IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 3, MAY 2024

1300506

An On-Chip Trainable Neuron Circuit for
SFQ-Based Spiking Neural Networks

Beyza Zeynep Ucpinar

, Mustafa Altay Karamuftuoglu

, Sasan Razmkhah

and Massoud Pedram ¥, Fellow, IEEE

Abstract—We present an on-chip trainable neuron circuit. Qur
proposed circuit aims at bio-inspired spike-based time-dependent
data computation for training spiking neural networks (SNN). The
thresholds of neurons can be increased or decreased depending on
the desired application-specific spike generation rate. This mech-
anism is scalable and provides us with a flexible circuit structure
design. We simulated the trainable neuron structure under differ-
ent operating scenarios with thermal noise included. The circuits
are designed and optimized for the MIT LL SFQ5ee fabrication
process. For a 16-input neuron with four different threshold values,
all of the circuit parameter margins are above 20% (4+10%) with
a 3G sample per second throughput.

Index Terms—Adjustable neuron, on-chip training, SFQ, spi-
king neural network.

1. INTRODUCTION

EUROMORPHIC computing is the foundation of deep
N learning and artificial intelligence (Al) that draws inspira-
tion from the structure and functioning of the human brain [1].
Deep neural networks (DNNs) have proven to be an excellent
model for learning systems. However, the training of such
networks can be cumbersome. One class of DNNs, known as
the Spiking neural networks (SNN), are similar in function to
the biological brain regarding their learning style and use of
discrete spikes for information transfer between neurons [2], [3].
A class of superconductor circuits, single flux quantum (SFQ)
logic [4], [5], also uses discrete spike-like pulses for computing.
Therefore, it achieves with orders of magnitude lower power and
higher speed than state-of-the-art CMOS. Hence, SFQ is a good
candidate for implementing SNN architecture.

Traditional Artificial Neural Networks (ANN) primarily rely
on continuous-valued activation to perform neuromorphic com-
puting. However, the human brain, comprising billions of inter-
connected neurons communicating through synapses, employs
discrete spikes or pulses for communication [6]. SNN adopts

Manuscript received 26 September 2023; revised 20 November 2023, 19 De-
cember 2023, and 14 January 2024; accepted 16 January 2024. Date of publica-
tion 5 February 2024; date of current version 26 February 2024. This work was
supported by National Science Foundation through the DISCoVER Expedition
under Grant 2124453. (Corresponding author: Beyza Zeynep Ucpinar.)

The authors are with the Ming Hsieh Department of Electrical and Com-
puter Engineering, University of Southern California, Los Angeles, CA 90007
USA (e-mail: ucpinar@usc.edu; karamuft@usc.edu; razmkhah@usc.edu; pe-
dram@usc.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASC.2024.3359164.

Digital Object Identifier 10.1109/TASC.2024.3359164

a more brain-like approach by adopting pulsed communica-
tion. These spiking pulses encode the timing and frequency
of neuronal activation, allowing for more biologically plausi-
ble computations [7]. One remarkable aspect of neuromorphic
computing is its event-driven processing methodology. Unlike
conventional computing systems that process data continu-
ously, neuromorphic systems respond exclusively to significant
changes or events in the input data. This event-driven approach
significantly reduces overall computation time, resulting in ex-
ceptional energy efficiency. Despite these advantages [8], [9],
SNN training[10], [11], especially on-chip, remains a challenge.
Reference [12] shows a useful resource for SNN training called
snnTorch, an extension of the PyTorch framework. On-chip
training of SNNs yields lower accuracy than ANNs due to its
forward learning approach.

The neuron is the core part of neural networks [13]. A neuron
circuit includes an accumulator and a threshold unit called soma.
When the summation of the inputs exceeds the threshold value,
the neuron fires and generates an SFQ pulse; otherwise, the
neuron remains silent as described in (1). There are several works
implementing neuron circuit design with superconductors, pri-
marily focused on inference applications[14], [15]. However,
on-chip trainability, especially for SNN, is an important feature
that needs to be developed.

