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ABSTRACT
We present a mixed quantum–classical framework for the microscopic and non-Markovian modeling of exciton–phonon scattering in solid-
state materials and apply it to calculate the optical linewidths of monolayer MoS2. Within this framework, we combine reciprocal-space mixed
quantum–classical dynamics with models for the quasiparticle band structure as well as the electron–hole and carrier–phonon interactions,
parametrized against ab initio calculations, although noting that a direct interfacing with ab initio calculations is straightforward in principle.
We introduce various parameters for truncating the Brillouin zone to select regions of interest. Variations of these parameters allow us
to determine linewidths in the limit of asymptotic material sizes. The obtained asymptotic linewidths are found to agree favorably with
experimental measurements across a range of temperatures. As such, our framework establishes itself as a promising route toward unraveling
the non-Markovian and microscopic principles governing the nonadiabatic dynamics of solids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0218973

I. INTRODUCTION

Rapid advances in materials engineering are challenging the
traditional paradigms of materials behaviors. In particular, while
solids are commonly thought of as high-dielectric media, there is
a growing class of materials where dielectric screening is weak as
a result of reduced dimensionality,1 porosity,2 and/or incorpora-
tion of organic constituents.3 For semiconducting materials, this
may lead to the formation of stable excitons, i.e., electron–hole pairs
with sizable binding energies. In the presence of direct bandgaps,
such tightly bound excitons will be strongly absorbing.1 Reduced
dielectric screening may also lead to sizable interactions between
electronic carriers and vibrations of the polar lattice, i.e., phonons.4,5

Much remains to be learned about the dynamical interplay of
strongly interacting electrons, holes, and phonons within a materi-
als platform, posing a demand for new theoretical methods that are
microscopic and non-Markovian.

Monolayer transition-metal dichalcogenides (TMDs) con-
stitute an emerging class of direct-bandgap semiconducting

materials,6,7 the atomic structure of which is shown in Fig. 1(a). In
TMDs, weak dielectric screening emanates from reduced dimen-
sionality.8 As a result, exciton binding energies in TMDs have
been shown to range in the hundreds of meV,8,9 rendering these
materials suitable for excitonic applications at room temperature.
Higher-order carrier complexes have also been observed, including
negatively charged trions,10 consisting of two electrons interacting
with one hole, as well as biexcitons.11 The technological interest
in these materials is further motivated by their nontrivial topol-
ogy. As a result of this topology, the band extrema, where excitons
form, organize into spin-opposite degenerate “valleys” located at the
inequivalent corners of the hexagonal Brillouin zone (BZ), as shown
in Fig. 1(b). Each valley is addressable through opposite circularly
polarized light,12–17 opening up spintronic opportunities.

Carrier–phonon interactions in TMDs lead to a variety of exci-
tonic scattering pathways, impacting optical line shapes,5,18–20 pho-
toluminescence enhancement,21 and valley polarizations.22 Spec-
trally resolved phonon sidebands observed for TMDs indicate
carrier–phonon interactions to be sizable and non-Markovian.5,20,23
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FIG. 1. (a) Atomic structure of monolayer TMDs, with transition metals indicated by teal and chalcogens by yellow. The top view (upper) and side view (lower) are shown.
(b) Hexagonal BZ with the high-symmetry points indicated. Shown on top is a schematic of the conduction and valence bands for spin up (blue) and spin down (red) near the
K and K′ points. (c) Calculated dispersions of the low-energy exciton states of MoS2 (projected along the reciprocal x direction). The lowest-energy exciton band shown in
purple is included in our dynamics calculations. The energy of this exciton at the Γ point is taken as a reference. The dispersion of the LA phonon (dashed) is also shown.

Knorr and co-workers were able to model phonon sidebands by
incorporating non-Markovian contributions into the semiconduc-
tor Bloch equations.20 Reiter and co-workers instead resorted to a
time-convolutionless master equation, to a similar effect.24 Recent
work by Louie and co-workers accounted for the resulting absorp-
tion peak asymmetries by means of the second-order many-body
perturbation theory, which retained microscopic details of the
material.25 These studies are pushing the envelopes of theoretical
modeling, offering much-needed insights into the unconventional
behaviors of TMDs. However, a particular challenge in the micro-
scopic modeling of TMDs is posed by rapid fluctuations of the
dielectric function in the limit of small lattice momentum (wavevec-
tor),26 which requires the BZ to be sampled at high resolutions.27,28

Given the unfavorable computational cost scaling with increasing
BZ resolution, it remains unclear to what extent the existing the-
oretical methods are able to reach convergence while retaining a
microscopic and non-Markovian incorporation of carrier–phonon
interactions.

