by

applying an arbitrary mechanism that satis�es Y-DP on a subset of

data records which is obtained by a non-uniform Poisson sampling

procedure. Our work is inspired by this idea but encounters greater

challenges due to the utilization of RDP, detailed in Section 4.2.

De�nition 3 (Poisson Sampling [60]). Given a dataset � with

size # and a set of per-record sampling probabilities q = {@8 |@8 ∈

[0, 1], 8 ∈ [# ]}, the Poisson sampling procedure outputs a subset

{38 |V8 = 1, 8 ∈ [# ]} by sampling a Bernoulli random variable

V8 ∼ �4A (@8 ) independently. Here V8 ∈ {0, 1} denotes an indicator

that depicts each individual’s participation in the dataset.

De�nition 4 (Poisson-Sampled Gaussian (PoiSG) mechanism). Let

� ∈ D be an input dataset and q = {@1, . . . , @# } denote the set of

sampling probabilities of each record38 ∈ � . Consider a function 5 :

D→ O with ℓ2-sensitivity !, then the Poisson-Sampled Gaussian

(PoiSG) mechanism is de�ned as:

%>8(�q,f (�) ≜ 5 (() + Z , Z ∼ N(0, f2!2),

where each element 38 ∈ ( ¦ � is selected via Poisson sampling,

and N(0, f2!2) is a Gaussian distribution with standard deviation

f!. Note that we assume ! = 1 throughout the rest of this paper.

3.2 Rényi Di�erential Privacy

Rényi di�erential privacy (RDP) utilizes the asymmetric measure

of Rényi divergence to quantify the privacy guarantee. Note that

with a controlling parameter U ≠ 1, the Rényi divergence of order

U from distribution & to % is:

�U (% ∥&) ≜
1

U − 1
logE>∼&

[(

% (>)

& (>)

)U ]

.

Let % = A(�) and & = A(�′), then (U, d)-RDP is achieved by

simultaneously bounding the Rényi divergence of two directions,

denoted by �´U (% ∥&) ≜ max{�U (% ∥&), �U (& ∥%)}.

De�nition 5 ((U, d)-Rényi Di�erential Privacy [43]). A randomized

mechanism A satis�es (U, d)-RDP with order U ∈ (1,∞) if for any

pair of adjacent datasets �,�′ ∈ D, it holds that

�´U (A(�)∥A(�
′)) f d. (1)

Di�erent from the traditional (Y, X)-DP, which measures privacy

leakage by utilizing the max divergence of two output distributions,

RDP allows for a continuous spectrum of privacy measures. More

speci�cally, as U → ∞, �∞ (A(�)∥A(�
′)) is equal to the max

divergence [9]; and limU→1 �U (A(�)∥A(�
′)) can be veri�ed to

be equal to the expected value of the privacy cost random variable

2 (> ;A, �, �′) ≜ ln
Pr[A(� ) ∈> ]
Pr[A(� ′ ) ∈> ]

[43]. This characteristic enables

RDP to provide a sharper privacy quanti�cation and become one of

themost popular privacy analysis tools, especially adept at handling

compositemechanisms like di�erentially private stochastic gradient

descent (DP-SGD) [1].

We provide the following useful lemmas which are important

primitives for the design of our FL algorithm and privacy analysis.

Lemma 1 (Transition from RDP to DP [43]). If A is an (U, d)-

RDP mechanism, it also satis�es (d +
log 1/X
U−1 , X)-DP for any 0 < X < 1.

Lemma 2 (Adaptive seqential composition [43]). If A1 :

D→ O1 is (U, d1)-RDP and A2 : D × O1 → O2 is (U, d2)-RDP, then

the composed mechanism A ≜ A1 ◦ A2 : D → O1 × O2 satis�es

(U, d1 + d2)-RDP.

Lemma 3 (Post-processing [43]). If A is (U, d)-RDP and F :

O→ O′ is an arbitrary data-independent randomized mapping, then

F ◦ A is (U, d)-RDP.

Lemma 4 (Privacy amplification via (uniform) Poisson sam-

pling for Gaussian mechanism [44, 60]). Consider a PoiSG mech-

anism and a uniform sampling probability @ among all records. For

all pairs of adjacent datasets �,�′ and integer U > 1, we have2

dPoiSG (U, @) f
1

U − 1
log

{

(1 − @)U−1 (U@ − @ + 1)

+

U
∑

ℓ=2

(

U

ℓ

)

(1 − @)U−ℓ@ℓ4 (ℓ−1)d (ℓ )

}

.

(2)

Note that d (U) = U
2f2 for any U > 1.

Privacy Bounds Visualization. The privacy guarantee under

RDP can be depicted as a curve of Rényi divergence, aka., the RDP

budget curve, over the continuous range of U values [43]. For a

clear understanding, we visualize the RDP budget curve of the

PoiSG mechanism with uniform sampling probability @ in Figure 2

2Note that [44] and [60] demonstrated similar RDP upper bounds for the PoiSG
mechanism. The presented Lemma 3 ismainly rooted in the �ndings of [60]. Speci�cally,
when we work with the Gaussian mechanism, Proposition 10 [60] implies Theorem 8
holds and the lower bound in Theorem 6 is a tighter RDP upper bound for the PoiSG
mechanism.
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Figure 2: The RDP and DP budget curves w.r.t. order U and sampling

probability @ of a sequential combination of )=100 PoiSG mecha-

nisms with noise multiplier f=1.0 and X=1e-3.

(left). When @ = 1, the PoiSG mechanism is reduced to a standard

Gaussian mechanism whose RDP budget curve is a straight line

[43]. For the RDP budget curves with @ < 1, there exists a phase

transition that happens around U@4d (U ) ≈ @−1 [60]. As@ gets larger,

this transition tends to appear earlier and get more indistinct.
Based on Lemma 1, we can obtain the corresponding DP budget

curve given a desired X and then �nd the smallest Y by solving the
optimization problem below [1]:

Y∗ ≜ min
U

{

d +
log(1/X )

U − 1

}

. (3)

Corollary 38 in [52] proves the unimodality/quasi-convexity of this

optimization problem. Figure 2 (right) demonstrates the existence

of an optimal order U∗, corresponding to the minimum Y∗.

Remark 2. Instead of exploring an in�nite range of real numbers

U ∈ (1,∞), practitioners often opt to prede�ne a �nite collection

of RDP orders to e�ectively capture the minimum Y∗. This trick

has been implemented in leading DP libraries such as Opacus3,

Tensor�ow Privacy4, etc.

4 FEDERATED LEARNING WITH
RECORD-LEVEL PERSONALIZED DP

We target the typical supervised FL task with a central server and
a set of " clients C = {�1, . . . ,�" }. Consider each client �8 ∈ C
holds a private training dataset �8 = {38,1, . . . , 38,#8

}. Each record
38, 9 ∈ �8 is associated with a privacy budget Y8, 9 > 0, which re�ects
the privacy preference of the record’s owner. Our goal is to learn

a globally shared model with parameters x ∈ R3 by solving the
following empirical risk problem

min
x∈R3

{

L(x) ≜
1

"

"
∑

8=1

L8 (x;�8 )

}

, (4)

where L8 (x;�8 ) ≜
1

#8

#8
∑

9=1

; (x, 38,9 ), (5)

with the privacy guarantee of record-level personalized di�erential

privacy (as stated in De�nition 6 below). Here ; (·) denotes the loss

function used for local optimization.

