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Abstract

The pre-training and �ne-tuning paradigm has demonstrated its
e�ectiveness and has become the standard approach for tailoring
language models to various tasks. Currently, community-based
platforms o�er easy access to various pre-trained models, as anyone
can publish without strict validation processes. However, a released
pre-trained model can be a privacy trap for �ne-tuning datasets
if it is carefully designed. In this work, we propose PreCurious
framework to reveal the new attack surface where the attacker
releases the pre-trained model and gets a black-box access to the
�nal �ne-tuned model. PreCurious aims to escalate the general
privacy risk of both membership inference and data extraction on
the �ne-tuning dataset. The key intuition behind PreCurious is to
manipulate the memorization stage of the pre-trained model and
guide �ne-tuning with a seemingly legitimate con�guration. While
empirical and theoretical evidence suggests that parameter-e�cient
and di�erentially private �ne-tuning techniques can defend against
privacy attacks on a �ne-tuned model, PreCurious demonstrates the
possibility of breaking up this invulnerability in a stealthy manner
compared to �ne-tuning on a benign pre-trained model. While
DP provides some mitigation for membership inference attack, by
further leveraging a sanitized dataset, PreCurious demonstrates
potential vulnerabilities for targeted data extraction even under
di�erentially private tuning with a strict privacy budget e.g. n =

0.05. Thus, PreCurious raises warnings for users on the potential
risks of downloading pre-trained models from unknown sources,
relying solely on tutorials or common-sense defenses, and releasing
sanitized datasets even after perfect scrubbing.
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1 Introduction

The pre-training and �ne-tuning paradigm has become the standard
approach for tailoring language models (LMs) to various tasks, such
as the medical domain [15, 22]. In this approach, a language model
is pre-trained on a large, general dataset and then �ne-tuned on a
smaller, domain-speci�c dataset. Privacy risks arise when the �ne-
tuning data is private and the �ne-tuned model can be accessed as
a service [34]. One realistic scenario is that a hospital �ne-tunes a
model using local Electronic Health Record (EHR) data and then
shares the API with other hospitals that lack such expertise. Existing
works broadly explore the privacy risks of training data via black-
box access of the model [3, 6, 41], which is also applicable to the
�ne-tuned model.

In this paper, we reveal a new privacy attack surface where an
attacker aims to escalate the privacy risk of the �ne-tuning data
from a �ne-tuned model by manipulating the pre-trained language
model loaded by the user before �ne-tuning and then getting the
black-box access to the �ne-tuned model. This is realistic since
anyone can publish models on community-based platforms (e.g.,
Huggingface [2], GitHub [1]) without stringent validation processes.
A �ne-tuning user may inadvertently download an untrusted pre-
trained model from compromised sources, especially when popular
models have di�erent variants on platforms like Hugging Face. For
instance, a victim could make a typo during the download process
or fall for a malicious higher-version package registered with the
same name as a legitimate model.

Previous work [44] explored additional adversarial access be-
sides the black box access of the model by injecting poisoned data in
the training dataset to amplify the privacy risk, which requires the
adversarial capability of accessing/crafting training data. A recent
work [43] manipulates pre-trained (upstream) image classi�cation
model for increasing the privacy risk of downstream models, but
is limited to property inference attacks that infer whether images
with a speci�c attribute are used for training. In our threat model,
the attacker aims to escalate the privacy risk by manipulating the
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Figure 1: The privacy vulnerability for target models �ne-

tuned by variousmethods ranks asHead-FT > Full >Adapter-

FT. PreCurious increases the privacy risk for each iteration

and ruins the privacy-utility trade-o�, as demonstrated with

Head-FT andAdapter-FT. �ft indicates the �ne-tuning epochs

and lower validation perplexity means better performance.

released pre-trained model, without assuming access to the �ne-
tuning process or �ne-tuning dataset. Our adversarial goal is to
amplify fundamental privacy threats of membership inference at-
tack [3] and data extraction [6] in the �ne-tuned language model,
compared to the one �ne-tuned from a benign pre-trained model.

It is non-trivial to achieve our privacy risk ampli�cation goal
since parameter-e�cient �ne-tuning (PEFT) techniques such as
Adapter [37] and LoRA [14] have been established to have a privacy
invulnerability property [34, 46]. This is demonstrated in Figure 1
which shows the privacy vulnerability (measured in membership
inference attack (MIA) e�ectiveness in AUC) for di�erent �ne-
tuning methods vs. the �ne-tuning epochs (left) and utility of the
�ne-tuned model (right) (measured in validation perplexity (PPL)).
We can see that the Adaptor �ne-tuning (Adaptor-FT) exhibit a
very low vulnerability. At the same time, the training e�ciency
introduced by PEFT [12, 26] makes it broadly applicable for LMs,
especially encouraging di�erentially private (DP) �ne-tuning for a
large model [24], which makes the privacy attacks on the �ne-tuned
model more challenging.

Our key intuition is to manipulate the memorization level of
the pre-trained model by exploiting PEFT. Since the majority of
the pre-trained model is frozen during PEFT, we can better in�u-
ence the behavior of the trainable modules for amplifying risks in
the �ne-tuned model. Figure 2 illustrates our proposed framework
where an attacker downloads a benign large model, manipulates it
by an auxiliary dataset, and uploads it to an untrusted source for
victims. We exploit side information such as the stopping criterion
and the �ne-tuning method by implicitly guiding the �ne-tuning
victims through documents or tutorials, proposing lagging or ac-
celerating strategies for cases with or without early stopping and
anti-freezing strategy when �ne-tuning method is known. Addi-
tionally, we attempt to make full use of the public information, for
example, a released de-identi�ed dataset, to further enhance the
attack capability.

We demonstrate that our attack can successfully amplify various
privacy risks. Figure 1 illustrates the increased privacy vulnera-
bility of MIA by our methods on both Head-FT and Adaptor-FT.
More generally, for MIA, we compare PreCurious with benign
GPT-2 [38] on the same black-box attack and demonstrate that by

manipulating the pre-trained model, the true-positive-rate (TPR)
at a false-positive-rate (FPR) of 0.01% on Enron [21], PubMed [9]
and PTB [31] datasets is boosted by 8×, 131× and 36×, respectively.
For untargeted data extraction attack, we increase the times for a
less duplicated sub-sequence shown in the pool of �ltered genera-
tions by around 10×. For targeted data extraction attack on Enron
dataset, �ne-tuning over benign model initialization cannot expose
any secrets when �ne-tuning with a strong DP level (n = 0.05)
while PreCurious can extract 3 target email addresses with valid
exposure values. As advocated by previous work [44], we also audit
the stealthiness of PreCurious and propose a mitigation method to
make it more stealthy.

Our contribution can be summarized as follows:

• We propose a framework PreCurious to amplify the privacy
risk of both membership inference and data extraction in the
pre-training and �ne-tuning paradigm, revealing the risk of
�ne-tuning over an uno�cially released pre-trained LM.
• We propose two memorization manipulating strategies to
craft the pre-trained model for �ne-tuning with or without
early-stopping. We further exploit the side-information of
PEFT or sanitized dataset to enhance the attack e�ectiveness.
• Wedemonstrate the underestimated vulnerability of common-
sense defenses, including regularization, di�erentially pri-
vate �ne-tuning, and deduplication with PreCurious, particu-
larly highlighting risks for users who rely on common-sense
defenses without auditing privacy and training dynamics.
• We demonstrate the risks of publishing de-identi�ed datasets
solely by removing personally identi�able information (PII),
as PreCurious can exploit the context to extract targeted
secrets if the original datasets are involved in future �ne-
tuning, underscoring signi�cant vulnerabilities in the data
release.

2 Threat Model and Preliminaries

We formulate the threat model and preliminaries in this section.
The attack framework of PreCurious sits in the pre-training and
�ne-tuning paradigm of language models (LMs) to amplify data
leakage in the �ne-tuning stage.