A comparatively inexpensive means to microscopically account
for the non-Markovian interactions between electrons, holes, and
vibrational modes is provided by mixed quantum–classical (MQC)
dynamics, which has found widespread application to molecular
systems.29–33 In MQC dynamics, vibrational modes are described
classically, reserving a quantum treatment for the electronic coor-
dinates, while the quantum–classical interaction is treated self-
consistently. As such, MQC dynamics provides a non-Markovian
and non-perturbative treatment of the carrier–vibrational coupling,
at the expense of the classical approximation taken for the vibra-
tional modes. Notably, this approximation is exact in the short-time
limit,34 as a result of which the MQC dynamics is particularly accu-
rate for describing early phenomena, such as the scattering processes
governing optical line shapes.

In recent years, MQC dynamics (at times referred to as nonad-
iabatic molecular dynamics) has increasingly found applications to
materials,35 including monolayer36 and few-layer37,38 TMDs, as well
as TMD-based heterostructures.39–41 Importantly, MQC dynamics
is commonly formulated within a physical (i.e., local) basis for the
involved electronic and vibrational coordinates. This is adequate for

most molecular systems, but it poses a challenge for resolving the
band-like excitons and phonons in TMDs, which require exceed-
ingly large material sizes to be included. Despite the comparatively
low cost of MQC dynamics, this significantly complicates its ability
to reach convergence.

We recently proposed a reformulation of MQC dynamics
within reciprocal space.42,43 By associating the electronic and vibra-
tional coordinates with BZ locations, this reformulation allows MQC
dynamics to be applied to band-like phenomena in solids at radically
reduced cost by truncating the BZ to only the regions providing sig-
nificant contributions. BZ truncations were previously employed for
converging the calculations of excitons28 and trions44 in TMDs. Our
demonstration of reciprocal-space MQC dynamics was restricted to
simple, one-dimensional lattices with Holstein and Peierls-type cou-
pling of a single carrier to a single phonon branch.42,43 Reciprocal-
space MQC dynamics has since been combined with density func-
tional theory and density functional perturbation theory45 and
has been applied to study the Floquet nonadiabatic dynamics of
laser-dressed solid-state materials.46

Here, we apply reciprocal-space MQC dynamics to microscop-
ically model the optical line shapes of the TMD MoS2. To this
end, we introduce a formalism invoking the Bethe–Salpeter equa-
tion (BSE)47 with input from a parametrized band structure and
a static model dielectric function, although a direct interfacing of
our formalism with ab initio calculations is possible in principle.
Self-consistent coupling to a single acoustic phonon branch is incor-
porated by means of Ehrenfest’s theorem,48 yielding a mean-field
MQC framework. In order to explore convergence of our results, we
introduce a truncation radius around the K and K′ high-symmetry
points within the electron–hole basis, while additionally invoking a
truncation radius around the Γ point for the total wavevector of the
excitons. Combined with the BZ sampling resolution, this equips us
with three convergence parameters. A fitting of the calculated results
for varying parameters allows us to determine asymptotic values of
optical linewidths, which are found to be in good agreement with
the experimental measurements across a range of temperatures. We
additionally find our approach to account for a sideband due to the
acoustic phonon, as a result of non-Markovian effects captured by
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MQC dynamics. These results help in establishing MQC modeling as
a viable route toward studying carrier–phonon scattering in solids.

This paper is organized as follows: in Sec. II A, we briefly review
the principles of reciprocal-space MQC dynamics. In Secs. II B–II D,
we present the theory of absorption, excitons, and carrier–phonon
interactions, respectively. We then proceed with an outline of the
model used to describe MoS2 in Sec. II E, followed by an overview
of the BZ truncations in Sec. II F. Then, we present and discuss our
results in Sec. III, after which we conclude and offer an outlook in
Sec. IV.

II. THEORY
A. Reciprocal-space mixed quantum–classical
dynamics

Within MQC dynamics, classical phonons (or vibrational
modes) are commonly described in terms of canonical position and
momentum coordinates, which in vector form are denoted as q and
p, respectively. The key principle behind reciprocal-space MQC is
the combination of these canonical coordinates into complex-valued
coordinates, z, such that q and p contribute to the real and imagi-
nary parts, respectively.42,43 The complex-valued coordinates z can
then be subjected to a complex Fourier transform, allowing one to
rotate from a physical basis to reciprocal space.42,43 Upon this rota-
tion, canonical coordinates can be recovered by the deconstruction
of z into its real and imaginary parts. While this deconstruction can
be elucidating at times, it is not strictly necessary, as MQC dynam-
ics can be fully formulated in terms of z.49 Accordingly, the total
Hamiltonian operator governing interacting carriers and phonons is
partitioned as

Ĥ(z) = Ĥel + Ĥel−ph(z) +Hph(z). (1)

Here, Ĥel is the Hamiltonian operator describing the electronic sub-
system, and Hph(z) is the Hamiltonian function of the phonons. The
interaction between electronic carriers and phonons is described
by the operator Ĥel−ph(z), which depends parametrically on the
phonon coordinates.

