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Abstract—Complex combinatorial optimization problems serve
as the foundation for various real-world applications. The time re-
quired to identify the optimal solutions to these problems escalates
dramatically as the problem grows. Nevertheless, transforming
these problems into another NP-complete problem, like the Ising
model with a representation as a physical phenomenon, can be
efficiently approximated. In this work, we use a system of bistable
Josephson parametric oscillators (JPO) as artificial spins to realize
the Ising model on a superconductor fabric. By integrating these
JPOs based on the Lechner, Zoller, and Hauke (LHZ) architecture,
we design a superconductor-based scalable Ising machine (IM).
We develop a framework to automatically create the IM circuit
and tune its parameters. The circuit functionality is assessed by
simulating an IM designed for solving four-, six-, and ten-node
unweighted Max-Cut problems.

Index Terms—Ising Machine, Josephson Parametric Oscillator,
LHZ Architecture

1. INTRODUCTION

The surge in computing complexity, propelled by escalating
demands for computational capability across various domains
such as artificial intelligence (AI) [1], circuit routing [2], and
combinatorial optimization problems [3], necessitates the ex-
ploration of novel hardware paradigms. As CMOS technology
approaches its physical limitations in size and interconnection,
transcending Moore’s Law [4] becomes imperative to tackle
these intricate challenges within compressed time frames. Em-
bracing innovative hardware technologies and architectures is
paramount to meet the burgeoning computational requirements.
Many of the challenges above fall within the NP-complete
(Non-deterministic Polynomial complete) problem class [5],
for which solutions cannot be found in polynomial time [6].
Consequently, as the size of these problems increases, computa-
tional energy demands escalate significantly, often necessitating
recourse to resource-intensive solutions, heuristics [7], or ap-
proximation techniques [8]. Nonetheless, it’s worth noting that
many NP-complete problems can be polynomial-time reduced
to one another. Thus, if a physical system can be modeled
as an NP-complete problem, leveraging reductions from other
problems to that model and solving the resultant physical
system can lead to feasible solutions [9].

In the Ising physical system, also known as the glass-
spin model, the arrangement of electron spins in the material
lattice determines the magnetic properties of the matter. In
this system, by increasing the temperature, the Kinetic energy
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of the electrons increases, and their spin oscillates freely. As
the temperature decreases, the kinetic energy of the electrons
becomes small compared to their interaction with the lattice and
other electrons. Like any other physical system, this system of
interacting spins tends to find the minimum energy level known
as the ground state to settle in [10].

Each physical system can be described with the sum of its
kinetic and potential energy, known as a Hamiltonian equation.
The ground state of a system is the solution to the Hamiltonian
equation. Similarly, the minimum energy of the interacting
spins in a lattice gives us the solution for the Ising model,
enabling us to find solutions to NP-complete problems by map-
ping them to this system. A system of interacting oscillators that
the Ising model can describe to solve its Hamiltonian equation
is called an Ising machine. The IMs can solve Quadratic Binary
Optimization Problems (QUBO) efficiently [9]. Hence, we can
solve other NP-complete problems using the IMs by mapping
them to the QUBO.

Many efforts have been made to implement an IM with
different technologies to solve NP problems. CMOS-based
implementations have register-based or SRAM-based structures
to simulate or use LC oscillators to emulate the spin [11],
[12]. While CMOS systems have high integration density, these
technologies have energy efficiency and speed concerns. Due to
the existence of efficient Optical Parametric Oscillators (OPO)
structures, optical systems are also used for designing IMs [13],
[14]. While they are fast and relatively power efficient, making
photons interact with each other is challenging, resulting in a
bulky system that requires long fibers for implementation.