Our target victim model is �ne-tuned with the basic next-token
prediction task. The model aims to predict the next token GĪ given
the previous tokens (G1, G2, ..., GĪ−1) for a given text sequence with
) tokens. The �ne-tuning involves minimizing the objective: L =

−
∑Đ
Ī=1 log 5Ă (GĪ |Gğ<Ī ), where 5Ă (GĪ |Gğ<Ī ) is the probability of GĪ

from the softmax output of the model \ . The trained model can
generate new text by iteratively sampling ĜĪ ∼ 5Ă (GĪ |Gğ<Ī ) and
feeding it to sample the next token.

2.1 Parameter-E�cient Fine-tuning (PEFT)

Denoting the �ne-tunedmodel as \ft = \pre◦¨, the key idea of PEFT
is only optimizing over small modules ¨ while freezing \pre, which

transfers the �ne-tuning objective asL = −
∑Đ
Ī=1 log 5¨ (GĪ |Gğ<Ī , \pre).

One line of selective PEFT selects a portion of parameters in \pre
as ¨, such as Head-FT with a few top layers [10] and Bit�t-FT with
the bias terms of the model [52]. The other line of PEFT introduces
new randomly initialized modules as ¨ as plug-in for \pre. For ex-
ample, additive method Adapter-FT [13] inserts small and trainable
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Figure 2: Framework overview of PreCurious. The dashed gray line indicates extra side information that can be utilized: 1) the

stopping criterion, 2) the �ne-tuning method, and 3) the released sanitized data by masking the secret. We design Accelerated

and Lagging strategies for stopping by epoch or by performance. We propose an aggressive anti-freezing strategy when the

victim uses the given �ne-tuning method. We utilize a released sanitized dataset in targeted data extraction experiments.

fully connected networks ¨ after transformer sub-layers in \pre.
The reparameterization-based method LoRA-FT [14] employs a low-
rank matrix decomposition to parameterize the weight updates,
and ¨ indicates parameters for the low-rank matrices.

2.2 Threat Model

PreCurious indicates the pre-trained model releaser is curious about
the private �ne-tuning dataset �ft ∈ D. We consider the model
�ne-tuner as the challenger C (or victim), and pre-trained model
publisher as the adversary A.

2.2.1 Adversarial Capabilities. We make two common adversar-
ial capability assumptions. First, we follow a common assump-
tion [32, 39, 48, 50] that the adversary can query the loss value for
a given sample via black-box access. Second, following previous
works [17, 34, 39, 41, 44, 45, 48], we assume the adversary has an
auxiliary dataset �aux ∈ D drawn from the same distribution but
disjoint from the �ne-tuning dataset �ft. Di�erent from capabilities
in backdoor attacks on the pre-trained model, we do not assume
either access to pre-training dataset of the original backbone [18]
or the access to the samples in downstream dataset [53]. Addition-
ally, we do not require capability of injecting poisoned data [44] or
tampering the �ne-tuning process.

Distinguished from all existing works, the adversary in PreCu-

rious releases the pre-trained model with seemingly legitimate
con�guration documents, which is very common when sharing
customized models on open-sourced platforms. We also note that
even for popular pre-trained models, the victim may inadvertently
download an untrusted \ĦĨě . In this case, attackers could use the o�-
cial model’s default con�guration in tutorials, which victims assume
as correct. First, typographical errors during the search and down-
load process, such as hf_hub_download(repo_id=NAME_WITH_TYPO) in
Hugging Face, could lead to the acquisition of a malicious model.
Second, attackers could register publicly available higher-version
packages with the same name as the legitimate model, which could
be automatically installed via library management tools. Finally,
the attacker could compromise the repository’s infrastructure and
replacing the legitimate pre-trained model with a malicious one.

The seemingly legitimate con�guration � = {�stop,�peft} in-
cludes: 1) stopping criterion �stop ∈ {2epoch, 2perf} of stopping-by-
epochs or early-stopping-by-performance without imposing �xed

hyper-parameters, and 2) PEFT strategy �peft like Adapter-FT or
LoRA-FT that can be easily set using open-source frameworks [37].
�peft is optional and only used for an accelerated variant in Sec-
tion 3.2.2.

We do not require the adversarial capability to pre-train a lan-
guagemodel from scratch. Thus, we assume the released pre-trained

model \advpre is crafted from a benign model \
benign
pre downloaded from

a trusted source.

2.2.2 Privacy Game. Now we construct the general privacy game
between a challenger C (the model �ne-tuner) and an adversaryA
(the pre-trained model publisher) in Game 1.

Game 1 (Privacy game in PreCurious).

• The adversary crafts and releases model with a suggested con-

�guration � , \advpre ← Tadv (�aux |\
benign
pre ,�).

• The challenger samples a training dataset�ft ∈ D and a secret

I ∈ U (such that �ft∩U = ∅), combining as �ft ← �ft∪{I}

• The challenger loads \advpre as the model initialization, follows

� in �ne-tuning and releases the black-box access to the �nal

model \adv
ft
← Tft (�ft |\

adv
pre ,�).

• The adversary queries \adv
ft

and emits a guess Î ∈ U.

• The adversary wins the game if Î = I.

We use U to denote the secret universe of �ft. Removing the

procedures in red and replacing \advpre with a benign model \
benign
pre

reduces Game 1 to a conventional privacy game.

2.2.3 Adversarial Goal. The adversary aims to increase the pri-
vacy risk in the �ne-tuning training dataset �ft. We focus on two
representative privacy notions as follows:

• Membership Priavcy [41] is de�ned on the existence of a given
sample in the �ne-tuning dataset �ft.
• Extraction Privacy [6] is de�ned on the verbatim extraction of
a subsequence in �ft. The extraction is targeted if the attacker
de�nes the format of secrets before the attack.

Concretely,U covers both membership privacy and extraction
privacy by di�erent instantiations. For example, for membership
inference,U = {x,§} denotes two cases where a sample x is or is
not in �ft. For data extraction,U consists of the collection of all
candidate secrets for a piece of text in �ft.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ruixuan Liu, Tianhao Wang, Yang Cao, & Li Xiong

Furthermore, the adversary aims to amplify the privacy risk
in �ft compared to �ne-tuning from a benign model, as formally
de�ned in De�nition 2.1.

Definition 2.1 (Successful privacy risk amplification). Given

the same �ne-tuning procedure Tft based on a benign model \
benign
pre ,

and considering two privacy games di�erentiated by Tadv as G ≃Tadv
G′, the privacy risk is ampli�ed by Tadv when the adversarial gain:

�Adv
ft

G≃Tadv G
′ = AdvG (A, �ft, \

adv
ft

, I |Tadv)

− AdvG′ (A, �ft, \
benign

ft
, I) > 0.

The AdvG (A, ·) can be a success metric for re�ecting the adver-
sary’s advantage for a speci�c attack, for example, AdvGMIA (A, ·) =

2 · Pr[Î = I] − 1 for MIA [40].
Meanwhile, the adversary should avoid suspicions from victims

that the pre-trained model \advpre will increase privacy risks in �ft.
As de�ned in De�nition 2.2, we simulates the risk auditing based
on the most ideal assumption for victims to have a benign model.
Note that De�nition 2.1 is computed on the �ne-tuned model, while
De�nition 2.2 is measured on the pre-trained model.

Definition 2.2 (Privacy risk amplification stealthiness).

The pre-trained model \advpre output by a crafting algorithm Tadv is

stealthy when the adversarial gain compared to \
benign
pre satis�es:

�Adv
pre

G≃Tadv G
′ = AdvG (A, �ft, \

adv
pre , I |Tadv)

− AdvG′ (A, �ft, \
benign
pre , I) ≈ 0.

For stealth, the simplest but most e�ective way is not involving
any �ne-tuning samples in the crafting phase, which is consistent
with the adversarial capabilities de�ned in Section 2.2.1 that A
knows no exact samples in �ft and �aux is disjoint from �ft. As
models cannot memorize secret before seeing it, the adversarial gain
compared to the benign model for �ft should satisfy De�nition 2.1.

