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Abstract—Single Flux Quantum (SFQ) technology represents
a groundbreaking advancement in computational efficiency and
ultra-high-speed neuromorphic processing. The key features of
SFQ technology, particularly data representation, transmission,
and processing through SFQ pulses, closely mirror fundamental
aspects of biological neural structures. Consequently, SFQ-based
circuits emerge as an ideal candidate for realizing Spiking Neural
Networks (SNNs). This study presents a proof-of-concept demon-
stration of an SFQ-based SNN architecture, showcasing its capacity
for ultra-fast switching at remarkably low energy consumption
per output activity. Notably, our work introduces innovative ap-
proaches: (i) We introduce a novel spike-timing-dependent plastic-
ity mechanism to update synapses and to trace spike-activity by
incorporating a leaky non-destructive readout circuit. (ii) We pro-
pose a novel method to dynamically regulate the threshold behavior
of leaky integrate and fire superconductor neurons, enhancing the
adaptability of our SNN architecture. (iii) Our research incorpo-
rates a novel winner-take-all mechanism, aligning with practical
strategies for SNN development and enabling effective decision-
making processes. The effectiveness of these proposed structural
enhancements is evaluated by integrating high-level models into
the BindsNET framework. By leveraging BindsNET, we model the
online training of an SNN, integrating the novel structures into the
learning process. To ensure the robustness and functionality of our
circuits, we employ JoSIM for circuit parameter extraction and
functional verification through simulation.

Index Terms—Single flux quantum, superconductor electronics,
spiking neural network, synapse, STDP.

I. INTRODUCTION

G
ROWING demand for neural networks has led to in-

novative solutions that combine fundamental biological

principles with hardware implementations. These solutions and

the developments in computational neuroscience have a notable

influence on the paradigm shift from artificial neural networks

(ANNs) to the domain of spiking neural networks (SNNs) due

to their distinctive properties of energy efficiency and inference
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capabilities [1]. SFQ circuits with spike-based behavior show

great promise in efficient and fast SNN implementation.

Neural data represented with spikes intrinsically resembles

the data on superconductor devices [2], [3]. Furthermore, the

shift from the conventional floating point representation to a bi-

nary paradigm of 0 s and 1 s results in notable simplifications and

reduced memory requirements. The inherent sparsity in SNNs,

where neurons spend most of their time resting, aligns perfectly

with the concept of event-driven processing with asynchronous

superconductor circuits. This ultimately leads to substantial

power savings by eliminating the need for most of the com-

putational operations. Thus, the utilization of superconductor

devices on SNN holds great promise for the performance of

neuromorphic computing systems [4].

Superconductor-based SNN designs necessitate the integra-

tion of superconductor circuits that accurately replicate the intri-

cate dynamics observed in biological neurons, specifically trans-

lating states and actions into neural spikes. Within this paradigm,

leveraging the unsupervised learning mechanisms inherent to

SNNs, in conjunction with the capabilities of superconductor

technology, empowers us to establish a biologically plausible

framework for simulating neural networks.

Schneider et al. [5] showcased character recognition using

an SNN model, explicitly emphasizing the letters ‘z,’ ‘v,’ and

‘n.’ In their study, the authors employed a 3 × 3 input pixel

array and implemented a two-layer inference SNN that incor-

porated Integrate-and-Fire (IF) neurons and Magnetic Joseph-

son Junctions (MJJs). Bozbey et al. [6] extended the SNN

research by utilizing superconductor Leaky Integrate-and-Fire

(LIF) neurons with CMOS-superconductor synapses for the

inference SNN. The training process was executed using ge-

netic algorithms applied to the iris dataset. Furthermore, Zhang

et al. [7] contributed to the field by exploring SNNs featur-

ing IF neurons with Quantum Phase-Slip Junctions (QPSJ).

They analyzed superconductor SNN training, using the digit

‘0’ from the MNIST dataset as their experimental basis. Of

particular interest, Segall et al. [8] introduced a 1-bit resolution

Spike-Timing-Dependent Plasticity (STDP) structure, advanc-

ing the prospects of unsupervised learning with superconductor

devices.

