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Abstract—Single Flux Quantum (SFQ) technology represents
a groundbreaking advancement in computational efficiency and
ultra-high-speed neuromorphic processing. The key features of
SFQ technology, particularly data representation, transmission,
and processing through SFQ pulses, closely mirror fundamental
aspects of biological neural structures. Consequently, SFQ-based
circuits emerge as an ideal candidate for realizing Spiking Neural
Networks (SNNs). This study presents a proof-of-concept demon-
stration of an SFQ-based SNN architecture, showcasing its capacity
for ultra-fast switching at remarkably low energy consumption
per output activity. Notably, our work introduces innovative ap-
proaches: (i) We introduce a novel spike-timing-dependent plastic-
ity mechanism to update synapses and to trace spike-activity by
incorporating a leaky non-destructive readout circuit. (ii) We pro-
pose a novel method to dynamically regulate the threshold behavior
of leaky integrate and fire superconductor neurons, enhancing the
adaptability of our SNN architecture. (iii) Our research incorpo-
rates a novel winner-take-all mechanism, aligning with practical
strategies for SNN development and enabling effective decision-
making processes. The effectiveness of these proposed structural
enhancements is evaluated by integrating high-level models into
the BindsNET framework. By leveraging BindsNET, we model the
online training of an SNN, integrating the novel structures into the
learning process. To ensure the robustness and functionality of our
circuits, we employ JoSIM for circuit parameter extraction and
functional verification through simulation.

Index Terms—Single flux quantum, superconductor electronics,
spiking neural network, synapse, STDP.

1. INTRODUCTION

ROWING demand for neural networks has led to in-
G novative solutions that combine fundamental biological
principles with hardware implementations. These solutions and
the developments in computational neuroscience have a notable
influence on the paradigm shift from artificial neural networks
(ANN5s) to the domain of spiking neural networks (SNNs) due
to their distinctive properties of energy efficiency and inference
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capabilities [1]. SFQ circuits with spike-based behavior show
great promise in efficient and fast SNN implementation.

Neural data represented with spikes intrinsically resembles
the data on superconductor devices [2], [3]. Furthermore, the
shift from the conventional floating point representation to a bi-
nary paradigm of O s and 1 s results in notable simplifications and
reduced memory requirements. The inherent sparsity in SNNs,
where neurons spend most of their time resting, aligns perfectly
with the concept of event-driven processing with asynchronous
superconductor circuits. This ultimately leads to substantial
power savings by eliminating the need for most of the com-
putational operations. Thus, the utilization of superconductor
devices on SNN holds great promise for the performance of
neuromorphic computing systems [4].

Superconductor-based SNN designs necessitate the integra-
tion of superconductor circuits that accurately replicate the intri-
cate dynamics observed in biological neurons, specifically trans-
lating states and actions into neural spikes. Within this paradigm,
leveraging the unsupervised learning mechanisms inherent to
SNNss, in conjunction with the capabilities of superconductor
technology, empowers us to establish a biologically plausible
framework for simulating neural networks.

Schneider et al. [5] showcased character recognition using
an SNN model, explicitly emphasizing the letters ‘z, ‘v,” and
‘n.” In their study, the authors employed a 3 x 3 input pixel
array and implemented a two-layer inference SNN that incor-
porated Integrate-and-Fire (IF) neurons and Magnetic Joseph-
son Junctions (MIJJs). Bozbey et al. [6] extended the SNN
research by utilizing superconductor Leaky Integrate-and-Fire
(LIF) neurons with CMOS-superconductor synapses for the
inference SNN. The training process was executed using ge-
netic algorithms applied to the iris dataset. Furthermore, Zhang
et al. [7] contributed to the field by exploring SNNs featur-
ing IF neurons with Quantum Phase-Slip Junctions (QPSJ).
They analyzed superconductor SNN training, using the digit
‘0’ from the MNIST dataset as their experimental basis. Of
particular interest, Segall et al. [8] introduced a 1-bit resolution
Spike-Timing-Dependent Plasticity (STDP) structure, advanc-
ing the prospects of unsupervised learning with superconductor
devices.

Collectively, these papers share a common focus on alterna-
tive inference neural networks. However, it is crucial to acknowl-
edge a significant limitation—the immaturity of superconductor
fabrication technologies for MJJs and QPSJs. Consequently,
our contributions primarily center around online training with
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conventional superconductor elements that can be readily fabri-
cated using available foundry processes.