Superconductor-based IM implementations have advantages
in low power consumption, speed, and on-chip integration
[15], [16]. Quantum annealers, such as D-Wave Two Quantum
(DW2Q) from D-Wave company, use superconducting qubits
for operation [17]. However, the system operates at mK tem-
peratures that require expensive and bulky cryocoolers, and
the architecture used in D-wave systems is Chimera that the
input problems should be reformulated based on the possible
interactions in this architecture to be mapped on it [18],
[19]. Breaking down an NP-complete problem to the Chimera
architecture is a problem that does not scale linearly, causing
issues in terms of scalability and increasing the chip size [20].

To address the issues of scalability and mapping QUBO
problem on quantum annealers, Lechner, Hauke, and Zoller
came up with a new architecture for IMs [21]. This architecture,
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known as LHZ, maps the interactions of an all-to-all connected
system to the local interactions of the node of a tiled system.
The tile (plaquette) is the unit cell of the hardware, consisting
of four nodes that are interacting with each other under a
constraint known as a penalty term. Each tile interacts with its
neighbors, achieving long-range interactions between nodes.

In our previous work [22], we designed the unit cell of an
LHZ architecture using a total of six Josephson Parametric
Oscillators (JPO), four of them logical and two ancillary
representing the four-spin interaction pattern needed in the LHZ
architecture. While the number of spins in this network is
higher than in conventional IMs, the fixed structure of tiles and
limited connections between neighbors make this architecture
scalable, allowing us to implement more complex IMs. The
advantages of this structure over quantum annealers are its
scalability and ability to work at 4.2 K, which is achievable
by a much smaller two-stage cryocooler [23].

This paper will present a scalable superconductor Ising Ma-
chine design based on JPOs and demonstrate its ability to solve
four-, six-, and ten-node Max-Cut problems. We will show
the output states of the problem based on circuit simulations
performed using a SPICE-based simulator, JoSIM. Also, to
implement the circuit for a higher number of nodes, we develop
a design framework for generating a JPO-based LHZ IM netlist.
Our automated tool creates the netlist suitable for the Nb
process MIT LL SFQ5ee [24], performs multiple noisy circuit
simulations, calculates the state probabilities, and compares the
results by golden results. Based on these explanations, the key
contributions of this paper are;

« Designing a superconductor-based scalable Ising Machine
solver based on the LHZ architecture,

« Demonstrating the efficiency of proposed IM to solve 4,
6, and 10 nodes Max-Cut problems,

o Introducing a Python-based framework that provides an
automized system for creating LHZ-based superconductor
IM implementations.

II. METHODOLOGY
A. Ising Architecture

An IM is a specialized annealer machine that solves com-
binatorial optimization problems based on the Ising model. In
an IM, spins interact with each other and can be either up
(1) or down (-1). The minimum energy needed by the system
will be achieved under the optimal solution of the problem.
The Hamiltonian equation, which gives the system’s energy, is
described by Eq.1.

2 : ! § :
H=- qujo—iaj - hiO'i7
i, i

where h; represents the local field acting on spin 4, o; denotes
the orientation of spin 4, and .J;; signifies the interaction
strength between spins ¢ and j.

The annealing process in the IMs is performed in various
ways. Physical annealing involves the slow cooling down of
the system, which decreases the kinetic energy of the electrons
to the point that the spins are not freely oscillating and settle
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in a state. This translates to gradient descent in the possible
state space to the ground state, as shown in Fig. 1. Simulated
annealing mimics this behavior by combining a greedy search
method with random steps (noise) to avoid local minimus. In
quantum annealers, the system is put in the ground state of an
initial easy problem and then, by adiabatic annealing, moves to
the hard problem’s ground state [10].
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Possible states

Fig. 1. The annealing process of a system is demonstrated here. As we move
through the possible states toward the ground state, the stochastic steps (noise
in this case) will help to avoid local minimum answers.