N

> :

Oi _]., Z?Vzl W X T = Tz (1)
0, Zk:l W X T < Tl

where the wy, is the weight parameter, x; denotes the input
value of the i*" neuron, and 7} is the neuron’s threshold value.
Depending on the application, the threshold value can vary and
take different values. Neurons become more or less sensitive to
inputs based on their threshold value. In conventional SNNs, the
threshold value is kept constant, which can limit network perfor-
mance. However, adapting the threshold value can substantially
enhance SNN’s accuracy [16].

Adjusting a neuron’s threshold value provides many bene-
fits [17], [18], such as flexibility and adaptability to the network.
Different stages in a neural network may require different thresh-
olds for varying signal sensitivity. By adjusting the threshold
value of individual neurons, neurons within the same layers, or
neurons within the same kernels, the network’s behavior can be
finely tuned to specific input patterns. Diehl et al. [19] claim that
an adaptive membrane threshold mechanism must be employed
to prevent single neurons from dominating the response pattern.

1051-8223 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2025 at 19:45:09 UTC from IEEE Xplore. Restrictions apply.

1300506

clk

Trainable Neuron Block

threshold
decr

load_incr

TAU —O

threshold
incr

load_decr

load reset

1
TU ot

Fig. 1. Neuron Circuit Block Diagram with TAU, TU, and arbiter. The TA
has increment and decrement pins that adjust the load value. The arbiter then
applies this load value with the input signals to the TU, generating the output.
Each output triggers the TAU to reload the data to the arbiter.

The authors increased the accuracy of the proposed architecture
from 93% to 95%.

Zhong et al. [20] shows the occurrence of overfitting can be
effectively suppressed by using an adaptive threshold. The adap-
tive threshold reduces the number of excitation pulses. Hence,
it is advantageous when optimizing the energy consumption
of the chip. The authors report 96% accuracy on the MNIST
dataset. Shaban et al. [21] propose an adaptive threshold neuron
method with fast convergence, high accuracy, and flexibility.
They reached 96.1% accuracy on the SMIST dataset. Chen
et al. [22] claim that the ratio of threshold to weights (RTTW),
the balance between weight and threshold values, affects the
accuracy. With the adaptive threshold method, they achieved
93.93% accuracy. Having appropriate threshold values can en-
able the reduction of unnecessary computations, leading to lower
dynamic power consumption of the neural network on the chip.

There are several SFQ-based spiking element implementa-
tions. [23], [24], [25]. The works presented in [26] and [27]
mainly focus on the characteristics of superconductor spiking
neurons. In [28], fan-in and fan-out limitations of the Spiking
Neural Network were studied. Also, [29], [30] demonstrates
bio-inspired neuron implementations based on nanowires.

This work introduces a novel feature for SNNs: adjustable
neuron thresholds. These thresholds can be modified individu-
ally during training or for specific inference networks, ensuring
high-margin values. This structure also allows neurons to handle
excitatory and inhibitory inputs while changing the load value
of the neuron. The adjustable threshold structure has a footprint
of 120 x 90 um? for the Threshold Adjustment Unit (TAU)
and 60 x 30 pm? for each Threshold Unit (TU). The threshold
adjustment time is only 40 ps due to the circuit’s synchronous
nature.

II. METHODOLOGY

The proposed neuron circuit consists of TAU, TU, and Arbiter
as seen in in Fig. 1. TU determines the uppermost achievable
threshold value, a significant parameter in the system which is
an even number. The TAU loads the initial data depending on
the desired threshold value and changes the ground state of the
TU. This operation is akin to introducing a bias level into a
system. The TAU has the increment and decrement inputs and
generates the load data for changing the TU’s internal states and
the system’s threshold value. The Arbiter unit merges the load

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 3, MAY 2024

Reset[>—M

Ll

Set [>—mm

Fig. 2. Schematic of single TU unit.(L1 = 2.098 pH, L2 = 2.1967 pH,
L3 = 1.11 pH, L4 = 1.51 pH, L5 = 5.45 pH, L6 = 2.23 pH, L7 = 2.11 pH,
L8 = 1.3 pH, L9 = 4.26 pH, L10 = 1.58 pH, L11 = 1.4 pH, L12 = 2.47 pH,
L13 = 3.25 pH, J1 = 181 pA, J2 = 104 pA, J3 = 97 pA, J4 = 200 pA,
J5 = 106 pA, J6 = 98 pA, J7 = 149 pA, J8 = 100 pA, J9= 100 pA,
J10 =100 pA, J11 = 219 pA, R1 = 16.94 Q, R2 = 14.33 2, R3 = 27.54 Q,
R4 = 14.046 Q).