This work focuses on training SNNs utilizing Spike-Timing-
Dependent Plasticity (STDP) while providing justifications for
integrating superconductor components. Within the scope of
our research, we have carefully designed an STDP mechanism
tailored for a synaptic finite state machine specifically optimized
for Single Flux Quantum (SFQ)-based SNNs. Additionally, we
introduce leaky integrate-and-fire (LIF) neurons with dynamic
thresholds achieved through self-inhibition. This unique feature
empowers LIF neurons to adapt dynamically to input patterns,
leveraging the temporal diversity among neurons to enhance
overall network performance. We conducted simulations using
JoSIM [9] to ensure the functionality and accuracy of our
designs.

For network analysis, we leveraged the BindsNET frame-
work’s capabilities [10] and applied them to an architecture rep-
resenting an asynchronous SNN with two layers [11]. Through-
out our analysis, we maintained an evaluation range aligned with
the capabilities of superconductor hardware, yielding high levels
of accuracy in our observations and assessments.

The key contributions of this paper are as follows. (i) Quan-
tized STDP Mechanism: We introduce a novel STDP mechanism
that is quantized and utilizes a leaky non-destructive readout
(NDRO); (ii) Dynamic Threshold Behavior: We demonstrate an
innovative self-inhibition technique that temporarily modulates
LIF neurons’ membrane potential, enabling dynamic threshold
behavior; (iii) Winner-Take-All Superconductor Structure: We
present a novel superconductor structure designed to imple-
ment the winner-take-all principle within the context of neu-
ral networks; and (iv) Computational Framework: We employ
plausible mechanisms within a computational framework to
systematically verify and observe the computational behavior
of SNNs.

II. METHODOLOGY

The development of spiking neurons and their computational
models are dedicated to faithfully mirroring the behavior of
biological neurons. These methodologies focus on capturing
spike-based activity, which enables precise temporal informa-
tion encoding. By integrating these neurons with synaptic plas-
ticity mechanisms, neural networks evolve into powerful tools
for facilitating unsupervised learning. To achieve this, Spike-
Timing-Dependent Plasticity (STDP) plays a key role, enabling
networks with adaptive capabilities by modulating the strengths
of synaptic connections based on the precise timing of spikes.
To evaluate the high-level performance of an SNN, we lever-
age the BindsNET framework considering the superconductor
electronics constraints.

BindsNET is an open-source library offering a user-friendly
solution for training and evaluating SNNs on CPU and GPU
platforms. Built on the PyTorch library [12], it incorporates
ML tools and robust data structures and can be implemented
on different platforms. BindsNET framework supports various
backends, including TensorFlow [13] and SpiNNaker [14]. By
providing an interface to the OpenAl Gym library, training and
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evaluation of spiking networks can be facilitated in reinforce-
ment learning environments. This comprehensive approach ad-
dresses the critical need for effective integration between SNNs
and real-world tasks. In the following subsections, we delve
into the network architecture and the crucial role of synaptic
adaptability as a foundational feature, effectively emulating the
intricate dynamics of biological neural networks.

A. Spiking Neural Network Architecture

The network architecture that we follow fundamentally con-
sists of two layers: an input layer and a processing layer as an
output layer [11]. For the input, neural encoding techniques are
applied to transform input pixels into spikes, such as rate coding,
temporal coding, and sparse coding. In particular, we focus on
the rate coding scheme that converts a pixel value into a rate
of spikes using Poisson distribution [15]. In this approach, the
source of the input spikes can be any asynchronous input, such
as a sensor. The incoming spikes are then propagated to the
processing layer after being weighted by synapses.

The processing layer consists of excitatory and inhibitory
neurons. The overall decision-making is performed by excita-
tory neurons with the help of inhibitory neurons. After being
weighted by synapses, the input spikes are initially provided to
the excitatory neurons. The synaptic connections from the input
layer to excitatory neurons are established in a fully connected
fashion. Inhibitory neurons are incorporated into the structure to
introduce competitive dynamics among the excitatory neurons.