B. LHZ Architecture

As stated, scalability is the fundamental challenge of the
IM implementations. LHZ addresses this issue by enabling
all-to-all connectivity. To accommodate all interaction matrix
elements, the system size in LHZ architecture is enlarged
from N logical spins to K = N(N — 1)/2 physical spins.
However, the upper limit of the scalability of the circuit depends
on the decay and decoherence times of the JPO. The decay
happens when the state of the JPO switches back to zero, and
decoherence results in a loss of coupling effect resulting in
error.

In the LHZ architecture, each interaction between two logical
spins is represented by a physical spin. Its local field demon-
strates the interaction between two corresponding logical spins.
Thanks to this structure, all-to-all interactions are converted to
the local fields. Additionally, LHZ mapping has an additional
constraint parameter C, also known as a penalty term. The
Hamiltonian of the LHZ is given in Eq.2.

K—-N+1

> e
i=1

where & is the physical spin, J is the local field which is
generated based on J’' in Eq.(1), and C is the constraint.
The number of constraints is /' — /N, and they are defined to
guarantee that the *1” spins in each of the four neighbor physical
spins are always even. These constraints must be satisfied to
ensure that the LHZ structure correctly models the all-to-all
interactions of the IM. The penalty term is defined based on
the hardware structure.

In Fig. 2, the 4-node graph of the Max-Cut problem and its
corresponding LHZ architecture is demonstrated. Each weight
value of the Max-Cut graph is (w;; and is mapped to the
local field of the nodes in the LHZ (J;;. The J; and Jp
nodes in the LHZ are constant spins. P nodes represent the

K
-HLHZ:ZJi(fi+ 2)
i=1
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Fig. 2. Converting a 4-node all-to-all connected Max-Cut problem to the LHZ
architecture. Here, the weight of the edges in Max-Cut is mapped to the local
field values of the LHZ architecture. J;; demonstrates an individual JPO, while
P1, P2, and P3 are penalty terms, representing 2 JPOs with double strength.
W12 is mapped to Ji2, Wi3 is mapped to Ji3, and so on. J; and Ja are the
constant values determining the first spin value.

interaction between four neighbors implementing the constraint
C as penalty terms.

C. Max-Cut Problem

We choose Max-Cut, a well-known NP-complete problem,
to demonstrate the proposed IM structure. The Max-Cut can
be mapped to the Ising Model. The definition of the Max-Cut
involves partitioning the vertices of a given graph into two
disjoint sets such that the number of edges between the two
sets, “cut,” is maximized. In a given graph G = (V| F) where
V' is vertices and E is the set of edges, the problem searches
to find a partition of the vertex set V' into two subsets A and B
such that the number of edges with the endpoint in A and the
other end in B is maximized. We should convert the original
problem into an Ising model representation to map the Max-
Cut. Every problem has its Hamiltonian equation, which gives
the energy equation of the problem. The Hamiltonian of the
Max-Cut is defined by Eq.3.

H=— E wij(l—aiaj)
i<j
1<ij<n

3)

where o; and o are related to the node i and j in the original
graph of the Max-Cut problem, and w;; is the weight between
these two nodes. In this equation, if the nodes i and j are in the
different (identical) sets, the o;0; is -1 (+1). Note that in the
case of the Max-Cut problem, the local field of the Hamiltonian
is zero (h = 0).

III. IM CIRCUIT IMPLEMENTATION

The fundamental hardware unit of the IM design is a
parametric oscillator. In superconductors, the electrical current
flows as quasi-bosons known as Cooper pairs. The paired
electrons, like bosons, share a wave function and act coherently
while interacting based on the underlying electric charge [25].
This characteristic is suitable for creating a parametric oscillator
similar to optical parametric oscillators (OPO) that can interact
with each other and make the fundamental unit of IMs. The
core element of superconductor circuits is Josephson Junctions
(JJ). JJ has a nonlinear sinusoidal current phase relationship.
This relationship results in a nonlinear inductance in JJ related
to the current applied to it.
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Putting two JJs in a superconductor loop causes quantum
interference between them, forming a device known as SQUID
(Superconductor Quantum Interference Device). The induc-
tance value of a SQUID is correlated with the flux applied to
its loop. Therefore, SQUID can be an adjustable inductance for
the Josephson parametric oscillator, JPO, design. The magnetic
field can manipulate the inductance value, affecting the para-
metric oscillator’s resonance frequency modulation. The JPO
design proposed in [22] is used in this paper as a fundamental
element of the circuit. This JPO has two stable points at 0
and 7 phases. The oscillation frequency of the designed JPO
is 7.5 GHz, and the pump is 15 GHz.