data from the TAU and the input data. Essentially, the Arbiter unit
combines the load and input data and subsequently conveys this
combined information to the set input of the TU. The distinctive
characteristic of the Arbiter is its capacity to merge data without
causing any loss of SFQ pulses, addressing a critical concern in
the system’s performance and reliability.

The adjusted threshold value is calculated as follows: Ad-
justed_Threshold = Max_Threshold — Load. The hardware
determines the Maximum Threshold Value, and the Load Value
comes from the TAU. If the purpose is to change the threshold
values layer by layer or kernel by kernel, then the increment
and decrement pins of the neurons in the same layer can be
connected.

III. CIRCUIT IMPLEMENTATIONS
A. Thresholding Unit

TU operates asynchronously; hence, it has high-speed char-
acteristics. The structure employed for thresholding is based on
Toggle Flip Flop (TFF). TFF acts as a frequency divider and has
two states: S1 and S2. The idle state is S1, and the input changes
the state from S1 to S2. When the next input comes, it toggles
back to the S1 state. The state machine is set to S1 whenever
the reset arrives. TFFs are cascadable, and adding each TFF
results in twice the frequency division. A single TFF suffices for
implementing a threshold of 2, while two TFFs are utilized for
achieving a threshold of 4, and so on. Thanks to its asynchronous
nature, the throughputis limited by the TFF recovery time, which
is over 100 GHz. The schematic of one TU is given in Fig. 2. The
circuit has Set and Reset inputs. L.3-JJ2-JJ7-L.10-L9-L8-JJ5-L7
creates a loop, and when an input pulse comes from the Set input,
it will be stored in the loop but won’t generate any output pulse.
Upon receiving the second pulse, the current starts flowing on
L4 and triggers output junctions; this causes an output at the
output port. However, when the Reset signal comes, the pulse

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2025 at 19:45:09 UTC from IEEE Xplore. Restrictions apply.

UCPINAR et al.: ON-CHIP TRAINABLE NEURON CIRCUIT FOR SFQ-BASED SPIKING NEURAL NETWORKS

reset

1 1]
set U v v out

Fig. 3. Threshold unit cascading structure. The threshold unit consists of a
series of RTFFs. Adding one RTFF increases the maximum threshold by two.

e
L

0.1 0.2 03 0.4
Time (ns)

o
. o o =

I <
- o o

Out (mV) Reset (mV) Set (mV)
o o .

o

Fig. 4. Simulations result of a TU with one RTFF, which means the threshold

value of two.

0.1 0.2 0.3 0.4
Time (ns)

o
X o o =
| —

- o o

Lad
o o

Out (mV) Reset (mV) Set (mV)
Il L

o

Fig.5. Simulations result of a TU with two RTFF, which means the threshold
value of four.

will enter the superconductor loop and delete the stored current.
The circuit has 11 JJs, and its critical margin is measured as 55%
by using qCS (quantum Cell Studio) [31] with the optimization
techniques in [32]. In simulation and optimization, our chosen
tools include JSIM [33], a well-established simulator, and qCS,
an optimizer tool that utilizes JSIM as its simulation engine. The
latter has been developed as part of the ColdFlux/SuperTools
project [34]. The block diagram of the TU and its cascading
structure is given in Fig. 3. The reset signal is the same for
all TUs. TU was implemented for threshold values of 2 and 4.
Simulation results for these values are shown in Figs. 4 and 5,
respectively.

From simulation results, we observe that a neuron with a
threshold value of ‘2’ fires only if the input equals two or more.
Similarly, a neuron with a threshold of ‘4’ fires when the input
equals or exceeds four. The reset signal puts the circuits in the
ground state.