The connections from excitatory to inhibitory neurons are
one-to-one. In contrast, the links from inhibitory to excitatory
neurons are fully connected. Here, the excitatory neuron that
provides the initial spikes to the inhibitory neuron is excluded.
In this approach, if an excitatory neuron generates output, these
spikes trigger the corresponding inhibitory neuron. Once the
inhibitory neuron generates an output spike, it will prevent
the rest of the excitatory neurons from firing. This paradigm
is defined as the winner-take-all (WTA) principle [16]. This
network configuration resembles recurrent neural networks due
to lateral inhibition.

In our approach, we utilize a slightly modified version, shown
in Fig. 1, of the previously described architecture. For our work,
we assigned a single-spike threshold to inhibitory neurons. As a
result, these neurons perform just the propagation of spikes with
a high fanout back to the excitatory neurons for the operation of
inhibition. Therefore, we exclude the inhibitory neurons from
the architecture and create a WTA feedback mechanism among
the excitatory neurons to establish the same functionality as
inhibitory neurons.

B. Spike-Timing-Dependent Plasticity (STDP)

STDP is a phenomenon in which the timing of spikes in neural
networks influences both the direction (sign) and magnitude of
changes in synaptic strength. It is considered one of the primary
learning rules governing synaptic plasticity and is a biologically
plausible mechanism for unsupervised learning, as discussed in
reference [17]. Conceptually, STDP is often interpreted as a form
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Fig. 1. Visualization of rate coding on the MNIST input image pixels and
our network architecture. In the processing layer, a single excitatory neuron
performs lateral inhibition over the other excitatory neurons, preventing them
from firing due to the WTA feedback mechanism. The labels 7/ and E represent
input and excitatory neuron vertices, respectively. The variable K corresponds
to the number of input pixels, whereas N shows the number of neurons in the
processing layer.

of Hebbian learning, which posits that synapses are strengthened
when neurons fire together.

In STDP, the precise timing of pre-synaptic and post-synaptic
neuron spikes within a narrow time window plays a critical
role in determining the direction of synaptic changes. When
a pre-synaptic neuron spike precedes a post-synaptic neuron
spike within this window, it leads to a phenomenon known as
long-term potentiation (LTP), which strengthens the synaptic
connection. Conversely, if the order is reversed, with the post-
synaptic neuron spike preceding the pre-synaptic one, it results
in long-term depression (LTD), which weakens the synaptic
connection.

In experimental settings, researchers often repeatedly evoke
pairs of pre-synaptic and post-synaptic spikes with a fixed time
interval, denoted as At. These pairs of spikes are typically
repeated at alow frequency, and the resulting changes in synaptic
response size are measured. By conducting this experiment for
various values of At, the timing-dependence of plasticity is
mapped, creating what is referred to as an STDP curve. This
curve is a valuable tool for predicting the plasticity outcomes
when At varies, such as in response to arbitrary sequences of
pre-synaptic and post-synaptic neuron spikes under less con-
trolled conditions [18].

The visual representation of neurons and synapses undergoing
different weight update scenarios in the context of STDP is
depicted in Fig. 2. Let’s consider two specific cases. Case 1:
In this scenario, the input from pre-synaptic neuron 1 triggers
the post-synaptic neuron to generate output spikes. This causal
relationship increases the synapse’s strength that connects the
pre and post-synaptic neurons. Case 2: In contrast, pre-synaptic
neuron 2 does not contribute to the output generation, and its
spike arrives later than the output of the post-synaptic neuron.
As a result, the strength of the synapse connecting pre-synaptic
neuron 2 and the post-synaptic neuron is decreased.

The mathematical expression for the weight changes in these
scenarios is provided by (1). This equation quantifies how the
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Fig.2. Example neuron and synapse scheme with pre and post-synaptic neuron
spike cases for the learning curves of STDP.

synaptic weights are updated based on the timing and causal
relationship between pre-synaptic and post-synaptic spikes, re-
flecting the principles of STDP.

At/Torif AL >0
it At <0

Apot€7
Adepe+At/Tdep

AW = { (1)

The weight modulation in (1) expresses the principles of the
asymmetric learning rule with two regions: LTP for weight incre-
ment and LTD for weight reduction. AW represents the amount
of change in synaptic strength. In order to realize this functional-
ity in a circuit, a trace-based method can be implemented [19].
The exponential curve on the LTP region corresponds to the
post-synaptic neuron spike-trace, whereas the LTD region curve
represents the pre-synaptic neuron spike-trace. These traces
capture the spiking activity of the pre-synaptic and post-synaptic
neurons. The two variables A+ and A4, denote the maximum
increment and decrement of synaptic strength on the STDP
curve, respectively. The direction of AW depends on the sign
value of At as determined by the arrival order of pre and post-
synaptic neuron spikes corresponding to At = t,,,5¢ — tpre. Due
to the resource constraints on the superconductor hardware, we
employed quantized STDP update levels on AW and synaptic
weights that are discussed in the following section.