Collectively, these papers share a common focus on alterna-

tive inference neural networks. However, it is crucial to acknowl-

edge a significant limitation–the immaturity of superconductor

fabrication technologies for MJJs and QPSJs. Consequently,

our contributions primarily center around online training with
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conventional superconductor elements that can be readily fabri-

cated using available foundry processes.

This work focuses on training SNNs utilizing Spike-Timing-

Dependent Plasticity (STDP) while providing justifications for

integrating superconductor components. Within the scope of

our research, we have carefully designed an STDP mechanism

tailored for a synaptic finite state machine specifically optimized

for Single Flux Quantum (SFQ)–based SNNs. Additionally, we

introduce leaky integrate-and-fire (LIF) neurons with dynamic

thresholds achieved through self-inhibition. This unique feature

empowers LIF neurons to adapt dynamically to input patterns,

leveraging the temporal diversity among neurons to enhance

overall network performance. We conducted simulations using

JoSIM [9] to ensure the functionality and accuracy of our

designs.

For network analysis, we leveraged the BindsNET frame-

work’s capabilities [10] and applied them to an architecture rep-

resenting an asynchronous SNN with two layers [11]. Through-

out our analysis, we maintained an evaluation range aligned with

the capabilities of superconductor hardware, yielding high levels

of accuracy in our observations and assessments.

The key contributions of this paper are as follows. (i) Quan-

tized STDP Mechanism: We introduce a novel STDP mechanism

that is quantized and utilizes a leaky non-destructive readout

(NDRO); (ii) Dynamic Threshold Behavior: We demonstrate an

innovative self-inhibition technique that temporarily modulates

LIF neurons’ membrane potential, enabling dynamic threshold

behavior; (iii) Winner-Take-All Superconductor Structure: We

present a novel superconductor structure designed to imple-

ment the winner-take-all principle within the context of neu-

ral networks; and (iv) Computational Framework: We employ

plausible mechanisms within a computational framework to

systematically verify and observe the computational behavior

of SNNs.

II. METHODOLOGY

The development of spiking neurons and their computational

models are dedicated to faithfully mirroring the behavior of

biological neurons. These methodologies focus on capturing

spike-based activity, which enables precise temporal informa-

tion encoding. By integrating these neurons with synaptic plas-

ticity mechanisms, neural networks evolve into powerful tools

for facilitating unsupervised learning. To achieve this, Spike-

Timing-Dependent Plasticity (STDP) plays a key role, enabling

networks with adaptive capabilities by modulating the strengths

of synaptic connections based on the precise timing of spikes.

To evaluate the high-level performance of an SNN, we lever-

age the BindsNET framework considering the superconductor

electronics constraints.

BindsNET is an open-source library offering a user-friendly

solution for training and evaluating SNNs on CPU and GPU

platforms. Built on the PyTorch library [12], it incorporates

ML tools and robust data structures and can be implemented

on different platforms. BindsNET framework supports various

backends, including TensorFlow [13] and SpiNNaker [14]. By

providing an interface to the OpenAI Gym library, training and

evaluation of spiking networks can be facilitated in reinforce-

ment learning environments. This comprehensive approach ad-

dresses the critical need for effective integration between SNNs

and real-world tasks. In the following subsections, we delve

into the network architecture and the crucial role of synaptic

adaptability as a foundational feature, effectively emulating the

intricate dynamics of biological neural networks.

A. Spiking Neural Network Architecture

The network architecture that we follow fundamentally con-

sists of two layers: an input layer and a processing layer as an

output layer [11]. For the input, neural encoding techniques are

applied to transform input pixels into spikes, such as rate coding,

temporal coding, and sparse coding. In particular, we focus on

the rate coding scheme that converts a pixel value into a rate

of spikes using Poisson distribution [15]. In this approach, the

source of the input spikes can be any asynchronous input, such

as a sensor. The incoming spikes are then propagated to the

processing layer after being weighted by synapses.

The processing layer consists of excitatory and inhibitory

neurons. The overall decision-making is performed by excita-

tory neurons with the help of inhibitory neurons. After being

weighted by synapses, the input spikes are initially provided to

the excitatory neurons. The synaptic connections from the input

layer to excitatory neurons are established in a fully connected

fashion. Inhibitory neurons are incorporated into the structure to

introduce competitive dynamics among the excitatory neurons.

