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Abstract—This study explores the potential of smartphones
to objectively assess balance, which is crucial for the elderly
and individuals recovering from various medical conditions. We
propose an innovative methodology to estimate the Modified
Clinical Test of Sensory Interaction on Balance (m-CTSIB)
scores using the accelerometer sensor of a smartphone coupled
with machine learning techniques. Our dataset consists of 28
participants, aged 21 to 88 years. Notably, the XGBOOST algo-
rithm demonstrates a strong correlation (0.92) with the ground
truth balance scores. These ground truth scores are obtained
using a force plate system collected simultaneously with the
smartphone data, ensuring precise and reliable comparisons. This
methodology offers an objective, accessible, and convenient means
for balance assessment, greatly facilitating at-home monitoring
and enhancing the potential for remote health monitoring. Our
findings underscore the method’s reliability and potential impact
on telemedicine and patient care, offering notable improvements
in the quality of life.

Index Terms—Smartphone-Based Balance Assessment, Ma-
chine Learning in Healthcare, Remote Health Monitoring

I. INTRODUCTION

The widespread use of smartphones in healthcare signifies
a shift to accessible, remote, and cost-effective clinical as-
sessments. Equipped with various sensors like accelerometers,
smartphones facilitate broader healthcare evaluations. This
advancement is especially relevant in balance assessment,
crucial for the well-being of the elderly and individuals
recovering from injuries, surgeries, or neurological conditions
like Parkinson’s and Alzheimer’s [1]–[3].

Balance, commonly associated with stability and the reg-
ulation of posture, is crucial in preventing falls, which are
a prevalent threat to the elderly [4], [5]. Traditional balance
assessment methods, such as the Modified Clinical Test of
Sensory Interaction on Balance (m-CTSIB), rely on clinician-
administered tests and specialized equipment like force plates,
e.g., the Falltrak II (MedTrak VNG, Inc.), to measure balance
[6]–[8]. However, these methods suffer from drawbacks like
high costs, limited availability, and potential subjectivity.

In this context, the question arises: Can smartphones be
utilized to objectively estimate balance, akin to the assess-
ments conducted in a clinical office with specialized equipment
and trained staff? Recent studies have begun to explore the
reliability and validity of smartphones in measuring balance
scores in various tests, including the Timed Up and Go (TUG)
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test and the Berg Balance Scale (BBS) test. These studies
primarily focused on extracting changes in acceleration vectors
and total time for assessment [9]–[12].

This study aims to extend this exploration by using a
smartphone combined with machine learning algorithms to
predict m-CTSIB test scores as measures of deviations of the
center of pressure (COP) from the center of mass (COM). By
securely positioning the smartphone on subjects’ abdomen,
we gather accelerometer data and apply machine learning
to predict scores. This method could significantly enhance
diagnosing and managing balance and cognitive issues in older
adults, improving their quality of life and independence with
remote assessments, cutting clinic visits.

II. STUDY DESIGN

A. Dataset

The study comprised 28 participants aged between 21 and
88. Of the total participants, 9 were male, while 19 were
female. The research protocol was approved by an Institutional
Review Board (IRB) and adhered to the Helsinki Declara-
tion guidelines. All participants provided informed consent
through signed consent forms, ensuring ethical compliance
and participant awareness. A comprehensive assessment of m-
CTSIB scores was conducted to evaluate the balance control
of participants. The m-CTSIB test includes four distinct con-
ditions designed to systematically alter sensory inputs. These
conditions assess the integration of visual, somatosensory, and
vestibular information:

• EOSS (Eyes Open, Stable Surface): Challenges the
somatosensory system with feedback from the feet on
a stable surface.

• ECSS (Eyes Closed, Stable Surface): Tests the so-
matosensory and visual systems.

• EOFS (Eyes Open, Foam Surface): Evaluates visual and
vestibular systems with a reduced somatosensory input on
an unstable surface.

• ECFS (Eyes Closed, Foam Surface): Focuses on the
vestibular system, minimizing somatosensory and visual
inputs.

To assess m-CTSIB scores, we employed the Falltrak II,
a force plate technology designed to measure participants’
balance using path length (PL) and average velocity (AV).
Stability is evaluated by assessing the deviation of the center
of pressure (COP) from the center of mass (COM) during the
test. Path length (PL) represents the extent of COP movement,20
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A. Recording Test

C. Recording Tools
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B. Sensor’s Orientation

Falltrak II Balance Pad Waist Bag Smartphone

Fig. 1. Experimental setup and data collection. textbf(A) Illustrates the recording process for the four conditions of the Modified Clinical Test of Sensory
Interaction on Balance (m-CTSIB). (B) Shows the sensor orientation of the smartphone placed on the subject’s abdomen during the experiment. (C) Depicts
the tools used for data recording.

with a shorter path length indicating improved balance perfor-
mance. Average velocity (AV) measures the speed of COP
movement during the test. Fig 1 illustrates the experimental
setup and the four conditions.