A. Tile Structure

In [22], a unit cell called tile, in addition to the JPO
design, has been introduced. The proposed unit cell is a perfect
candidate for LHZ-compatible superconductor tile design. It
consists of JPOs and a coupler circuit. The diagram of the
unit cell is represented in Fig. 3. The tile Hamiltonian can be
described as £ = Z;l:1 JpS; _JIL(S(LI +Sa2 +C(1nst) H?zl S;.
The ancillary interaction J, = 2 x .J, ensures the even number
of ’1’s in the tile.

Lout

Fig. 3. Block diagram of a single tile and schematic of a JPO cell designed
in [22]. The tile has four main JPOs, two ancillary JPOs, and an offset value.
The JPO consists of a SQUID loop connected to a resonator pumped by an
external source.

Tile has six physical JPOs: four logical and two ancillary
JPOs. The utilization of JPOs is to represent the spin inter-
actions. Also, the physical coupling strength exhibited by the
ancillary JPOs is two times that of the logical JPOs. Ancillary
JPOs help the tile meet the LHZ criteria by ensuring it always
has its ground energy at an even number of positive and
negative spins. Additionally, the JPO has an offset value, which
provides the penalty term, C, to be always negative. Adjusting
the coupling strength, offset values, phase differences, and
pump current, which is the input of the JPO, allows for a change
in the ground state of the IM, which is crucial to mapping
different problems to the system.

B. Hardware Tiling

The LHZ network consists of several interconnected tiles.
As previously mentioned, the tile count is calculated like K =
(N —1)(N — 2)/2. Therefore, for a 4-node Max-Cut problem
mapping, we need to have three tiles in the LHZ network, which
is given in Fig. 4.

In Fig. 4, The LHZ structure is like a pyramid, and each tile
has a diamond shape. At first, three tiles should meet the LHZ
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Fig. 4. A 4-node LHZ network is demonstrated. Here, the logical JPOs are
shown in blue and interact with couplers in black. The red JPOs are ancillary.
The SFQ converter reads the JPO output state on the last layer.

criteria individually for the solution to be valid. Each tile should
have even numbers of up spins. Some tiles have common JPOs
in their structure. One JPO can be a member of up to four tiles.
Therefore, the JPO coupling parameters should be optimized
based on the number of coupled tiles. This will ensure all-to-
all interaction and maintain a similar strength for all JPOs. Each
JPO in a tile needs a local field that should be applied to them
to map the problems. All the JPOs should also be annealed to
settle in the correct state. A JPO can be connected to one to
four couplers. The apex JPO has only one connection, while
edge JPOs have two, and so forth. JPO structures are identical,
except for the coupler connections that change due to JPO’s
place in the architecture.

a) Applying local fields: For the problem mapping, the
local field is an essential part. As mentioned before, the input
pump current is a critical source in changing the ground state
of IM. By changing the phase values and the amplitude of each
JPO’s pump, we can change the interaction of that JPO with its
tile. However, the phase values of ancillas should always start
from 7/2 to make the ancillas initially unstable. The weights
are mapped on the phases of the JPO pump currents. Therefore,
the logical JPOs’ initial phase values vary depending on the
problem definition.