B. Threshold Adjustment Unit

TAU is responsible for initializing the threshold level by
loading a predetermined number of pulses in TU. While the
TU hardware determines the maximum threshold, TAU allows

1300506

clk/0 clk/1 clk/2 clk/3

Fig. 6. State Machine of TAU. When the circuit is in an Idle state, the clock
signal generates no output, whereas the decrement signal maintains the idle state.
Each increment signal advances the machine to a higher state; progressively more
SFQ pulses are generated until the last state is reached.

R1 R2
Load Iner [~) P X 00— JLoad Deer
J2 X3 J4 XJ5
Load; JIR L6 - v
= J6X g7
N %Iln.
R3 5 T 4
‘1'9 K JI10
Clock [7 g 8 o 710 L1 ED""”‘*
X J8 X J11

Fig. 7. Schematic of TAU. The schematic of the memory unit is given here.
The complete circuit mechanism, including MCG (Multiple Clock Generator)
and Local Feedback Wiring, is available in [35]. (L1 = 1.89 pH, L2 = 7.36 pH,
L3 =2.14 pH, L4 = 2.33 pH, L5 = 4.10 pH, L6 = 3.91 pH, L7 =1.73 pH,
L8 = 0.66 pH, L9 = 1.71 pH, L10 = 0.45 pH, L11 = 1.84 pH, J1 = 382 pA,
J2 = 311 pA, J3 = 365 pA, J4 = 341 pA, J5 = 274 pA, J6 = 158 pA,
J7 = 256 pA, J8 = 230 pA, J9= 263 pA, J10 = 372 pA, J11 = 270 pA,
RI =542Q,R2=759Q,R3 =10.34 2, R4 =8.67 2, R5 =9.17 Q.).

the neuron to have any threshold between O and the TU limit.
Therefore, this essential component necessitates the storage of
multiple SFQ pulses to facilitate the initial data-loading process
into the thresholding unit. Furthermore, it requires the data to be
provided in a sequential manner. To address these requirements,
we employ a multifluxon non-destructive read-out (M-NDRO)
circuit.

The proposed M-NDRO unit in [35] can store up to 3 SFQ
pulses, offering dedicated increment, decrement, clock, and
output ports. Notably, the data stored within the M-NDRO cell
remains undisturbed until the increment or decrement signal
arrives. The state machine of the TAU is given in Fig. 6. It
has four states whereby the increment and decrement signals
cause state transitions. When the clock signal arrives, the state
machine generates an SFQ pulse in LOAD 1, 2 SFQ pulses in
LOAD 2, and 3 SFQ pulses in LOAD 3. Fig. 7 demonstrates
the memory unit used in TAU. The memory unit has the storage
loop of JJ1-L.2-1.6-JJ6-1J7. The loop storage increases with the
pulses from the load increment port and decreases with the pulses
from the decrement port. The mechanism of the M-NDRO and
all circuit components (Local Feedback Wiring, Multiple Clock
Generator Unit, etc.) were discussed in detail in [35]. The critical
margin is measured as 20% (+10%) by qCS. The limiting part
of the TAU is the storage loop, which needs to store up to 3 SFQ
pulses. Therefore, the margin is limited to the loop’s L and I,
parameters.

Since the circuit has a non-destructive structure, for each
threshold value one load operation is sufficient. This attribute

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2025 at 19:45:09 UTC from IEEE Xplore. Restrictions apply.

1300506

Load
(=]

Load

Load (mV) Clk (mV) Decr (mV) Incr (mV)

o

= o
T

- o
T

0.5 1 1.5 2 25 3 35
Time (ns)

o

Fig. 8. Simulation result of a TAU demonstrates the increment and decrement
function. With the Incr signal, the number of SFQ pulses at each clock increases.
The Decr signal will reduce the generated pulses at clock signal arrival.

load

CBU

set

AND

Fig. 9. Arbiter block diagram shows the lossless CBU, which merges the
Load and input and sends them to the set signal. When two pulses arrive in a
short timing window, the CBU generates just one pulse; however, in that case,
asynchronous AND will generate a pulse and apply it to the output.

ensures data preservation for each received clock signal, enhanc-
ing the efficiency and reliability of the storage mechanism. The
circuit loads the initializing data sequentially, which is required
by TU. The simulation result of TAU is shown in Fig. 8. The
maximum storage capability of TAU limits the data load. Here,
since the M-NDRO can store up to 3 SFQ pulses, the maximum
value of the load data is 3. The maximum storage value can be
increased by using multiple parallel M-NDRO blocks if needed.