3https://github.com/pytorch/opacus
4https://github.com/tensor�ow/privacy
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Figure 3: A step-by-step illustration of the rPDP-FL algorithm.

De�nition 6 (Federated Learning with Record-level Personalized

Di�erential Privacy). Given X g 0. Let D =
⋃"

8=1 �8 and E =
⋃"

8=1{Y8, 9 } 9∈[#8 ] . A randomized FL algorithm A�! : D→ O satis-

�es (E, X)-record-level personalized di�erential privacy (rPDP) if it

guarantees (Y8, 9 , X)-DP w.r.t. the speci�c record 38, 9 , i.e., for any pair

of record-speci�c adjacent datasets D
38,9
∼ D−8, 9 and any subsets

of output > ¦ O, it holds that

Pr[A�! (D) ∈ >] f 4Y8,9 Pr[A�! (D−8, 9 ) ∈ >] + X, (6)

where D−8, 9 ≜ �8,− 9 ∪ {∪<≠9�<} and �8,− 9 ≜ �8 \ {38, 9 }.

FedAvg and Two-stage Sampling Scheme. The most fundamen-

tal approach for solving the non-private optimization problem in

Eq. (4) is federated averaging (FedAvg) [41]. Despite numerous

improved methods being proposed to tackle FedAvg’s limitations

like data heterogeneity or communication e�ciency [19, 24, 30, 31],

most of them still adhere to a two-stage sampling scheme (i.e., outer

client sampling followed by the inner record sampling) together

with SGD-based learning paradigm. Given the primary aim of this

work is the establishment of a record-level personalized privacy

protection mechanism, we choose FedAvg as the backbone of our

FL framework and adopt DP-SGD [1] during each client’s local

training process to achieve record-level protection. We expect our

proposed rPDP-FL to be extendable to work with other two-stage

sampling FL methods listed above.

4.1 Solution Overview

We employ a two-stage hybrid sampling scheme within the FedAvg

algorithm to obtain a global model using clients’ local datasets while

ensuring diverse individual privacy preferences. This innovative

framework for private FL, termed rPDP-FL, di�ers from the classic

approach in three key aspects:

• Initialization: Each client allocates a customized sampling prob-

ability @8, 9 to every record in its local dataset, tailored to the

record’s speci�c privacy budget.
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Algorithm 1: Record-level Personalized Di�erentially Pri-

vate Federated Learning (rPDP-FL, Pseudocode)

input :" clients with their local datasets (�1, . . . , �" ) ; the

total communication round) and the local SGD step g ;

the client-level sampling probability _.

// Initialization

1 foreach client�8 ∈ C do in parallel

2 {@8,9 } 9 ∈ [|�8 | ] ← (pre-computation of sampling probabilities

for all records)

3 for C ∈ [) ] do

// Client-level Poisson sampling with the uniform

sampling probability _

4 ČC ← (a random subset drawn from [" ])

5 foreach client�8 ∈ Č
C do in parallel

6 for A ∈ [g ] do

// Record-level Poisson sampling with

non-uniform sampling probabilities

{@8,9 } 9 ∈ [|�8 | ]

7 (A ← (a random mini-batch drawn from �8 )

// Differentially private SGD

// The central server averages the collected noisy

model updates and obtains the updated global

model parameters

• Stage 1: Client-level Poisson sampling (uniform): at the

beginning of round C ∈ [) ], the central server selects a random

subset of clients ČC via Poisson sampling with uniform per-client

sampling probability _ ∈ [0, 1] and dispatches the up-to-date

global model xC to these selected clients.

• Stage 2: Record-level Poisson sampling (non-uniform): each

client selected in the above stage performs a certain number of

DP-SGD iterations locally and independently and uploads the

model updates to the central server. During each iteration, the

mini-batches are drawn from the whole local dataset via Poisson

sampling with non-uniform per-record sampling probabilities.

It’s worth highlighting that rPDP-FL solely alters the sampling

processes (except for the initialization step) and remains detached

from the intricacies associated with the learning process. This fea-

ture enables its broader applicability to any non-private FL frame-

works that incorporate a two-stage sampling process, as illustrated

in Figure 3. The pseudocode is presented in Algorithm 1 and the

complete version will be shown in Algorithm 3.

4.2 Challenges

To o�er reasonable personalized privacy guarantees while maintain-

ing the utility of the global model, the development of Algorithm 1

faces a dual challenge in both theory and practice.

• The privacy analysis challenge. From a theoretical perspective,

it is essential to establish as “tight” upper bounds as possible for

the overall privacy cost of each individual to enhance the trade-

o� between privacy and utility.

• The parameter estimation challenge. For practical purposes,

an e�cient and e�ective parameter estimation strategy must be

adopted to select appropriate hyperparameters for the privacy

algorithm, i.e., determining sampling probabilities for all records.

Our research aims to explore the mathematical relationship be-

tween privacy cost and their sampling probabilities. In particular,

we provide the privacy analysis given the sampling probability of

each record, as detailed in Section 5. Furthermore, we outline our

approach for deriving the sampling probabilities in accordance with

the predetermined individualized privacy budgets in Section 6.

5 PRIVACY ANALYSIS

5.1 Privacy Objectives and Key Results

We will analyze the upper bound of the accumulative privacy cost

for any single record 38, 9 in Algorithm 1, assuming its sampling

probability @8, 9 is given. This can be broken down into the following

three basic nested routines:

(1) Local multi-step update, which can be abstracted as an adaptive

combination of g PoiSG mechanisms.

(2) Global parameter aggregation, which can be seen as a multi-

phase procedure involving uniform client sampling and data-

independent post-processing of the results derived from the

local update performed by the chosen clients.

(3) Global multi-round update, which can be perceived as an adap-

tive combination of) parameter aggregationmechanisms above.

Symbolic Representations. Without loss of generality, our focus

will be primarily on the �rst record 31,1 ∈ �1 of client �1. For the

sake of conciseness, we use the symbolic representations as follows.

• D ≜
⋃"

8=1 �8 : the federated dataset.

• D,D−1,1: the adjacent federated datasets concerning a speci�c

data record 31,1, i.e., D
31,1
∼ D−1,1.

• �1, �1,−1: the adjacent local datasets at client �1 concerning a

speci�c data record 31,1, i.e., �1
31,1
∼ �1,−1.

• CSamp_ (�1, . . . , �" ): client sampling using uniform Poisson

sampling, where _ ∈ (0, 1] denotes the sampling probabilities for

all clients.

• RSampq1 (�1): record sampling at client �1 using non-uniform

Poisson sampling, where q1 = {@1,1, . . . , @1, |�1 | } denotes the set

of sampling probabilities of each record 31, 9 ∈ �1.

• A� (·) ≜ 5 (·) + N (0, f2I): the Gaussian mechanism satisfying

(U, d� )-RDP, where d� (U) ≜
U!2

2f2 and ! is the the sensitivity of

function 5 [43]. For simplicity, we assume that ! = 1 through the

rest of this section.

• A(·) ≜ A� (RSampq1 (·)): the PoiSG mechanism.