b) Annealing: Changing the temperature can be used to
anneal the system. However, the superconductor properties are
highly dependent on temperature and can cause unforeseen
problems. Therefore, we use the DC source applied to the
JPO as an annealing vehicle. If the DC amount is large
enough, a magnetic flux will be put in the circuit, resulting
in the JPO oscillating between its two stable points. Then, by
decreasing this current for all JPOs simultaneously, we can
perform annealing. For the best outcome, the DC signal for
all the JPOs is the same, and it is raised so that the circuit is
at oscillation. From that point, the exponential descent of the
DC to the stable point will result in the JPOs settling in the
system’s ground state.
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c) Peripheral circuitry: Control and readout circuits are
necessary for scaling to solve large problems and reading the
outputs. The control circuit generates the pump signals of each
JPO in different phases based on the problem definition. The
control circuits of JPOs are designed to implement the problem
on the network. Weight values are mapped to phases of the
pump signal. For unweighted problems, all pump signals are
identical. A control circuit with 3-bit accuracy can generate
eight different weight values, determining the accuracy of our
approximation. Reading N — 1 JPO is sufficient for the readout
circuit to obtain the output states. For example, in the given 4-
node network, we read .J12, Jog, J34 and then convert to states.
For the hardware implementation of the readout circuit, we need
to detect the 7 phase difference at the resonance frequency. The
readout is done by a threshold detector known as quasi-one
junction SQUID (QOS) that generates pulses at either 0 or 7
states, depending on the signal.

C. Pylsing: LHZ IM Framework

Problem Sibeells l netlistGen
nodeCount

weights

A
o .
WELE . netlist
Transformer ’

hardware weight

parameters [
setWeights |

annealingChar

runSimulation I

genExpectedStates |

weightedNetlist

expected|
States

outStates

calcCorrectProb |

errVal < o,

plotStates

Fig. 5. Pylsing framework for automatic netlist generation for LHZ IMs. The
code gets the problem characteristics and generates an IM netlist suitable for
solving it.

In the LHZ structure, every interaction of the problem is
mapped via an individual node. Therefore, the node count
increases quadratically with the problem size, and to ac-
commodate all interactions in the N-sized problem, we need
K = N(N — 1)/2 spins. An increase in spin size makes
it harder to create the circuit’s netlist manually. For the 4-
node, 6-node, and 10-node problems, we need six, fifteen,
and forty-five nodes in LHZ, respectively. Therefore, a toolset
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for generating the circuits, mapping, and annealing signals for
complex problems is inevitable.

Hence, we developed a Python-based framework for JPO-
based IM implementation called Pylsing. We define the sub-
cells, including JPOs, fixed point signals, different coupler
structures, ancillary pairs, and offset, in the hardware as
Pylsing’s input and use them to generate the full netlist.
The tool takes the subcells, problem node count, annealing
function, and weights as input and creates the suitable netlist,
which is simulatable by JoSIM. The framework implements the
circuit configurations depending on the problem (weight values,
annealing characteristics, etc.) and runs the circuit simulation
several times due to the stochastic characteristics of IM. The
output states are calculated, and the values are saved depending
on the results.

The code includes a verification method to verify the netlist
with the defined annealing. It calculates the expected output
states of an easy problem (unweighted) and generates the
golden results for that problem based on the available solutions.
An example is an unweighted Max-Cut, which shows that the
solution states include the same number of ones and zeros.
Then, the program simulates this easy problem with the input
annealing function. The code can also sweep the annealing and
measurement window to determine the best solutions. The high
probability states from netlist simulation and the golden results
of the easy problem are compared and give us the probability
of correctness. The block diagram of the Pylsing is given in
Fig. 5. Here, the simulation will iterate until the error value
(0e) or the time-out condition is met.

IV. SIMULATION RESULTS

After mapping the 4-node Max-Cut problem to IM, we sim-
ulate the circuit by using JoSIM and measure the interactions
from the first row of the IM. We decided on the output states
depending on the interaction values obtained from the first
row. In this scenario, we are solving an unweighted Max-Cut
problem. Therefore, the local fields of all JPOs should be equal.
However, the phase of the ancilla will still be 7/2 to create
instability in the initial state.