The phonon coordinates are propagated by means of the
Hamilton equations of motion, which, for the complex variables,
take the form49

ż = −i ∇z∗�Ĥ�
= −i ∇z∗��Ĥel−ph� +Hph�. (2)

Here, �⋅ ⋅ ⋅� denotes the expectation value through which the quan-
tum subsystem provides a contribution to the classical dynamics.
Within mean-field MQC dynamics, this expectation is taken with
respect to the electronic wavefunction, Ψ, as predicted by Ehrenfest’s
theorem.48 Accordingly, we have for the electron–phonon Hamilto-
nian operator,

�Ĥel−ph� = �Ψ�Ĥel−ph�Ψ�. (3)

We note that such a mean-field approximation is known to suffer
from over-thermalization,50,51 which at long times leads to inaccu-
rate dynamics and difficulties in applying BZ truncations.43 How-
ever, the absorption processes considered in the present work ensue
well before thermalization sets in so that these issues are expected

to be minor. The electronic wavefunction, on the other hand, is
propagated through the time-dependent Schrödinger equation,

i�h�Ψ̇� = Ĥ�Ψ�
= �Ĥel + Ĥel−ph��Ψ�. (4)

Typically, the electronic wavefunction is initialized in some
given state, while the phonon coordinates are sampled from a ther-
mal distribution, after which the phononic and electronic equations
of motion can be self-consistently solved. Properties of interest are
then calculated as an average over quantum–classical trajectories.

B. Absorption
Given a semiconducting material, the (electronic) absorption

spectrum for a given polarization direction λ follows from a Fourier
transform of the response function, Rλ(t), as

Aλ(ω) = � ∞
0

dτeiωτRλ(τ), (5)

with the response function given by

Rλ(τ) = �0�P̂λ�Ψ(τ)�. (6)

Here, �0� represents the electronic ground state, with completely
filled valence bands and empty conduction bands (referred to as the
Fermi vacuum), and Ψ(τ) represents the electronic wavefunction at
time τ.

The electronic momentum operator appearing in Eq. (6), which
for a periodic lattice is equivalent to the transition dipole operator,
is given by52,53

P̂λ = me�h �k,v,c
�ψk,v�eλ ⋅ ∇k ĥk�ψk,c�ĉ†k,vĉk,c, (7)

where me is the electron rest mass and eλ is the unit vector
along direction λ. The operator ĥk represents the noninteracting
quasiparticle Hamiltonian. Its eigensolutions,

ĥk�ψk,c(v)� = εk,c(v)�ψk,c(v)�, (8)

define the quasiparticle spin-bands, where k denotes the wavevec-
tor, and c(v) represents the conduction (valence) spin-band label.
In Eq. (7), ĉ†k,c(v) and ĉk,c(v) represent the operators for creation
and annihilation, respectively, of an electron in spin-band c(v) with
wavevector k.

At time τ = 0, the electronic wavefunction is initialized as

�Ψ(τ = 0)� = P̂†
λ �0�. (9)

In governing its subsequent evolution, we resort to reciprocal-space
MQC dynamics, as discussed in Sec. II A, under application of the
Hamiltonians presented in Secs. II C and II D.

C. Excitons
Excitonic states in a semiconducting material are governed by

the BSE, which can be expressed in Hamiltonian form as
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Ĥel = �
k1,k2

�
c,v
(�k1,c − �k2,v)ĉ†k1,cĉk2,vĉ†k2,vĉk1,c

+ 1
A �k1,k2,κ

�
c,v,c′ ,v′

�ψ†
k2+κ,v′ψk1+κ,c′ �K̂ int�ψ†

k2,vψk1,c�
× ĉ†k1+κ,c′ ĉk2+κ,v′ ĉ

†
k2,vĉk1,c. (10)

Here, K̂ int represents the electron–hole interaction operator, and A
is a normalization to the length, area, or volume of the involved
material. The daggers appearing in the interaction kernel refer to
hole states, being Hermitian conjugates of electron states.

Excitonic eigenstates of the electronic Hamiltonian operator,
satisfying Ĥel�Φn� = En�Φn�, can be expanded in the basis of electron
and hole excitations of the Fermi vacuum as

�Φn� =�
k,c,v

An
k,c,vĉ†k+k̄n ,cĉk,v�0�, (11)

where the expansion coefficients are denoted as An
k,c,v and k̄n is the

total wavevector of exciton n.

