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Absiraci—Parkinson’s Disease (PD) patients frequently
transition between the "ON’ state, where medication is ef-
fective, and the ‘OFF’ state, affecting their quality of life.
Monitoring these transitions is vital for personalized ther-
apy. We introduced a framework based on Reinforcement
Learning (IFIL} to detect transitions between medication
states by learning from continuous movement data. Un-
like traditional approaches that typically identify each state
based on static data patterns, our approach focuses on
understanding the dynamic patterns of change throughout
the transitions, providing a more generalizable medication
state mnnitnrin?-énethnd. We integrated a deep Long Short-
Term Memory (LSTM) neural network and three one-class
unsupervised classifiers to implement an RL-based adap-
tive classifier. We tested on two PD datasets: Dataset PD1
with 12 subjects (14-minute average recording) and Dataset
PD2 with seven subjects (120-minute average recording).
Data from wrist and ankle wearables captured transitions
during 2 to 4-hour daily activities. The algorithm demon-
strated its effectiveness in detecting medication states,
achieving an average weighted F1-score of 82.94% when
trained and tested on Dataset PD1. It performed well when
trained on Dataset PD1 and tested on Dataset PD2, with
a weighted F1-score of 76.67%. It surpassed other mod-
els, was resilient to severe PD symptoms, and performed
well with imbalanced data. Notably, prior work has not ad-
dressed the generalizability from one dataset to another,
essential for real-world applications with varied sensors.
Our innovative framework revolutionizes PD monitoring,
setting the e for advanced therapeutic methods and
greatly enhancing the life quality of PD patients.
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|. INTRODUCTION

ARKINSON'S disease (PD)) is a debilitating neurodegener-
P ative condition characterized by pronounced motor symp-
toms such as tremors and gait difficulties [1]. The frequently
prescribed medication, Levodopa, alleviates these symptoms but
leads to motor fluctuations, causing shifts between the ‘medi-
cation ON" state, where the drug’s effects are optimal, and the
"medication OFF" state, where they are minimal [2]. Address-
ing these fluctuations remains a pivotal challenge in PD treat-
ment [3]. Current management relies on therapy adjustments
based on patient self-reports, which, due to recall biases, can
be unreliable [4]. The emergence of wearable sensors combined
with machine learning advancements offers a promising avenue
for detecting these medication state transitions [5], [6], [7],
(8], [9].

Prior research in this domain has laid important ground-
work. Pérez-Lopez et al. [10] utilized waist accelerometer
data to identify dyskinesia and bradykinesia during walking
as a proxy for detecting medication states. Similarly, Ossig et
al. [11] analyzed spectral power from wrist accelerometer data
through the Parkinson's KinetiGraph (PKG) for state moni-
toring. Rodriguez-Molinero et al. [12] used waist sensor data
to identify bradykinesia and detect medication states during
walking. Fisher et al. [13] employed an artificial neural network
(ANN) with a waist sensor to detect medication OFF states.
MNotably, Hssayeni et al. [14] developed an individualized SVM
approach using data from wrist and ankle sensors. Deep learning
models, such as the Convolutional Neural Networks (CNNs)
used by Um et al. [ 15] and Pfister et al. [ 16], have been employed
for monitoring motor state fluctuations with wrist-acquired data.

However, these existing methods have notable limitations.
Many excel in controlled settings or specific activities but do
not address the real-world variability of PD} symptoms across
different datasets, an aspect critical for robust daily monitor-
ing [17]. The majority are also tailored for a single dataset,
overlooking the potential benefits of cross-dataset validation,
which is essential for generalizability in unconstrained daily
activities (cross-domain testing). In this study, we introduce a
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novel methodology designed for wearable-based motor fluctua-
tion monitoring in PD patients within the uncontrolled settings of
daily life. Unlike traditional classification methods, which may
strugele with inter-subject variability due to the assumption of
similar data distribution across training and testing datasets [18],
our model focuses on capturing the patterns of medication state
transitions. Instead of modeling individual medication states like
‘ON" or "OFE’ our approach emphasizes capturing transition
patterns between these states, addressing the challenges of dis-
tinct data distributions.

We present a unique approach using Reinforcement Learning
(RL) to discern shifts in data stream distributions during state
transitions. By training an RL agent to recognize these transi-
Lions, it becomes adept at identifying transitions in new data and
dynamically represents a patient’s medication state. Instead of
static models, our agent interacts with the data’s dynamics and
makes optimal health state decisions. This RL-driven framework
prioritizes understanding changes in data distribution, mak-
ing it robust against inter-subject and intra-subject variations.
Building on a preliminary version in [19], this paper delves
deeper with theoretical formulations, sensitivity analyses, and
real-world health monitoring validations.

Owur study utilizes accelerometer and gyroscope dala streams
acquired from two wearable sensors affixed to the subjects’ most
affected wrists and ankles to monitor individuals across various
Activities of Daily Living (ADLs). The study employs two PD
datasets: Dataset PD1 [20] and Dataset PD2 [21]. Our method-
ology began with evaluating our model on Dataset PD1 using
a leave-one-subject-out approach, termed the Within-Domain
scenario. Subsequently, we trained the model using Dataset
PD1 and tested its efficacy on Dataset PD2, designating this
as the Cross-Domain scenario. Our model's performance was
juxtaposed against leading methods using SVM classifiers and
deep CNNs. The results showcased superior efficacy, offering
healthcare professionals a refined tool for managing PD motor
fluctuations, thus improving patient life quality. This work high-
lights the promise of RL in healthcare, emphasizing its ability to
crafi tailored and adaptive solutions to intricate health dilemmas.