• A8= (·) ≜ A
¹g

= (A1 (·),A2 (A1 (·), ·), . . . ,Ag (A1 (·), . . . , ·)):

local multi-step update.

• A>DC (·) ≜ Avg(CSamp_ ◦ A8=): global parameter aggregation.

• A�! (·) ≜ A>DC (·)
¹C : global multi-round update.

To enjoy the strength of tight privacy accounting o�ered by
the RDP privacy analysis framework, we need to overcome the
incompatibility challenge that all existing PDP techniques fail to
provide tight privacy analysis under the RDP framework. In detail,
we consider analyzing the RDP bound ofA�! �rst, and then convert
it into the form of a standard DP guarantee by applying Lemma 1.
For example, in order to show that A�! satis�es (Y1,1, X)-DP w.r.t.
31,1, we need to show that for any pair of adjacent federated datasets
D,D−1,1 and arbitrary output > , we have

� (A�! (D) ∥A�! (D−1,1 ) ) f d�!,
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s.t. min
U>1

{

d�! +
log(1/X )

U − 1

}

f Y1,1 . (7)

Privacy Objectives. As previously discussed in Section 2, FL sce-

narios typically account for two distinct types of potential adver-

saries. Consequently, the objectives of privacy analysis can be cate-

gorized into the following.

(1) Type I privacy analysis against the honest-but-curious server
(which has access to the intermediate model updates): given
the local model parameter xC1 ∼ A8= (�1) uploaded by Client
�1, the individual RDP privacy bound of A�! for record 31,1 is

�U (A�! (D) ∥A�! (D−1,1 ) )

= _) · �U (A8= (�1 ) ∥A8= (�1,−1 ) ) f d� .

(2) Type II privacy analysis against untrusted clients or third parties
(which have access to the intermediate or �nal global model):
for any global model parameter xC ∼ A�! (D), the individual
RDP privacy bound of A�! for record 31,1 is

�U (A�! (D) ∥A�! (D−1,1 ) )

= ) · �U (A>DC (D) ∥A>DC (D−1,1 ) ) f d� � .

Key Results. The key results are presented below. The detailed

proofs will be presented in the next subsection.

Lemma 5. Suppose that ČC is a subset of clients selected at round

C ∈ [) ]. The simple average operation Avg(·) over all outputs >8 ∼

A8= (�8 ), where �8 ∈ Č
C , will not incur any extra privacy cost to all

records 38, 9 ∈ D.

Proof. The proof follows from the fact that the RDP guarantee

is preserved under post-processing, as shown in Lemma 3. □

Lemma 6 (Enhanced Privacy Amplification by Two-Stage
Hybrid Sampling). Assume the sampling probability for any clients
is _ ∈ (0, 1], and the sampling probability for data record 38, 9 ∈ �8 is

@8, 9 ∈ (0, 1]. If a random algorithm A8= (�8 , x
C−1) satis�es (U, dg8, 9 )-

RDP w.r.t 38, 9 , then the algorithm A>DC (D) satis�es (U, d
g,_
8, 9 )-RDP

w.r.t. 38, 9 , where

dg,_8,9 (U,@8,9 ) f
1

U − 1
ln

{

1 − _ + _4
(U−1)dg

8,9
(U,@8,9 )

}

, and

dg8,9 (U,@8,9 ) f
g

U − 1
ln

{

(1 − @8,9 )
U−1 (U@8,9 − @8,9 + 1)

+

U
∑

ℓ=2

(

U

ℓ

)

(1 − @8,9 )
U−ℓ@ℓ8,94

(ℓ−1)d� (ℓ )

}

.

Theorem 1 (Individual PrivacyAnalysis in Federated Learn-
ing). For any X ∈ (0, 1), the random algorithm A�! (D) satis�es
(Ŷ∗8, 9 , X)-DP w.r.t. a speci�c record 38, 9 ∈ D, where

Ŷ∗8,9 ≜ min
U

(

d�! (U,@8,9 ) +
ln(1/X )

U − 1

)

. (8)

Note that: (1) for untrusted clients or third parties, d�! (U, @8, 9 ) ≜

)dg,_8, 9 (U, @8, 9 ); (2) for the honest-but-curious server, d�! (U, @8, 9 ) ≜

_)dg8, 9 (U, @8, 9 ).

5.2 Detailed Proofs

We �rst use a special case to explain the enhanced privacy e�ects at

di�erent stages and extend the conclusion tomore general scenarios.

Consider that a server collaborates with two clients, �1 and �2,

to collectively train an FL model. Here �2 is assumed to be an

adversary and aims to infer whether 31,1 is contained in �1.

Considering the sequential composition of RDP as in Lemma 2,

ourmajor objectivewill be analyzing the increment of the individual

RDP parameter between two successive rounds, that is,

� (A>DC (D)∥A>DC (D−1,1))

≜
1

U − 1
logE>∼A>DC (D−1,1 )

[(

Pr[A>DC (D) ∈ >]

Pr[A>DC (D−1,1) ∈ >]

)U ]

.

5.2.1 Local Multi-step Update. According to Fact 1 below which

aligns with the decentralized nature of FL, the privacy analysis of

the local multi-step update process essentially follows the existing

theoretical results based on the typical DP-SGD algorithm. The

only di�erence is that now we need to characterize the privacy cost

for each record since the sampling probabilities of the records are

di�erent from each other.

Fact 1. Once the initial model parameters xC−1 are �xed at the

beginning of round C ∈ [) ], each client performs local update in-

dependently, i.e., the distribution of the output xC8 ∼ A8= (x
C−1, �8 )

(8 = 2, . . . , ") is independent of any data records in �1.

For the local dataset �1 with a size of # , let s = (B1, . . . , B# ) ¦
{0, 1}# be the indicator vector of the record sampling outcome, i.e.,
B 9 = 1 if 31, 9 is selected

5. It is evident the probability that s appears

is ?s =
∏#

9=1 (@ 9 )
B 9 (1 − @ 9 )

1−B 9 and the total number of possible

values of s is 2# . For example, if # = 3 and s = [1, 0, 1], then
?s = @1 (1−@2)@3 and total number of possible values of s is 8. Then
for any pair of adjacent local datasets �1, �1,−1 and any subsets of
output > ¦ O, the output distributions of a single DP-SGD step can
be represented as:

Pr[A(�1 ) ∈ > ] =
∑

s

?s Pr[A� (s) ∈ > ]

= (1 − @1 )
∑

s:B1=0

?s Pr[A� (s) ∈ > |B1 = 0]

+ @1

∑

s:B1=1

?s Pr[A� (s) ∈ > |B1 = 1]

Pr[A(�1,−1 ) ∈ > ] =
∑

s:B1=0

?s Pr[A� (s) ∈ > |B1 = 0]

As the local multi-step update process A8= can be viewed as a

g-fold adaptive composition of a PoiSG mechanism, we have the

following Lemma 7 by directly applying the existing RDP compo-

sition and ampli�cation results as shown in Lemma 2 and Lemma

4. The distinction lies in the privacy guarantee provided by A8= is

speci�c to individual records, instead of being established on the

wider scope of the adjacent datasets �1 and �
′
1.

