
Scalable Superconducor Ising Machine for

Combinatorial Optimization Problems

Beyza Zeynep Ucpinar, Sasan Razmkhah, Mehdi Kamal, Massoud Pedram

Ming Hsieh Department of Electrical and Computer Engineering,

University of Southern California, USA

ucpinar@usc.edu, razmkhah@usc.edu, mehdi.kamal@usc.edu, pedram@usc.edu

Abstract—Complex combinatorial optimization problems serve
as the foundation for various real-world applications. The time re-
quired to identify the optimal solutions to these problems escalates
dramatically as the problem grows. Nevertheless, transforming
these problems into another NP-complete problem, like the Ising
model with a representation as a physical phenomenon, can be
efficiently approximated. In this work, we use a system of bistable
Josephson parametric oscillators (JPO) as artificial spins to realize
the Ising model on a superconductor fabric. By integrating these
JPOs based on the Lechner, Zoller, and Hauke (LHZ) architecture,
we design a superconductor-based scalable Ising machine (IM).
We develop a framework to automatically create the IM circuit
and tune its parameters. The circuit functionality is assessed by
simulating an IM designed for solving four-, six-, and ten-node
unweighted Max-Cut problems.

Index Terms—Ising Machine, Josephson Parametric Oscillator,
LHZ Architecture

I. INTRODUCTION

The surge in computing complexity, propelled by escalating

demands for computational capability across various domains

such as artificial intelligence (AI) [1], circuit routing [2], and

combinatorial optimization problems [3], necessitates the ex-

ploration of novel hardware paradigms. As CMOS technology

approaches its physical limitations in size and interconnection,

transcending Moore’s Law [4] becomes imperative to tackle

these intricate challenges within compressed time frames. Em-

bracing innovative hardware technologies and architectures is

paramount to meet the burgeoning computational requirements.

Many of the challenges above fall within the NP-complete

(Non-deterministic Polynomial complete) problem class [5],

for which solutions cannot be found in polynomial time [6].

Consequently, as the size of these problems increases, computa-

tional energy demands escalate significantly, often necessitating

recourse to resource-intensive solutions, heuristics [7], or ap-

proximation techniques [8]. Nonetheless, it’s worth noting that

many NP-complete problems can be polynomial-time reduced

to one another. Thus, if a physical system can be modeled

as an NP-complete problem, leveraging reductions from other

problems to that model and solving the resultant physical

system can lead to feasible solutions [9].

In the Ising physical system, also known as the glass-

spin model, the arrangement of electron spins in the material

lattice determines the magnetic properties of the matter. In

this system, by increasing the temperature, the kinetic energy
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of the electrons increases, and their spin oscillates freely. As

the temperature decreases, the kinetic energy of the electrons

becomes small compared to their interaction with the lattice and

other electrons. Like any other physical system, this system of

interacting spins tends to find the minimum energy level known

as the ground state to settle in [10].

Each physical system can be described with the sum of its

kinetic and potential energy, known as a Hamiltonian equation.

The ground state of a system is the solution to the Hamiltonian

equation. Similarly, the minimum energy of the interacting

spins in a lattice gives us the solution for the Ising model,

enabling us to find solutions to NP-complete problems by map-

ping them to this system. A system of interacting oscillators that

the Ising model can describe to solve its Hamiltonian equation

is called an Ising machine. The IMs can solve Quadratic Binary

Optimization Problems (QUBO) efficiently [9]. Hence, we can

solve other NP-complete problems using the IMs by mapping

them to the QUBO.

Many efforts have been made to implement an IM with

different technologies to solve NP problems. CMOS-based

implementations have register-based or SRAM-based structures

to simulate or use LC oscillators to emulate the spin [11],

[12]. While CMOS systems have high integration density, these

technologies have energy efficiency and speed concerns. Due to

the existence of efficient Optical Parametric Oscillators (OPO)

structures, optical systems are also used for designing IMs [13],

[14]. While they are fast and relatively power efficient, making

photons interact with each other is challenging, resulting in a

bulky system that requires long fibers for implementation.