III. PROPOSED SFQ-BASED ONLINE TRAINING

This section introduces essential superconductor-based mech-
anisms for the implementation of SNNs. Firstly, we present
an STDP engine that effectively enforces the asymmetric rate
STDP learning rule, underlining the motivation for synaptic
implementations with a degree of biological plausibility [17].
Our design employs a modified NDRO circuit to monitor pre-
and post-synaptic neuron spikes precisely. Furthermore, our
framework seamlessly integrates dynamic threshold behavior
within LIF neurons, achieved through self-inhibition based on
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Fig.3. Cell view of the quantized STDP design following the scheme given in
Fig. 2. Trace-based spiking activity of pre and post-synaptic neurons is recorded
in each leaky NDRO.

reset

neuron output spikes [20]. Lastly, we propose a novel imple-
mentation of feedback interactions between neurons, facilitat-
ing our framework’s realization of WTA characteristics. These
combined mechanisms advance the field of SNNs and provide
valuable tools for neuromorphic computing applications.

A. SFQ-Based STDP Engine

The proposed design of the STDP mechanism is tailored to
perform both increment and decrement functions, thereby ad-
justing a finite state machine associated with the synapse struc-
ture. To enable STDP using superconductor-based components,
we discretized the learning curve. This design, featuring a 1-bit
resolution, incorporates two splitters (SPLs) with a fanout of
3, in addition to two leaky Non-Destructive Readout (LNDRO)
circuits. The SPLs play a crucial role in internally increasing
the fanout of inputs derived from pre- and post-synaptic neuron
spikes, which are then assigned to the LNDRO pins. Further-
more, the STDP engine includes two output pins, labeled as
increment and decrement, as illustrated in Fig. 3.

To generate a decrement output spike, one must establish the
spike-trace relationship between pre- and post-synaptic neurons.
In this operation, incorporating Splitters (SPLs) and a single
LNDRO cell proves sufficient to generate decrement behavior
with a 1-bit resolution. A similar setup can be set up to produce
spikes on the increment output pin for generating an incre-
ment behavior. If a higher bit resolution is desired, the overall
design necessitates the incorporation of SPLs with increased
fanout, additional LNDROs with varying decay rates, and the
inclusion of two merger components for LNDRO outputs. The
introduction of leaky behavior in the standard NDRO cell is
achieved by inserting a resistor into the SFQ storage loop, as
illustrated in Fig. 4(a). In this design, an NDRO with multi-flux
storing characteristics is suitable to create the synapse behavior
since the amount of stored flux corresponds to the state of a
synapse [21]. For such module, it is feasible to incorporate a
parallel implementation of multi-flux NDROs for scaling up the
structure, implementing the functionality of an up-down counter.
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(d) LNDRO JoSIM result. Since a spike on reset arrives prior to a spike
on set to re-initiate the current for decay, the Reser waveform is omitted for
simplicity. In this simulation, the decay rate 7 for the spike-trace of LTP
is set to /225 ps, whereas the inter-delay of spikes on clock is 10 ps. The
current decay is observed on the inserted resistor R/ (0.26 €2). In the quantized
STDP model (the red line in part c), an output spike is generated only when
the arrival of a spike from the clock aligns within a dedicated time window.

Fig.4. LNDRO functional verification and its representation for the quantized
STDP on the learning curve.

In this approach, creating an output pin for each NDRO enables
delivering multiple pulses concurrently to a neuron in order to
meet the time window of a neuron’s decay rate for the activation.