The connections from excitatory to inhibitory neurons are

one-to-one. In contrast, the links from inhibitory to excitatory

neurons are fully connected. Here, the excitatory neuron that

provides the initial spikes to the inhibitory neuron is excluded.

In this approach, if an excitatory neuron generates output, these

spikes trigger the corresponding inhibitory neuron. Once the

inhibitory neuron generates an output spike, it will prevent

the rest of the excitatory neurons from firing. This paradigm

is defined as the winner-take-all (WTA) principle [16]. This

network configuration resembles recurrent neural networks due

to lateral inhibition.

In our approach, we utilize a slightly modified version, shown

in Fig. 1, of the previously described architecture. For our work,

we assigned a single-spike threshold to inhibitory neurons. As a

result, these neurons perform just the propagation of spikes with

a high fanout back to the excitatory neurons for the operation of

inhibition. Therefore, we exclude the inhibitory neurons from

the architecture and create a WTA feedback mechanism among

the excitatory neurons to establish the same functionality as

inhibitory neurons.

B. Spike-Timing-Dependent Plasticity (STDP)

STDP is a phenomenon in which the timing of spikes in neural

networks influences both the direction (sign) and magnitude of

changes in synaptic strength. It is considered one of the primary

learning rules governing synaptic plasticity and is a biologically

plausible mechanism for unsupervised learning, as discussed in

reference [17]. Conceptually, STDP is often interpreted as a form
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Fig. 1. Visualization of rate coding on the MNIST input image pixels and
our network architecture. In the processing layer, a single excitatory neuron
performs lateral inhibition over the other excitatory neurons, preventing them
from firing due to the WTA feedback mechanism. The labels I and E represent
input and excitatory neuron vertices, respectively. The variable K corresponds
to the number of input pixels, whereas N shows the number of neurons in the
processing layer.

of Hebbian learning, which posits that synapses are strengthened

when neurons fire together.

In STDP, the precise timing of pre-synaptic and post-synaptic

neuron spikes within a narrow time window plays a critical

role in determining the direction of synaptic changes. When

a pre-synaptic neuron spike precedes a post-synaptic neuron

spike within this window, it leads to a phenomenon known as

long-term potentiation (LTP), which strengthens the synaptic

connection. Conversely, if the order is reversed, with the post-

synaptic neuron spike preceding the pre-synaptic one, it results

in long-term depression (LTD), which weakens the synaptic

connection.

In experimental settings, researchers often repeatedly evoke

pairs of pre-synaptic and post-synaptic spikes with a fixed time

interval, denoted as ∆t. These pairs of spikes are typically

repeated at a low frequency, and the resulting changes in synaptic

response size are measured. By conducting this experiment for

various values of ∆t, the timing-dependence of plasticity is

mapped, creating what is referred to as an STDP curve. This

curve is a valuable tool for predicting the plasticity outcomes

when ∆t varies, such as in response to arbitrary sequences of

pre-synaptic and post-synaptic neuron spikes under less con-

trolled conditions [18].

The visual representation of neurons and synapses undergoing

different weight update scenarios in the context of STDP is

depicted in Fig. 2. Let’s consider two specific cases. Case 1:

In this scenario, the input from pre-synaptic neuron 1 triggers

the post-synaptic neuron to generate output spikes. This causal

relationship increases the synapse’s strength that connects the

pre and post-synaptic neurons. Case 2: In contrast, pre-synaptic

neuron 2 does not contribute to the output generation, and its

spike arrives later than the output of the post-synaptic neuron.

As a result, the strength of the synapse connecting pre-synaptic

neuron 2 and the post-synaptic neuron is decreased.

The mathematical expression for the weight changes in these

scenarios is provided by (1). This equation quantifies how the

Fig. 2. Example neuron and synapse scheme with pre and post-synaptic neuron
spike cases for the learning curves of STDP.

synaptic weights are updated based on the timing and causal

relationship between pre-synaptic and post-synaptic spikes, re-

flecting the principles of STDP.

∆W =

{

Apote
−∆t/τpot if ∆t > 0

Adepe
+∆t/τdep if ∆t < 0

(1)

The weight modulation in (1) expresses the principles of the

asymmetric learning rule with two regions: LTP for weight incre-

ment and LTD for weight reduction. ∆W represents the amount

of change in synaptic strength. In order to realize this functional-

ity in a circuit, a trace-based method can be implemented [19].

