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ARTICLE INFO ABSTRACT

Keywords: As Artificial Intelligence (AI) making advancements in medical decision-making, there is a growing need to

Appropriate reliance ensure doctors develop appropriate reliance on Al to avoid adverse outcomes. However, existing methods in

Art}ﬁc_lal mtélhgence enabling appropriate Al reliance might encounter challenges while being applied in the medical domain. With

Il;/[?}?rl‘ty voting this regard, this work employs and provides the validation of an alternative approach — majority voting — to
athology

facilitate appropriate reliance on Al in medical decision-making. This is achieved by a multi-institutional user
study involving 32 medical professionals with various backgrounds, focusing on the pathology task of visually
detecting a pattern, mitoses, in tumor images. Here, the majority voting process was conducted by synthesizing
decisions under Al assistance from a group of pathology doctors (pathologists). Two metrics were used to
evaluate the appropriateness of Al reliance: Relative AI Reliance (RAIR) and Relative Self-Reliance (RSR).
Results showed that even with groups of three pathologists, majority-voted decisions significantly increased
both RAIR and RSR - by approximately 9% and 31%, respectively — compared to decisions made by one
pathologist collaborating with Al This increased appropriateness resulted in better precision and recall in the
detection of mitoses. While our study is centered on pathology, we believe these insights can be extended to
general high-stakes decision-making processes involving similar visual tasks.

1. Introduction et al., 2023), and confidence (Gu et al.,, 2023b). However, because
pathology AI was often trained from a limited dataset its performance
Although J.C.R. Licklider introduced the concept of ‘man-computer varied while being applied to data from new patients and hospi-
symbiosis’ in 1960 (Licklider, 1960), it was not until the last decade tals (Stacke et al.,, 2020; Aubreville et al.,, 2021; Gu et al., 2021).
that this vision became a more promising reality (Jordan and Mitchell, As such, it is critical for pathologists to develop appropriate reliance
2015). By 2023, Artificial Intelligence (AI) has been increasingly dis- while collaborating with Al i.e., to appropriately accept correct Al
cussed to augment humans in critical tasks (Bi et al., 2019; Surden, recommendations and reject the wrong ones.
2019; Grigorescu et al., 2020). Especially in the medical domain of Although there is a lack of data in pathology, research in the
pathology, Al has been showcased to increase doctors’ accuracy and general domain has explored methodologies to develop appropriate
speed (Litjens et al., 2016; Lindvall et al., 2021; Van der Laak et al., reliance, focusing on reducing humans’ over-reliance on Al (i.e., en-
2021; Ba et al., 2022), consistency (Balkenhol et al., 2019; Van Bergeijk hancing humans’ ability to reject wrong Al recommendations). Strate-
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gies, including the cognitive forcing function (Bugcinca et al., 2021) and
altering the interaction speed (Park et al., 2019; Rastogi et al., 2022;
Lebedeva et al., 2023), have shown promising results. Additionally,
effective onboarding (Passi and Vorvoreanu, 2022) and improving Al
literacy (Long and Magerko, 2020) were recommended and can be
achieved by informing users of Al details (Cai et al., 2019b; Jacobs
et al., 2021a,b). However, incorporating these methods into routine
medical practice presents challenges: Cognitive forcing functions could
drive medical practitioners to develop algorithm aversion (Efendi¢
et al., 2020; Fogliato et al., 2022), which may cause them to dismiss
Al recommendations even when they were correct. Moreover, previous
studies have reported that the improvements in task accuracy with
enhanced Al literacy were marginal (Lai et al., 2020; Leichtmann et al.,
2023).

Another popular approach aims to employ explainable AI (XAI)
to reduce over-reliance (Bussone et al., 2015; Lai et al., 2020; Zhang
et al.,, 2020; Bansal et al.,, 2021). However, the efficacy of XAI is
countered in part by the cognitive effort for understanding these expla-
nations (Vasconcelos et al., 2023). Adding XAl-related content might
increase doctors’ cognitive burden, possibly causing them to overlook
XAI Therefore, there remains a pressing need for alternative strategies
to foster appropriate Al reliance in medical applications.