2.3 Success Metrics

Nowwe introduce concrete attack e�ectiveness metrics for di�erent
attacks and propose stealthiness metrics for victims to audit the
pre-trained model.

2.3.1 Membership Inference A�ack. We use AUC ↑ to measure the
e�ectiveness of the attack ( ↑means the higher the value the more
desirable the metric). As suggested by previous work [3], we also
present results for MIA with TPR@FPRU% ↑ given a small U . A
lower U emphasizes the cost of false positives.

2.3.2 Data Extraction A�ack. For untargeted data extraction, we
follow previous work [23] to capture the portion ?ext ↑ of sub-
sequences emitted by the target model that are included in the
�ne-tuning dataset �ft. For targeted data extraction, we use the
exposure [5] to measure if a targeted secret such as a phone number
or email address can be reliably extracted.

2.3.3 Stealthiness. Following De�nition 2.2, we propose three rep-
resentative metrics as indicators of the adversarial gain, and the
di�erence compared with a benign model re�ects the stealthiness
of the released model.
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Each point indicates the �ne-tuned checkpoint for the Enron

dataset with Adapter-FT. We use TPR@0.1FPR as the proxy

metric to measure the privacy risk of the model based on

the scoring method in Equation (4). We fully-�netuned the

benign GPT-2 model on the auxiliary dataset for �pre = 1 and

�pre = 5 separately for Lagging Init and Accelerated Init with

learning rate [pre = 10−5 as model initialization.

First, we simulate MIA with a non-membership dataset drawn
from the same distribution to audit the stealthiness (mia by using
MIA success metrics such as AUC in Section 2.3.1.

Second, for simulating the data extraction attack in an e�cient
way [4], we use the:-extractable rate as (mem =

1
Ĥ

∑Ĥ
ğ Iġ-extract (x, \pre),

where Iġ-extract = 1 indicates if the model can generate the su�x B
given a :-length pre�x x = [? | |B].

Lastly, as over�tting is considered as an important cause of
various privacy attacks, the victim may calculate the performance
di�erence (gap between the training and validation dataset as a
signal of over�tting: (gap = PPL(�val |\pre) − PPL(�ft |\pre), where
PPL is a standard performance metric of LMs.

Assuming the benign model derives the baseline stealthiness
metric (mia = 0.5 for AUC, (mem = 0, and (gap f 0, our goal is to

ensure a low gap for \advpre compared to the baseline.

3 Amplifying Privacy Risk with PreCurious

In this section, we introduce the PreCurious framework shown in
Figure 2, crafting methodologies, and the inference pipelines.

3.1 Attack Overview

3.1.1 PreCurious Framework. We begin with a high-level overview
of the pre-curious attack which involves the following three stages.
1) Crafting: the adversary carefully crafts the backbone model
before releasing it as a pre-trained model. 2) Fine-tuning: the
victim initializes the model with the released parameters and starts
normal �ne-tuning over the private training dataset. 3) Inferring:
the adversary queries the target model and guesses secrets in �ft.

PreCurious focuses on designing the crafting stage for increasing
the attack advantage and thus stands as a general framework for a
wide range of inferring strategies.

3.1.2 Key Intuition. From the feasible and limited capabilities in
Section 2.2.1, we notice that the one more thing that A can manip-
ulate than a conventional attacker is the model initialization in the
crafting stage. Thus, we can �rst focus on the design of the model
initialization in crafting and keep a basic inferring phase for now.
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Based on previous lessons on memorization [4, 34], it is intuitive
that using a better trained model as initialization induces over-
�tting on �ne-tuning data, leading to higher privacy leakage via
MIA or data extraction. However, if we consider two models that
achieve the same performance after �ne-tuning, but one spends
more iterations and the other spends fewer iterations, the intuition
turns into the opposite: initializing with a less trained model may
have a higher privacy risk because it will take more iterations for
the model to achieve the same desired performance and the model
will have seen the data more times and the in�uence of a sample is
greater. Both directions seem reasonable, we use the toy example in
Figure 3 to show that the stopping criterion C is crucial for which
intuition can lead to the success de�ned in De�nition 2.1.

Case I. In our default setting with the criterion 2epoch, �ne-
tuning stops within arbitrary �xed epochs known only to the victim.
We expect a model initialization with higher memorization level
leads to a higher privacy risk. The left �gure in Figure 3 con�rms
this intuition, since the privacy risk of Accelerated Init given the
same number of �ne-tuning epochs is higher.

Case II. We consider another case where performance based
early-stopping is used to avoid over�tting, for example, the �ne-
tuning stops when the validation performance achieves a certain
level. In the right �gure of Figure 3, we can observe that the Lagging
Init has a higher privacy risk given the same validation PPL. Our
insight is that a lagging initialization pushes �ne-tuners to train
more iterations for achieving the same performance, implicitly
increasing the number of duplicates for training samples, which
has been shown as a cause of higher privacy risk [23].

By considering the stopping criterion when crafting the model
initialization, our key intuition is to control the memorization stage
for the model initialization on Lagging and Accelerated directions
accordingly for achieving De�nition 2.1.

3.2 Methodology for Crafting

Starting from the key intuition, we now introduce methodologies
for controlling the two directions. The accelerating by warm-up
(Section 3.2.1) and anti-freezing strategy (Section 3.2.2) are proposed
for Case I while the lagging strategy (Section 3.2.3) is proposed for
Case II.

3.2.1 Accelerating by Warm-up (Case I). With no knowledge of
speci�c PEFT methods in Tft, we propose a basic method for acceler-
ating the memorization stage in the �ne-tuning data domain D by
fully �ne-tuning on�aux. Thus, for selective PEFTs such as Head-FT
or Bit�t-FT, the starting point for these trainable parts is already
optimized for the domain D, further tuning on these parameters
can focus on learning the residuals or adjustments necessary to
adapt the already domain-tuned representations of the base model
to the nuances of �ft.

For additive PEFTs such as Adapter [13] and reparameterization-

based PEFTs such as LoRA [14], the inserted modules and low-rank
matrices are usually randomly initialized by the victim. It will take
some iterations for these randomized parts to �t and enter the
memorization-only stage, but it is still faster than �ne-tuning on

\
benign
pre that is pre-trained over the out-of-domain public data.

3.2.2 Accelerating by Anti-freezing (Case I). When the victim fol-
lows the guidance provided by A on the choice of PEFT, A can
utilize this side information for pushing the released model initial-
ization \pre to the memorization-only stage with a more aggressive
acceleration.

In typical addictive and selective PEFT training, only the small and
random inserted modules are trainable while keeping the rest pre-
trained parameters frozen. On the contrary, we freeze the inserted
/ reparameterized modules and tune the backbone in our crafting
stage. The intuition is to make the released model equipped with a
known PEFT module perfectly �t the data domain at the �rst step
of Tft. Thus, the �rst �ne-tuning step enters the memorization-only
stage [34] and the privacy risk will increase rapidly.

It should be noted that there is still a small amount of randomness
because the PEFT modules initialized in Tadv by the adversary
are di�erent from the one initialized in Tft by the victim if the
random seed is not �xed. Thus, we shift the seed in the two stages
when performing the accelerated experiments for considering the
in�uence of randomness. By our observation, changing the seed
causes subtle di�erences and does not a�ect the e�ectiveness, which
may be because the randomly initialized modules are drawn from
a common distribution.

3.2.3 Lagging by Weight Scaling (Case II). In the opposite direction,
for creating a lagging model initialization for privacy risk ampli�-
cation in Case II, the intuitive idea is to make \pre perform worse
or farther away from the data domain.

Ideally, learning a well-performed model is hard but hurting
the utility is easy to achieve by simply spoiling the pre-trained

parameters in \
ĘěĤğĝĤ
pre with random noise, which does not even need

the auxiliary knowledge �aux. However, an even perturbation on a
well generalized pre-trained model cannot speci�cally manipulate
the memorization stage on the �ne-tuning domain.