Lemma 7. For any client�8 , if the sampling probability of a speci�c

record 38, 9 ∈ �8 is @8, 9 ∈ (0, 1], then the local multi-step update

process A8= (�8 ) satis�es (U, d
g
8, 9 )-RDP w.r.t. 38, 9 , where

dg8, 9 ≜ g · d%>8(� (U ;�8 , �8,− 9 , @8, 9 ) (9)

5For notational convenience, we suppress the dependence on the client identi�er 8 .
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5.2.2 Global Parameter Aggregation. We consider the output dis-

tribution of A>DC on the adjacent federated datasets D,D−1,1 in

the context of the above special case. Let %8 ≜ Pr[A8= (�8 ) ∈ >8 ]

(8 = 1, 2) and % ′1 ≜ Pr[A8= (�1,−1) ∈ >1]. It can be observed

that for the federated dataset D, the underlying distribution ¨ ≜

Pr[A>DC (D) ∈ >] can be represented as

• a mixture of %1 and %2, denoted as �11, if both �1 and �2 are

selected;

• the same as %1, denoted as �10, if only �1 is selected;

• the same as %2, denoted as �01, if only �2 is selected;

• independent of both, denoted as �00, if neither �1 nor �2 is

selected.

Similarly, the distribution « ≜ Pr[A>DC (D−1,1) ∈ >] will be

• a mixture of % ′1 and %2, denoted as � ′11, if both �1 and �2 are

selected;

• the same as % ′1, denoted as � ′10, if only �1 is selected;

• the same as �01, if only �2 is selected;

• the same as �00, if neither �1 nor �2 is selected.

Remark 3. Note that here we focus on the individual privacy cost

for PDP which is measured on all pairs of record-level adjacent

datasets w.r.t. the “target” record 31,1. In the context of traditional

(uniform) DP, we cannot simply assume the output from other

clients >2, . . . , >" are constants when analyzing the impact of an

individual record on the worst-case privacy cost, as the output

distribution of Avg(·) is highly dependent on each record in D.

Let l ¦ (l1, . . . , l" ) ∈ {0, 1}
" be the indicator vector of the

outcome of client sampling and l8 = 1 denotes that Client �8 is
selected. Then we have

¨ = _ (1 − _)�10 + _
2�11 + (1 − _)2�00 + (1 − _)_�01,

=

∑

l :l1=1

?l�l +
∑

l :l1=0

?l�l .

« = _ (1 − _)� ′10 + _
2� ′11 + (1 − _)2�00 + (1 − _)_�01 .

=

∑

l :l1=1

?l� ′l +
∑

l :l1=0

?l�l .

Now we try to bound E« [(¨/«)
U ] by means of decomposition

and simpli�cation. More speci�cally, we have

E« [ (¨/«)
U ]
(1)
f ElE« [ (¨/«)

U |l ]

= El2

{

_E� ′l

[

(�l/�
′
l )

U |l1 = 1
]

+ (1 − _)E� ′l

[

(�l/�
′
l )

U |l1 = 0
]

}

= _E� ′l

[

(�l/�
′
l )

U |l1 = 1
]

+ (1 − _)

(2)
f _E% ′

1

[

(%1/%
′
1 )

U
]

+ (1 − _)

= _4 (U−1)�U (A8= (�1 ∥A8= (�1,−1 ) ) + (1 − _)

f _4
(U−1)dg

1,1 + (1 − _),

where the inequality (1) follows from the Jensen’s inequality
and Lemma 22 in [52] which proves bivariate function 5 (G,~) =

GU/~U−1 is jointly convex on R2+ for all U > 1; the inequality (2)
follows from Lemma 5 which implies that the individual privacy
guarantee for 31,1 is immune to post-processing, i.e.,

�U (�l ∥�
′
l ) f �U (A8= (�1 ) ∥A8= (�1,−1 ) ) f dg8,9 .

The equality holds if each client’s sampling probability _ = 1.
Similarly, we can also have

E¨ [ («/¨)
U ] f _4 (U−1)�U (A8= (�1,−1 ) ∥A8= (�1 ) ) + (1 − _)

q ∈ Π
·*

³, Ã ·, ·

Ã (³ ; q) ≤
1

³ − 1
log {(1 − Ã )³−1(³ q − q + 1)

+

³

3
3=2

(
³

3)(1 − q)³−3q3e(3−1)Ã(3) .

· (³ ; Ã , · ) = Ã +
log 1/·

³ − 1
,

∀³ ∈ &, · > 0

·* = min
³∈&

· (³ ; Ã, · )

F (·) =

0, · = 0

f −1(·), 0 < · < ·̌

1.0, · ≥ ·̌

·̌ ≜ ·*(1.0)

(
&, Π






{(q, ·*)}q∈Π

( ∀³ ∈ &)

·* = f (Ã)

∈ Π
·*, Ã ·, ·

1/·
, , · )∈ &

(

Figure 4: An illustration of Simulation-CurveFitting.

f _4
(U−1)dg

1,1 + (1 − _) .

Now we have completed the proof of Lemma 6.

5.2.3 Global Multi-round Update. Putting all the pieces together,

the proof of Theorem 1 can be further derived by leveraging the

adaptive composition theorem of RDP as shown in Lemma 2.

6 SELECTING SAMPLING PROBABILITY

In this section, we explore how to select a sampling probability

for every single record to achieve an estimated privacy cost that

closely aligns with the desired privacy budget, on the condition

that the other factors (e.g., ), g , f , and X) remain constant.

6.1 Simulation-CurveFitting

Given the theoretical result in Theorem 1, it would be ideal if we

could directly derive a sampling probability for each record given its

predetermined personalized privacy budget. Yet, it is non-trivial to

derive an explicit closed-form expression due to the complexity aris-

ing from the optimization process and the highly nonlinear nature

of the tight bound d�! . Existing approaches utilize numerical meth-

ods to handle this absence of closed-form issue and approximately

obtain the sampling probability, e.g., by binary search algorithm

[3]. However, these strategies become computationally demanding

when applied to our case. We introduce a new and e�ective strategy

termed Simulation-CurveFitting (SCF). As the name suggests, this

approach consists of the following two stages, and the speci�c steps

are illustrated in Figure 4 and outlined in Algorithm 2.

Stage I: Simulation. We aim to elucidate the relationship be-

tween @ and Y6 through a series of simulation experiments. In the

beginning, we establish two �nite sets of candidate values: the �rst

consists of various sampling probabilities, which we refer to as Π;

the second consists of a sequence of discrete RDP orders denoted as

A. For each @ ∈ Π, we compute the DP budget curves and then �nd

the corresponding minimum value Y∗. For illustration, we show a

series of DP budget curves for the rPDP-FL algorithm in Figure 5

6For notational convenience, we suppress the dependence on the record identi�er 8, 9 .
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Figure 5: The DP budget curves w.r.t. order U (left) and the optimum

DP budget w.r.t. sampling probability @ (right) of a rPDP-FL algo-

rithm with parameters)=20, g=5, _=0.5, f=1.0, and X=1e-3.

(left7), corresponding to varying values of @. The minimum value

on each curve is then used to plot the optimum DP budget w.r.t.

the corresponding sampling probability on the right �gure. The

pseudocode is illustrated in lines 3-6 of Algorithm 2.