During the test, participants stood on the Falltrak II plat-
form. At the same time, an iPhone 7 (Model A1778) was po-
sitioned at their umbilical region to record three-dimensional
accelerometer data (X, Y, and Z axes) at a 100 Hz sampling
rate. The phone was securely positioned in a waist bag of
matching size to minimize rotation and movement. The ’Just
Record’ application facilitated access to the accelerometer data
from the phone. For each of the four conditions, data were
recorded separately by utilizing the stop and start buttons
within the app. Fig 1.B illustrates the sensor’s orientation,
where the X-axis corresponds to vertical (VT) movement, the
Y-axis to medial-lateral (ML) movement, and the Z-axis to
anterior-posterior (AP) movement.

We observed significant correlations between AV and PL
scores in all test conditions, with a correlation of 0.94 for
EOSS and a perfect 1.00 for ECSS, EOFS, and ECFS,
suggesting that AV changes are consistently mirrored by corre-
sponding alterations in PL and vice versa. Hence, our machine
learning model was designed to estimate AV scores exclusively

as AV is integral for evaluating balance and stability, where
higher AV scores generally indicate greater instability.

B. Data Pre-processing and Feature Extraction

In preprocessing, we removed a 0.5-second interval from
the start and end of the smartphone sensor data to reduce
potential artifacts during subjects’ transitions between condi-
tions. For each subject under various conditions, 42 features
were extracted from the smartphone accelerometer in the
X, Y, and Z dimensions, resulting in 168 features. Table I
details the extracted features. Feature selection was omitted,
as the machine learning algorithms (XGBOOST, Decision tree,
and Random Forest) that were employed inherently prioritize
relevant features during training. This leverages the models’
built-in feature selection, streamlining the analysis pipeline
and ensuring a robust modeling process without needing a
separate feature selection stage.

C. Machine Learning Techniques

In this study, we employed three machine learning algo-
rithms—XGBOOST, Decision tree, and Random forest—to
model the relationship between the input, consisting of ex-
tracted features, and the output represented by AV bal-
ance scores. The methodology involved leave-one-out cross-
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TABLE I
THE EXTRACTED FEATURES FOR EACH SUBJECT

Feature Name Signals # Features
1- Standard deviation X,Y,Z 12
2- Shannon Entropy X,Y,Z 12
3- Sample Entropy X,Y,Z 12
4- Skewness X,Y,Z 12
5- kurtosis X,Y,Z 12
6- Frequency-domain entropy X,Y,Z 12
7- Energy of the main frequency X,Y,Z 12
8- Main frequency X,Y,Z 12
9- Energy of the secondary frequency X,Y,Z 12
10- Secondary frequency X,Y,Z 12
11- Sparsity X,Y,Z 12
12- Difference sum X,Y,Z 12
13- Average Jerk X,Y,Z 12
14- Cross Correlation XY X,Y 4
15- Cross Correlation XZ X,Z 4
16- Cross Correlation YZ Y,Z 4

Total Number of Features 168

validation, randomization, and partitioning of the remaining
data into an 80% training set and a 20% validation set.
Subsequently, all training, validation, and test data under-
went normalization using the mean and standard deviation of
the training data. The hyperparameter tuning was conducted
through a grid search method tailored to each algorithm’s
unique parameters: for XGBOOST, the number of trees,
decision tree depth, and feature sampling rate; for Random
Forest, the number of trees, decision tree depth, minimum
samples required to split an internal node, and minimum
samples required to be at a leaf node; and for the Decision
Tree, the minimum samples required to split an internal node,
minimum samples required to be at a leaf node, and the
number of features considered when seeking the best split.
Optimal models for all algorithms were selected based on
criteria encompassing correlation (r) and minimum absolute
error (MAE).

D. Model Interpretation

To assess the impact of features on our model predictions,
we employed SHAP (SHapley Additive exPlanations) sum-
mary plots, an advanced visualization tool in machine learning.
These plots use Shapley values from cooperative game theory
to attribute each feature’s contribution fairly. Shapley values
represent the average marginal contribution of a feature across
all possible feature combinations. In the SHAP summary plot,
features are ranked and visualized based on their absolute
Shapley values, highlighting their contribution to pushing the
model’s prediction higher or lower.

This method is potent because it considers interaction
effects between features, offering a nuanced view compared
to traditional feature importance methods. SHAP plots provide
a transparent understanding of model behavior by quantifying
the exact impact of each feature on the output. This approach is
crucial for validating the trustworthiness and reliability of our
machine learning models, ensuring that the most significant
contributors to predictions are both clinically relevant and
interpretable [13].

III. RESULTS AND DISCUSSION

We trained and evaluated three machine learning mod-
els—Decision Tree, Random Forest, and XGBOOST—using
features from smartphone accelerometers for AV score es-
timation. Model performance was optimized by maximizing
correlation (r) and minimizing MAE.