The LNDRO is simulated using JoSIM, and the waveforms
are given in Fig. 4(d). When a spike arrives at the input in, the
spike is split for the reset and set pins. To recreate the correct
spike-trace functionality, the spike from reset initially erases
the current in the leaky storing loop (JJ2-L2-R1-L3-L5-JJ4).
By applying the spike arriving late due to the Delay cell, the
spike-trace is updated, and the current gradually decays with a
constant time of 7 due to the inserted resistor. Concurrently, the
state of the LNDRO can be read by a spike from the clock pin.
Due to the quantization of the STDP curve shown in Fig. 4(c),
a spike on out can only be observed until a quantization point,
set as 25 ps in the simulation.
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Fig. 5. LIF neuron with dynamic threshold using self-inhibition. The mem-

brane state of a superconductor LIF neuron corresponds to the amount of current
stored in its leaky loop. The neuron resting state is the baseline condition where
no spike is received or generated.

B. LIF Superconductor Neurons With Dynamic Threshold

The threshold value of a neuron determines the firing rate
and shapes the computational behavior of a neural network.
In this context, relying on a neuron with a fixed threshold can
impose challenges in neural processing, such as high sensitivity
to input fluctuations and excessive spike firing, resulting in
high dynamic power consumption. The adaptability of a neuron
with a dynamic threshold contributes to the network stability
and contextual responsiveness [22]. For instance, the digits in
the MNIST handwritten dataset may share the same pixels. In
this case, the multiple neurons in the output layer may have
high-valued synaptic weights on these pixels and generate an
output spike due to the neurons having the same threshold for
the classification, hindering the overall performance. Hence,
the implementation of an adaptive threshold behavior becomes
indispensable to address this issue effectively. Adjusting the
threshold of a superconductor-based neuron is typically achieved
by dynamically changing the bias current and critical current of
the JJs. Such modifications introduce additional hardware design
complexity. Therefore, we utilize the generated output spike as
a feedback input, creating self-inhibition behavior as shown in
Fig. 5.

The membrane state of a neuron plays a pivotal role in
determining whether an output spike is generated at a specific
moment in time. When the membrane state surpasses a certain
threshold, a single spike is triggered at the neuron’s output.
The resting state of a neuron corresponds to its default state,
characterized by the absence of spike activity. Within a neural
network, certain neurons may exhibit a high firing rate, exerting
a disproportionate influence on decision-making and potentially
disrupting the network’s balance. Consequently, there is a need
for methods to mitigate such behavior and maintain network
equilibrium.

The proposed self-inhibition technique serves as a mechanism
for temporarily preventing a neuron from firing multiple spikes
in quick succession. It achieves this by reducing the membrane
state below the resting state, as illustrated in Fig. 5. In the context
of superconductor circuits, the membrane state corresponds to
the amplitude of stored current, and the threshold is determined
by the amount of current required to trigger the decision-making
Josephson junction (JJ). By employing the self-inhibition mech-
anism, a neuron can momentarily dip below its resting state, thus
demanding more input current to reach the threshold level. An
example design utilizing a-Soma [23] is depicted in Fig. 6(a).
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(b) Simulation with digital self-inhibition. The self-inhibition spikes are
marked with a circle. In the case of no self-inhibition, a spike with a square
mark would also be expected.

Fig. 6. Design of LIF neuron with self-inhibition and JoSIM results for a-
Soma. All parameter values of the cells are kept the same, and the self-inhibition
is prevented by disconnecting the node between the input of a-cell and output
of SPL.

A fundamental component influencing the computation and
decision-making in neural networks is the soma circuit. The
soma generates an output pulse upon reaching action poten-
tial [24]. This behavior corresponds to a comparator circuit, the
primary activation function for the behavior of a LIF neuron.
Moreover, the self-inhibitory effect on the circuit is accom-
plished through the introduction of an a-cell, which performs bi-
directional pulse propagation on the same datapath. In addition
to the given design with electrical connections, a similar effect
can be achieved for neurons receiving inputs from inductances
with mutual couplings [25] by directing the neuron’s output
spike back into the same neuron’s input through an inductance
with negative coupling. This generates a current in the opposite
direction, counteracting the threshold mechanism.

The simplified test case utilizes a soma circuit that acts as
an asynchronous threshold gate with a threshold of two spikes
within /50 ps i.e., an output spike is generated whenever two
input spikes arrive within the designated time frame. Within this
configuration employing a-Soma, the output spike is provided
to the following SPL cell. One of the SPL outputs is connected
to the input of a-cell, enabling the spike to propagate back
into the soma cell. This operation negatively impacts the loop
current due to the opposite direction of the spike. The example
demonstration of digital inhibition with a-Soma preventing the
generation of continuous output spikes is shown in Fig. 6.