Stage II: CurveFitting. In Figure 5 (right), we depict the one-

to-one correspondence between the optimum DP budgets and their

respective sampling probabilities (represented as a series of dots)

across various parameter settings (represented by di�erent colors).

This visualization reveals a compelling observation – a mathemat-

ical function may potentially model the tight upper bound on the

accumulative privacy cost w.r.t. its sampling probability. Armed with

this insight, we employ curve-�tting tools8 to approximate the cor-

relation between @ and Y. The best-�t solution obtained is a simple

exponential function in the form

Ŷ∗ ≈ 5 (@) ≜ 40 ·@+1 + 2,

as stated in Line 7 of Algorithm 2. Our best-�t function is more con-

cise and elegant than the one given in Eq.(8) in Theorem 1, allowing

inverse computation of the sampling probability @ given the privacy

cost. We refer to the inverse function as sampling probability esti-

mator, denoted as � (Y), which takes a privacy budget Y > 0 as input

and outputs a valid sampling probability @ ∈ [0, 1]. In particular, if

an input Y exceeds the optimum DP budget corresponding to @=1.0,

denoted as Y∗ (1.0), the output probability @ is projected to be 1.0.

See Line 8 of Algorithm 2 for more details.

Measures for goodness-of-�t. We utilize the '2 value (also

known as the coe�cient of determination) to quantify how well the

estimated privacy cost by the curve �tting function matches the pri-

vacy cost derived from the privacy accounting, ranging from 0 (no

correlation) to 1 (perfect positive correlation). As per the empirical

results illustrated in Figure 5 (right), the best-�t model exhibits an

'2 value exceeding 99%. This demonstrates strong evidence of the

model’s ability to derive the sampling probability for each record

based on their desired privacy budgets.

7This �gure closely resembles Figure 2 (right) which depicts results obtained in cen-
tralized settings. However, a key distinction is that the minimum values Y∗ across all
the curves in Figure 2 (right) are consistently greater than those in Figure 5 (left). This
highlights the enhanced e�ect of privacy ampli�cation resulting from the client-level
sampling procedure in FL framework.
8SciPy: https://scipy.org/.

Algorithm 2: The Simulation-CurveFitting (SCF) strategy

input :The noise multiplier f , the gradient clipping bound !,

and the target DP parameter X .

output :The sampling probability estimator

// Initialize two candidate lists of U,@

1 A← a candidate list of RDP order U ∈ (1,∞)

2 Π ← a candidate list of sampling probability @ ∈ [0, 1]

3 foreach @ ∈ Π do

// Numerical simulation analysis of PoiSGM with

sampling probability @

4 d�! (U,@) ← (the RDP budget curve w.r.t. order U ∈ A

calculated based on Theorem 1)

5 Y (U, X,@) = d�! (U,@) +
log 1/X
U−1 ← (the DP budget curve w.r.t.

order U ∈ A calculated based on Lemma 1)

6 Y∗ (X,@) = minU ∈A Y (U, X,@) ← (the optimum DP budget w.r.t.

sampling probability @)

// Curve fitting

7 5 (@) ← (the best-�t mathematical model to the generated

observations { (@, Y∗ ) }@∈Π)

// The sampling probability estimator

8

� =

{

5 −1 (Y ), 0 < Y < Y∗ (1.0)

1.0, Y g Y∗ (1.0)

return �

6.2 Complete Algorithm of rPDP-FL

The SCF strategy has been further integrated into Algorithm 1,

with some tweaks in the initialization and sampling procedures. A

comprehensive outline of rPDP-FL is provided in Algorithm 3.

The per-record sampling probability initialization. At the

onset of the learning process, the server will compute the sampling

probability estimator � and distribute it to all clients. Note that

this computation does not rely on personal data from sensitive

records stored locally, so there is no risk of compromising the

privacy of these records. On the client side, the per-record sampling

probabilities will be calculated by directly plugging in their privacy

budgets Y8, 9 into the received sampling probability estimator. All

clients then employ non-uniform Poisson sampling to randomly

select a subset of records based on these probabilities, and apply

the DP-SGD algorithm [1] for local model updates.

The per-record privacy budget accountant. Another impor-

tant task for completing rPDP-FL is to keep track of the usage of

the privacy budget for each of the records in the course of training.

Once the privacy budget runs out, individuals can opt out of the

remaining training. In our work, we introduce a monitoring module,

called the budget accountant, which is in charge of privacy budget

accounting: (1) Pre-check at the beginning of the communication

round if an individual has su�cient privacy budget to participate in

the current round; (2) Compute and update the accumulated privacy

cost of an individual after the current communication round is over.

6.3 Discussions

Generalization of the SCF strategy. A distinct characteristic of

the SCF strategy lies in its independence from the inherent complex-

ities of speci�c processes. While this paper primarily focuses on FL
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Algorithm 3: Record-level Personalized Di�erentially Pri-

vate Federated Learning (rPDP-FL, complete version)

input :" clients with their local datasets �ğ∈ [ĉ ] and

pre-speci�ed privacy budgets {Yğ,Ġ }ğ∈|Āğ |, Ġ ∈ [ĉ ] ; the

total communication rounds) , the client-level

sampling probability _. Parameters shared by all

clients: the local training steps g ; the learning rate [;

the gradient clipping bound !, the noise multiplier f

and the target DP parameter X .

// Initialization

1 C ← (all participating clients with size")

// Pre-computation

2 � ← (the sampling probability estimator obtained through Alg. 2)

3 foreach�ğ ∈ C do in parallel

4 {@ğ,Ġ = � (Yğ,Ġ ) } Ġ ∈ [|Āğ | ] ← (the per-record sampling

probabilities)

5 x0 ← (Initialize randomly)

6 for C ∈ [) ] do

// Client-level Poisson sampling with the uniform

sampling probability _

7 ČĪ ← (a random subset drawn from" clients)

8 foreach�ğ ∈ Č
Ī do in parallel

9 xĪ,0ğ = xĪ

10 for A ∈ [g ] do

// Record-level Poisson sampling with the

derived sampling probability {@ğ,Ġ } Ġ ∈ [|Āğ | ]

11 (Ĩ ← (a random mini-batch drawn from �ğ )

12 foreach microbatch b ∈ (Ĩ do

13 ḡĨ
Ĉ
← ∇ℓ (xĪ,Ĩğ ; b ) · min(1, Ĉ

∥∇ℓ (x
Ī,Ĩ
ğ

;Ĉ ) ∥2
)

14 g̃Ĩ ←
ā
|ďĨ |

(

∑

ḡĨ
Ĉ
+ N(0, f2!2 )

)

15 xĪ,Ĩ+1ğ ← xĪ,Ĩğ − [g̃
Ĩ

16 �xğ = xĪ,ăğ − xĪ,0ğ

17 xĪ+1 ← (taking the average of all the local updates)

applications, the SCF approach serves as a versatile plug-in mod-

ule applicable to a broad spectrum of tasks that incorporate data

sampling and Gaussian mechanism, including private statistical

analysis and other SGD-based optimization tasks.