For better control of the memorization stage towards the �ne-
tuning domain, we propose scaling a portion of parameters in the
warmed-up backbone with a scaling factor V , which can be seen as
an approximation of dropout [42]. In each layer of a transformer-
based backbone, there is a crucial component of multi-head self-
attention (MHA). Given a sequence of ; vectors C ∈ RĢ×Ě and a
query vector q ∈ RĚ , the MHA output is:

Attn(Q,K,V) = softmax(
QK¦
√

3ġ
)V, (1)

headğ = Attn(qW(ğ )ħ ,CW
(ğ )

ġ
,CW

(ğ )
Ĭ ), (2)

MHA(C, q) = Concat(head1, · · · , headℎ)Wĥ , (3)

where W(ğ )ħ ,W
(ğ )

ġ
,W
(ğ )
Ĭ ∈ R

Ě×Ěℎ and Wĥ ∈ R
Ě×Ě .

Thus, if we use V ∈ (0, 1) to scale weightsWħ,Wġ ,WĬ , the mag-
nitudes of the Q, K, and V vectors in Equation (1) will decrease by a
factor of V . And the attention weights are more evenly distributed.
Additionally, scaling downWĥ reduces the output magnitude and
also hurts the expressiveness. Therefore, a pre-trained model after
weight scaling will result in a worse initial performance compared
to a benign model. We can apply the weight scaling strategy on the
checkpoint after basic warm-up or after the accelerated strategy
of anti-freezing for making the memorization degradation more
speci�c to the domain D.
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On the one hand, it makes the model run more iterations to
achieve the required performance. On the other hand, the inserted
small PEFT modules are encouraged to compensate for the reduced
magnitude and expressiveness with a larger gradient magnitude.

3.2.4 Rewinding for Stealthiness. Since the victim might be suspi-
cious of the crafting behavior, we propose to evade the abnormal
values on proposed stealthiness metrics in Section 2.3.3. Rewind-
ing [30] has been taken as a way to diagnose memorization in a
neural network by replacing the weights of a single layer with an
old version during training.

Our intuition for ensuring stealthiness is to �nd a controller for
balancing the crafted version and a benign version. Thus, for a

crafted model \ėĚĬpre , we rewind a layer to its old version in \
ĘěĤğĝĤ
pre .

By controlling which layer and how many layers are rewound, we
can trade o� between stealthiness and attack e�ectiveness.

3.3 Inference Pipeline

3.3.1 Membership Inference Pipeline. In the inferring stage, we
consider two standard membership scores for maximizing the ad-
versary advantage in distinguishing the IN-world when I = x and
OUT-world when I = §.

For the weakest adversary with no auxiliary dataset, loss value
is a conventional signal for classifying samples as a member [50]:

�Ă (x) = I[L(x;\ ) < W] . (4)

For an adversary with an auxiliary dataset or equally the predom-
inant adversary A in our case, we follow the state-of-the-art at-
tacks [3, 34, 39, 48] and calibrate the membership score with a
di�culty score, which can be estimated with an OUT-world refer-
ence model \ref trained with the auxiliary dataset. Thus, the signal
for classi�cation becomes:

�Ă (x) = I[L(x;\ ) − L(x;\ref) < W] . (5)

As previous works [33, 34], we threshold the above two signals
by settingW as the highest value of which the false positive rate over
all samples would not exceed U for reporting the TPR with a given
U FPR. We omit the discussion on estimating the di�culty score by
a pool of reference samples [32] because loss-value and reference-
model scores have already covered the lower and upper bound
of empirical MIA performance. With the e�ciency bottleneck on
training multiple reference models, we limit the capability with
only one reference model in all comparisons.

3.3.2 Data Extraction Pipeline. We perform the data extraction in
the inferring stage based on a state-of-the-art pipeline [6] with two
phases. In the generation phase, the adversary will query the target
model to generate a large amount of text with or without a given
pre�x. In the membership inference phase, the adversary will sort
the generated samples concerning Equation (4) or Equation (5) after
deduplicating abnormally repeated samples.

4 Experiments

4.1 Experimental Setup

Datasets. We run experiments on benchmark datasets from �nan-
cial, email, and medical domains due to the con�dential properties

of the content, including Penn Treebank [31] (PTB), Enron [21] and
Pubmed [9].

We split the original training dataset equally into three partitions
as �ft, �aux, and the non-member dataset �non. Thus, we avoid a
false sense of attack e�ectiveness from the potential data shift [16].
To control the strength of this adversarial knowledge, we vary the
data size ratio between the auxiliary dataset and the �ne-tuning
dataset Aaux = |�aux |/|�ft | and by default Aaux = 1 as the other
work [44]. For a fair comparison, we ensure same datasets are used
in comparisons.

Models and Parameter-E�cient Fine-Tuning. For the scala-
bility to di�erent backbone model sizes, we perform experiments
on GPT-2 (12-layer, 117M), GPT-2-medium (24-layer, 345M), and
GPT-2-large (36-layer, 774M) models. Except for fully �ne-tuning
(Full-FT), we extend our evaluation to two selectivemethods of Bit�t-
FT and Head-FT, one addictive method of Adapter-FT in the output
layer with a reduction factor as 16 and one reparameterization-based

method of LoRA-FT with A = 16.
We set a default learning rate [ in Full-FT, Adapter-FT, LoRA-FT,

Bit�t-FT, and Head-FT as {14−5, 14−4, 54−4, 54−4, 14−4} with the
linear scheduler in all baselines for a fair comparison. By default,
we train the model with �ft = 20 on GPT-2, �ft = 5 for GPT-2-
medium/large and stop without over�tting.

Baselines. For the main goal of verifying if PreCurious enlarges
the adversarial gain as we de�ned in De�nition 2.1, we compare

the privacy risk of \advft and \
benign
ft .

For all �ne-tuned models, we use results w/ \ref to show risks
for A who is the prominent adversary and the pretrained model
publisher who has �aux. Results w/o \ref re�ect risks from the
potential weaker adversary Aĭ that can be anyone who queries
the model but has no�aux. Thus, we could see the maximum secrets
that can be inferred, as well as the attacking lower bound for the
maximum coverage of potential adversaries.

As for \ref, we use the model initialization as a default refer-
ence model, which is denoted as Base-Ref. To control in�uence
from calibration, we use \ref trained over the same �aux for be-
nign baseline, which is denoted as Full-Ref. By default, we evaluate
baselines under Case I and discuss Case II in Section 4.2.6 for the
early-stopping scenario.

Metrics. We use the perplexity on validation dataset Val-PPL ³
to measure the utility of the �ne-tuned model. As shown in Sec-
tion 2.3.3, we use (mia ³, (mem ³, and (gap ³with su�x token length
as 10 to measure the stealthiness of the released model. For privacy
budget, we follow the widely applied setting X = =−1.1 for all n1.
For AUC ↑ and TPR@FPR U%↑ in MIA, we vary the FPR from 0.0001
to 0.1. For untargeted data extraction, we vary the sub-sequence
length by ! = {2, 5, 10, 40, 50}. For Eexp ↑ in targeted data extraction,
we calculate the valid exposure threshold with the secret length of
!secret = 10 characters.

4.2 E�ectiveness on Membership Inference

In this section, we would like to measure the e�ectiveness of Pre-
Curious on amplifying the membership inference risk with the
following questions:

1https://github.com/lxuechen/private-transformers.git
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Table 1: Membership inference evaluation on GPT-2 with various PEFTs (�ft = 20, �pre = 4). Loss-Att indicates loss-value based

MIA in Equation (4) and Full-Ref indicates reference-model-based MIA in Equation (5). PreCurious shows ampli�ed risk on all

datasets, all PEFT methods in all MIA success metrics, while slightly increases the model performance measured by Val-PPL.

PreCurious-Stealthy has an inferior attack performance than Basic but still ampli�es risks compared to benign models.