C. WTA Mechanism With Superconductor Devices

One of the fundamental computational models in spiking neu-
ral networks is a winner-take-all (WTA) principle, establishing
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Fig. 7. 'WTA mechanism and JoSIM results for soma circuits.

a form of competition for activation among the neurons within
the same layer [16]. The neuron with a higher activation affects
the activity of interconnected neurons by inhibition. As a result,
the winner neuron becomes the sole source of output spikes. This
selective mechanism enables noise filtering and input focus on
the critical data.

We present a way that enables interaction among the excita-
tory neurons to prevent each other from firing, fundamentally
implementing the WTA principle. The firing information is
obtained from an inductance at the output Lload, next to the
JJ, that determines the threshold operation. Note that the choice
of inductance for coupling can be placed between the threshold
junction JJ/somal and the ground node; however, this option
requires a balance adjustment between the decay rate of the
input side and lateral inhibition since such inductance is a part
of the leaky storage loop of the soma circuit [23].

The interaction among neurons is established by inductive
coupling K between an output inductance (Lload) and induc-
tance in a feedback loop (Rwtal-Lwtal-Lwta2-Rwta2) shown
in Fig. 7(a). The feedback loop consists of Lwta inductances
for each neuron and resistors (Rwta) on each end. Therefore,
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any activation on a threshold junction will result in a change
of current within this loop. Due to the coupling, the current
on the feedback loop will affect the other neurons via coupled
inductances. Each input spike creates a current determined by
a resistor within the leaky storage loop of superconductor LIF
neurons. Unlike this input, the inhibition current from a neuron
to other neurons mainly depends on the value of the coupling
K. Therefore, high inductive coupling results in a higher lateral
suppression by a neuron. The JoSIM results of the proposed
method with an example of soma circuits are shown in Fig. 7.

In our testbench, two soma circuits are designed to have a
threshold of 2 spikes and ~ 50 ps decay time. Initially, these
circuits receive spikes with 75 ps time difference. Due to the
current decay within the spike-storing loop on the input side of
the soma, no output is generated. Next, two spikes with a short
time interval are applied to the soma circuits. The first soma
receives its inputs before the inputs of the second soma. As a
result, the first soma fires earlier than the second one. The late-
firing soma is expected to generate an output when no interaction
exists among the somas. However, if the WTA mechanism is
employed, the first soma inhibits the second soma. Note that
there will be no lateral inhibition if the spike frames between
the soma circuits do not overlap.

IV. RESULTS

In our work, we utilized the BindsNET framework for high-
level network modeling. We primarily focused on the intrinsic
network properties and performance. We targeted the digits O
and 1 of the MNIST dataset to evaluate the on-chip training
network. The MNIST images are separated into two groups:
the training set and the testing set. In our implementation, the
image count was 633 for the training and 105 for the testing
images of 0 s and 1 s, corresponding to 5% of the overall digit
images of 0 s and 1 s within the dataset. Images were randomly
selected, and each image was down-scaled from 28 by 28 pixels
to 14 by 14 pixels. The training epoch count was assigned as
1, and each image was shown for 100 ps to the network during
both the training and inference phases. For the inference phase,
the network preserves the most up-to-date weight values while
introducing the network to randomly selected test images that
have not been shown before.

The neuron resting state was 0, and their neuron threshold
was set to eight spikes. While threshold decay to the resting
state was active, the dynamic threshold increment from the post-
synaptic neuron spike was set to 32 inhibitory spikes. In our
network structure, this value prevented the firing neurons from
entering burst mode and gave other neurons a chance to fire. The
membrane decay time of neurons was set to 25 ps.

For the synaptic characteristics, the increment and decrement
in weight adjustments from the STDP mechanism were assigned
as two spikes and one spike, respectively. Therefore, the spike
generation on the increment side of the proposed STDP engine
required a modification to have twice as much impact as the
decrement side. For the spike activity of pre- and post-synaptic
neurons, we assigned 10 ps to the spike-trace decay rate 7, keep-
ing it within a reasonable time frame. Two network architectures
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were considered, including architectures with 4 and 9 excitatory
neurons with a weight resolution of 4 bits, corresponding to 16
different synaptic stages.