Superconductor-based IM implementations have advantages

in low power consumption, speed, and on-chip integration

[15], [16]. Quantum annealers, such as D-Wave Two Quantum

(DW2Q) from D-Wave company, use superconducting qubits

for operation [17]. However, the system operates at mK tem-

peratures that require expensive and bulky cryocoolers, and

the architecture used in D-wave systems is Chimera that the

input problems should be reformulated based on the possible

interactions in this architecture to be mapped on it [18],

[19]. Breaking down an NP-complete problem to the Chimera

architecture is a problem that does not scale linearly, causing

issues in terms of scalability and increasing the chip size [20].

To address the issues of scalability and mapping QUBO

problem on quantum annealers, Lechner, Hauke, and Zoller

came up with a new architecture for IMs [21]. This architecture,
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known as LHZ, maps the interactions of an all-to-all connected

system to the local interactions of the node of a tiled system.

The tile (plaquette) is the unit cell of the hardware, consisting

of four nodes that are interacting with each other under a

constraint known as a penalty term. Each tile interacts with its

neighbors, achieving long-range interactions between nodes.

In our previous work [22], we designed the unit cell of an

LHZ architecture using a total of six Josephson Parametric

Oscillators (JPO), four of them logical and two ancillary

representing the four-spin interaction pattern needed in the LHZ

architecture. While the number of spins in this network is

higher than in conventional IMs, the fixed structure of tiles and

limited connections between neighbors make this architecture

scalable, allowing us to implement more complex IMs. The

advantages of this structure over quantum annealers are its

scalability and ability to work at 4.2 K, which is achievable

by a much smaller two-stage cryocooler [23].

This paper will present a scalable superconductor Ising Ma-

chine design based on JPOs and demonstrate its ability to solve

four-, six-, and ten-node Max-Cut problems. We will show

the output states of the problem based on circuit simulations

performed using a SPICE-based simulator, JoSIM. Also, to

implement the circuit for a higher number of nodes, we develop

a design framework for generating a JPO-based LHZ IM netlist.

Our automated tool creates the netlist suitable for the Nb

process MIT LL SFQ5ee [24], performs multiple noisy circuit

simulations, calculates the state probabilities, and compares the

results by golden results. Based on these explanations, the key

contributions of this paper are;

• Designing a superconductor-based scalable Ising Machine

solver based on the LHZ architecture,

• Demonstrating the efficiency of proposed IM to solve 4,

6, and 10 nodes Max-Cut problems,

• Introducing a Python-based framework that provides an

automized system for creating LHZ-based superconductor

IM implementations.

II. METHODOLOGY

A. Ising Architecture

An IM is a specialized annealer machine that solves com-

binatorial optimization problems based on the Ising model. In

an IM, spins interact with each other and can be either up

(1) or down (-1). The minimum energy needed by the system

will be achieved under the optimal solution of the problem.

The Hamiltonian equation, which gives the system’s energy, is

described by Eq.1.

H = −
∑

i,j

J ′
ijσiσj −

∑

i

hiσi, (1)

where hi represents the local field acting on spin i, σi denotes

the orientation of spin i, and Jij signifies the interaction

strength between spins i and j.

The annealing process in the IMs is performed in various

ways. Physical annealing involves the slow cooling down of

the system, which decreases the kinetic energy of the electrons

to the point that the spins are not freely oscillating and settle

in a state. This translates to gradient descent in the possible

state space to the ground state, as shown in Fig. 1. Simulated

annealing mimics this behavior by combining a greedy search

method with random steps (noise) to avoid local minimus. In

quantum annealers, the system is put in the ground state of an

initial easy problem and then, by adiabatic annealing, moves to

the hard problem’s ground state [10].