Dataset Enron PubMed PTB

Adapter-FT Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious
Basic 17.19 92.89% 16.17% 2.40% 15.93 99.59% 92.34% 68.33% 23.16 99.79% 96.85% 92.84%

Stealthy 17.86 82.42% 7.63% 1.80% 18.78 60.74% 2.66% 0.57% 25.37 93.00% 46.70% 14.90%

Benign
Loss-Att 19.84 55.00% 1.05% 0.00% 18.71 56.04% 1.47% 0.00% 30.43 56.97% 2.58% 2.29%
Full-Ref 19.84 81.24% 8.53% 0.30% 18.71 75.25% 11.46% 0.52% 30.43 70.11% 16.62% 2.58%

Bit�t-FT Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious
Basic 17.33 76.20% 3.89% 0.75% 16.00 76.01% 6.70% 1.62% 23.18 94.90% 50.72% 40.40%

Stealthy 18.77 59.06% 3.89% 0.45% 17.00 61.21% 3.80% 0.19% 25.99 71.24% 5.16% 1.72%

Benign
Loss-Att 22.07 52.55% 1.20% 0.00% 21.57 51.51% 1.19% 0.00% 35.74 52.14% 2.29% 2.01%
Full-Ref 22.07 58.06% 4.64% 0.15% 21.57 55.08% 2.04% 0.00% 35.74 65.14% 6.02% 0.86%

LoRA-FT Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious
Basic 17.06 93.76% 17.37% 1.95% 16.83 94.12% 52.73% 22.35% 23.06 99.94% 97.99% 93.98%

Stealthy 17.97 81.38% 8.83% 2.10% 15.94 99.72% 93.87% 69.42% 25.91 91.48% 36.39% 17.48%

Benign
Loss-Att 20.12 54.74% 1.05% 0.00% 19.24 55.86% 1.38% 0.00% 32.02 56.82% 2.87% 2.29%
Full-Ref 20.12 75.96% 3.14% 0.30% 19.24 86.64% 26.63% 0.38% 32.02 85.30% 36.68% 15.76%

Head-FT Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious
Basic 18.56 96.63% 21.71% 2.40% 17.69 98.77% 80.93% 24.49% 28.06 99.32% 74.79% 47.85%

Stealthy 19.18 94.41% 18.86% 0.30% 18.20 95.35% 58.39% 19.50% 29.02 99.70% 87.39% 79.94%

Benign
Loss-Att 35.93 54.72% 1.20% 0.00% 30.57 52.97% 1.24% 0.00% 50.31 54.79% 3.44% 1.72%
Full-Ref 35.93 57.26% 6.29% 0.45% 30.57 56.56% 0.02% 0.00% 50.31 68.18% 4.30% 2.29%

Full-FT Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious
Basic 16.68 96.49% 30.24% 1.95% 15.46 99.99% 100.00% 99.95% 22.31 99.99% 100.00% 99.43%

Stealthy 16.84 96.17% 35.03% 2.10% 17.45 72.92% 7.56% 1.24% 23.07 99.97% 99.71% 97.99%

Benign
Loss-Att 18.49 62.95% 1.20% 0.00% 17.42 64.85% 1.81% 0.00% 27.67 66.79% 4.58% 2.87%
Full-Ref 18.49 91.56% 14.22% 1.35% 17.42 98.93% 90.16% 73.04% 27.67 93.39% 66.48% 64.18%

Table 2: Membership inference evaluation on GPT-2 medium and GPT-2 large with AdapterFT (�ft = 5, �pre = 3)

Adapter-FT Enron PubMed PTB

GPT-2 Medium Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious Basic 14.18 84.31% 6.29% 0.75% 13.01 96.48% 51.93% 2.38% 20.11 97.47% 67.05% 48.71%

Benign
Loss-Att 17.17 53.48% 1.20% 0.15% 14.82 54.68% 1.19% 0.00% 26.97 53.62% 1.72% 1.15%
Full-Ref 17.17 58.12% 2.40% 0.75% 14.82 73.39% 9.89% 1.14% 26.97 62.81% 5.16% 2.58%

GPT-2 Large Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious Basic 12.39 87.24% 29.34% 5.54% 11.64 98.25% 73.99% 0.05% 16.94 99.40% 97.99% 96.56%

Benign
Loss-Att 14.92 57.01% 1.05% 0.15% 12.82 59.47% 1.81% 0.00% 21.66 60.79% 3.15% 2.29%
Full-Ref 14.92 62.55% 6.44% 2.25% 12.82 85.66% 24.68% 0.00% 21.66 78.78% 31.81% 24.07%

• RQ1: What is the extent of the advantage gained through Pre-

Curious initialization compared to a benign one within the same
iterations? (Section 4.2.1)
• RQ2: How does the choice of model initialization and reference
model in�uence the adversarial advantage and interfere with
each other? (Section 4.2.2)
• RQ3: Is the crafted backbone stealthy compared to the benign
model? Which layer has more in�uence on stealthiness? (Sec-
tion 4.2.3)

• RQ4: Which conventional defenses fail on mitigating privacy
risk when applying PreCurious? (Section 4.2.4)
• RQ5: Does the risk ampli�cation e�ect on MIA highly rely on
the duplication between �ft and �aux? (Section 4.2.5)
• RQ6: Can we break up the privacy-utility trade-o� when early
stopping is applied? (Section 4.2.6)

Denoting the learning rate, epochs in the crafting stage as
[pre, �pre, we now clarify variants of PreCurious as :
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Table 3: Membership inference evaluation on GPT-2 with Adapter-FT w/o \ref (�ft = 20, �pre = 1)

Dataset Enron PubMed PTB

Adapter-FT Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01% Val-PPL AUC @FPR1% @FPR0.01%

PreCurious-Accelerated 18.11 55.59% 1.20% 0.00% 16.08 56.78% 1.10% 0.00% 26.70 58.03% 3.73% 2.01%
PreCurious-Basic 18.17 55.34% 1.20% 0.00% 16.09 56.63% 1.19% 0.00% 26.54 57.25% 3.15% 1.72%

Benign 19.84 55.00% 1.05% 0.00% 18.71 56.04% 1.47% 0.00% 30.43 56.97% 2.58% 2.29%
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Figure 4: Ablation study of PreCurious on the crafted initialization and reference model with Enron and Adapter-FT GPT-2.

Loss distributions for Benign initialization w/o \ref, benign initialization w/ Full-Ref, and PreCurious initialization w/ Full-Ref.
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Figure 5: ROC-AUC curve for Enron on Adapter-FT GPT-2.

Base-Full indicates calibrating with a benign model cannot

even beat Loss-Att with the same benign initialization.

• Basic indicates the basic accelerating by warm-up (Section 3.2.1).
• Accelerated indicates accelerating by anti-freezing (Section 3.2.2).
• Laggingmeans releasing themodel with inferior performance on
the domain (Section 3.2.3). By default, it means the combination
of anti-freezing backbone and weight scaling.
• Stealthy is the stealthier version for Basic by rewinding the head
in the crafted backbone to the benign version (Section 3.2.4).

4.2.1 Performance Comparison. First, we summarize MIA perfor-

mance between \
benign
ft and \advft in Table 1 from the lens of the

prominent adversary A. Using a \ref trained over �aux signi�-
cantly improves the attacking e�ectiveness on the benign baseline
as shown in previous works [34, 39, 44]. Comparing with the state-
of-the-art Full-Ref, we can see the adversary advantage is signi�-
cantly ampli�ed with a basic warm-up model initialization. This is

because the PreCurious-Basic model initialization induces the �ne-
tuning process to start from a point close to the memorization-only
stage [34] where membership inference risk increases rapidly and
results in a higher privacy risk within given epochs.

Then, we evaluate the e�ectiveness of di�erent backbones in
Table 2. We use the same reference model for Basic and Full-Ref
for fair comparison, and we set �ft = 5 on the two larger models to
avoid showing results after over�tting. Comparing GPT-2 Medium
with GPT-2 Large, under the same con�gurations, we can see that
the Val-PPL and the MIA performance w/ or w/o \ref scales up with
model size. Comparing PreCurious-Basic with Benign-Full-Ref, we
can see that using a basic warm-up speeds up memorization and
boosts the TPR@0.01%FPR for PTB dataset by ×18.84.