D. Carrier–phonon interactions
Under the harmonic approximation, a general form of the

Hamiltonian function governing phonons in materials is given by42

Hph =�
k,�

�hωk,�z∗k,�zk,�,

where k and � denote the phonon wavevector and branch, respec-
tively, whereas ωk,� represents the associated harmonic frequency.
In adopting a representation of classical phonons in terms of com-
plex coordinates (cf. Sec. II A), we have taken zk,� to correspond to
the eigenvalue associated with the coherent state of the harmonic
oscillator,54 representing the phonon with wavevector k and branch
�. This coordinate can be decomposed as

zk,� ≡
�ωk,�

2�h �qk,� + i
pk,�

ωk,�
�, (12)

through which relevant equations can be expressed in terms of
canonical coordinates qk,� and pk,�, as mentioned in Sec. II A. In the
following, we will refrain from doing so, as relevant equations take a
more intuitive form when expressed in terms of zk,�.

The carrier–phonon interactions are governed by the Hamilto-
nian,

Ĥel−ph =�
k,κ
�
c,v,�
�gc

k,κ,�ĉ†k+κ,cĉk,c − gv
k,κ,�ĉk,vĉ†k+κ,v��z∗−κ,� + zκ,��. (13)

Here, gc(v)
k,κ,� is the spin-conserving intraband matrix element for an

electron (hole) scattering onto a phonon in branch � with wavevec-
tor κ, thereby undergoing a change in wavevector from k to k + κ.55

As elaborated upon in Refs. 56 and 57, interband scattering and spin-
nonconserving carrier–phonon scattering processes provide negli-
gible contributions to optical linewidths due to the large energetic
separation between bands and the comparatively long timescales
associated with spin flips. Therefore, these scattering processes are
omitted here.

Restricting ourselves to the Hilbert space spanned by single
electron–hole pairs, the total Hamiltonian can be transformed into
the excitonic eigenbasis. The advantage of this is that the electronic
Hamiltonian can be solved for a priori, following which the total
Hamiltonian can be diagonalized within a reduced set of excitonic
eigenstates (see Sec. II F). Accordingly, the exciton creation opera-
tor is first defined as Ĉ†

n�0� ≡ �Φn� and analogously for the exciton
annihilation operator. In terms of these operators, the electronic
Hamiltonian is given by

Ĥel =�
n

EnĈ†
nĈn. (14)

Inserting the equality ĉ†k+k̄,cĉk,v = ∑n An∗
k,c,vĈ†

n into Eq. (13) yields for
the exciton–phonon interaction Hamiltonian,

Ĥel−ph = �
n,m,�

Gn,m,�Ĉ†
nĈm�z∗−k̄nm ,� + zk̄nm ,��, (15)

where k̄nm ≡ k̄n − k̄m is the difference in total wavevectors of excitons
n and m and

Gn,m,� ≡�
k,c,v
�gc

k+k̄m ,k̄nm ,��An
k,c,v�∗Am

k,c,v

− gv
k−k̄n ,k̄nm ,��An

k−k̄ n ,c,v�∗Am
k−k̄m ,c,v� (16)

is the exciton–phonon interaction element.

E. Model for MoS2

The combination of Secs. II A–II D presents a comprehensive
and microscopic formalism that can, in principle, be interfaced with
an ab initio treatment of a material, including interacting carriers
and phonons. While we consider such interfacing of interest for
future research, here we instead resort to a model band structure
as well as models for the electron–hole and carrier–phonon inter-
action elements, each parametrized against ab initio calculations,
in order to simplify the implementation of our approach. All the
applied parameters are presented in Table I.

Computational studies12,52 have shown the conduction and
valence bands of MoS2 in the vicinity of the bandgap regions

TABLE I. Parametrization applied in our calculations, including the references where
the parameters were taken from. The unit cell mass m was taken to be the total mass
of one molybdenum atom and two sulfur atoms.

Parameter Value References

a 3.19 Å 12
t 1.10 eV 12
� 1.66 eV 12
λv 148 meV 44
λc −3.0 meV 44
χ2D 6.60 Å 44
vLA 66 Å ps−1 58
m 2.66 × 10−25 kg ⋅ ⋅ ⋅
Dc

1 4.5 eV 58
Dv

1 2.5 eV 58
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to be well-represented by an appropriately parametrized massive
Dirac-like Hamiltonian of the form12,59

ĥk = �−��2 + λvτkŜz at(τkk̃x + ik̃y)
at(τkk̃x − ik̃y) ��2 + λcτkŜz

�. (17)

Here, � is the band gap, a is the lattice constant, and t is the effec-
tive nearest-neighbor transfer integral. Furthermore, k̃ denotes the
wavevector relative to the K or K′ high-symmetry point, whichever
is closest, and τκ = +1 (−1) if k is closer to K (K′). Spin–orbit split-
ting of the conduction (valence) band by the amount of 2λc(v) is
incorporated, with Ŝz being the out-of-plane spin operator. Solving
Eq. (8) with substitution of Eq. (17) provides the quasiparticle ener-
gies �k,c(v) and wavefunctions ψk,c(v) necessary to construct the BSE
Hamiltonian, Eq. (10).