Fig. 1. The annealing process of a system is demonstrated here. As we move
through the possible states toward the ground state, the stochastic steps (noise
in this case) will help to avoid local minimum answers.

B. LHZ Architecture

As stated, scalability is the fundamental challenge of the

IM implementations. LHZ addresses this issue by enabling

all-to-all connectivity. To accommodate all interaction matrix

elements, the system size in LHZ architecture is enlarged

from N logical spins to K = N(N − 1)/2 physical spins.

However, the upper limit of the scalability of the circuit depends

on the decay and decoherence times of the JPO. The decay

happens when the state of the JPO switches back to zero, and

decoherence results in a loss of coupling effect resulting in

error.

In the LHZ architecture, each interaction between two logical

spins is represented by a physical spin. Its local field demon-

strates the interaction between two corresponding logical spins.

Thanks to this structure, all-to-all interactions are converted to

the local fields. Additionally, LHZ mapping has an additional

constraint parameter C, also known as a penalty term. The

Hamiltonian of the LHZ is given in Eq.2.

.HLHZ =

K∑

i=1

Jiσ̃i +

K−N+1∑

i=1

Ci (2)

where σ̃ is the physical spin, J is the local field which is

generated based on J ′ in Eq.(1), and C is the constraint.

The number of constraints is K −N , and they are defined to

guarantee that the ’1’ spins in each of the four neighbor physical

spins are always even. These constraints must be satisfied to

ensure that the LHZ structure correctly models the all-to-all

interactions of the IM. The penalty term is defined based on

the hardware structure.

In Fig. 2, the 4-node graph of the Max-Cut problem and its

corresponding LHZ architecture is demonstrated. Each weight

value of the Max-Cut graph is (wij and is mapped to the

local field of the nodes in the LHZ (Jij . The J1 and J2
nodes in the LHZ are constant spins. P nodes represent the
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Fig. 2. Converting a 4-node all-to-all connected Max-Cut problem to the LHZ
architecture. Here, the weight of the edges in Max-Cut is mapped to the local
field values of the LHZ architecture. Jij demonstrates an individual JPO, while
P1, P2, and P3 are penalty terms, representing 2 JPOs with double strength.
W12 is mapped to J12, W13 is mapped to J13, and so on. J1 and J2 are the
constant values determining the first spin value.

interaction between four neighbors implementing the constraint

C as penalty terms.

C. Max-Cut Problem

We choose Max-Cut, a well-known NP-complete problem,

to demonstrate the proposed IM structure. The Max-Cut can

be mapped to the Ising Model. The definition of the Max-Cut

involves partitioning the vertices of a given graph into two

disjoint sets such that the number of edges between the two

sets, ”cut,” is maximized. In a given graph G = (V,E) where

V is vertices and E is the set of edges, the problem searches

to find a partition of the vertex set V into two subsets A and B
such that the number of edges with the endpoint in A and the

other end in B is maximized. We should convert the original

problem into an Ising model representation to map the Max-

Cut. Every problem has its Hamiltonian equation, which gives

the energy equation of the problem. The Hamiltonian of the

Max-Cut is defined by Eq.3.

H = −
∑

i<j
1≤i,j≤n

wij(1− σiσj) (3)

where σi and σj are related to the node i and j in the original

graph of the Max-Cut problem, and wij is the weight between

these two nodes. In this equation, if the nodes i and j are in the

different (identical) sets, the σiσj is -1 (+1). Note that in the

case of the Max-Cut problem, the local field of the Hamiltonian

is zero (h = 0).

III. IM CIRCUIT IMPLEMENTATION

The fundamental hardware unit of the IM design is a

parametric oscillator. In superconductors, the electrical current

flows as quasi-bosons known as Cooper pairs. The paired

electrons, like bosons, share a wave function and act coherently

while interacting based on the underlying electric charge [25].