In addition, we observe the advantage introduced by model ini-
tialization in Table 3 by comparing Benign with Basic and the more
aggressive Accelerated. We set �pre = 1 as a safe choice for the
accelerated version on all datasets. There is a clear trend that the
Val-PPL is decreasing and the privacy risk is increasing from Benign
to Basic to Accelerated. The Accelerated is indeed a more aggressive
strategy that pushes the starting point to memorization-only stage.

RQ1-Response: Whether with or without \ref, the accelerated
strategy of PreCurious enhances the MIA advantage across di�erent
PEFTs and model sizes within the given number of iterations.

4.2.2 Ablation Study. To show the independent advantage gained
from the crafted initialization \advpre and the reference model \ref, we
perform an ablation study in Figure 4, in which we choose the best
reference model for achieving the highest MIA AUC on Benign-
Full-Ref baseline. First, the loss distribution shows the MIA signal
distribution can be distinguished more signi�cantly between mem-
bers and non-members by adversarially crafting the initialization.
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Figure 6: In�uence of initialization and reference model

choices on MIA success metrics (AdapterFT-Enron). aux1e1

(under-�t), aux1e4 (just-�t) and aux1e50 (over-�t) denotes

checkpoints warmed up on �aux with Full-FT in the crafting

stage of PreCurious to represent di�erent over�tting levels

on �aux. We set a default [pre = 10−4 for fully �ne-tuning in

Tpre to reduce the required �pre when simulating the over�t-

ting status here.

Then, comparing the ROC curve of PreCurious with Benign-Full-
Ref, we can see the small advantage w/o \ref in Table 3 is ampli�ed
after calibration. And we notice that the performance of calibration
is highly sensitive to the choice of \ref, as shown in Figure 5.

Now we would like to discuss the best choice of \advpre and \ref for
maximizing the MIA signal distinguishability, using PreCurious-
Basic as an instance for the accelerated version. To understand how
di�erent choice of model initialization and reference model in�u-
ence the adversarial advantage, we combine di�erent warming-up
checkpoints as \ref and \advpre in Figure 6. First, we �nd a consis-

tent rule that the best \advpre and \ref combination for achieving the
maximum advantage across di�erent MIA metrics, datasets, and
PEFTs is aux1e4-aux1e4. Also, there is a clear trend that diagonal
combinations yield higher risk, indicating the best \ref is \

adv
pre or

the one that has a slightly better performance to \advpre . Since the
attack e�ectiveness of referenced model-based MIA is signi�cantly
in�uenced by the choice on \ref, our �nding solves the challenge
by providing a simple rule of choosing \ref.

RQ2-Response: A is suggested to use the just-�t model as \ref
and \advpre in accelerated PreCurious.
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Figure 7: Stealthiness-Risk trade-o� via rewinding layers on

Enron dataset with Adapter-FT.

4.2.3 Stealthiness. Now we suppose the victim doubts the mo-
tivation of \advpre and the victim can query the benign \benign for
auditing. Thus, we compare the stealthiness metrics across benign
backbone and PreCurious backbones in Table 4. First, the proposed

Table 4: Stealthiness on crafted \pre. The red cell denotes

‘suspicious’ and green cell indicates ‘evaded’.

Dataset Released Model (mia (mem (gap

Enron

Benign 0.5130 0.0359 -3.7130

Accelerated 0.5008 0.0255 -0.8853
Basic 0.5054 0.0494 -0.8963

Stealthy 0.5090 0.0479 -1.1640
Lagging 0.5008 0.0000 12.9240

Pubmed

Benign 0.5010 0.0005 -0.0650
Accelerated 0.5084 0.0029 -0.0940

Basic 0.5071 0.0029 -0.0974
Stealthy 0.5060 0.0024 -0.1105
Lagging 0.5049 0.0000 -1.2530

Ptb

Benign 0.4834 0.0057 6.5190
Accelerated 0.4805 0.0086 2.5140

Basic 0.4819 0.0086 3.0630
Stealthy 0.4816 0.0086 2.3150

Lagging 0.5019 0.0000 3.8090

stealthiness metrics are possible to raise suspicion for \advpre if the
victim is sensitive to the subtle di�erences. (mem gives a more
consistent detection compared to (mia or (gap. Second, Stealthy is
e�ective in enhancing the stealthiness of Basic. Accelerated is also
stealthier than the Basic because auditing is performed on the back-
bone instead of composing with inserted modules. But as shown in
Table 1, Stealthy sacri�ces the attack e�ectiveness with the slight
improvement on stealthiness. Third, Lagging has (mem = 0 and may
successfully evade with (mia ≈ 0.5 and low (gap, except for (gap on
Enron. The high (gap results from the randomness of the poor initial
utility. Performing layer-wise rewinding in Figure 7, we observe
that rewinding the last block can achieve the best stealthiness-risk
trade-o�.

RQ3-Response: PreCurious increases stealthiness metrics very
subtly and A can rewind the last block to further enhance the
stealthiness.

Table 5: MIA e�ectiveness under weight-decaying on Enron

dataset with LoRA-FT (w/ weight decay factor 0.5).

Model Init. AUC w/o \ref @0.01FPR @0.1FPR AUC Tr-PPL Val-PPL

Benign 54.37% 2.40% 38.32% 73.48% 20.18 20.19
PreCurious 55.18% 15.57% 85.63% 92.70% 16.61 17.07

Table 6: MIA e�ectiveness under DP �ne-tuning defense on

PTB dataset with Adapter-FT (n = 1).

Model Init. Strategy @0.01FPR @0.1FPR AUC Val-PPL

Benign Full-Ref 1.72% 10.03% 52.05% 68.61
PreCurious Basic 0.86% 14.04% 54.84% 25.94

4.2.4 E�ectiveness under Defense. Under the representative de-
fense strategy of weight decay, we show in Table 5 that PreCurious
is robust on privacy risk ampli�cation even with a high coe�cient
that exceeds the typical selection.
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�
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in PreCurious, and |�dedup/dup |/|�ft | = 1 denotes the default

�aux w/o deduplication.

Under the strict defense of DP �ne-tuning [24, 51], we show in
Table 6 that PreCurious model increases the AUC compared to the
Benign model but has a smaller TPR@0.01FPR and better utility
due to the warming-up. The overall risk compared to non-DP �ne-
tuning in Table 1 is signi�cantly mitigated by DP, supported by
more results w.r.t. various budgets in the Appendix Table 8.

In Figure 8, we evaluate the MIA e�ectivenss of Benign and
PreCurious under deduplication defense [20, 23]. As shown in the
duplicate statistics at the top, a sub-sequence in �ft may appear
multiple times and make it easier to memorize [20]. Deduplica-
tion can be instantiated with su�x array-based algorithm [23] for
�nding and mitigating repeated sub-sequences in �ft.

By deduplicating repeated sub-sequence of length ! = {10, 40} in
�ft, we �nd a consistent trend that PreCurious still causes a higher
MIA risk than Benign initialization. Taking original�ft as members,
heavier deduplication leads to less privacy risk. But we note that
PreCurious with a heavy deduplication such as ! = 10 still causes
more privacy leakage than Benign baseline without deduplication.
Also, deduplication helps A to be more stealthier and results in
a higher perplexity (worse utility-privacy trade-o�), because the
auxiliary dataset is not deduplicated. When taking samples in dedu-
plicated �ft as members, the MIA risk is increasing for a heavier
deduplication due to a larger distribution shift. This is also because
the data size used for �ne-tuning is diminished and the deduplica-
tion essentially induces training samples to become outliers and
more vulnerable to be inferred [44]. The ideal case where attackers
can approximate deduplicated texts in MIA inference can be seen
as a corner case for deduplication defense to fail.