The electron–hole interaction elements appearing in the BSE
Hamiltonian include contributions from a screened direct term
and an unscreened exchange term. As with effective mass mod-
els,60 parametrized band structures such as the one applied here
lack a detailed structure of the atomic orbitals. As is com-
monly done,44,52,61,62 we, therefore, approximate the interaction
elements as

�ψ†
k2+κ,v′ψk1+κ,c′ �K̂ int�ψ†

k2,vψk1,c�
= −�ψk1+κ,c′ �ψk1,c��ψk2,v�ψk2+κ,v′�W(κ)
+ �ψk1+κ,c′ �ψk2+κ,v′��ψk2,v�ψk1,c�v(k1 − k2), (18)

which also neglects the frequency-dependence of the material’s
inverse dielectric function. Here, W(k) is the screened Coulomb
interaction, which is modeled by means of the Rytova–Keldysh
potential,63,64

W(k) = e2

2�0�k�(1 + 2πχ2D�k�) . (19)

Here, e is the elementary charge, �0 is the vacuum permittiv-
ity, and χ2D is the two-dimensional polarizability. The unscreened
Coulomb interaction in two dimensions, v(k), is recovered from
the Rytova–Keldysh potential in the limit of vanishing χ2D as
v(k) = e2�(2�0�k�).

The BSE Hamiltonian based on the two-band model and the
aforementioned model interactions was previously shown to pro-
duce results in good agreement with the measurements. For MoS2,
it was shown to yield trion binding energies44 consistent with
the experimental observations10,65 and to reproduce52 the experi-
mentally observed non-hydrogenic excitonic Rydberg series,8 while
showing good overall agreement with a more sophisticated three-
band model.66 For the related monolayer TMD material WS2,
it was shown to reproduce52 the experimentally observed two-
photon absorption spectrum,67 while it was also found to capture44

the coherent exciton–trion signals measured in two-dimensional
spectroscopy of MoSe2.68

In Ref. 56, Knorr and co-workers have shown optical phonons
to minimally affect the temperature-dependent component of the
optical linewidths of MoSe2, with the predominant contribution
being provided by acoustic phonons instead. Although MoS2 was
not evaluated in this work, it was argued that a similar linewidth
behavior is to be expected for this material based on structural
similarities with MoSe2.56 In simplifying our model, we, there-
fore, restrict ourselves to the acoustic phonon contributions. While

Ref. 56 described the longitudinal acoustic (LA) and transverse
acoustic (TA) modes as two degenerate phonon branches, we found
that numerically identical dynamics are obtained when combin-
ing both modes into a single branch with a deformation potential
constant multiplied by

√
2. We have, therefore, adopted a single-

branch model with frequency ωκ = vLA�κ�, where vLA is the sound
velocity of the LA mode.56 Here and henceforth, the branch index
is omitted in the equations, being redundant in this single-branch
scenario. Ab initio calculated values of the deformation potential
constants contain both deformation potential and piezoelectric cou-
plings, which are approximately equal in contribution.56 However,
the piezoelectric contribution will experience a destructive interfer-
ence in the net exciton–phonon interaction element as piezoelectric
couplings involving electrons and holes have opposite signs due to
their dependence on carrier charge. Similar to Ref. 24, we, therefore,
omit the piezoelectric contribution by dividing the ab initio calcu-
lated deformation potential constant by

√
2, which cancels against

the aforementioned
√

2 multiplication.
A generic expression of the carrier–phonon interaction ele-

ments is given by69

gc(v)
k,κ =

� �h
2mNωκ

�ψk+κ,c(v)��kV̂ �ψk,c(v)�, (20)

where m is the mass of the unit cell, N is the total number of unit
cells, and �kV̂ is the change in the effective potential per unit dis-
placement along the phonon coordinate. In Ref. 56, the couplings
between carriers and acoustic phonons were described by means of
a first-order deformation potential approach, which amounts to the
replacement,

�ψk+κ,c(v)��kV̂ �ψk,c(v)�← Dc(v)
1 �κ�. (21)

Here, Dc(v)
1 is the deformation potential constant, which is treated as

a parameter. We note that the left-hand side of Eq. (21) is subject
to a global gauge freedom introduced by the quasiparticle eigen-
states, which is eliminated in the replacement. In order to reinstate
this gauge, as necessary for integration within the BSE, we instead
adopt a modified deformation potential approach, by applying the
replacement,

�ψk+κ,c(v)��kV̂ �ψk,c(v)�← Dc(v)
1 �κ� exp�iϕc(v)

k,κ �, (22)

where ϕc(v)
k,κ ≡ arg (�ψk+κ,c(v)�ψk,c(v)�) accounts for the gauge.