The exponential curve on the LTP region corresponds to the

post-synaptic neuron spike-trace, whereas the LTD region curve

represents the pre-synaptic neuron spike-trace. These traces

capture the spiking activity of the pre-synaptic and post-synaptic

neurons. The two variables Apot and Adep denote the maximum

increment and decrement of synaptic strength on the STDP

curve, respectively. The direction of ∆W depends on the sign

value of ∆t as determined by the arrival order of pre and post-

synaptic neuron spikes corresponding to∆t = tpost − tpre. Due

to the resource constraints on the superconductor hardware, we

employed quantized STDP update levels on ∆W and synaptic

weights that are discussed in the following section.

III. PROPOSED SFQ-BASED ONLINE TRAINING

This section introduces essential superconductor-based mech-

anisms for the implementation of SNNs. Firstly, we present

an STDP engine that effectively enforces the asymmetric rate

STDP learning rule, underlining the motivation for synaptic

implementations with a degree of biological plausibility [17].

Our design employs a modified NDRO circuit to monitor pre-

and post-synaptic neuron spikes precisely. Furthermore, our

framework seamlessly integrates dynamic threshold behavior

within LIF neurons, achieved through self-inhibition based on
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Fig. 3. Cell view of the quantized STDP design following the scheme given in
Fig. 2. Trace-based spiking activity of pre and post-synaptic neurons is recorded
in each leaky NDRO.

neuron output spikes [20]. Lastly, we propose a novel imple-

mentation of feedback interactions between neurons, facilitat-

ing our framework’s realization of WTA characteristics. These

combined mechanisms advance the field of SNNs and provide

valuable tools for neuromorphic computing applications.

A. SFQ-Based STDP Engine

The proposed design of the STDP mechanism is tailored to

perform both increment and decrement functions, thereby ad-

justing a finite state machine associated with the synapse struc-

ture. To enable STDP using superconductor-based components,

we discretized the learning curve. This design, featuring a 1-bit

resolution, incorporates two splitters (SPLs) with a fanout of

3, in addition to two leaky Non-Destructive Readout (LNDRO)

circuits. The SPLs play a crucial role in internally increasing

the fanout of inputs derived from pre- and post-synaptic neuron

spikes, which are then assigned to the LNDRO pins. Further-

more, the STDP engine includes two output pins, labeled as

increment and decrement, as illustrated in Fig. 3.

To generate a decrement output spike, one must establish the

spike-trace relationship between pre- and post-synaptic neurons.

In this operation, incorporating Splitters (SPLs) and a single

LNDRO cell proves sufficient to generate decrement behavior

with a 1-bit resolution. A similar setup can be set up to produce

spikes on the increment output pin for generating an incre-

ment behavior. If a higher bit resolution is desired, the overall

design necessitates the incorporation of SPLs with increased

fanout, additional LNDROs with varying decay rates, and the

inclusion of two merger components for LNDRO outputs. The

introduction of leaky behavior in the standard NDRO cell is

achieved by inserting a resistor into the SFQ storage loop, as

illustrated in Fig. 4(a). In this design, an NDRO with multi-flux

storing characteristics is suitable to create the synapse behavior

since the amount of stored flux corresponds to the state of a

synapse [21]. For such module, it is feasible to incorporate a

parallel implementation of multi-flux NDROs for scaling up the

structure, implementing the functionality of an up-down counter.

Fig. 4. LNDRO functional verification and its representation for the quantized
STDP on the learning curve.

In this approach, creating an output pin for each NDRO enables

delivering multiple pulses concurrently to a neuron in order to

meet the time window of a neuron’s decay rate for the activation.

The LNDRO is simulated using JoSIM, and the waveforms

are given in Fig. 4(d). When a spike arrives at the input in, the

spike is split for the reset and set pins. To recreate the correct

spike-trace functionality, the spike from reset initially erases

the current in the leaky storing loop (JJ2-L2-R1-L3-L5-JJ4).

By applying the spike arriving late due to the Delay cell, the

spike-trace is updated, and the current gradually decays with a

constant time of τ due to the inserted resistor. Concurrently, the

state of the LNDRO can be read by a spike from the clock pin.