Sampling/Noise trade-o�s. In highly privacy-sensitive scenarios,

the majority of individuals (e.g., patients) prefer stronger privacy

protections, and thus their sensitive personal records are less likely

to be included in analysis. We argue that this issue is not about our

methodology itself, but an inevitable consequence of the personal

privacy decision. One remedy is to adjust the parameters of the

Gaussian mechanism, for example, setting a larger noise multiplier

f such that a higher level of Gaussian noise is used in the com-

putation, resulting in universally increased sampling probabilities

for everyone. In Figure 6, we illustrate the relationship between

optimum DP budgets and their corresponding @ (represented as a

series of dots) across various f (represented by di�erent colors).

Essentially, there is a trade-o� between sampling probability and

perturbation noise. However, this approach should be treated with

extreme caution, as an improper f could lead to a signi�cant degra-

dation in model performance.
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Figure 6: The optimum DP budget w.r.t. sampling probability @ and

noise multiplier f of a rPDP-FL algorithm with parameters )=20,

g=5, and X=1e-5.

The utility risks of the potentially suboptimal � . As a result of

the intrinsic traits of the numerical simulation method, the obtained

sampling probability estimator � could be suboptimal and lead to

utility risks for certain records, e.g., slightly unused budget (due

to low sampling probability) or early stop (due to high sampling

probability). However, both cases have statistically insigni�cant

e�ects since the best-�t curve achieves more than 99.9% '2 value

as shown in Figure 6.

7 EXPERIMENTAL EVALUATION

In this section, we conduct a thorough empirical analysis to eval-

uate the performance of both the SCF strategy and the rPDP-FL

algorithm. In Subsection 7.1, we focus on evaluating the e�ective-

ness of SCF by comparing it with the other two existing strategies

employed for achieving PDP in centralized ML settings. Given the

absence of alternative implementations achieving record-level PDP

in the context of FL, we assess the utility improvement of rPDP-FL

by contrasting it with two conventional methods that do not in-

corporate personalized privacy preservation in Subsection 7.2. The

source code, data, and other artifacts have been made available9.

Privacy Preference Distributions. We simulate di�erent scenar-

ios where users have diverse privacy preferences for their data.

• ThreeLevels: each record has the option to select a preferred

privacy budget from three distinct choices (categories) {Y1, Y2, Y3}

where Y1 < Y2 < Y3, each denoting strong, moderate, and weak

privacy protection, respectively. This simulates practical PDP

implementation scenarios where the users can choose from a few

prede�ned privacy categories.

• BoundedPareto: each record has an arbitrary Y8, 9 ∈ [0.1, 10] that

approximately follows a Pareto distribution. This simulates the

scenario where a majority of individuals lean towards stringent

privacy safeguards, while a smaller subset opts for less restrictive

protections in exchange for improved services or other incentives.

• BoundedMixGauss: each record has an arbitrary Y8, 9 ∈ [0.1, 10]

that approximately follows a mixture of three Gaussian distribu-

tions with means {Y1, Y2, Y3} where Y1 < Y2 < Y3. This simulates

the scenarios where the privacy choices are multi-modal as in

many other complex social systems [48, 49, 55].

Datasets and Models.We consider four classi�cation tasks with

the consistent objective of training a global model privately on the

9https://github.com/Emory-AIMS/rPDP-FL.git
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Table 1: Overview of the datasets and baseline models used in our experiments.

Dataset Non-/IID # clients # features # labels
# examples
(per client)

Train/Test split Model
# params
(trainable)

Training steps
(local g / global) )

Client-level
samp. prob. _

Heart-Disease [50] Non-IID 4 13 2 303 / 261 / 46 / 130 66% / 34%
Logistic Regression

(training from scratch)
20 10 / 15 1.0

MNIST [28] Non-/IID 10 28×28×1 10 ≈ 6,000 66% / 34%
Two-Layer CNN

(training from scratch)
26,010 50 / 15 0.5

CIFAR10 [27] IID 10 32×32×3 10 5,000 66% / 34%
ResNet-18 [20]

(training from scratch)
11,181,642 50 / 30 0.5

SNLI [4] IID 10
Premise-
hypothesis

pairs
3 54,936 95% / 5%

Pretrained BERT [7]
(�ne-tuning)

7,680,771 50 / 15 0.5

federated Heart Disease [50], MNIST [28], CIFAR10 [27], and SNLI

[4], separately. Note that Heart-Disease is a real healthcare dataset

comprising records from 920 patients across four hospitals in Cleve-

land, Hungary, Switzerland, and Long Beach V. On the other hand,

MNIST and CIFAR10 are two commonly used benchmarks for image

classi�cation tasks, while the SNLI dataset is a benchmark for natu-

ral language inference (NLP) tasks. In these cases, we apply the IID

and non-IID partitioning strategies introduced in [41] to split total

training examples into" = 10 subsets. For a more comprehensive

overview of the datasets, along with details on the corresponding

baseline models, please refer to Table 1.

Implementations.Our implementation utilizes the Opacus library.

All experiments are conducted on a machine with one NVIDIA A40

GPU running on Ubuntuwith 256 GBmemory. Given that themodel

training is a randomized process, we repeat all the experiments �ve

times and report the mean test accuracy across all clients.

7.1 Comparison of SCF with Existing Strategies

In this section, we show the e�ectiveness and e�ciency of our

SCF strategy in terms of model utility and computational cost by

comparing it with the following representative approaches:

• Filter: also known as Rényi privacy �lter (Algorithm 3 in [12]),

is an individual privacy accounting method that monitors the

accumulation of squared gradient norms �=>A< for each record

during the training process. The record will be �ltered out if this

accumulation exceeds a pre-speci�ed threshold.

• BinarySearch: also known as Individual DP-SGD (IDP-SGD)

with the Sample mechanism (Algorithm 2 in [3]), is a binary

search-based approach aiming for �nding the optimal sampling

probability within the range of [0, 1] for a target privacy budget.

Given that both approaches were initially tailored for centralized

ML scenarios, our experiments adhere to this context to maintain

fairness in comparisons. Speci�cally, we implement a variant of

the DP-SGD [1] algorithm, incorporating re�nements in the pre-

determination of record-level sampling probabilities through the

SCF strategy. Note that here the RDP budget curve (line 4 in Alg. 2)

should be calculated based on Lemma 4 instead of Theorem 1.

7.1.1 Comparison of SCF with Filter. While both SCF and Filter

share a common objective of achieving personalized privacy pro-

tection, they signi�cantly di�er in the de�nition of “budgets”: Filter

considers a budget for the accumulative squared gradient norms for

the records in the training process, while we focus on the DP privacy

budget Y for the accumulative privacy cost. Achieving a smooth

Table 2: Comparison of SCF with Filter in centralized ML.

Priv. Pref. Dist. Dataset Method Batch Size Test Acc
Runtime
(s/step)

ThreeLevels:
Y1 ≈ 2.0 (70%)
Y2 ≈ 4.7 (20%)
Y3 ≈ 11.8 (10%)

Heart-Disease
(pooled)

Filter 486 0.7717 0.0128
SCF 32 (Expected) 0.8189 0.0050

MNIST
(pooled)

Filter 60000 0.8411 7.1016
SCF 64 (Expected) 0.9477 2.1824
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Figure 7: Number of active records during one run of private GD

with Filter evaluated on the pooled Fed-Heart-Disease dataset (left)

and MNIST (right). The red points indicate the speci�c steps that

records with di�erent privacy budgets start to get �ltered.

transition between the two quantities is challenging10. Therefore,

our evaluation only focuses on a simpli�ed personalized privacy

scenario ThreeLevels, where the percentage of records with Y1, Y2,

and Y3 is 70%, 20%, and 10%, respectively. We incorporate Filter into

the private gradient descent algorithm11 as implemented in [12].