Il. BACKGROUND
A. Reinforcement Learning

The RL problem is formalized based on the theory of dy-
namical systems to achieve optimal control on partially known
Markov Decision Processes (MDPs). Optimal control is charac-
lerized by designing a controller that maximizes or minimizes
a measure of a dynamical system’s behavior over time. In
RL, a learning agenl interacts with an environment over time
lo achieve a set goal related to the environment's state. The
agenl observes the state of the environment and takes actions
affecting this state. The three elements of observations, actions,
and voals are enclosed within the MDPs framework. RL utilizes
the MDPs framework to describe how the learning agent inter-
acts with the environment regarding these three elements. [22].
The agent interacts with the environment at discrete time steps
t=0,1,23,.... At every step ¢, the learning agent acquires
a representation of the environment's state s, & & and takes

action a; € A. The apent then receivesarewardryy e RC R
and observes the new state ;. as an outcome of its action a;.
These states, actions, and rewards can be described as an MDP
SEQUEnce:

S0, 60,71, 51,081,732, 52,82, T3, ... (1)

For a finite MDP, all three elements 5,.4, and R have a finite
number of elements. Therefore, the variables s; and r; have
defined discrete probability distributions which only depend on
s,y and a, ;. The MDP's dynamics are defined by p for all
s.se 8, re Randa € A=) as:

pls,rls,a) =Pr{s; = 5. =r|si1 = 8,801 =a} (2)

The reward received after each time step ¢ is
TeplsTi22,Ti43,.... 1he learning agenl aims to maximize
the total amount of received rewards or the expected return
by taking a series of optimal actions. The expecied return <,,
in {3}, is defined as the sum of all the reward values, where
+ € [0,1] is a discount factor to assign a weight to future vs.
immediate rewards.

ad
Gr =vep1 +1resa i3+ = Z Yresesr ()
k=0

B. QL earning

The agent’s performance when taking action a in a state s is
assessed using value functions expressed by a series of actions
called policies. When the agent follows a policy « at a time ¢,
it maps the probabilities of selecting the possible action a from
the current state s with policy 7(als) being the probability of
a; = a when s; = 5. The expecied return when taking action
a in a given state s and following a policy « is defined as the
action-value function for policy w:

ge(s,8) = Ex |Ge|s: = 5,a; = a] (4)

The RL problem is solved by maximizing the expected return
over a policy + to find the optimal action-value function g, :

9.(s,a) = maxgx(s,a) (5)

(-learning [23] is uwsed o directly approximate gq,. The
state-action pairs are updated wvsing the (Q-function to reach
convergence as in {(6). The (}{ s, a) al the convergence point is
an estimaltion of ¢,.

Qse,ar) + Qlse,a)
tarp +rmaxQ(signa) —Qspa)|,  ©

where € [0,1] and o & (0, 1] are the discount and learning
factors, respectively.

C. Deep Q-Network

Deep (-network (DQN) [24] was introduced Lo approximate
the optimal action-value function g, (s, o) within the Q-learning
framework using deep neural networks. The ()-learning equation
in {6) is reformulated as CQ(s, o, #) with # being the neural
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Fig. 1. The proposed reinforcement leaming-based adaptive cassification framework. The agent (i.e., the deep Q-network) leams the wearable

sensors' data stream dynamics to optimize classification decisions for maximum reward ». The frained agent then cbserves the dynamics and
classifies the incoming testing data stream. = The marked components are uiilized only for the model's training and are eliminated during tesfing.

network's weights:

s, a,8) — 141 + frm:.xQ(s;H,a] {7

The neural network’s output is the action a for a given state
s. Therefore, training the neural network will result in updating
the state-action pair and, at the convergence point, providing the
optimal action-value function:

Q.(s,a,0) = Ex |reqq + "rms.xQ.{sHj, E}] (&)

The relation in (9) describes the DON loss function. Opti-
mizing this loss function will minimize the difference between
the Q.(s,a,#d) (i.e., the first two terms in (9) and the current
action-value function.

Li(6s) =E [{rH-l + F D Qstyr,a;8i1) — Qs ﬂ;ﬂsﬂﬂ
®
Al every iteration 1, the stochastic gradient descent method
minimizes the loss function L, (#, ). Subsequently, (10) with 7 £
(0, 1] learning rate updates the DQN weights.

Bipy 8, — Vel 6) (1m

D Unsupervised Anomaly Detection

Anomaly detection focuses on pinpointing unexpected devi-
ations from a system's typical behavior. Algorithms for anomaly
detection define the standard distribution of the system's data and
seek (o recognize deviations when the incoming data diverges
from this norm. When these data points lack labels, the chal-
lenge is unsupervised [25]. One-class classification techniques
have been employed to understand the current data distribution,
marking it as the baseline, and any divergence from this norm is

classified as an anomaly [26]. This is achieved by establishing
a decision boundary around the baseline data to differentiate it
from any new incoming data. which might be anomalous [27].
SVMs have been suggested to form this decision boundary, using
a hyperplane crafied to encapsulate the data domain. This isdone
by gauging the support vectors of the data’s high-dimensional
distribution without any specific class details [28]. Considering
training as xy, ra,..,x; £ X, where [ is the number of samples
and X € B, SVM defines the hyperplane parameters e, > 0;4 £
1. These parameters determine the decision function for any new
data point r:

|
f(z) =sgn (Z k{1, ) —p) :

i=1

(11}

where oy, are the support vectors describing the hyperplane, the
parameter p € B is optimized during training. The kernel func-
tion is computed from the dot product of the features map ¢ as
E(zq,75) = (#(xe)T - ¢(z,)). I a data sample = lies inside the
hyperplane, the decision function f{x) produces +1, indicating
the baseline category. Conversely, if it does not, the result will
be —1, marking it as an anomaly.

. METHODOLOGY
A. Problem Definiton

We reconceptualized the classification challenge by lever-
aging the MDP framework. Rather than crafting a conven-
tional classifier that recognizes data patterns linked to partic-
ular medication states, our approach trains an RL agent to
comprehend the continuously evolving distributions of data
streams during transitions between these states. This method
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positions the classification challenge as the environment, with
the agent operating as the classifier. The agent's mission is (o
execute the most appropriate actions, thus reducing the fre-
quency of misclassification. Consider the input sequence as
X=xy,T0,...,Tn, Tnils-- s Ton, Loptl, - - -, WHEre i stands
for the number of data samples in a single ime window segment
and X € R. Time steps are seen as consistent intervals. All the
data points X, = =, s, .. ., T, fall within one sepmented time
window. Here, w=1,2,3,... € R* signifies the sequential
order of these time windows in the inpul series.