Due to the quantization of the STDP curve shown in Fig. 4(c),

a spike on out can only be observed until a quantization point,

set as 25 ps in the simulation.
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Fig. 5. LIF neuron with dynamic threshold using self-inhibition. The mem-
brane state of a superconductor LIF neuron corresponds to the amount of current
stored in its leaky loop. The neuron resting state is the baseline condition where
no spike is received or generated.

B. LIF Superconductor Neurons With Dynamic Threshold

The threshold value of a neuron determines the firing rate

and shapes the computational behavior of a neural network.

In this context, relying on a neuron with a fixed threshold can

impose challenges in neural processing, such as high sensitivity

to input fluctuations and excessive spike firing, resulting in

high dynamic power consumption. The adaptability of a neuron

with a dynamic threshold contributes to the network stability

and contextual responsiveness [22]. For instance, the digits in

the MNIST handwritten dataset may share the same pixels. In

this case, the multiple neurons in the output layer may have

high-valued synaptic weights on these pixels and generate an

output spike due to the neurons having the same threshold for

the classification, hindering the overall performance. Hence,

the implementation of an adaptive threshold behavior becomes

indispensable to address this issue effectively. Adjusting the

threshold of a superconductor-based neuron is typically achieved

by dynamically changing the bias current and critical current of

the JJs. Such modifications introduce additional hardware design

complexity. Therefore, we utilize the generated output spike as

a feedback input, creating self-inhibition behavior as shown in

Fig. 5.

The membrane state of a neuron plays a pivotal role in

determining whether an output spike is generated at a specific

moment in time. When the membrane state surpasses a certain

threshold, a single spike is triggered at the neuron’s output.

The resting state of a neuron corresponds to its default state,

characterized by the absence of spike activity. Within a neural

network, certain neurons may exhibit a high firing rate, exerting

a disproportionate influence on decision-making and potentially

disrupting the network’s balance. Consequently, there is a need

for methods to mitigate such behavior and maintain network

equilibrium.

The proposed self-inhibition technique serves as a mechanism

for temporarily preventing a neuron from firing multiple spikes

in quick succession. It achieves this by reducing the membrane

state below the resting state, as illustrated in Fig. 5. In the context

of superconductor circuits, the membrane state corresponds to

the amplitude of stored current, and the threshold is determined

by the amount of current required to trigger the decision-making

Josephson junction (JJ). By employing the self-inhibition mech-

anism, a neuron can momentarily dip below its resting state, thus

demanding more input current to reach the threshold level. An

example design utilizing α-Soma [23] is depicted in Fig. 6(a).

Fig. 6. Design of LIF neuron with self-inhibition and JoSIM results for α-
Soma. All parameter values of the cells are kept the same, and the self-inhibition
is prevented by disconnecting the node between the input of α-cell and output
of SPL.

A fundamental component influencing the computation and

decision-making in neural networks is the soma circuit. The

soma generates an output pulse upon reaching action poten-

tial [24]. This behavior corresponds to a comparator circuit, the

primary activation function for the behavior of a LIF neuron.

Moreover, the self-inhibitory effect on the circuit is accom-

plished through the introduction of anα-cell, which performs bi-

directional pulse propagation on the same datapath. In addition

to the given design with electrical connections, a similar effect

can be achieved for neurons receiving inputs from inductances

with mutual couplings [25] by directing the neuron’s output

spike back into the same neuron’s input through an inductance

with negative coupling. This generates a current in the opposite

direction, counteracting the threshold mechanism.

The simplified test case utilizes a soma circuit that acts as

an asynchronous threshold gate with a threshold of two spikes

within ≈50 ps i.e., an output spike is generated whenever two

input spikes arrive within the designated time frame. Within this

configuration employing α-Soma, the output spike is provided

to the following SPL cell. One of the SPL outputs is connected

to the input of α-cell, enabling the spike to propagate back

into the soma cell. This operation negatively impacts the loop

current due to the opposite direction of the spike. The example

demonstration of digital inhibition with α-Soma preventing the

generation of continuous output spikes is shown in Fig. 6.