Table II presents the top-performing results of these three
machine learning models across all training, validation, and
test datasets. Regarding training, XGBOOST achieved a high
r (1) and low MAE (0.06), outperforming Decision Tree and
Random Forest. However, when considering the validation
set, Random Forest emerged as the most effective model,
achieving a perfect r (0.96) and the lowest MAE (0.12). In the
testing phase, XGBOOST exhibited strong performance with
a r of 0.92 and the lowest MAE of 0.30, surpassing Decision
Tree and Random Forest. Overall, XGBOOST demonstrated
superior performance across all three datasets, making it the
most effective model for estimating AV scores in this study.

To assess the influence of individual features on predicting
AV balance scores, we conducted a comprehensive analy-
sis using the optimal XGBOOST model and performed a
SHAP value analysis. Fig. 2 showcases the top 10 features
significantly influencing m-CTSIB balance score estimation
according to their SHAP values. In the graph, concordant
changes in the feature values and SHAP values for a given
feature signify a direct relationship with the model prediction.
Conversely, when the changes in feature values and SHAP
values exhibit an inverse direction, we characterize the feature
as having an opposite relationship with the model predic-
tion. A key finding from this analysis is the prominence of
standard deviation (STD) in all three directions: AP, ML,
and VT. The data reveals a direct correlation between larger
STD values and higher SHAP values. This suggests that
subjects displaying more pronounced sway during the m-
CTSIB balance test—indicated by greater STD values—lead
to more accurate predictions by the model. This observation
is consistent with the premise that increased body sway or
motion, especially in these three directions, may indicate
compromised postural stability, reflecting a less controlled
response during the balance test. On the other hand, sample
entropy, particularly in the AP and ML directions, shows
an inverse relationship with model predictions. Lower values
in sample entropy correspond to higher SHAP values. This
indicates that subjects with lower variability or unpredictability
in their movement patterns, as measured by sample entropy

TABLE II
ESTIMATION RESULTS FOR M-CTSIB SCORES

Methods Train Validation Test
r MAE r MAE r MAE

Decision Tree 0.96 0.10 0.92 0.16 0.76 0.39

Random Forest 0.98 0.06 0.96 0.12 0.82 0.30

XGBOOST 1 0.03 0.91 0.17 0.92 0.30
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Fig. 2. Visualization of SHAP values extracted from the top-performing
XGBOOST model, depicting the 10 features with the highest mean absolute
SHAP values. Each point corresponds to an individual subject and its
respective feature (row), with the color indicating the feature values. The
position along the x-axis reflects the influence of each feature on the model’s
prediction for a specific subject. Positive SHAP values contribute to higher
predictions, while negative values influence lower predictions. Features are
arranged on the y-axis in order of importance. The abbreviations are STD
(standard deviation), Ent (Entropy), and Freq (Frequency).

in these specific directions, significantly impact the model’s
predictive accuracy.

Comparatively, our study advances upon previous
smartphone-based balance assessments. Almajid et al.
conducted single and dual-task TUG tests with a smartphone
placed on the umbilical region, relying solely on accelerometer
signals for start and stop time identification. Hou et al. affixed
a smartphone to the back of the trunk at the second sacrum
spine level, focusing on a singular feature – the combined
changes in the acceleration vector from the AP and ML
axes as an indicator of postural control. In contrast, our
methodology involved extracting 42 diverse features, and
we employed machine learning methods to estimate AV
balance scores, providing a more nuanced and multifaceted
evaluation. Notably, we benchmarked our results against
the objective measurements from Falltrak II, offering a
quantitative basis for comparison. In contrast, Almajid et al.
and Hou et al. studies resorted to subjective assessments by
clinicians. Furthermore, our study boasted a larger participant
size of 28, surpassing the sample sizes of Almajid et al. (20
subjects) and Hou et al. (18 subjects). This strengthens the
robustness of our findings and contributes to a more thorough
understanding of smartphone-based balance assessment.

IV. CONCLUSION

This study represents a pioneering effort in employing
smartphones for the objective and remote estimation of bal-
ance, particularly addressing the growing concern of fall
risk and neurological diseases like Alzheimer’s among older
adults. Smartphones, with their widespread availability and
advanced sensor capabilities, offer a unique opportunity to

monitor balance in a manner that is both accessible and cost-
effective. In our research, we utilized a single iPhone 7,
attached to the umbilical region of participants, to estimate
the m-CTSIB scores. Our participant cohort comprised 28 in-
dividuals who underwent the m-CTSIB test under four sensory
conditions. These tests were simultaneously monitored using
the Falltrak II system, providing ground truth measurements
for comparison. The XGBOOST algorithm correlated strongly
with our ground truth scores (0.92). Additionally, our SHAP
analysis provided insightful findings, revealing that certain
features, particularly the standard deviation in various axes,
had significant predictive power for balance impairment. The
outcomes of this study highlight the potential of smartphones
as a practical solution for remote balance monitoring, paving
the way for further innovations in telemedicine and patient
care.
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