Fig. 6 shows the measured interactions from the first row
and obtained output states depending on the interaction values
of the unweighted Max-Cut problem. Table I demonstrates the
relation between measured interactions and output states.

TABLE 1
THE MEASURED STATES AND WHAT STATE THEY REPRESENT IN THE
PROBLEM.
Measured Output Measured Output
000) [0101),1010) 100) [0010), |1101)
001) |0100), |1011) 101) |0011),]1100)
010) |0110),|1001) 110) |0001),|1110)
011) [0111),]1000) 111) |0000), |1111)

The measured states from the first row represent the interac-
tions of Jia, Jos, and J34. The constant SFQ pulses are given
using constant JPOs, which can be counted as spin-up. The
interaction will be spin-up if two spins are up or down. The
interaction will be spin-down if one spin is up and the other
spin is down. Therefore, as an example, for the measured state
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Fig. 6. Four nodes Unweighted Max Cut Results. The first graph shows the
interactions of the Jy2, J23, and J34. By using these interactions, the output
states are obtained. |[0011), [0101), [0110), |1001), |1010), and |1100) are
the expected values of the problem. However, |[0000) and [1111) are incorrect
due to decaying the states before readout.

71017, we can say Jio = 1, up; Jog = 0, down; J3q4 = 1, up.
Since the constant value S1 = 1, S2 should also be 1. Since
Jos is 0 and S2 is 1, spin up, S3 should be 0, down. Js4 =1,
and S3 is down, which means S4 should also be down. Hence,
for the measured state 1017, the output state will be |1100),
which is one of the correct results.

The 4-node unweighted Max-Cut problem has six possible
results, which are mentioned in Fig. 6. As we can see in this
simulation results, we have the correct results with a high
percentage. However, the unwanted state [0000) and its mirror
state are incorrect artifacts of state decay before readout [26].

Using Pylsing, a 6-node unweighted Max-Cut problem’s
netlist was created. The highest probability occurs in the states
with three ones and three zeros for this problem. The simulation
output of the 6-node problem is demonstrated in Fig. 7.

%4 010101
> 0.3
o
B 02
K]
o
| .
0 0.1
0 QQN\,QN

Fig. 7. Six node unweighted Max-Cut Results. It has possible results, which
have three ones and zeros. The dominant state with the highest probability is
[010101). The other state that we see here is the local minima near the ground
state.

The dominant state, [010101), matches one of the possible
golden results. We also tested the 10-node unweighted Max-Cut
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problem by using Ptlsing. The most reoccurring state has five
ones and five zeros for the unweighted problem. The simulation
output of the 10-node problem is given in Fig. 8.
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Fig. 8. Ten nodes Unweighted Max Cut Results. The obtained state

[0001011011) has five ones and five zeros.

The state with the highest probability, [0001011011),
matches one of the possible golden results and is the ground
state. Here, we still see some states that appear near all zero
states. This is also due to the decay of the JPOs back to zero
state before we can read them. This issue should be addressed
by optimizing the annealing time and selecting the readout
widow before the JPOs decay back to zero.

V. CONCLUSION

This work introduces a superconductor-based IM structure to
solve complex combinatorial optimization NP-complete prob-
lems. Our proposed architecture uses the Ising model and
Hamiltonian mapping, employing the JPO as a fundamental
element, like spin. To ensure scalability and achieve global
interactions by using local interactions, we used the LHZ
architecture. To show the functionality of the hardware, we
mapped four node unweighted Max-Cut problem. To implement
scalability quickly, we designed a Python-based framework
to generate the netlist automatically and compare the circuit
simulation with the golden states of the circuit. As an outcome
of the framework, we generated a 6-node and a 10-node netlist
and have the simulation results successfully.
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