This characteristic is suitable for creating a parametric oscillator

similar to optical parametric oscillators (OPO) that can interact

with each other and make the fundamental unit of IMs. The

core element of superconductor circuits is Josephson Junctions

(JJ). JJ has a nonlinear sinusoidal current phase relationship.

This relationship results in a nonlinear inductance in JJ related

to the current applied to it.

Putting two JJs in a superconductor loop causes quantum

interference between them, forming a device known as SQUID

(Superconductor Quantum Interference Device). The induc-

tance value of a SQUID is correlated with the flux applied to

its loop. Therefore, SQUID can be an adjustable inductance for

the Josephson parametric oscillator, JPO, design. The magnetic

field can manipulate the inductance value, affecting the para-

metric oscillator’s resonance frequency modulation. The JPO

design proposed in [22] is used in this paper as a fundamental

element of the circuit. This JPO has two stable points at 0

and π phases. The oscillation frequency of the designed JPO

is 7.5 GHz, and the pump is 15 GHz.

A. Tile Structure

In [22], a unit cell called tile, in addition to the JPO

design, has been introduced. The proposed unit cell is a perfect

candidate for LHZ-compatible superconductor tile design. It

consists of JPOs and a coupler circuit. The diagram of the

unit cell is represented in Fig. 3. The tile Hamiltonian can be

described as E =
∑4

i=1
JbSi−Ja(Sa1+Sa2+Ccnst)

∏4

i=1
Si.

The ancillary interaction Ja = 2×Jb ensures the even number

of ’1’s in the tile.

Fig. 3. Block diagram of a single tile and schematic of a JPO cell designed
in [22]. The tile has four main JPOs, two ancillary JPOs, and an offset value.
The JPO consists of a SQUID loop connected to a resonator pumped by an
external source.

Tile has six physical JPOs: four logical and two ancillary

JPOs. The utilization of JPOs is to represent the spin inter-

actions. Also, the physical coupling strength exhibited by the

ancillary JPOs is two times that of the logical JPOs. Ancillary

JPOs help the tile meet the LHZ criteria by ensuring it always

has its ground energy at an even number of positive and

negative spins. Additionally, the JPO has an offset value, which

provides the penalty term, C, to be always negative. Adjusting

the coupling strength, offset values, phase differences, and

pump current, which is the input of the JPO, allows for a change

in the ground state of the IM, which is crucial to mapping

different problems to the system.

B. Hardware Tiling

The LHZ network consists of several interconnected tiles.

As previously mentioned, the tile count is calculated like K =
(N − 1)(N − 2)/2. Therefore, for a 4-node Max-Cut problem

mapping, we need to have three tiles in the LHZ network, which

is given in Fig. 4.

In Fig. 4, The LHZ structure is like a pyramid, and each tile

has a diamond shape. At first, three tiles should meet the LHZ
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Fig. 4. A 4-node LHZ network is demonstrated. Here, the logical JPOs are
shown in blue and interact with couplers in black. The red JPOs are ancillary.
The SFQ converter reads the JPO output state on the last layer.

criteria individually for the solution to be valid. Each tile should

have even numbers of up spins. Some tiles have common JPOs

in their structure. One JPO can be a member of up to four tiles.

Therefore, the JPO coupling parameters should be optimized

based on the number of coupled tiles. This will ensure all-to-

all interaction and maintain a similar strength for all JPOs. Each

JPO in a tile needs a local field that should be applied to them

to map the problems. All the JPOs should also be annealed to

settle in the correct state. A JPO can be connected to one to

four couplers. The apex JPO has only one connection, while

edge JPOs have two, and so forth. JPO structures are identical,

except for the coupler connections that change due to JPO’s

place in the architecture.

a) Applying local fields: For the problem mapping, the

local field is an essential part. As mentioned before, the input

pump current is a critical source in changing the ground state

of IM. By changing the phase values and the amplitude of each

JPO’s pump, we can change the interaction of that JPO with its

tile. However, the phase values of ancillas should always start

from π/2 to make the ancillas initially unstable. The weights

are mapped on the phases of the JPO pump currents. Therefore,

the logical JPOs’ initial phase values vary depending on the

problem definition.