In our MDP framework, each value of w € Bt stands for
a sequence of successive ime windows, which equates Lo an
individual discrete time point ¢ within an event series consisting
of a;, ry4q1, and sy y. The action a; is a two-fold decision,
labeled as either true or false. This decision hinges on whether
the agent decides in favor of a transition between medication
states. Following the agent’s decision of a;, the environment
counteracts by delivering a reward denoted as r; | and presents
a subsequent state, s, ;. This new stale influences the agent's
nexl action, a; . The reward r; . provided by the environment
is derived from how accurately the agent predicts transitions
between medication states. The upcoming state, s, . is crafted
toreflect the differences between the newly received data in time
windows X, and the data patterns inherent to the prevailing
medication state.

In our designed environment, we introduce a component
termed the Anomaly Analyzer Unit (AAL), detailed further in
Section III-B-1. The AAU employs an ensemble of one-class
classifiers, which are responsible for capturing the intricate data
distribution of the prevailing medication state, thus establishing
it as the reference class. Leveraging these classifiers, the AAU
calculates anomaly values, denoted as A, € [0,1], for every
incoming time window labeled as w in relation to the reference
class. An anomaly 0 indicates that the incoming window lacks
any deviant data. Conversely, | suggests all data points within
the window are outliers. Post the agent’s decision of ay, the
AALU periodically refreshes the one-class classifiers after every
u interval. Such periodic updates ensure that the anomaly values
remain aligned with any evolving changes in the data distribo-
tion. The state s, is expressed as:

St =-‘qtu+l1-‘1cu+21 ~~-~.-'q|j.:+1].u (12)

The design blueprint of our model is graphically represented
in Fig. 1. We tackle the challenge by interpreting the sequence
of state, action, and reward within the framework of an MDP,
as illostrated in (2). Our primary objective is to amplify the
expected return, as delineated in (3). The augmenlation of this
expected return is intrinsically linked to the precision of the
agent’s decision-making process. Through the fine-tuning of this
MDP, the agent gradually learns to initiate actions, indicating a
shift between medication states solely when authentic transitions
are detected. Yel, for the agent to proficiently discern these
authentic siate shifis, it is essential that it learns to recognize
fluctuations in the overall data stream distribution rather than
merely concentrating on the individual distribution of each med-
ication state. Consequently, we hypothesize that our adaptive

methodology is better suited to unseen data with different base-
line distributions. The agent's inherent capacity to assimilate
from historical data and consequently make judicious decisions
in a given environment [22] further supports our expectation.
Thus, we predict a heightened performance when exposed o
novel datasets.

B. Environment Design

The environment (Fig. 1) consists of an Anomaly Analyzer
Unit (AAL), a State Generator, and a Reward Function.

1) Anomaly Analyzer Unit (AAU): The AAU is constructed
by incorporating three one-class classifiers, each serving as an
anomaly detector with a specific focus. The “General anomaly
detector” captures the overall dynamics of the data as they
evolve. The “Medication state ON anomaly detector” specializes
in monitoring variations in data dynamics within the context of
ON state data. The “Medication state OFF anomaly detector™
specializes in tracking these variations within state OFF data. For
every data sample = within a time window X ,,, all three anomaly
detectors yield an anomaly decision denoted as f{r), determined
according to (13). These individual anomaly decisions are then
ageregated to calculate an anomaly score Aw for Xw as the
ratio of the number of anomaly samples for which f{r) = -1
to the window length.

fx) = {”*

if x is not ancmaly,

S0 (13)
if x is anomaly.

-1,

Upon the agent’s prediction of a transition event (a; = true),
the AAU trains the anomaly detectors for the General and the
currently predicted medication state (e.g., OFF). This training
uses the data from the following consecutive « time windows.
Following that, the anomaly detectors for the current state and
the anomaly detector for the opposite state (e.g., ON), which
remains unaltered, are employed to evaluate incoming time
windows. This testing generates an anomaly score A,, for each
time window X,,. These anomaly scores, reflecting the data
assessment within each window, contribute to the state s, as in
{12). The current medication state anomaly detector is updated
with each new time window w, and the General anomaly detector
is updated at » time window intervals. After u ime windows, the
agent employs the state s; to make its next prediction, resulting
in a reward r; ;. This process repeats until the agent identifies
the next transition event or until the data stream concludes.
Fig. 2 illustrates this workflow considering the discrete time
stepst = 0,1, 2, 3. In this example, there are two predicted tran-
sition events. The dala stream initially starts in the medication
state ON, prompting the training of both the General and ON
anomaly detectors. As no OFF anomaly detector is trained yel
and the incoming data pertains to medication state ON, an OFF
anomaly score of 1.0 is assigned to these time windows. This
visnalization depicts the dynamic interplay between the agent,
the AAU, and the evolving time-series dala. The solid-filled,
circle-shaped markers in Fig. | show samples of the anomaly
SCOres.

2) State Generator: The anomaly scores Aw generated by
the AAU are forwarded to the State Generator, as in Fig. 1. For
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Fig. 2. Anomaly Analyzer Unit workflow as the incoming data stream
is processed, and two transition events are detected. The segments
indicate the duration the anomaly detectors (General, ON, OFF) were
trained, applied to test the incoming data, or first applied and up-
dated. a;; agent actions at reinforcement learning discrete time step
t=10,1,23

each window X, the State Generator receives Aw values from
all three anomaly detectors within the AAU. It then calculates
the slope of Aw + 1 to the previous Aw. These slope calcu-
lations estimate both the direction (increasing or decreasing)
and the rate of change in the .4,y values. These variables are
then concatenated and presented (o the agent as the state s, at
each time step ¢. This approach enables the agent to learn the
variations in data dynamics and the rate and direction of these
variations in the patient’s current state.