C. WTA Mechanism With Superconductor Devices

One of the fundamental computational models in spiking neu-

ral networks is a winner-take-all (WTA) principle, establishing
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Fig. 7. WTA mechanism and JoSIM results for soma circuits.

a form of competition for activation among the neurons within

the same layer [16]. The neuron with a higher activation affects

the activity of interconnected neurons by inhibition. As a result,

the winner neuron becomes the sole source of output spikes. This

selective mechanism enables noise filtering and input focus on

the critical data.

We present a way that enables interaction among the excita-

tory neurons to prevent each other from firing, fundamentally

implementing the WTA principle. The firing information is

obtained from an inductance at the output Lload, next to the

JJ, that determines the threshold operation. Note that the choice

of inductance for coupling can be placed between the threshold

junction JJsoma1 and the ground node; however, this option

requires a balance adjustment between the decay rate of the

input side and lateral inhibition since such inductance is a part

of the leaky storage loop of the soma circuit [23].

The interaction among neurons is established by inductive

coupling K between an output inductance (Lload) and induc-

tance in a feedback loop (Rwta1-Lwta1-Lwta2-Rwta2) shown

in Fig. 7(a). The feedback loop consists of Lwta inductances

for each neuron and resistors (Rwta) on each end. Therefore,

any activation on a threshold junction will result in a change

of current within this loop. Due to the coupling, the current

on the feedback loop will affect the other neurons via coupled

inductances. Each input spike creates a current determined by

a resistor within the leaky storage loop of superconductor LIF

neurons. Unlike this input, the inhibition current from a neuron

to other neurons mainly depends on the value of the coupling

K. Therefore, high inductive coupling results in a higher lateral

suppression by a neuron. The JoSIM results of the proposed

method with an example of soma circuits are shown in Fig. 7.

In our testbench, two soma circuits are designed to have a

threshold of 2 spikes and ≈ 50 ps decay time. Initially, these

circuits receive spikes with 75 ps time difference. Due to the

current decay within the spike-storing loop on the input side of

the soma, no output is generated. Next, two spikes with a short

time interval are applied to the soma circuits. The first soma

receives its inputs before the inputs of the second soma. As a

result, the first soma fires earlier than the second one. The late-

firing soma is expected to generate an output when no interaction

exists among the somas. However, if the WTA mechanism is

employed, the first soma inhibits the second soma. Note that

there will be no lateral inhibition if the spike frames between

the soma circuits do not overlap.

IV. RESULTS

In our work, we utilized the BindsNET framework for high-

level network modeling. We primarily focused on the intrinsic

network properties and performance. We targeted the digits 0

and 1 of the MNIST dataset to evaluate the on-chip training

network. The MNIST images are separated into two groups:

the training set and the testing set. In our implementation, the

image count was 633 for the training and 105 for the testing

images of 0 s and 1 s, corresponding to 5% of the overall digit

images of 0 s and 1 s within the dataset. Images were randomly

selected, and each image was down-scaled from 28 by 28 pixels

to 14 by 14 pixels. The training epoch count was assigned as

1, and each image was shown for 100 ps to the network during

both the training and inference phases. For the inference phase,

the network preserves the most up-to-date weight values while

introducing the network to randomly selected test images that

have not been shown before.

The neuron resting state was 0, and their neuron threshold

was set to eight spikes. While threshold decay to the resting

state was active, the dynamic threshold increment from the post-

synaptic neuron spike was set to 32 inhibitory spikes. In our

network structure, this value prevented the firing neurons from

entering burst mode and gave other neurons a chance to fire. The

membrane decay time of neurons was set to 25 ps.

For the synaptic characteristics, the increment and decrement

in weight adjustments from the STDP mechanism were assigned

as two spikes and one spike, respectively. Therefore, the spike

generation on the increment side of the proposed STDP engine

required a modification to have twice as much impact as the

decrement side. For the spike activity of pre- and post-synaptic

neurons, we assigned 10 ps to the spike-trace decay rate τ , keep-

ing it within a reasonable time frame. Two network architectures
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were considered, including architectures with 4 and 9 excitatory

neurons with a weight resolution of 4 bits, corresponding to 16

different synaptic stages.