F. Brillouin zone truncations
Critical to our efforts to push our modeling toward conver-

gence is our ability to perform efficient truncations of the BZ
within the applied formalism. Within the realm of MQC dynam-
ics, such truncations are uniquely enabled by our reciprocal-space
formalism.42,43 Figure 2 shows various BZ truncations taken. As
shown here, the hexagonal BZ of MoS2 is described by means of a
Monkhorst–Pack grid, using a resolution of Nk ×Nk. Without any
truncations, the number of excitonic basis states scales as N4

k .
As a first means of performing truncations, the grid points

included in the electron–hole basis used to solve the BSE Hamil-
tonian are restricted to those within a given radius around the
K and K′ points, denoted Rk. This truncation relies on the key
principle that optical absorption produces carriers close to those
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FIG. 2. Depiction of the hexagonal BZ of MoS2, with an equivalent
Monkhorst–Pack grid overlaid. Discrete reciprocal-space lattice points are shown
for a resolution of Nk = 33. The truncation radius applied to truncate the
electron–hole basis, Rk, which limits the lattice points to within a circle (repre-
sented by black) centered at the K and K′ points (the corners of the hexagonal
BZ). As a further means of truncation, the total wavevector of an exciton is lim-
ited as �k̄n� < RX. This wavevector is the difference of that of the electron k̄n + k
(represented by red) and that of the hole k (represented by cyan).

high-symmetry points52 and was previously applied in static calcu-
lations of excitons28 and trions44 in MoS2.

Solving for the BSE Hamiltonian yields a manifold of discrete
exciton bands at low energies, in addition to a continuum of high
energy states.70 Restricting ourselves to excitons where the con-
stituent electron and hole carry the same spin, we find the four bands
at the lowest energy, as shown in Fig. 1(c), to correspond to the
spin-up and spin-down electron–hole pair located in the K and K′
valleys, respectively. At the Γ point with k̄n = 0, these bands form
degenerate pairs and represent the lowest state within the nonhy-
drogenic Rydberg series (with the other states in this series residing
at higher energies). With increasing �k̄n�, the degenerate pairs split,
as electron–hole exchange interactions lift one of the bands above
the other.70 In our model, we include only the lowest band, which is
unaffected by exchange interactions.71

In addition, a truncation radius is invoked around the Γ point
for the total wavevector of the excitons, denoted RX, such that�k̄n� < RX. This truncation serves to further reduce the computa-
tional cost by excluding excitons with k̄n ≈ Rk, which are poorly
resolved due to their large contributions of carriers outside the trun-
cation radius Rk. The imposed truncations have ramifications for the
phononic coordinates since phonons are associated with changes
in excitonic wavevector, as per Eq. (15). In our calculations, only
those coordinates are included that contribute to excitonic scattering
processes allowed by our truncated electron–hole basis, which
implies a truncation of phonon wavevectors to within a radius
around the Γ point.

Altogether, we find ourselves with three parameters, Nk,
Rk, and RX, with respect to which convergence can be feasibly
modulated.

III. RESULTS AND DISCUSSION
The optical linewidth of MoS2 receives both temperature-

dependent and temperature-independent contributions. In the fol-
lowing, we will only consider the temperature-dependent contribu-
tion, which is attributed to acoustic phonons.56

Figure 3(a) shows the x polarized absorption spectrum of MoS2
at a temperature of T = 300 K calculated using Nk = 69, Rk = 0.2,
and RX = 0.1. (Here and henceforth, distances in reciprocal-space
are given in units of 2π�a. Moreover, the x polarization was cho-
sen arbitrarily, as any linear polarization direction will yield formally