b) Annealing: Changing the temperature can be used to

anneal the system. However, the superconductor properties are

highly dependent on temperature and can cause unforeseen

problems. Therefore, we use the DC source applied to the

JPO as an annealing vehicle. If the DC amount is large

enough, a magnetic flux will be put in the circuit, resulting

in the JPO oscillating between its two stable points. Then, by

decreasing this current for all JPOs simultaneously, we can

perform annealing. For the best outcome, the DC signal for

all the JPOs is the same, and it is raised so that the circuit is

at oscillation. From that point, the exponential descent of the

DC to the stable point will result in the JPOs settling in the

system’s ground state.

c) Peripheral circuitry: Control and readout circuits are

necessary for scaling to solve large problems and reading the

outputs. The control circuit generates the pump signals of each

JPO in different phases based on the problem definition. The

control circuits of JPOs are designed to implement the problem

on the network. Weight values are mapped to phases of the

pump signal. For unweighted problems, all pump signals are

identical. A control circuit with 3-bit accuracy can generate

eight different weight values, determining the accuracy of our

approximation. Reading N−1 JPO is sufficient for the readout

circuit to obtain the output states. For example, in the given 4-

node network, we read J12, J23, J34 and then convert to states.

For the hardware implementation of the readout circuit, we need

to detect the π phase difference at the resonance frequency. The

readout is done by a threshold detector known as quasi-one

junction SQUID (QOS) that generates pulses at either 0 or π
states, depending on the signal.

C. PyIsing: LHZ IM Framework

Fig. 5. PyIsing framework for automatic netlist generation for LHZ IMs. The
code gets the problem characteristics and generates an IM netlist suitable for
solving it.

In the LHZ structure, every interaction of the problem is

mapped via an individual node. Therefore, the node count

increases quadratically with the problem size, and to ac-

commodate all interactions in the N-sized problem, we need

K = N(N − 1)/2 spins. An increase in spin size makes

it harder to create the circuit’s netlist manually. For the 4-

node, 6-node, and 10-node problems, we need six, fifteen,

and forty-five nodes in LHZ, respectively. Therefore, a toolset
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for generating the circuits, mapping, and annealing signals for

complex problems is inevitable.

Hence, we developed a Python-based framework for JPO-

based IM implementation called PyIsing. We define the sub-

cells, including JPOs, fixed point signals, different coupler

structures, ancillary pairs, and offset, in the hardware as

PyIsing’s input and use them to generate the full netlist.

The tool takes the subcells, problem node count, annealing

function, and weights as input and creates the suitable netlist,

which is simulatable by JoSIM. The framework implements the

circuit configurations depending on the problem (weight values,

annealing characteristics, etc.) and runs the circuit simulation

several times due to the stochastic characteristics of IM. The

output states are calculated, and the values are saved depending

on the results.

The code includes a verification method to verify the netlist

with the defined annealing. It calculates the expected output

states of an easy problem (unweighted) and generates the

golden results for that problem based on the available solutions.

An example is an unweighted Max-Cut, which shows that the

solution states include the same number of ones and zeros.

Then, the program simulates this easy problem with the input

annealing function. The code can also sweep the annealing and

measurement window to determine the best solutions. The high

probability states from netlist simulation and the golden results

of the easy problem are compared and give us the probability

of correctness. The block diagram of the PyIsing is given in

Fig. 5. Here, the simulation will iterate until the error value

(σe) or the time-out condition is met.

IV. SIMULATION RESULTS

After mapping the 4-node Max-Cut problem to IM, we sim-

ulate the circuit by using JoSIM and measure the interactions

from the first row of the IM. We decided on the output states

depending on the interaction values obtained from the first

row. In this scenario, we are solving an unweighted Max-Cut

problem. Therefore, the local fields of all JPOs should be equal.