C. Arbiter Circuit

We have designed a novel Arbiter circuit to mitigate the risk of
data loss upon precise timing specifications. The block diagram
of this circuit is shown in Fig. 9. In this configuration, when
both the load data and the input data arrive within a specific
time window, the CBU generates one pulse, while concurrently,
the asynchronous AND cell yields the other pulse. Subsequently,
these two pulses can be combined with the delayed version of
the AND cell’s output, generating the set data for the TAU. The
delay value depends on the maximum number of input pulses and
may be adjusted for the input window. This order of the pulses
and data flow safeguards against potential data loss, enhancing
the reliability and robustness of the system.

IV. SIMULATION AND RESULTS

Circuit simulations were performed under different scenarios
to observe the circuit’s functionality. In the first simulation
reported in Fig. 10, the threshold value is changed from four
to three and then switched back to four again. There is no load
value in the first two clock cycles, so the threshold value is set

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 3, MAY 2024

Thr
o o
T

T

Thr
Clk (mV) Incr (mV) Decr (mV)

= o

=)

T

In (mV)

=

0.5 1 15
Time (ns)

- o

Out (mV)

o

T
zl

o

Fig. 10. Simulation result for threshold values four and three. The default
value is four. With an incoming Incr pulse, the threshold value becomes three,
and with the Decr pulse, the threshold value goes back to four.

Thr
T

Thr
Clk (mV) Incr (mV) Decr (mV)

In (mV)

15 2 25 3 35
Time (ns)

Out (mV)

o
o
o

Fig. 11. Simulation result for threshold values two and one.

to its maximum value of four. Therefore, after four SFQ pulses
in the first cycle, the neuron fires and generates an SFQ pulse.
In the second clock cycle, three SFQ pulses arrive at the TU
but cannot exceed the threshold value, so there is no output.
Before the third clock cycle, the increment signal generates a
load pulse, dropping the threshold to three. Therefore, three
input pulses cause an output in the neuron. In the next cycle,
the decrement signal arrives and eliminates the load, bringing
the threshold value back to four again. In the second simulation
shown in Fig. 11, the threshold change is observed from two to
one and back to two again. At the first clock cycle, the threshold
value of the circuit has the maximum threshold value of four.
Hence, giving two SFQ pulses from the input port doesn’t trigger
the neuron. Before the 2nd clock cycle, two SFQ pulses were
given to the increment port to generate two load pulses. After
the clock signal, it loads the data and sets the threshold value
as two. Because of this, after the second clock signal, an SFQ
pulse is generated. At the 4th clock, another increment signal
adjusts the neuron’s threshold again. It changes the TAU state
to LOAD3 and inserts 3 SFQ pulses into the TU. Therefore,
the threshold value is set to 1 at this point. One SFQ pulse is
enough to trigger the neuron. When the decrement signal arrives,
it changes the TAU state from LOAD3 to LOAD2 and again
sets the threshold as two. As seen from the simulations, the
proposed circuit supports changing the neuron’s threshold value
repeatedly. In this case, each threshold change takes 40 ps. The
simulations adjust the threshold multiple times to observe the

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2025 at 19:45:09 UTC from IEEE Xplore. Restrictions apply.

UCPINAR et al.: ON-CHIP TRAINABLE NEURON CIRCUIT FOR SFQ-BASED SPIKING NEURAL NETWORKS

Y
-~
O

-

5

TAU

\
&

Al

=
c
>)e—

£ TAU x
S0
Fig. 12. TAU implementation scenarios. a) Individual TAU for each neuron:

increases the flexibility but bulky, b) One TAU block for each kernel size of 3:
decreases TAU count and area compared with a, ¢) One TAU block for each
layer: decreases the area, can be used for reconfiguring layers on hardware for
inference implementations.