FIG. 3. (a) Low-energy absorption spectrum of MoS2 at 300 K, calculated with trun-
cation parameters Nk = 69, Rk = 0.2, and RX = 0.1 (green, solid). A Lorentzian fit
to the spectral profile (orange, dashed) is also shown. The associated FWHM is
used to determine the linewidth γ, as indicated. Energy is normalized to that of the
lowest exciton at the Γ point (cf. Fig. 1). (b) Calculated linewidths at varying RX
and with Nk = 69 and Rk = 0.2 (purple markers), shown together with a fit (dotted,
see text for details). The horizontal axis is scaled according to the fit function. (c)
As in panel (b) but for varying Rk. (d) As in panel (b) but for varying Nk. Identical
data across panels are indicated by orange.
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identical results.) To calculate this spectrum, the electronic wave-
function was initialized according to Eq. (9) (with λ = x), while the
classical phonon coordinates were stochastically drawn from a ther-
mal Boltzmann distribution. Within the complex coordinate repre-
sentation, this amounts to drawing the magnitude of the coordinates
according to the probability,

P(�zk�)∝ exp �−β�hωk�zk�2�, (23)

with β = 1�kBT as the inverse temperature, while their arguments
are uniformly drawn from the interval [0, 2π). Upon this initializa-
tion, dynamics was computed over the course of 7.82 ps with a time
step of 0.26 fs for a total of 20 000 trajectories, yielding the response
function according to Eq. (6), which was then Fourier transformed
in order to produce the absorption spectrum as per Eq. (5).

The resulting spectrum shown in Fig. 3(a) consists of one prin-
cipal peak accompanied by a broad sideband at a blueshift of roughly
7 meV. The emergence of such sideband is a manifestation of non-
Markovian dynamics,20,24 as accounted for by our MQC approach,
and arises due to coupling of the exciton to the acoustic phonon
branch. We note that the intensity and blueshift are small compared
to previously reported phonon sidebands, which were attributed to
optical phonons20 not included in our model. As such, we expect the
comparatively minor sideband due to the acoustic phonon branch
predicted by our modeling to be camouflaged by those from the
optical phonons, while the acoustic phonon contribution instead
affects the linewidths.56 In order to determine the linewidth, we per-
formed a Lorentzian fit to the entire spectral profile. The full width
at half maximum (FWHM) of the Lorentzian function is then used
to determine the linewidth, which in Fig. 3(a) amounts to roughly
5 meV.72

To explore linewidth values in the asymptotic limits of Nk, Rk,
and RX, we performed calculations at varying parameters and fitted
to the obtained linewidths, the function,

γ̃(Nk, Rk, RX) = γ̃∞ fN(Nk) fk(Rk) fX(RX), (24)

where fN(Nk) ≡ 1 − exp(−bNNk + cN) and where fk(Rk) and
fX(RX) are defined similarly. This function relies on the assumption
that the convergence behaviors associated with the parameters are
uncorrelated.

Figures 3(b)–3(d) show slices of the calculated linewidth data
as a function of RX, Rk, and Nk, respectively, while keeping the
other two parameters fixed at the values shown in Fig. 3(a). The fit
based on Eq. (24) is also shown. For the RX slice, the x axis depicts
fX(RX), such that the origin corresponds to the asymptotic limit
and the exponential fit produces a straight line. A similar depic-
tion is adopted for the Rk and Nk slices. For all three slices, the
calculated data are seen to closely follow the fitted curves, indicat-
ing that convergence with respect to RX, Rk, and Nk is indeed largely
uncorrelated and exponential.

As shown in Fig. 3(b), RX = 0.1 is sufficient to approach con-
vergence. The relatively small convergence radius necessary can
be rationalized by recognizing that phonons absorb energy when
scattering with the exciton, in addition to lattice momentum. The
conservation of both energy and lattice momentum is most closely
satisfied when the phonon and exciton dispersions are similar, which
for the acoustic phonon branch occurs near the Γ point, as shown

in Fig. 1(c). As such, effective exciton–phonon scattering pathways
couple exciton states within a relatively small radius around the Γ
point.

Convergence is markedly slower for Rk, as shown in Fig. 3(c),
with radii exceeding 0.2 being necessary to approximate the asymp-
totic limit. Notably, this amounts to twice the radius used previously
to converge the binding energy of the optically accessible lowest-
energy exciton.44 This difference is rationalized by appreciating that
optically accessible excitons have k̄n = 0, i.e., are fully described
with RX = 0. While Rk ∼ 0.1 suffices in this case, exciton–phonon
couplings induce a scattering of the total exciton wavevector to
within RX = 0.1. Since this total wavevector can be absorbed in
either carrier, this implies an enhancement of the carrier wavevector
distribution radius to Rk ∼ 0.2.

Reaching convergence for Nk is decidedly more demanding
than for RX or Rk. At small values of Nk, i.e., at course sampling
of the BZ, the continuous exciton band becomes discretized into
states with well-separated energies and wavevectors, which affects
the dynamics. This effect is particularly pronounced at elevated
temperatures, where higher regions of the (quasi)parabolic exciton
dispersion are accessible and steeper dispersions lead to larger gaps
between discrete states. For that reason, we found convergence with
respect to Nk to be markedly faster at lower temperatures.