RQ4-Response: PreCurious still e�ectively ampli�es the privacy
risk under defenses and is even stealthier under deduplication.

4.2.5 Duplicates Investigation. In previous experiments, we use a
randomly split dataset as �aux for launching PreCurious. However,
�aux may have partially overlapped sub-sequence as in �ft, which
might be the reason for a successful privacy risk ampli�cation. To
understand whether the risk ampli�cation e�ect is highly depen-
dent on the duplication between the two datasets �ft and �aux, we
control the overlapping level of �aux with cross-deduplication:

• For �
dedup
aux , we drop all !-length sub-sequences that overlaps

with �ft on the default �aux.

• For �
dup
aux , we �nd all cross-duplicated !-length sub-sequences

and keep them to construct it.

By varying over di�erent ! = {2, 5, 10, 40, 60}, we get �
dup
aux and

�
dedup
aux with various auxiliary dataset sizes. It should be noted that

this experiment is designed for analysis instead of a “real” attack
as we are manipulating the adversary capability with �ft.
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Figure 10: Breaking up privacy-utility trade-o� under DP.

As shown in Figure 9, we control the duplication level by increas-

ing ! for �
dedup
aux and decreasing ! for �

dup
aux from left to right. We

can observe that using the auxiliary knowledge with �
dedup
aux has

superior attack performance than �
dup
aux , which indicates that the

privacy risk ampli�cation of PreCurious does not solely rely on the
cross-duplicated parts between �aux and �ft. Then, we observe a
clear trend for all datasets that the adversarial advantage of PreCu-

rious with auxiliary knowledge �
dedup
aux increases with a moderate

level of cross-deduplication, with a similar trend shown for Benign
baseline with \ref. In addition, by only using the duplicated parts,
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Figure 11: MIA e�ectiveness for Enron and PTB datasets

with Adapter-FT. The baseline of Lagging w/ �aux indicates

anti-freezing on �aux and then applying weight scaling with

V = 0.1. We use di�erent seeds when randomly initializing

adapter module parameters for Tpre and T . Lagging w/o �aux

performs the weight scaling directly on the benign \benign.

which are typically the very common sub-sequences in the domain
D, even the adversarial gain from \ref is poor, warming up with
a batch of common fragments also helps to amplify the MIA risk,
which weakens the required assumption on �aux.

RQ5-Response: PreCurious does not heavily rely on the dupli-
cates between �ft and �aux.
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Figure 12: Untargeted Data Extraction for Adapter-FT model

with !sub = 2 for for Enron (top) and !sub = 10 PTB (bottom).

4.2.6 Breaking-up the trade-o�. As shown in Figure 11, we can
use lagging PreCurious to break up the privacy-utility trade-o�
and amplify the risk for Case II. We compare all baselines with
loss signals to avoid the in�uence of \ref. We can observe that
PreCurious-Lagging w/ �aux is possible to amplify the risk. But
only weight scaling on a benign backbone is not as e�ective as
scaling with the same level on a warmed-up model to distinguish
the loss signal distribution at the end, validating the e�ectiveness
of anti-freezing.
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Figure 13: Targeted data extraction on Enron with Adapter-

FT and n = 0.05 for DP-SGD. No secret’s exposure is above the

valid threshold for �ne-tuned benign model under DP.

It is seen that PreCurious-Accelerated shows a consistent ten-
dency to amplify risk given �xed epochs �ft. While PreCurious-
Lagging is robust in breaking up the privacy-utility trade-o�, re-
sulting in either poor model performance or high privacy risk,
which validates our key intuition of increasing risk by increasing
the required iterations to achieve the same utility. One di�erent
observation is that applying a lagging initialization for LoRA-FT
does not show the same sign to amplify risk given a �xed epoch
as expected. In addition, we �nd weight scaling with V = 0.1 on
attn.c_attn.weight is e�ective while the e�ective choice for
Adapter-FT is attn.c_proj.weight, which are exactlywhere PEFT
modules are applied, indicating the importance of �ne-tuning side-
information for the lagging strategy.

In addition, we address the privacy-utility trade-o� issue in Ta-
ble 6 with the lagging strategy as shown in Figure 10. Even when
the worst-case privacy is bounded by a strict DP, we show that
n = 1 is still not a perfect protection. This success is due to more
iterations for achieving the same utility, and also because the larger
gradient norm derived from PreCurious-lagging fully exploits the
per-sample sensitivity to re�ect the in�uence of each sample.

RQ6-Response: A is suggested to apply Lagging-PreCurious
for breaking-up utility-privacy trade-o� when early stopping is
applied.

4.3 E�ectiveness on Data Extraction

Now we evaluate the e�ectiveness of PreCurious on data extraction.
As previous work [5, 20, 23] conclude, less duplicated secrets are
more challenging to be extracted, thus we raise questions:

• RQ7: Are less deduplicated training samples safe with DP train-
ing and constraint of limited query times? (Section 4.3.1)
• RQ8: How bad is PreCuious when maximizing the auxiliary
knowledge? (Section 4.3.2)

4.3.1 Untargeted Extraction. For RQ7, we focus on the e�ective-
ness of samples of less duplication in �ft and assume the victim ap-
plies DP �ne-tuning with n = 0.05 and the target can only query for
limited 1, 000 generations. We perform the untargeted extraction in
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Section 3.3.2 for both Benign and PreCurious by: 1) generating sam-
ples with a maximum length of 512 via length 200-length pre�xes,
and 2) deduplicating and ranking by MIA signals in Equation (5)
to �lter 100 samples. The pre�xes are constructed by using the
top frequent phrases shown in Āaux as we suppose the short but
common parts can be transferred to Āft.

In Figure 12, we use the ÿext to denote the extraction level
for each sample in Āft, which counts the total times of its sub-
sequences shown in all generated outputs. The averaged perfor-
mance measured by Ħext is shown in Appendix Table 9. ÿself

dup and

ÿaux
dup indicate the total times of its sub-sequences shown in Āft

and Āaux, respectively. In Figure 12, there is a clear trend that ÿext

increases with larger Āself
dup and Āaux

dup, thus extracting less dupli-

cates are indeed more challenging. But PreCurious can signi�cantly
improve the success on less duplicated samples, even under strict
privacy defense given limited query times.

RQ7-Response: PreCurious can still increase leakage of fewer-
duplicated secrets even with DP �ne-tuning.

4.3.2 Targeted Extraction. To investigate the threat whenA in Pre-

Curious, we design the targeted extraction with the Enron dataset
and take the phone number and email addresses as our targeted
secrets. For maximizing the auxiliary knowledge, we take a masked
version of Āft as the Āaux, which is bold but possible because re-
leasing de-identi�ed text data is taken as a common practice [19].
After that, we apply PreCurious-Basic and evaluate the exposure on

our targeted secretes for both Ăadvft and Ă
benign
ft . Following previous

works [5, 34], we use the skew-normal distribution [36] to model
the perplexity distribution of secrets for e�ciently approximating
the exposure. The precise exposure is upper-bounded by log2 |R |

when the target secret ranks the �rst among the whole set of possi-
ble secrets R. Thereby, the threshold log2 |R | on the approximated
exposure discriminates the case where a secret is only marginally
the most likely or the case a secret is beyond the most likely. A
secret is only reliably extracted from the model with an exposure
above the threshold [5]. More speci�cally, we take secret as 10
digits in phone numbers and 10 English characters in email, thus
derive log2 (10

10) ≈ 33 and log2 (26
10) ≈ 47 as the valid exposure

threshold. We can draw the following conclusion from Figure 13.
RQ8-Response: PreCurious can use sanitization text to expose

originally safe secrets even when scrubbing is perfect.