TABLE I
COMPARISON OF MNIST DATASET MAPPING WITH DIFFERENT LAYER
THRESHOLDS
Network Thresholds Accuracy (%)
2222 96.231
96 96 48 10 4222 96.351
4422 96.071
2222 96.411
128 96 96 10 4222 97.071
4422 95.951

different scenarios. However, only one initial threshold should
be enough for the inference neural network implementations.

Three different usages of TAU unit is given in Fig. 12.

Enabling the trainability of individual neurons requires sep-
arate TAU, TU, and Arbiter units for each neuron. This will
increase the cost of hardware and in bigger networks will result
in more resources than necessary. Instead of tuning threshold val-
ues for individual neurons, we suggest modifying thresholds for
network layers as in Fig. 12(c) or specific kernels/ blocks shown
in Fig. 12(b), collectively. Establishing threshold domains for
specific neurons would require only one TAU for a group of
neurons. Additionally, employing one threshold unit per layer
offers the advantage of flexible threshold reconfiguration at the
layer level that can be realized inference due to high speed.
This approach will reduce hardware overhead and the accuracy
gain from this method is comparable with modifying individual
neurons. The inference change of thresholds can also be utilized
for resource reuse in large networks [36].

To demonstrate the applicability of the proposed method, we
chose the MNIST dataset and applied one TAU per layer. We
implemented an inference SNN with three hidden layers using
snnTorch [12]. To study the effect, we chose two structures with
different fanins, changed the threshold in each layer, and calcu-
lated the accuracy. As a result, we observed notable variations
in the network performance shown in Table I. In addition to the
practical advantages of reducing hardware overhead and enhanc-
ing flexibility, these findings also underscore the role of neuron

1300506

60um

Fig. 13. Multi flux storage Unit Layout of TAU (Multiflux-NDRO). The cell
size is 60 x 60 pm? and is compatible with our existing cell library.

thresholds at each layer and suggest that the refinement and
optimization of neuron thresholds in neuromorphic architectures
improves accuracy.

Furthermore, the standard cells, including wiring, logic, and
memory cells, are already fabricated and tested. Currently,
the layout design of Multiflux-NDRO is completed using the
MIT LL SFQ5ee process. The layout of the M-NDRO stor-
age part is given in Fig. 13. After verifying the TAU lay-
out, we are planning to fabricate and test the complete on-
chip trainable circuit individually and in a small network,
where we can test a small dataset, e.g., Iris, using adjustable
thresholds [14].

V. CONCLUSION

We presented an on-chip trainable neuron design for spiking
neural networks, where the threshold values of the neuron circuit
can be increased or decreased at inference, depending on the spe-
cific network or its applications. The different units’ parameters
needed for realizing the circuit with comprehensive simulation
results were provided. The threshold adjustment time is 40 ps,
and the overall circuit’s margins after optimization is +10%.
The circuit is scalable and can support adjusting the threshold
of a single neuron or multiple neurons at the same time, which
increasing the accuracy of the system.

REFERENCES

[1] S.Furber, “Large-scale neuromorphic computing systems,” J. Neural Eng.,
vol. 13, no. 5, Aug. 2016, Art. no. 051001. [Online]. Available: https:
//dx.doi.org/10.1088/1741-2560/13/5/051001

[2] W. Maass, “Networks of spiking neurons: The third generation of neu-
ral network models,” Neural Netw., vol. 10, no. 9, pp. 1659-1671,
1997. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0893608097000117

[3] K. Roy, A. R. Jaiswal, and P. Panda, “Towards spike-based ma-
chine intelligence with neuromorphic computing,” Nature, vol. 575,
pp.- 607-617, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:208329736

[4] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond., vol. 1,no. 1, pp. 3-28, Mar. 1991.

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2025 at 19:45:09 UTC from IEEE Xplore. Restrictions apply.