3) Reward Function: The agent, at ¢, takes an action a; and
receives areward r; .y, indicating the agent's precision in detect-
ing transitions between medication states. Designing the reward
mechanism is a crucial step in RL, as it is a primary feedback
loop directing the agent’s behavior and learning trajectory. In
our design, action a; = frue signifies that the agent detected
a change in the medication state, whereas n; = false implies
no such transition. The reward, , is derived considering two
temporal variables: f,, the actual transition time in the data
stream, and t;, the RL time step ¢ in the same stream. The reward
ry is mathematically:

45, =trueand t; —f, <t
e = trueand t, — f; > &,

Tepl = ' S T
+1, = falseand ty, — f; =t

-5, o =fa!seandt;,—f; <4,

This equation offers a numerical assessment of the agent's
capability in identifying medication state transitions. The param-
eter ¢, is instrumental in the reward strategy, defining the desired
accuracy margin between the agent’s prediction time ¢, and the
actual transition time ¢,. Fig. 3(b) and (c) provide insights into
two distinct monitoring situations using our reward design, with
their actual medication state labels depicted in Fig. 3(a). For
instance, in Fig. 3(b). the agent accurately predicts medication
siate shifts at ¢ + 2 and ¢ + 4 and accordingly receives rewards
of +5 and +1 based on equation (14). Conversely, Fig. 3(c)
illustrates a scenario where the agent incorrectly delected a
transition at £ + 1 and ¢ + 3 and was penalized by the reward
of —1, and missed a transition at + + 2 and ¢ + 5, which was
punished a reward of —5.

[b) Wearables data stream ground-truth lllhh

(=)
T ) 5
2] Time
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T | ———
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Fig. 3. (2) The wearables data stream forms the input for the model.
{b) The ground-truth labels of the data stream with the actual transition
time stamps at t,. (c) An accurate classification scenario, and (d) an in-
accurate classification case with the received rewards re. £ =10, 1,2, .. -
RL dizcrete time steps; a,: actions at tg; £, rewarding window.

C. Reinforcement Learning Design

1) Agent The agent interacts with the environment by re-
ceiving the state s; and taking an action a; based on assess-
ing whether there has been a significant change in the data
stream distribution, indicating a shift in the medication state.
The Q-network architecture proposed for this task comprises
four consecutive layers (Fig. 1). The first layer is an input
Long Short-Term Memory (LSTM) Layer to handle time-series
data [29], utilizing 32 units and the hyperbolic tangent (tanh)
activation function. Following, two fully connected hidden lay-
ers containing 64 neurons are attached, employing the Rectified
Linear Unit (ReL.U}) activation function. The output layer of the
(-network is a fully connected layer with two neurons and a
linear activation function. These two neurons correspond to the
possible actions a, that the agent can take. At each time step ¢,
the input to the (}-network is the state s, and the output is a
vector of () values, each comresponding to a specific action a,
that the agent can select.

2) Predicted Medication State: Al each time step t, the
agent’s action a, determines whether the predicted medication
state will remain the same or transition. If a; = false, the apent
indicates no change in the patient’s state, and if a, = true, the
apent predicis a transition. In such cases, the predicied state
changes from ON — OFF or OFF — ON, depending on the
current predicted state. Fig. 3(b) and (c) show two examples of
predicted states, where the transitions between medication states
occurred when a, = true.

IV, EXPERIMENTS
A. Datasets

Dataset PDI [20]: This dataset comprises data from 12
individuals diagnosed with PD aged between 42 and 77 years,
with disease duration ranging from 3.5 to 17 years. Data
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TABLE |

A SUMMARY OF THE EMPLOYED PARKINSON'S DISEASE (PD) DaTA:
DaTaseT PO AND DaTASET PD2

Characteristics Datasei PIN | Dataset FD2
MNumber of subjects 12 T

Sex (m, £) 9.3 5.2
Age (year) 8 9.9 58.7T £ 80
Disease duration (year) BA+36 106+ 2.3
UPDHRS-ITL 2254125 | 203+ 12.6
Tremor 12427 28440
Bradykinesia 1374758 16+ 6.1
Dyzkinesia 37+39 MiA

collection utilized KinetiSense motion sensors from Great Lakes
NeuroTechnologies Inc., which recorded tri-axial accelerom-
eter and pyroscope data at a sampling rate of 128 Hz. Each
pariicipant wore two sensor units, one on the most affected
wrist and another on the ankle. The participants refrained from
laking antiparkinson medicalion the night before the experiment,
starting the data collection in their OFF state. The participants
performed seven ADLs: walking, resting, cutting food, dressing,
drinking, unpacking groceries, and brushing hair. Afterward,
participanis resumed their medication and repeated the activities
in their ON state. Neurologists conducted clinical examinations
lo assess the medication state, the Unified Parkinson Disease
Rating Scale part IIT (UPDRS-III), tremor, bradykinesia, and
the modified Abnormal Involuntary Movement Scale (mAIMS)
scores to characterize dyskinesia-related complications. The
average data duration for each subject was 14 minutes with 65%
in the medication ON state.

Dataset PD2 [2]]: This dataset includes data from seven
individuals diagnosed with PD, aged between 48 and 68, with
disease duration ranging from 6 o 15 years. Two Kinesia motion
sensor units from Great Lakes NeuroTechnologies were placed
on each participant’s wrists and ankles Lo capture accelerometer
and gyroscope data al a 64 Hz. The participants performed
six activities of hygiene-related tasks (brushing hair or teeth),
dressing, eating, desk work, and entertainment (watching TV
or reading). Parficipanis cycled through these stations for two
hours. Like the PD1 dataset, participants began the study in
their OFF state and visited each activity station at least once.
They then resumed their repular medication and repeated the
cycle of activities at the stations. Once they transitioned into
their ON state, confirmed through clinical examination and
self-reports, they revisited all the activity stations at leasl once
more. Neurologists conducted clinical examinations (o assess
the medication state, UPDRS-III, tremor, and bradykinesia.
76% of the data was collected in the medication state OFF
state.

Table 1 summarizes the patient characteristics in the two
PD datasets. The data collection for both datasets was con-
ducted with the approval of the institutional review boards of
Greal Lakes NeuroTechnologies, the University of Rochester,
and Johns Hopkins University. All participants provided in-
formed consent, and the studies adhered to the Declaration of
Helsinki.

B. Data Preprocessing and Feature Extraction

The Datasel PD1 was down-sampled to 64 Hz to match the
Dataset PD2 sampling rate. Next, the signal was passed through
a finite impulse response (FIR) filter with a pass frequency
between (1.5-15 Hz. Afier noise elimination, the data were seg-
mented into 5 = windows with an overlap of 4 s. This window
length was selecled empirically (supplementary Fig. 51) and
based on previous research that demonstrated its effectiveness
in encapsulating the symptomatic expressions of PD [30]. Weex-
tracted hand-crafied features (supplementary Table 51), which
have been established in the literature as robust indicators of PD
motor symptoms [ 14].