Then we assess the model utility and computational e�ciency of

both approaches on the pooled Heart-Disease and MNIST datasets.

Number of active records. In Figure 7, we plot the number of

active records during one run of private GD with Filter, i.e. those

that have not yet exhausted their privacy budgets. The results

reveal that in scenarios where personalized privacy protection is

implemented, particularly when a signi�cant portion of the records

adheres to conservative privacy preferences, a considerable number

of records undergo early �ltration in the training process, which

10We highlight that the �nal privacy budget Y depends on the sampling probability @,
noise multiplier f , and the number of training steps g . However, in Filter, di�erent
records could have varying values of g even though they share the same “squared
norm budget” �ĤĥĨģ . As a result, adjusting the hyperparameters of �ĤĥĨģ to align
with a speci�c Y for each record, and vice versa, becomes challenging, particularly in
general personalized privacy scenarios like BoundedMixGauss or BoundedPareto.
11It computes noisy gradients using the entire training dataset in each iteration, which
is di�erent from DP-SGD.
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Table 3: Comparison of SCF with BinarySearch in centralized ML.

Priv. Pref. Dist. Method Test Acc Runtime (s)

Group-3: 3 unevenly sized privacy groups
(54%-37%-9%) with privacy budgets [1., 2., 3.]

BinarySearch 0.7274 1.69
SCF 0.7240 13.11

Group-100: 100 evenly sized privacy groups
with privacy budgets [1., 1.05, ..., 5.95]

BinarySearch 0.8135 52.50
SCF 0.8134 13.32

Individual-1000: per-record privacy budgets
drawn from BoundedMixGauss

BinarySearch 0.6858 597.82
SCF 0.6861 14.10

restricts the model’s capacity to learn from the dataset e�ectively.

As shown in Table 2, our experimental results demonstrate that our

SCF outperforms Filter in terms of test accuracy.

Computational e�ciency and privacy ampli�cation. Due

to the requisite computation of per-example gradient norms at each

iteration, Filter no longer retains the bene�ts of SGD for improving

speed andmemory e�ciency [12]. In contrast, the Poisson sampling

procedure involved in our approach could yield mini-batches of

size
∑

9∈ |� | @ 9 < |� | in expectation. We report the average time

cost for each training step in Table 2, revealing SCF achieves a 2x

or 3x speedup compared to Filter in our assessments. Moreover, the

absence of the random data subsampling procedure in private GD

with Filter also leads to the loss of privacy ampli�cation e�ect for

individual records.

7.1.2 Comparison of SCF with BinarySearch. As discussed in Sec-

tion 2, BinarySearch faces a signi�cant limitation in terms of ef-

�ciency when dealing with records’ privacy budgets that cover

values within a continuous range, rather than a discrete subset.

To illustrate this, we carry out a small-scale experiment where a

private model is trained on a subset of 1,000 examples randomly

selected from the MNIST dataset using DP-SGD. Three di�erent

personalized privacy scenarios are being investigated to evaluate

the e�ciency and utility of BinarySearch and SCF, as outlined in

Table 3. Note that both Group-3 and Group-100 are privacy setups

concerned in [3], where all records are split into limited privacy

groups and those within one privacy group share the same privacy

budget. The Individual-1000 represents the privacy scenario con-

sidered in this paper, where the privacy budgets are assigned on

an individual basis. We report the test accuracies and the runtimes

to obtain the per-record sampling probabilities (averaged over 5

trials). Our experiment results demonstrate that SCF signi�cantly

enhances e�ciency compared to BinarySeach in the more general

scenarios while achieving a comparable model performance. Here

we did not evaluate BinarySearch in a parallel manner as this im-

plementation was not discussed in [3] and is not the focus of this

paper.

Remark 4. Boenisch et al. [3] also proposed a Scale mechanism

that aims at scaling the noise added to each gradient by setting

individualized clipping bounds. The optimal clipping bound is still

found in a binary-search style. According to Table 16-17 in [3], Scale

leads to a comparable overall performance with Sample (regarding

runtime and test accuracy). Thus, both Sample and Scale share

similar limitations against our method.

7.2 Utility Improvement through Privacy
Personalization

In this section, we evaluate the e�ectiveness of our rPDP-FL algo-

rithm in providing record-level personalized DP while optimizing

for model accuracy. Given the absence of alternative implementa-

tions achieving record-level PDP in the FL setting, we established

three DP-FedAvg-based baseline methods as follows:

• Minimum: DP-FedAvg ensuring the most stringent uniform

(Y<8=, X)-DP guarantees, where Y<8= = min8∈[" ], 9∈[ |�ğ | ] Y8, 9 .

• Dropout: DP-FedAvg providing moderate uniform (Y<>3 , X)-DP

guarantees for a subset of individuals whose privacy budgets Y8, 9
are larger than a prede�ned threshold Y<>3 and dropping out

those with privacy budgets below the threshold. Here, Y<>3 is

determined as the empirical sample mean of 1
|D |

∑
8, 9 Y8, 9 .

• PrivacyFree: The vanilla FedAvg [41] without DP guarantees,

which serves as a benchmark for assessing the reduction in global

model utility.

Note that both Minimum and Dropout ensure the accumulative

privacy costs of all records remain at/below their speci�ed privacy

budgets throughout the training process but lead to a signi�cant

waste for records with large privacy budgets. All three types of

privacy preference distributions are considered for a comprehensive

evaluation of all methods’ performance.

Unless otherwise speci�ed, the default setup of ThreeLevels com-

prises Y1 = 0.1, Y2 = 1.0 and Y3 = 5.0with corresponding proportion

of 70%, 20%, and 10%. Similarly, the BoundedMixGauss distribution is

de�ned as a mixture ofN1 (0.1, 0.01),N2 (1.0, 0.05) andN3 (5.0, 0.5)

with weights of 0.7, 0.2 and 0.1. For the BoundedPareto case, we

consider a speci�c Pareto distribution with a shape value of 1.0

and a lower bound of 0.1. These parameters are chosen to simulate

realistic scenarios where the majority of users have strict privacy

requirements. Examples of 1,000 records’ privacy preferences are

illustrated in the �rst column of Figure 8. In the context of training

a larger ResNet-18 model from scratch on the CIFAR-10 dataset,

where the total number of trainable parameters exceeds 11M, we

opt for more liberal privacy settings to maintain acceptable model

utility. Speci�cally, we set Y1 = 1.0, Y2 = 3.0, and Y3 = 10.0 for

both the ThreeLevels and BoundedMixGauss setups while keeping

the ratios the same. For the BoundedPareto distribution, the lower

bound is adjusted to 1.0.