1300506

[3]

(6]

(7]

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Razmkhah and P. Febvre, “Superconducting quantum electronics,” in
Beyond-CMOS: State of the Art and Trends. Hoboken, NJ, USA: Wiley,
Jul. 21, 2023, ch. 8, pp. 295-391, doi: 10.1002/9781394228713.ch8.
J.-Q. Yang et al., “Neuromorphic engineering: From biological to
spike-based hardware nervous systems,” Adv. Mater., vol. 32, 2020,
Art. no. 2003610. [Online]. Available: https://api.semanticscholar.org/
CorpusID:226287531

H. Hendy and C. E. Merkel, “Review of spike-based neuromorphic
computing for brain-inspired vision: Biology, algorithms, and hardware,”
J. Electron. Imag., vol. 31, 2022, Art. no. 010901. [Online]. Available:
https://api.semanticscholar.org/CorpusID:246467172

C.-K. Lin et al., “Programming spiking neural networks on Intel’s Loihi,”
Computer, vol. 51, no. 3, pp. 52-61, Mar. 2018.

G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard,
“Spiking optical flow for event-based sensors using IBM’s TrueNorth
neurosynaptic system,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 4,
pp. 860-870, Aug. 2018.

S. G. Hu, G. C. Qiao, T. P. Chen, Q. Yu, Y. Liu, and L. M. Rong,
“Quantized STDP-based online-learning spiking neural network,” Neu-
ral Comput. Appl., vol. 33, no. 19, pp. 12317-12332, Oct. 2021,
doi: 10.1007/s00521-021-05832-y.

Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: Faster, larger, better,” in Proc. 33rd AAAI Conf.
Artif. Intell., 31st Innov. Appl. Artif. Intell. Conf., 9th AAAI Symp. Educ.
Adv. Artif. Intell., 2019, Art. no. 162, doi: 10.1609/aaai.v33i01.33011311.
J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” in Proc. IEEE, vol. 111, no. 9, pp. 1016-1054,
Sep. 2023.

K. Sidiropoulou, E. Pissadaki, and P. Poirazi, “Inside the brain of a neuron,”
EMBO Rep., vol. 7, pp. 886-892, 2006.

A. Bozbey, M. A. Karamuftuoglu, S. Razmkhah, and M. Ozbayoglu,
“Single flux quantum based ultrahigh speed spiking neuromorphic pro-
cessor architecture,” 2020, arXiv:1812.10354. [Online]. Available: https:
//arxiv.org/abs/1812.10354

M. L. Schneider et al., “Energy-efficient single-flux-quantum based neuro-
morphic computing,” in Proc. IEEE Int. Conf. Rebooting Comput., 2017,
pp. 1-4.

T. J. Strain, L. J. McDaid, T. M. McGinnity, L. P. Maguire, and H. M.
Sayers, “An STDP training algorithm for a spiking neural network with dy-
namic threshold neurons,” Int. J. Neural Syst., vol. 20, no. 06, pp. 463-480,
2010, [Online]. Available: https://doi.org/10.1142/S0129065710002553
D. Horn and M. Usher, “Neural networks with dynamical thresholds,”
Phys. Rev. A, vol. 40, pp. 1036-1044, Jul. 1989. [Online]. Available: https:
/Nink.aps.org/doi/10.1103/PhysRevA.40.1036

X. Xie, S. Wen, Z. Zeng, and T. Huang, “Memristor-based circuit imple-
mentation of pulse-coupled neural network with dynamical threshold gen-
erators,” Neurocomputing, vol. 284, pp. 10-16, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231218300419
P. Diehl and M. Cook, “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,” Front. Comput. Neurosci.,vol.9,2015,
Art. no. 99. [Online]. Available: https://www.frontiersin.org/articles/10.
3389/fncom.2015.00099

X. Zhong and H. Pan, “A spike neural network model for lateral sup-
pression of spike-timing-dependent plasticity with adaptive threshold,”
Appl. Sci., vol. 12, no. 12, 2022, Art. no. 5980. [Online]. Available:
https://www.mdpi.com/2076-3417/12/12/5980

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 3, MAY 2024

A. Shaban, S. Bezugam, and D. M. Suri, “An adaptive threshold neuron
for recurrent spiking neural networks with nanodevice hardware imple-
mentation,” Nature Commun., vol. 12, Jul. 2021, Art. no. 4234.