C. Experiment Setup

Within-Domain Testing: In our initial experiments, we use
Dataset PD1 to assess our framework within the PD patient data
domain. This allows us to gange the model's adaptability to PD-
related motion signals. We employed a leave-one-out approach:
iteratively using one subject’s data for testing and the rest for
training. This was done for each subject to obtain average results.
Five-fold cross-validation optimized the model on the training
data. We replicated this within-domain lesting setup on Dataset
PD2 for further evaluation.

Cross-Domain Testing: Afler experimenting with Dataset
PDI, we used the model trained on ils entire set Lo monitor
individuals in Dataset PD2, maintaining the same hyperparam-
eters. This phase embodies cross-domain testing, evaluating the
model on a distinct dataset. The aim is to gauge the model's
efficacy in a new and larger data domain. Significantly, Dataset
PD2 is five times larger than PD1, testing the model's capacity
lo generalize from smaller to larger datasets. We also assessed
the model’s performance in generalizing from larger to smaller
datasets, from Dataset PD2 to Dataset PD1.

Implementation: TThe RL agenl underwent training across
1,000 episodes using the epsilon-greedy method. It started with
an epsilon value of £ = 1.0, which decreased until e = 0.01, a
stratepy proved effective [24]. The ()-learning equation had a
discount factor, v = (0.5, balancing current and future rewards.
In Dataset PD1, nine participants transitioned from medication
OFF to ON states, with three experiencing multiple transitions.
The agent training was conducted on an extended data stream
for each participant, ensuring the agent faced both transition
directions (from OFF to ON and vice versa). This extended data
stream replicated the original data stream.

Evaluation Metrics: We used four metrics to gauge our ap-
proach: accuracy, sensitivity, specificity, and weighted F1-score.
Sensitivity and specificity measure the identification of OFF
and ON medication states, respectively. The weighted F1-score
averages the Fl-scores for each label, adjusted by the number
of true instances, addressing class imbalances.

Comparative Methods To assess our model, we compared
it with leading machine learning techniques for medication
state monitoring. We benchmarked against an SVM [14], a
data-augmented CNN [15], and a CNN [16]. Additionally, we
explored employing a Gated Recurrent Unit (GRU) layer as the
input layer of the agent's (J-network to handle the time-series
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Fig. 4. Dataset PD1 cross-validation weighted F-score obtained by the proposed model for six hyperparameters: {a) sliding window X size, (b)
sliding window X, step size, (c) anomaly detectors kemnel function (P polynomial funcion with the number signifying the degree, RBF: radial bias
function, Sig: sigmoid), (c) anomaly detectors ¢ value, (g) value of «, and (f) rewarding window size £,

data. The SVM model used the same extracted features. The
CNNs used the pre-processed wrist and ankle raw accelerometer
and gyroscope data.

D Model Hyperparameters Optimization

Our methodology involves six hyperparameters: sliding win-
dow size X, and X, step, anomaly detector kernel type,
v, u in the RL framework, and reward window t.. The v
parameter constrains SVM training ermors and support vec-
tor fraction [28]. We adopted the Bayesian optimization ap-
proach [31] to optimize these hyperparameters and maximize
the model's weighted Fl-score output for Dataset PD1. The
search space for hyperparameters was defined as follows: X, €
[30, 120]s, X,,step € (10, 100]s, kernel type = [linear, polyno-
mial (degree € [1,7]), radial bias function (RBF), sigmoid].
v € (0,1.0], ¢, € [60,150]s. After performing Bayesian op-
timization for 50 trials, the optimal hyperparameters found
were Xy = 100 s, X step = 10 s, kernel type = polynomial
(degree = 3),v =02, t, =110 =.

E. Model Hyperparameters Analysis

We conducted a sensitivity analysis on the hyperparameters to
evaluate their impact on the model’s behavior and performance,
inspired by [32]. Then, we employed Morris sensitivity analy-
sis [33] to discern the influence of individual hyperparameters
and their interactions on model performance. This analysis aids
in fine-tuning the mode! for implementation in various applica-
tions. We initiated the analysis using default optimized values
for Dataset PD1. The sensitivity analysis was conducted based
on the model’s weighted Fl-score.

1) Sliding Window Hyperparameters: Fig. 4(a) displays the
effects of changing the sliding window size (X,.) on perfor-
mance. As it grows, the model performs better. After reaching
an optimal point, the performance drops with an overly long
window. X, selection must ensure adequate data duration to
recognize PD patient movement changes due to medication.
Fig. 4(b) presents the analysis of X, step sizes. Predictably,

larger step sizes diminish model performance. Appropriate step
size is critical to providing more regular and detailed data
analysis for identifying medication state transitions.

2) Anomaly Detectors Hyperparameters: Fig. 4(c) assesses
different kernel functions for the anomaly detectors. A 3rd-
degree polynomial funciion emerged as the most effective for
medication state identification, suggesting ils capability o un-
derstand the dala's inherenl patterns. The parameter v was
scrutinized, as it limits the fraction of training mistakes and
plays a pivolal role in the RL agent's learning stability. Larger
v values, especially when »» > (0.5, permit more training errors
during anomaly detectors’ updates. Such errors, however, might
disrupt the RL agent's learning since they 're reflected in state =
and influence the agent’s choices.

3) RL Framework Hyperparameters: Fig. 4(e) showcases the
effect of adjusting the value of w. Utilizing smaller u values,
specifically when u < 4, offered restricted environmental in-
sights for constructing a comprehensive state s, This restriction
negatively affected the agent’s learning ability, resulling in a
decline in the model's efficiency. On the other hand, a larger
u (i.e., u > 4) delayed the agent’s recognition of shifts in the
data siream’s behavior, leading to suboptimal outcomes. Ad-
ditionally, the length of the rewarding window (f,.) underwent
evaluation. While smaller ¢, dimensions were favored for rig-
orous training, excessively tight rewarding windows resulted
in inconsistent training patterns. For instance, as depicted in
Fig. 4(f), diminished ¢, dimensions caused the agent's learning
to waver, causing a notable drop in efficiency. This occurrence
is linked to the extended period required for medication states
to become evidenl in the dataset. Hence, opting for a more
restrictive rewarding window places unreasonable demands on
efficiency.