While each of the slices shown in Figs. 3(b)–3(d) only pro-
vide the asymptotic limit with respect to a single parameter, it is
γ̃∞ obtained through the fitting function [Eq. (24)] that represents
the linewidth in the asymptotic limit for all the three parameters
simultaneously. While the single calculation presented in Fig. 3(a)
resulted in a linewidth of ∼5 meV, the simultaneous fitting to all
the calculated data yields a linewidth of γ̃∞ ∼ 10 meV. This value
is in near-perfect agreement with the experimental measurements of
the temperature-dependent contribution to the optical linewidth at
300 K.19

Figure 4 shows the values of γ̃∞ over a range of temperatures.
The experimental measurements19 of the temperature-dependent
contribution to the optical linewidth are also shown, which were
obtained by subtracting the lowest-temperature linewidth from the
measured values across temperatures, similar to what was done in

FIG. 4. Asymptotic linewidth of MoS2 obtained through a fitting to calculations
at varying truncation parameters, as a function of temperature (black mark-
ers). Experimentally measured linewidths19 (cyan) are also shown, where the
lowest-temperature value has been subtracted out.
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Ref. 25. Our calculations produce asymptotic linewidths that cap-
ture well the experimentally observed temperature-dependent trend.
While it is reassuring to see this trend being reproduced by our
approach, it is the level of absolute agreement that is especially
noteworthy. We should emphasize that this level of agreement is
reached without making any adjustments when parametrizing our
approach based on the ab initio values presented in the literature
(cf. Table I).

IV. CONCLUSIONS AND OUTLOOK
In conclusion, we have presented an MQC framework for the

microscopic and non-Markovian modeling of exciton–phonon scat-
tering in solids, and applied it to model the optical linewidths of
monolayer MoS2. Through the application of BZ truncations, and
by a systematic variation of the associated truncation parameters,
we were able to obtain optical linewidths in the limit of an asymp-
totically large material. To the best of our knowledge, our study is
the first in exploring exciton–phonon scattering behaviors in this
asymptotic limit. The asymptotic linewidths obtained through our
approach are found to agree favorably with the experimental mea-
surements across a range of temperatures. On the one hand, this
level of agreement may not be entirely surprising, since all the model
components included in our framework have previously been found
to produce desirable results. On the other hand, the combination
of these components has, again to the best of our knowledge, not
been realized before. The accuracy reached within this combination
is, therefore, reassuring.

Our results help in establishing MQC dynamics as a viable
and attractive tool for modeling carrier–phonon interactions in
solids. Notably, the electronic and phononic truncations applied
in our modeling, necessary for exploring the asymptotic limit, are
uniquely afforded by the reciprocal-space MQC formalism that
we previously introduced.42,43 In this regard, it is worth noting
that we recently developed an analogous formalism, but expressed
in arbitrary bases, by subjecting the complex-valued coordinates
z to arbitrary unitary transformations.49 This opens opportunities
to study carrier–phonon interactions in the presence of material
defects.49

Within our computational resources, we were able to reach
sampling resolutions of the electron and hole BZ of up to Nk = 87,
albeit at slightly compromised values of the truncation radii Rk and
RX. This amounts to a total of 7569 unit cells, which, as far as we are
aware, exceeds system sizes so far explored in dynamics studies. The
optical linewidth obtained in this calculation amounts to ∼6 meV at
300 K, which is still significantly lower than the asymptotic value of∼10 meV. Although no quantitative conclusions can thus be drawn
from this particular calculation, we expect it to still provide an
unprecedented level of detail into the interactions between electron,
hole, and phonons, offering an opportunity to study the resulting
dynamics qualitatively, which we plan to further explore in future
studies. In this regard, it will be particularly interesting to consider
exciton dynamics beyond the line broadening mechanisms explored
here, such as inter-valley scattering. Notably, Kelly and co-workers
have recently reported on the simulations of inter-valley scattering
in monolayer hexagonal boron nitride based on a mean-field MQC
method similar to the approach presented here, although without
invoking BZ truncations.73

For longer-time dynamics, it may be necessary to resort to alter-
natives to mean-field MQC dynamics due to the tendency of this
method to overthermalize.50,51 A particularly attractive alternative is
provided by fewest-switches surface hopping,74 which we recently
explored within a reciprocal-space43 and arbitrarily transformed49

MQC framework. A recently proposed coherent generalization of
this method75,76 may further enhance the accuracy through its
improved ability to describe the coherent dynamics prevalent in
materials. Altogether, these developments provide new and excit-
ing opportunities for the modeling of carrier–phonon dynamics in
solids.
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