Y. Chen, Y. Mai, R. Feng, and J. Xiao, “An adaptive threshold mechanism
for accurate and efficient deep spiking convolutional neural networks,”
Neurocomputing, vol. 469, pp. 189-197, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S092523122101568X

P. Crotty, K. Segall, and D. Schult, “Biologically realistic behaviors from
a superconducting neuron model,” IEEE Trans. Appl. Supercond., vol. 33,
no. 4, Jun. 2023, Art. no. 1800806.

M. L. Schneider et al., “Ultralow power artificial synapses using nan-
otextured magnetic Josephson junctions,” Sci. Adv., vol. 4, no. 1, 2018,
Art. no. e1701329. [Online]. Available: https://www.science.org/doi/abs/
10.1126/sciadv.1701329

E. Toomey, K. Segall, M. Castellani, M. Colangelo, N. Lynch, and
K. K. Berggren, “Superconducting nanowire spiking element for neu-
ral networks,” Nano Lett., vol. 20, no. 11, pp.8059-8066, 2020,
doi: 10.1021/acs.nanolett.0c03057.

T. Hirose, T. Asai, and Y. Amemiya, “Spiking neuron devices consisting of
single-flux-quantum circuits,” Physica C: Supercond. Appl., vol. 445448,
pp. 1020-1023, Oct. 2006.

M. A. Karamuftuoglu, A. Bozbey, and S. Razmkhah, “JJ-Soma: Toward a
spiking neuromorphic processor architecture,” IEEE Trans. Appl. Super-
cond., vol. 33, no. 8, Nov. 2023, Art. no. 1400607.

M. L. Schneider and K. Segall, “Fan-out and fan-in properties of super-
conducting neuromorphic circuits,” J. Appl. Phys., vol. 128, Dec. 2020,
Art. no. 214903.

E. Toomey, K. Segall, and K. K. Berggren, “Design of a power effi-
cient artificial neuron using superconducting nanowires,” Front. Neurosci.,
vol. 13, 2019, Art. no. 933. [Online]. Available: https://www.frontiersin.
org/articles/10.3389/fnins.2019.00933

A. E. Schegolev, N. V. Klenov, G. I. Gubochkin, M. Y. Kupriyanov, and I.
1. Soloviev, “Bio-inspired design of superconducting spiking neuron and
synapse,” Nanomaterials, vol. 13, no. 14, 2023, Art. no. 2101. [Online].
Available: https://www.mdpi.com/2079-4991/13/14/2101

M. A. Karamuftuoglu, H. Cong, and M. Pedram, “qCS: Quantum cell
studio standalone software tool,” 2023. [Online]. Available: https://github.
com/Karamuft/qCS

M. A. Karamuftuoglu, S. N. Shahsavani, and M. Pedram, “Margin and
yield optimization of single flux quantum logic cells using swarm op-
timization techniques,” IEEE Trans. Appl. Supercond., vol. 33, no. 1,
Jan. 2023, Art. no. 1300110.

E.S. Fang, “A Josephson integrated circuit simulator (JSIM) for supercon-
ductive electronics application,” in Proc. Extended Abstr. Int. Supercond.
Electron. Conf., 1989.

C. J. Fourie et al., “Results from the ColdFlux superconductor integrated
circuit design tool project,” IEEE Trans. Appl. Supercond., vol. 33, no. 8,
Nov. 2023, Art. no. 1304926.

B. Z. Ucpinar, Y. Kopur, M. A. Karamuftuoglu, S. Razmkhah, and M.
Pedram, “Design of a superconducting multiflux non-destructive readout
memory unit,” 2023, arXiv:2309.14613. [Online]. Available: https://arxiv.
org/abs/2309.14613

C. Zou et al., “A scatter-and-gather spiking convolutional neural network
on a reconfigurable neuromorphic hardware,” Front. Neurosci., vol. 15,
2021, Art. no. 694170.

Authorized licensed use limited to: University of Southern California. Downloaded on March 26,2025 at 19:45:09 UTC from IEEE Xplore. Restrictions apply.