4) Hyperparameter Hanking: The Morris sensitivity analy-
sis lechnique was utilized to assess the hyperparameters, and
they were subsequently ranked based on their impact on per-
formance. The analysis’s results produce values for p* € [0, 1]
and o € [0,1]. The former metric, p*, offers insight into the
overarching effect a specific parameter exerts on the model’s
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TABLE Il
"WITHIN-DOMAIN' PERFORMANCE (%) ON DATRSET PD1

Method Accuracy Sensitivity Specificity Fl-score
Proposed (utilizing deep L5TM Oonenwork) | K271+ 14.19 | 85984+ 2074 | B389+ 17.47 | 3294+ 14.14
Proposed (unlizing deep GRO 2-retwork) T2.29 4 21.14 T2.40 4+ 2I7.B1 Tr.71 4+ 21,21 T2.47 + 211.20
Hazayenh er al. [14] T3.24 £ 17.27 | 63.44 £ 29.57 TE.6B + 22.00 T2.72 £ 1T.46
Um et al, [15] 61.62 1 9.41 44.61 L 17.14 71.43 4 11.41 B1.46 4 10.51
Piister e ai. [16] 60,49 & 9.49 38,88 + 10061 T2.88 + 9.B6 6024 = 10,18
Proposed framework hyperparameters ranking (a) OFF-Bradykinesia (b} OFF-Tremar
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Fig. 6. Medication state accuracy of patients while displaying se-

output. A value of 1 signifies maximum influence. In contrast,
the latter metric, o, illustrates how interdependent the parameter
is with other parameters. A value of 1 here denotes the peak
level of dependency. The graphical representation in Fig. 5
exhibits both u* and «. Drawing conclusions from this analysis,
it becomes evident that the sliding window X, stands out as
the hyperparameter wielding the most substantial influence on
the model’s efficacy and exhibits the highest interdependence
with other parameters. Given the nature of its application, the
pronounced influence and dependency of X, were anticipated.
Other hyperparameters, including the step size of X, and
rewarding window t,., display comparably significant impacts on
the model's performance and their mutual influences. In contrast,
the kernel function, anomaly detector parameters, v, and u
showcase the least influence and interdependence. Considering
that i+ and « govern the error rates of the anomaly detectors and
the volume of time windows, it is logical for them to operate
more autonomously, irrespective of the dataset type and other

hyperparameters.

V. RESULTS
A. Within-Domain

In the Within-Domain phase, we evaluate the model's perfor-
mance when trained and tested on the subjects in Dataset PD 1.
Table II shows the models’ average testing performance for all
12 subjects. The initial observation from the evaluation is that the
proposed adaptive classifier outperformed the other comparative
models across all four evaluation metrics. One notable finding
was that the comparative models exhibited low sensitivity scores,
indicating a bias towards the majority class in the data, the
medication ON state, during training. In contrast, the adaptive

vers sympioms characterized by the scores of (a) OFF-Bradykinesia,
(b) OFF-Tremor, (c) ON-Dyskinesia (mAIMS), and {d) OFF-UPDRS-HI.

classifier did not display such bias. The adaptive classifier uti-
lizing an LSTM input layer for the Q-network demonstrated a
notably higher average testing sensitivity, scoring 13.58% higher
than the proposed utilizing GRU input layer and 22 54% higher
than the best state-of-the-art comparative model. This outcome
indicates that the adaptive classifier correctly identified the med-
ication state OFF in patients. Additionally, the adaptive classifier
demonstrated the highest specificity score, signifying its ability
to detect the medication ON state accurately. The average testing
weighled F-score of the proposed adaptive classifier at 82.94%
was higher than the other comparative methods, highlighting its
ability to provide a balanced F-score across different classes,
considering class imbalances in the data. The Within-Domain
evaluation results for Dataset PD2 are presented in supplemen-
tary Table 52, demonstrating the superior performance of our
proposed framework compared to the comparative models.
Next, we investigated the model's ability to monitor mo-
tor fluctuations in patients, specifically during pronounced
disease symptoms such as OFF-Bradykinesia, ON-Dyskinesia
{mAIMS), OFF-Tremor, and OFF-UPDRS-III scores. We opted
to utilize the model employing an LSTM for the Q-network
input, as it has demonsirated outstanding performance compared
to when using a GRU layer. The model’s detection accuracy
was measured when symptom scores crossed certain thresholds:
Bradykinesia > 20, Dyskinesia > 5, Tremor > 2, and UPDRS-
III = 33. These thresholds were set based on the average scores
for each symptom in its respective medication state. The findings
are showcased in Fig. 6, juxtaposed with other models. The
adaptive classification framework consistently surpassed the
other models. When patients showed Bradykinesia in the OFF
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TABLE il
‘CROSS-DOMAIN' PERFORMANCE (%) ON DATASET PD2
Mithod ACTUTACY Semsitivity Specificity Fl-score
Proposed {utilizing deep LITM Q-network) | T8I 4 14.69 B4.64 4 16,31 G760 < 39.43 T6.67 & 16,77
Proposed (urtilizing desp GRU (-retwork) G808 + 19.76 | 65.46 = 14.07 | GRG0+ 4364 | TO.V4 £ 10.36
Hszayent f al. [14] 47.31 + 23.08 | 30,28 = 29.98 180 +0 43,15 = 79.94
Um e al. [15] G669 + 10.45 45.60 = 8.98 69.13 + 17.15 56.24 £ 9.48
Pligter of al. [16] 56.44 £+ 11.95 42,88 + 8.45 T1.65 4+ 15.28 | 57.24 £ 10.80
The highest performance wnder sach metric is in bold.
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Fig. 7. The accuracy (+ standard deviation) in monitoring the PD

medication states while performing seven activifies of daily living.

state, the model recorded an accuracy of 88.70%, highlichting its
reliability during slow movements. The model also performed
well during involuntary, dyskinetic movements, with accuracy
rates of 84.01% and 83.61% during high UPDRS-111 scores. De-
spite Tremor symptoms influencing the model, it still achieved
an accuracy of 74.50%.