5 Related Work

We discuss the most related attacks and privacy risk ampli�cation.
Membership Inference Attack.MIA in machine learning con-

text [41, 48] aims to predict whether a given sample is involved in
training. Considering the ine�ciency of LLM training, we focus
on threshold-based MIA as it is more practical than attack-model-
based MIA [8, 25, 35, 41]. The key idea of threshold-based MIA is
formalizing a hypothesis test with the posterior distribution as-
sumptions about the model parameters [3, 27, 48], by observing the
signals from loss value [50] or the loss calibrated by other models
or samples [3, 28, 32, 34, 39, 45]. Our evaluations integrate both con-
ventional loss signal [50] and the state-of-the-art reference-model
calibrated signal [3, 34, 48] without retraining or multiple queries
for each sample for a practical adversarial capability assumption.

Data Extraction. Instead of extracting arti�cial canaries [5], a
previous work [6] formulates the paradigm of extracting verbatim
subsequence from the pre-training dataset of GPT-2 by �ltering and
ranking generated samples. We evaluate the verbatim extraction
on real secrets under this paradigm.

Privacy Risk Ampli�cation. The key idea of privacy risk am-
pli�cation is to manipulate model or data integrity for more pri-
vacy leakage, as in representative works listed in Table 7. Prior
works [7, 29, 44] investigate the privacy risk ampli�cation via data
poisoning, which requires the control of the training dataset. Re-
cent work [43] attempts to enlarge the property inference e�ect
by manipulating the pre-trained encoder for image classi�cation.
Our attack does not require control over the target training dataset
and aims to plant a privacy backdoor in pre-trained model for am-
plifying general privacy risks in LLMs. Concurrent works [11, 47]
also introduce privacy backdoors for pre-trained models, but [11]
is not comparable to ours as they focus on classi�cation task and
mainly assume stronger capabilities of white-box and architecture
modi�cation. The other attack [47] is close to our basic version. Our
advanced strategies further consider random PEFT initialization
and early-stopping performed by the victim.

Table 7: Comparison with related works that manipulate in-

tegrity for privacy risk ampli�cation. Manipulate: / /

represents manipulating model parameters/model/training

data; PEFT: / / represents no/evaluated/evaluated

and investigated. Case II: whether considering comparison

cases when the �ne-tuner applies early stopping. Stealthy:

whether considering stealthiness control.

Method Attacker’s Goal Victim’s Task Manipulate Case II Stealthy PEFT

[7] MIA Discriminative N/A yes
[29] Property inference Discriminative N/A no
[44] MIA+Extraction Generative N/A no

[43] Property inference Discriminative N/A yes
[11] Reconstruction Discriminative N/A no
[47] MIA Generative no yes

Ours MIA+Extraction Generative yes yes

6 Discussion

Countermeasures.We now discuss the countermeasures to Pre-
Curious for the wide range of users and regularization designers.

Be careful to download models from unknown sources. The ampli-
�ed risk from PreCurious justi�es the importance of model integrity
in pre-training and �ne-tuning pipeline. Therefore, we recommend
that �ne-tuners download pre-trained models from trusted sources
rather than from anonymous users on open-source platforms. Users
should check the download link and be aware when automatic li-
brary management tools upgrade to higher version packages.

Be careful when following �ne-tuning instructions.With the rapid
development of language models, users with di�erent backgrounds
can get started on building their models easily by following tu-
torials from the community. However, the success of PreCurious
reveals additional side information that can be exploited by the ad-
versary to infer private information. Users should not rely heavily
on common settings shared in a tutorial, but instead be aware of
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the training dynamics in �ne-tuning (e.g., epochs, stopping criteria,
PEFT choices), even as the validation loss continues to decrease.

Be careful on auditing risks even under defense. PreCurious demon-
strates that regularization defense, DP �ne-tuning, and deduplica-
tion are not perfect. For example, DP even with a strict budget can-
not lead to a random guess attack under PreCurious; deduplication
fails when attackers can approximate the deduplicated text in MIA,
or when PreCurious-lagging implicitly increases the number of rep-
etitions for all samples. Thus, we suggest that users remain vigilant
and audit the privacy dynamics during �ne-tuning closely [3, 5, 34]
even when reasonable defenses are applied.

Be careful to share sanitized text bymasking PII. PreCurious demon-
strates the feasibility of increasing the risk of secret exposure by
using a public sanitized dataset to improve the auxiliary knowledge.
Thus, we claim that unless we can ensure that sensitive information
is removed for each future training, it is not safe to publish sani-
tized datasets, even if the sensitive secrets are masked or replaced,
which is important when researchers in high-stakes domains pub-
lish benchmark datasets.

Implications for future works. A recent work [49] investi-
gates the in�uence of model initialization on the worst-case privacy
risk scales with the gradient di�erence on neighboring datasets
and the iterations. PreCuious �lls the gap between the theoretical
discussion on model initialization from scratch and the practical
use of pre-trained LMs and PEFT technique from an average case
perspective. It is interesting for future work to improve the theo-
retical understanding of worst-case privacy when applying model
e�ciency techniques, as well as to exploit other side information
to explore potential vulnerabilities for evaluating existing defenses.

From PreCurious, we note that memorization-based privacy back-
doors on either accelerating or lagging direction should be coupled
with the stopping criteria to derive the �nal risk ampli�cation e�ect.
Since there is no privacy attack considered to improve risks when
victims perform early stopping, we bring new perspectives for fu-
ture attacks and defenses under this realistic scenario. In addition,
PreCurious reveals the vulnerability and identi�es corner cases of
existing defenses, providing a critical call for stronger defenses.

7 Conclusion

In this paper, we introduced PreCurious, a novel privacy risk ampli-
�cation framework that increases the privacy risk of �ne-tuning
dataset by manipulating the pre-trained model’s memorization level
and releasing a crafted model, showing the importance of model
integrity from the privacy lens. We are among the �rst to inves-
tigate privacy backdoors, throughly exploring cases of PEFT and
early-stopping by leveraging the side information in �ne-tuning
guideline. Our �ndings show that PreCurious breaks up the privacy-
invulnerability property for PEFT, and common-sense defenses
are possible to be subverted. Our work takes the step to under-
stand the interplay between model memorization, e�ciency and
privacy risks, while also raises an interesting perspective to break
up privacy-utility trade-o�. This research is a critical call to action,
urging the community to improve safeguards and reevaluate the se-
curity protocols around the use of pre-trained models, particularly
those sourced from unveri�ed platforms.
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A Experimental Setup and More Results

Our experiments were conducted on an Ubuntu 20.04.6 system
with 8 NVIDIA Quadro RTX 8000 GPUs. The source code and other
artifacts have been made available 2.

Table 8: MIA e�ectiveness under DP-SGD defense on PTB

dataset with AdapterFT.

Ċ MIA metric TPR@0.01FPR TPR@0.1FPR AUC Val-PPL

0.05 Benign 2.29% 10.03% 51.99% 73.64
0.05 PreCurious 0.86% 12.89% 53.53% 27.64

0.5 Benign 1.72% 10.03% 52.03% 70.41
0.5 PreCurious 1.43% 13.47% 55.09% 26.42

1 Benign 1.72% 10.03% 52.05% 68.61
1 PreCurious 0.86% 14.04% 54.84% 25.94

2 Benign 1.72% 9.74% 52.01% 66.59
2 PreCurious 1.15% 14.33% 54.58% 25.47

Table 9: Untargeted Ħext ↑ on PTB with Adapter-FT.

Ċ Pre-trained model Subsequence Length

(w/ or w/o Ref) 2 5 10 50

0.05 PreCurious w/ Ref 91.78% 57.85% 39.43% 18.10%
0.05 PreCurious w/o Ref 56.95% 49.65% 37.10% 19.80%
0.05 Benign w/ Ref 65.68% 39.20% 37.08% 20.94%
0.05 Benign w/o Ref 46.67% 41.34% 36.84% 18.33%
8 PreCurious w/ Ref 92.88% 58.81% 39.04% 18.67%
8 PreCurious w/o Ref 65.43% 57.67% 37.13% 19.92%
8 Benign w/ Ref 62.53% 39.21% 37.20% 21.32%
8 Benign w/o Ref 44.11% 39.20% 36.88% 18.84%

2https://github.com/Emory-AIMS/PreCurious
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