However, the phase of the ancilla will still be π/2 to create

instability in the initial state.

Fig. 6 shows the measured interactions from the first row

and obtained output states depending on the interaction values

of the unweighted Max-Cut problem. Table I demonstrates the

relation between measured interactions and output states.

TABLE I
THE MEASURED STATES AND WHAT STATE THEY REPRESENT IN THE

PROBLEM.

Measured Output Measured Output

|000〉 |0101〉, |1010〉 |100〉 |0010〉, |1101〉
|001〉 |0100〉, |1011〉 |101〉 |0011〉, |1100〉
|010〉 |0110〉, |1001〉 |110〉 |0001〉, |1110〉
|011〉 |0111〉, |1000〉 |111〉 |0000〉, |1111〉

The measured states from the first row represent the interac-

tions of J12, J23, and J34. The constant SFQ pulses are given

using constant JPOs, which can be counted as spin-up. The

interaction will be spin-up if two spins are up or down. The

interaction will be spin-down if one spin is up and the other

spin is down. Therefore, as an example, for the measured state

Fig. 6. Four nodes Unweighted Max Cut Results. The first graph shows the
interactions of the J12, J23, and J34. By using these interactions, the output
states are obtained. |0011〉, |0101〉, |0110〉, |1001〉, |1010〉, and |1100〉 are
the expected values of the problem. However, |0000〉 and |1111〉 are incorrect
due to decaying the states before readout.

”101”, we can say J12 = 1, up; J23 = 0, down; J34 = 1, up.

Since the constant value S1 = 1, S2 should also be 1. Since

J23 is 0 and S2 is 1, spin up, S3 should be 0, down. J34 = 1,

and S3 is down, which means S4 should also be down. Hence,

for the measured state ”101”, the output state will be |1100〉,
which is one of the correct results.

The 4-node unweighted Max-Cut problem has six possible

results, which are mentioned in Fig. 6. As we can see in this

simulation results, we have the correct results with a high

percentage. However, the unwanted state |0000〉 and its mirror

state are incorrect artifacts of state decay before readout [26].

Using PyIsing, a 6-node unweighted Max-Cut problem’s

netlist was created. The highest probability occurs in the states

with three ones and three zeros for this problem. The simulation

output of the 6-node problem is demonstrated in Fig. 7.

Fig. 7. Six node unweighted Max-Cut Results. It has possible results, which
have three ones and zeros. The dominant state with the highest probability is
|010101〉. The other state that we see here is the local minima near the ground
state.

The dominant state, |010101〉, matches one of the possible

golden results. We also tested the 10-node unweighted Max-Cut
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problem by using PtIsing. The most reoccurring state has five

ones and five zeros for the unweighted problem. The simulation

output of the 10-node problem is given in Fig. 8.

Fig. 8. Ten nodes Unweighted Max Cut Results. The obtained state
|0001011011〉 has five ones and five zeros.

The state with the highest probability, |0001011011〉,
matches one of the possible golden results and is the ground

state. Here, we still see some states that appear near all zero

states. This is also due to the decay of the JPOs back to zero

state before we can read them. This issue should be addressed

by optimizing the annealing time and selecting the readout

widow before the JPOs decay back to zero.

V. CONCLUSION

This work introduces a superconductor-based IM structure to

solve complex combinatorial optimization NP-complete prob-

lems. Our proposed architecture uses the Ising model and

Hamiltonian mapping, employing the JPO as a fundamental

element, like spin. To ensure scalability and achieve global

interactions by using local interactions, we used the LHZ

architecture. To show the functionality of the hardware, we

mapped four node unweighted Max-Cut problem. To implement

scalability quickly, we designed a Python-based framework

to generate the netlist automatically and compare the circuit

simulation with the golden states of the circuit. As an outcome

of the framework, we generated a 6-node and a 10-node netlist

and have the simulation results successfully.
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