To eliminate the need for additional peripheral circuitry, a

separate bias line can be implemented in the quantized STDP

engine. While the network training involves applying this ded-

icated bias of the engine, the absence of bias during inference

phase prevents the generation of both increment and decrement

pulses for the synapse adjustment, establishing the distinction

between the training and inference stages. Consequently, the

synapse values, with multi-flux storing characteristics in the

NDROs [21], can be maintained by triggering arbitrary pulses

only from the input images. This approach not only saves static

power during the inference phase but also ensures uniformity in

component usage throughout the entire computational process

within the architecture given in Fig. 1.

Unlike the conventional implementations, we did not use

any weight normalization technique in the on-chip training

setting. Accessing all weights to perform such an operation is

not hardware-friendly, even though weight normalization gives

all neurons a chance to fire and offers a better weight conver-

gence. The dynamic threshold adaptation with decaying fashion

temporarily compensates for the weight normalization. Some

neurons can rapidly go into a burst mode without this feature and

become dominant. However, when the decay time is relatively

short compared to the duration of multiple input images, the

neuron tends to forget the learned pattern, leading to an increase

in the majority of its weights. On the other hand, we kept a weight

clipping operation to limit the weight between 0 and 1 (scaled

from the range of 0–15). Implementing Multi-flux NDROs in

parallel, with a critical margin of ±10% as reported in [21],

enables to achieve the desired weight range. With consistent

and reliable fabrication across the chip for MJJs, it is possible to

achieve a resolution higher than the currently employed value.

The total resource count of the circuit is determined for the

downscaled images. Although the size of the input and dataset af-

fects accuracy, the fundamental design approach of the hardware

in the neural network implementation remains the same. When

considering the entire MNIST dataset, accommodating the com-

plete set requires adjustment in the hardware resource, impacting

the number of neurons while the overall network model remains

consistent for capturing additional digits. Each PTL is counted

to establish the connections from input to synapse, from synapse

to soma, and from the SPL tree of soma (LIF neuron) back to

the STDP engine. Each neuron requires synaptic connections es-

tablished by Multi-fluxon NDROs and the corresponding STDP

engine. The overall resources required per neuron would approx-

imately be 468 PTL Drivers and Receivers, 312 JTLs, 624 SPLs

with a fanout of 2, 121 SPLs with a fanout of 3, 312 NDROs,

and 624 Multi-flux NDROs. Consequently, it corresponds to

23.4 k JJs per neuron for the network computation, including

the peripherals and interconnects.

In the case of training first architecture (4 excitatory neurons),

we acquired an accuracy of 90.32% for training and 81.9% for

testing. During the convergence, we observed that the neurons

representing digit 1 still have traces of digit 0 and vice versa

due to the bit resolution and no weight normalization. We also

Fig. 8. Network training result using four excitatory neurons.

Fig. 9. Network training result using nine excitatory neurons.

observed cases where some neurons go into a burst mode due

to the random weight initialization. Therefore, a mechanism to

thoroughly address this issue in lower-bit resolutions must be

investigated. The 2D weight values are illustrated in Fig. 8 for

each neuron of the considered architecture. The displayed weight

values, arranged from left to right, represent snapshots taken at

every one-third interval of the training process, spanning from

iteration 0 to 633.

The training settings are kept the same for the second net-

work architecture (with nine neurons) to observe the impact

of neuron count on the performance. The results showed an

accuracy of 96.77% for training and 97.1% for testing, indicating

a performance improvement over the case with four neurons.

Therefore, increasing the number of neurons in the network

positively influences the overall accuracy with a trade-off of

hardware resources, supporting the motivation for large-scale

implementations. The 2D weight values of this architecture

during the training are illustrated in Fig. 9

V. CONCLUSION

This paper explored the capabilities of an on-chip training

mechanism on superconductor spiking neural networks. We

designed a leaky NDRO circuit and simulated its behavior with

JoSIM. The leaky NDROs record spike traces to achieve a

quantized STDP mechanism. Furthermore, we demonstrate a

self-inhibition method for superconductor-based structures to

establish the dynamic threshold behavior in LIF neurons. We

also implement a superconductor winner-take-all mechanism to

support the correct network behavior. The on-chip training capa-

bilities are shown with a computational BindsNET framework,

and we achieved ≈97% accuracy with 9 neurons for the classi-

fication of digits 0 and 1. These findings collectively highlight

the promise of on-chip training in superconductor-based spiking

neural networks.
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