Furthermore, we assessed the model’s performance during
various ADLs. This evaluation highlighted the model’s adapi-
ability across diverse daily routines and its capability in medi-
cation state detection in real-world settings. Fig. 7 illustrates the
accuracy as patienis undertook seven ADLs.

B. Cross-Domain

We assessed the model's generalizability by applying it to the
seven subjects in Dataset PD?2 afier training it on the data from
all 12 subjects in Dataset PD}1. Table I1l summarizes the average
performance metrics obtained from Dataset PD2, reflecting the
model’s ability to generalize across different patient cohoris.
The framework employing an input LSTM layer for the (-
network achieved a 76.67% accuracy, surpassing other methods
in monitoring PD medication states. It also had the top tlesting
sensitivity of 84.64%, emphasizing its capability to detect the PD
medication state OFF. Other models lagped in detecting the OFF
state. The SVM-based [14] classifier's 100% specificity was
influenced by Dataset PD2's OFF state majority (Fig. 8) and a
training bias from Dataset PD1. The adaptive classifier balanced
classifying both states, with its weighted F-score being 19.43%
higher than other models, showcasing its balanced performance
amidst class imbalances. The Cross-Domain evaluation results,
where the models were trained on Dataset PD2 and tested on all
subjects in Dataset PD1, are presented in supplementary Table
53. Our proposed framework exhibited cutstanding performance
compared to the comparative models.

Proposed  Hssayeniet al[14] Umetal[15] Pfister et al[16]

DEND

B oresme [ o s

Fig. 8. (a) The true label distribution for the medication states across
Datasets PD1 and PD2, illustrating the inherent variability in class oc-
currence due to the nature of data collection. (b) The distribution of the
models' predicted labels in crozs-domain testing when the proposed
model and the three comparative models are trained on Dataset PD1
and applied on Dataset PD2, emphasizing the models' ability to gener-
alize and manage label disparities under real-world conditions.

Ouwr study emphasizes the model’s capability to tackle data
class imbalance. Fig. 8 shows significant class imbalance in
Datasets PD1 and PD2. Such imbalance can affect machine
learning model performances, especially in cross-domain lest-
ing. While comparative models showed a bias to Dataset PD1"s
majority class when tested on Dataset PD2, the proposed model
employing an LSTM for the Q-network input was resilient. On
applying to Dataset PD2, it classified 72% as medication state
OFF and 28% as ON, showcasing its adaptability to different
class distributions.

V1. Discussion

In the rapidly evolving landscape of PD research, the
challenge of accurately monitoring medication states remains
paramount [17]. We addressed this by introducing an RL-based
framework specifically designed for detecting medication ON
and OFF siates using wearable sensor data during daily activ-
ities. This approach not only captures dynamic PD symptoms
but also uses the rich information from real-world data. With
RL, our model continuously refines its predictions, offering a
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TABLE IV
MEDICATION STATE MONITORING METHODS COMPARISOMN
Reference Bensors Activities Monltoring approach Individoalized | Hesulis
approach
Parez-Lapez ef al [10] Wakst Walking, non-walking Tdemdify dyskinesia and bradykinena Mo Sen: 99 907
DOagig i al. [11] Wriat At-home Threshold on FEG data Vs Corr 0.658
Rodefguez-Molinere e al. [12] | Waist Walking Identify dyskinessa and bradykinesia Yes Ace: 92.20%
Fisher et al [13] Waist Free-tiving, at-home Identily medication state OFF No Sen: BO%
Hazayeni ef al. [14] Wrist and ankle | ADL Tdemtify medication state ONAOFF Yes Acc: 90.50%
Piigtar er al. [16] Wrist Froe-lving Lcdemtify medication state ONOFFDyvskinen: | No Balanced Ace:
65.40%

Um #f o, [15] Wrist Freg-living;  excloding | Identify medication state ON/OFF No Acc: 86.88%%

walking, lymg. and

cating
Proposed Wrist and ankle | ADL Tdentify medication sate tranzitions No Fl: B2.04%

real-lime representation of medication states. This represenis a
significant advancement in PD monitoring.

A key finding is our model’s ability to detect intricate pat-
lerns indicating transitions between medication states. This was
evident in its performance on Dataset PD1 and Dataset PD2,
surpassing other benchmarks as shown in Table 11 and sup-
plementary Table S2, respectively. Its capability was further
observed during severe symplom manifestation and when pa-
tients were engaged in specific ADLs, as shown in Figs. 6 and 7
respectively. Our model also excelled in cross-domain testing,
especially when trained on Dataset PD1 and tested on Dataset
PD2, as illustrated in Table II1. It also showed a remarkable
performance when trained on the larger Dataset PD2 and tested
on the smaller Dataset PD1 as demonstrated in Table 53. While
other models showed bias towards Dataset PD1, ours remained
resilient, showcasing its robusiness. Crucially, for real-world
applications, it is imperative that models demonsirate gener-
alizability to new datasets, ensuring consistent and trostworthy
performance across diverse conditions [34].

The model’s ability lo handle imbalanced training data sets
it apart. Despite the inherent imbalances in our datasets (see
Fig. &), our model achieved commendable weighted F1 scores
in both within and cross-domain tests. Addressing imbalanced
training data remains a formidable challenge in machine learning
applications, and our approach signals a promising advancement
in this domain, potentially revolutionizing how we handle and
interpret skewed datasets [35].

Further investigations of our model's performance in the
sensitivity analysis, particularly the Morris analysis, brought
our next interesting insights. A standoul observation was the
paramount importance of the hyperparameter X, window
length, as indicated by its highest p* value. This emphasizes that
when venturing into new applications or fine-tuning the model,
the foremost priority should be to adjust the X, window length.
Following this, refining the X, step size, ¢, and deciding on the
optimal AAU kernel function and »» would be the logical next
steps. On the Aip side, hyperparameters like u, which recorded
the lowest u* values, can be relepated to the latier stages of the
fine-tuning process.