To eliminate the need for additional peripheral circuitry, a
separate bias line can be implemented in the quantized STDP
engine. While the network training involves applying this ded-
icated bias of the engine, the absence of bias during inference
phase prevents the generation of both increment and decrement
pulses for the synapse adjustment, establishing the distinction
between the training and inference stages. Consequently, the
synapse values, with multi-flux storing characteristics in the
NDROs [21], can be maintained by triggering arbitrary pulses
only from the input images. This approach not only saves static
power during the inference phase but also ensures uniformity in
component usage throughout the entire computational process
within the architecture given in Fig. 1.

Unlike the conventional implementations, we did not use
any weight normalization technique in the on-chip training
setting. Accessing all weights to perform such an operation is
not hardware-friendly, even though weight normalization gives
all neurons a chance to fire and offers a better weight conver-
gence. The dynamic threshold adaptation with decaying fashion
temporarily compensates for the weight normalization. Some
neurons can rapidly go into a burst mode without this feature and
become dominant. However, when the decay time is relatively
short compared to the duration of multiple input images, the
neuron tends to forget the learned pattern, leading to an increase
in the majority of its weights. On the other hand, we kept a weight
clipping operation to limit the weight between 0 and 1 (scaled
from the range of 0-15). Implementing Multi-flux NDROs in
parallel, with a critical margin of +£10% as reported in [21],
enables to achieve the desired weight range. With consistent
and reliable fabrication across the chip for MJJs, it is possible to
achieve a resolution higher than the currently employed value.

The total resource count of the circuit is determined for the
downscaled images. Although the size of the input and dataset af-
fects accuracy, the fundamental design approach of the hardware
in the neural network implementation remains the same. When
considering the entire MNIST dataset, accommodating the com-
plete set requires adjustment in the hardware resource, impacting
the number of neurons while the overall network model remains
consistent for capturing additional digits. Each PTL is counted
to establish the connections from input to synapse, from synapse
to soma, and from the SPL tree of soma (LIF neuron) back to
the STDP engine. Each neuron requires synaptic connections es-
tablished by Multi-fluxon NDROs and the corresponding STDP
engine. The overall resources required per neuron would approx-
imately be 468 PTL Drivers and Receivers, 312 JTLs, 624 SPLs
with a fanout of 2, 121 SPLs with a fanout of 3, 312 NDROs,
and 624 Multi-flux NDROs. Consequently, it corresponds to
23.4 k JJs per neuron for the network computation, including
the peripherals and interconnects.

In the case of training first architecture (4 excitatory neurons),
we acquired an accuracy of 90.32% for training and 81.9% for
testing. During the convergence, we observed that the neurons
representing digit 1 still have traces of digit O and vice versa
due to the bit resolution and no weight normalization. We also
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Fig. 9. Network training result using nine excitatory neurons.

observed cases where some neurons go into a burst mode due
to the random weight initialization. Therefore, a mechanism to
thoroughly address this issue in lower-bit resolutions must be
investigated. The 2D weight values are illustrated in Fig. 8 for
each neuron of the considered architecture. The displayed weight
values, arranged from left to right, represent snapshots taken at
every one-third interval of the training process, spanning from
iteration 0 to 633.

The training settings are kept the same for the second net-
work architecture (with nine neurons) to observe the impact
of neuron count on the performance. The results showed an
accuracy of 96.77% for training and 97.1% for testing, indicating
a performance improvement over the case with four neurons.
Therefore, increasing the number of neurons in the network
positively influences the overall accuracy with a trade-off of
hardware resources, supporting the motivation for large-scale
implementations. The 2D weight values of this architecture
during the training are illustrated in Fig. 9

V. CONCLUSION

This paper explored the capabilities of an on-chip training
mechanism on superconductor spiking neural networks. We
designed a leaky NDRO circuit and simulated its behavior with
JoSIM. The leaky NDROs record spike traces to achieve a
quantized STDP mechanism. Furthermore, we demonstrate a
self-inhibition method for superconductor-based structures to
establish the dynamic threshold behavior in LIF neurons. We
also implement a superconductor winner-take-all mechanism to
support the correct network behavior. The on-chip training capa-
bilities are shown with a computational BindsNET framework,
and we achieved ~97% accuracy with 9 neurons for the classi-
fication of digits 0 and 1. These findings collectively highlight
the promise of on-chip training in superconductor-based spiking
neural networks.
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