Hyperparameters. For the Fed-Heart-Disease experiments, we

�x the per-client sampling probability _=1.0 and X=1e-3; for the

other experiments, we �x _=0.5 and X=1e-4. The total communi-

cation rounds ) and the number of local training steps per round

g for di�erent tasks are detailed in Table 1. We explore a variety

of constant learning rates (e.g., [0.1, 0.05, 0.01, 0.005, 0.001]) and

clipping thresholds (e.g., [0.5, 1.0, 3.0, 5.0]) for the best results.

Model Utility. The evaluation results under various privacy

preference distributions, as shown in Figure 8, consistently demon-

strate the superiority of our rPDP-FL method over both Minimum

and Dropout across diverse FL datasets. Speci�cally, the advantages

over the Minimum method suggest that the model bene�ts from

records with larger privacy budgets, while its advantages over the

Dropout method imply that even records with conservative privacy

budgets contribute positively to the training process. These �ndings

underscore the crucial role of personalized privacy integration in
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Figure 8: Evaluation of rPDP-FL (labeled as Ours) across diverse privacy preference distributions and datasets in federated learning.

achieving a more favorable trade-o� between privacy and utility,

particularly in scenarios where most individuals exhibit a strong

emphasis on privacy concerns.

Upon comparing the results between MNIST-IID and MNIST-

NIID, we observed a consistent reduction in test accuracy in the

non-IID case across Minimum, Dropout, and our proposed method.

This decline arises from the inherent limitations of the DP-FedAvg

algorithm under a heterogeneous environment [45]. Despite this

deterioration, it’s noteworthy that the utility advantages stemming

from incorporating privacy personalization remain.

8 CONCLUSION AND FUTURE WORK

In this paper, we studied an unexplored real-world challenge to

enable record-level personalized di�erential privacy in federated

learning. Our proposed solution is a novel framework called rPDP-

FL, which employs a two-stage hybrid sampling scheme with non-

uniform record-level sampling. We devise an e�cient strategy, re-

ferred to as Simulation-CurveFitting (SCF), to estimate the individ-

ual sampling probabilities for all records associated with varying

privacy budgets. Our investigation uncovers a valuable insight re-

garding rPDP-FL, i.e., a one-to-one correspondence between the

sampling probabilities of records and their accumulative privacy

costs which can be mathematically expressed through a simple

exponential function. Empirical demonstrations show that our so-

lutions yield signi�cant performance enhancements compared to

baselines that overlook personalized privacy preservation.

As an early exploration into FL with personalized privacy protec-

tion, our work lays a foundation for future in-depth investigations

and highlights several promising directions, such as:

• User-level (device-level) PDP in cross-silo (cross-device)

FL. In FL scenarios, individual users (or devices) might possess

multiple records or contribute data to various clients simultane-

ously [25]. Intuitively, a single user may have distinct privacy

preferences for their records, which poses signi�cant challenges

in establishing user-level personalized privacy protection.

• E�ective learning on non-IID data with data-dependent

privacy budgets. In Appendix A, we o�er a brief discussion

on a more complex scenario where the privacy budgets of users

are directly linked to their raw data (e.g., dependent on their

labels). Our �ndings point out the de�ciencies in the current

privacy personalization methods to yield substantial utility gain

for groups that have signi�cantly smaller privacy budgets and are

a minority in the population. We highlight the need to address

this challenge e�ectively in future research endeavors.
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Table 4: Evaluation of the per-class test accuracy of a CNN model trained on MNIST with data-dependent privacy budgets for 100 iterations.

MNIST 0 1 2 3 4 5 6 7 8 9 Overall

Budget (Y) 0.5 0.75 2.0 2.6 4.1 2.1 2.05 3.0 3.1 6.1 -

rPDP-SGD 93.49 95.9 87.45 90.83 95.1 90.37 94.74 92.13 88.62 92.64 92.55

DP-SGD (Y=0.5) 93.63 95.81 87.26 87.18 89.67 85.89 93.73 88.71 85.74 82.19 89.08

DP-SGD (Y=3.0) 94.24 96.09 89.75 89.71 92.01 89.37 94.54 90.5 84.78 85.2 90.69

Vanilla SGD 99.1 99.6 97.11 98.33 99.1 98.65 98.27 99.07 95.87 94.1 98.06

0 2 4 6 8 10 12 14 16 18
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc Overall (rPDP-SGD)

Normal ( =0.5)
Abnormal ( =0.05)
Overall (DP-SGD)
Normal ( =0.1)
Abnormal ( =0.1)
Overall (DP-SGD)
Normal ( =0.05)
Abnormal ( =0.05)

Figure 9: Evaluation of the per-class test accuracy of a logistic regres-

sionmodel trained on theHeart-Disease datasetwith data-dependent

privacy budgets (Y=0.5 for normal patients and Y=0.05 for abnormal

patients) for 20 iterations.

A ADDITIONAL EVALUATION RESULTS

Learning with data-dependent privacy bdugets. In this study,

we focus on a general personalized privacy scenario in which indi-

vidual privacy budgets follow a random distribution, independent

of other factors such as the raw data. Nonetheless, there are scenar-

ios where individuals with particular attributes (or labels) might

exhibit di�erent privacy concerns. For example, heart disease pa-

tients might demand more stringent privacy safeguards when their

health records are utilized in training ML models.

To examine the utility improvement through privacy personal-

ization on di�erent groups, we carry out preliminary experiments

by training centralized MLmodels on the Heart-Disease and MNIST

datasets. In each experiment, we apply DP-SGD and a variant of

DP-SGD that incorporates the SCF strategy for achieving rPDP,

which we denoted as rPDP-SGD. We allocate distinct privacy bud-

gets to each class. For the Heart-Disease dataset, “normal” patients

are assigned a privacy budget of Y=0.5, whereas “abnormal” records

are given a more conservative budget of Y=0.05. For the MNIST

dataset, we adhere to the setup described in [3].

In Figure 9, we visualize per-class and overall test accuracy (av-

eraged over 10 trials) for the logistic regression model trained on

the Heart-Disease dataset. Due to the inherent simplicity of the

dataset, both rPDP-SGD and baselines (Y=0.05 and 0.1 for all classes)

achieve convergence to perfect accuracy (1.0) within 20 iterations.

In this experiment, we do not observe a discernible utility gain of

rPDP-SGD compared to the baselines for the “abnormal” records

(as indicated by the three dotted lines in the �gure). This lack of

utility improvement could stem from the unbalancedness of data

distribution, together with the fact that “abnormal” records are

sampled less frequently than “normal” records, causing the model
to primarily learn from “normal” records during the initial phases

of training.

Table 4 displays the �nal test accuracy (averaged over 5 trials)

for 10 evenly sized classes of the MNIST dataset. It can be observed

that for classes with privacy budgets below 3.0 (Classes 3, 5, 6, and

7), their test accuracy of rPDP-SGD signi�cantly surpass those of

the other two baselines. For classes with much lower privacy bud-

gets (Classes 0, 1, and 2), rPDP-SGD demonstrates performance

on par with that of DP-SGD (Y=3.0). Our �ndings indicate that the

sampling-based method does not yield substantial utility improve-

ments for groups that have signi�cantly smaller privacy budgets

and are aminority in the population. As discussed in Section 7.1, cur-

rent methods such as Filter and BinarySearch also fail to adequately

address this issue. This suggests that an e�cient and e�ective so-

lution for this challenge has yet to be developed, leaving it as an

open question for further investigation.
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