Previous research investipated medication state monitoring
in PD patienis using wearable sensors and are listed in Ta-
ble IV. Some studies have employed statistical methods in their

research. For instance, Pérez-Lopez et al. [10] achieved a sen-
sitivity of 99.90% in detecting medication states by identifying
dyskinesia and bradykinesia during walking using a waist sensor.
Ossig et al. [11] analyzed the spectral power of low-frequency
wrist accelerometer data from the PKG to monitor three med-
ication state categories. Their correlation with patients” diaries
ranged from 0.404 to 0.658. Rodriguez-Molinero et al. [ 12] used
waist sensor data o detect walking activity and then determine
medication states as ON when dyskinesia is present and OFF
when bradykinesia is detected, achieving an accuracy of 92.205%.
Few studies have targeted medication state classification during
ADI1 x, leading to reduced classification performance as antici-
pated. Fisher et al. [13] utilized an ANN in combination with
a waist sensor to achieve a sensitivity of 60% when detecting
medication state OFF. Hssayeni et al. [14] used an individual-
ized SVM with wrist and ankle sensors, achieving an average
accuracy of 90.50% [or 24 subjects. Pfister et al. [16] achieved
a balanced accuracy of 65.40% using a CNN model and wrist
wearable sensor data of 30 patients. Um et al. [15] reporied an
accuracy of 86.88% employing a data-augmented CNN model.
The dala was collected from a wrist sensor worn by 23 patients,
excluding walking, lying, and eating data.

While our method’s 82.94% Fl-score is not the absolute
highest, our method signifies a series of advancements over
previous research. Our method excels in real-world applicability
and is evaluated across a diverse range of ADLs, unlike previ-
ous studies focusing on narrow, controlled activities. The core
innovation of our model is its dynamic capability to capture
and learn from the transitions between medication states. This
dynamic approach represents a leap over conventional models,
typically limited to detecting isolated events such as dyskinesia
or bradykinesia. Our study balances personalization and scala-
bility, fine-tuning our model to each patient’s disease profile and
severity while maintaining the capability to peneralize across
the PD population. Therefore, the distinction of our study is not
confined to its performance metrics alone but is also rooted in
enhancing the applicability, generalizability, and relevance of
PD state monitoring in real-life conditions. This broader rele-
vance provides a comprehensive view of a patient’s medication
fluctuation profile, vital for holistic treatment evaluations [17].

Direct comparison with some of the aforementioned methods
was nol feasible due to their reliance on proprietary or private
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datasets. However, to ensure the robusiness and validity of our
approach, we implemented three comparable methods from the
literature that were intended for detecting medication states
during different ADLs. When applying these methods to our
datasets, the performance results were closely aligned with those
reported in their original publications, albeit with a slight de-
cline. For instance, the accuracy of [14] at 73.24% is somewhat
lower than their original findings, which can be attributed to the
individualized approach they adopted in their study. Similarly,
the 6{.49% accuracy achieved by [16] aligns with their original
results. In the case of [ 15], their 61.62% accuracy was somewhat
diminished compared to their initial study, possibly due to the
exclusion of certain activities in their methodology. One notable
observation is the higher accuracy and F1 score of our proposed
method, not only in within-domain but also in cross-domain
scenarios, supporting the superiority of our RL-based framework
over these methods in terms of performance and adaptability.

Collectively, these findings support our hypothesis and em-
phasize the efficacy of our proposed framework in monitoring
PD. The versatility and adaptability of our framework are ev-
ident, making il an invaluable tool for real-world PD monitor-
ing scenarios. By integrating this adaptive classification frame-
work into health monitoring applications, we can significantly
enhance therapy adjustments. This is achieved by providing
healthcare providers and physicians with timely and crucial
information about the patients’ health states. It is essential Lo
highlight that while the model does necessitate knowledge of
the initial class label, its primary objective in health monitoring
applications remains the detection of changes in system dynam-
ics. This focus on change detection reduces the dependence
on initial labels, facilitating effective adaptation. The insights
from this study hold the potential to transform PD research and
monitoring, ushering in a new era of more personalized and
patient-focused treatment methodologies in the foture.

Our research offers significant contributions to the monitoring
of medication states in PD patients, yel it is important Lo rec-
ognize its limitations. Primarily, the study was conducted with
a select group of PD patients, sugpesting the need for further
research to confirm our model’s applicability across a wider
range of patients and varying stages of the disease. Despite
our efforts to ensure robustness through cross-domain testing,
differences between datasets could potentially affect the model’s
performance, highlighting an area for future exploration, par-
ticularly in domain adaptation technigues. Additionally, the
application of RL, while innovative, necessitates considerable
data for training and substantial computational power. Future
work will aim at refining the model and its training processes to
mitigate these demands. Addressing these aspects will further
enhance the practical utility and impact of our methodology in
diverse clinical environments.

VIl. ConNCLUSION

We introduced a novel framework crounded in RL principles
to adaptively monitor transitions between medication ON and
OFF states in PD patients. Rather than merely learning the
data patterns distinct to each state, our approach hinges on the

RL agent’s ability to discern data dynamics during transitions.
This shift in perspective, combined with the deep LSTM neural
network, allows the agent to capture the intricate nuances of
these state changes more effectively. Additionally, by integrating
three one-class unsupervised classifiers into our model, we fur-
ther improved its capability to identify the transitioning between
states. We evaluated our framework using two PD datasets,
which comprised data from 19 subjects equipped with wrist
and ankle wearable sensors, which provided a unigue window
into the ADLs of PD individuals, especially as they transitioned
between ON and OFF states. Our resulis proved the robustness

and adaptability of the proposed approach with an average
weighted Fl-score of 82.94% was achieved when training and
testing on Dataset PD1 and 76.67% when training on Dataset
PD1 but testing on Dataset PD2. Furthermore, our method's
effectiveness was underscored when benchmarked against three
existing techniques. Our approach’s primary contribution lies in
its potential for accurate medication state monitoring and its gen-
eralizability across different domains, which can lead to more
tailored therapeutic adjustments in real-world applications with
varied sensors. This, in turn, promises an enhanced quality of
life for PD patients. We are optimistic that our novel framework
will inspire more advancemenis in this field, aiming to bring
real-world benefits 1o PD patients globally.
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