By reviewing pathologists’ decision-making workflows, we found
that the critical decisions were usually determined through a combined
judgment among multiple doctors (Black et al., 1999). The underlying
intuition was that a group of pathologists might produce safer and
more rational judgments while working together (Black et al., 1999).
In the context of Al, recent studies have employed majority voting
among pathologists’ Al-assisted decisions to collect annotations for
datasets (Bertram et al., 2019; Aubreville et al., 2020). However, there
is a lack of empirical evidence supporting that such a majority voting
approach would enable appropriate reliance.

This research aims to provide the validation of the majority voting
on enabling the appropriate Al reliance in pathology decision-making,
with a focus on a visual search task of detecting “mitosis”, a criti-
cal histology pattern for tumor grading (Collan et al., 1996; Meyer
et al.,, 2005). 32 medical professionals in pathology from ten insti-
tutions participated in a multi-stage user study, where they detected
mitoses manually, first, and with Al assistance after a wash-out period.
Here, the majority voting decisions were synthesized according to
the Al-assisted decisions from an odd number of randomly-selected
pathologist participants. Two metrics were employed to measure the
appropriateness of Al reliance: “relative Al reliance” and “relative
self-reliance” (Schemmer et al., 2023). The result showed that the
majority voting decisions from as few as three pathologists showed
significantly higher relative Al reliance (~9% increase) and relative self-
reliance (~31% increase), compared to one pathologist collaborating
with Al respectively. The precision and recall of majority voting de-
cisions also increased: Those from three Al-assisted pathologists could
achieve a mean precision of 0.902 and a recall of 0.843. As a compari-
son, the mean precision and recall for one-pathologist-Al collaboration
were 0.824 and 0.817, respectively. Furthermore, the majority vot-
ing decisions could also have a higher chance of achieving super-Al
performance in the recall.

1.1. Contributions

This research showcases that majority voting can enable appropri-
ate Al reliance for pathology decision-making. Throughout a multi-
institutional study amongst 32 pathology professionals, this research
presents the effectiveness of majority voting in a high-stakes medical
task, which can ultimately benefit patient management. This signifies
a transformation from the traditional one-human-AI collaboration to
harnessing group decision-makings of Al-assisted medical professionals.
While our primary focus has been on pathology, we envision that
the insights of this study can have broader implications for leverag-
ing collective human-Al decision-making in other high-stakes visual
search tasks, such as detecting explosives from X-ray scans or disaster
assessment from satellite imagery for emergency response efforts.
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2. Related work
2.1. Enabling appropriate Al reliance

According to Passi and Vorvoreanu (2022), Vasconcelos et al.
(2023) and Schemmer et al. (2023), two goals should be achieved
to enable appropriate Al reliance: (1) mitigating over-reliance, where
humans can identify and reject AI's incorrect recommendations, and
(2) reducing under-reliance, where humans can overcome their aver-
sion of Al and accept its correct recommendations.

In the context of enabling appropriate Al reliance, this is a ten-
dency in research to study mechanisms and counter-measures for over-
reliance. For instance, the cognitive forcing function, which prompts
users to think analytically before decision-making, has shown promise
(Buginca et al., 2021). Similarly, altering the interaction speed, where
enlonging the Al response time, can instigate users’ reflective thinking.
Therefore, over-reliance incidents could be reduced (Park et al., 2019;
Rastogi et al., 2022; Lebedeva et al., 2023). Other approaches aim
to enhance users’ onboarding process, such as improving Al liter-
acy (Lai et al.,, 2020; Long and Magerko, 2020; Leichtmann et al.,
2023), where users are informed of Al details (Cai et al., 2019b; Jacobs
et al., 2021a,b). However, translating these approaches to the medical
domain may encounter two challenges. Firstly, introducing cognitive
forcing functions or altering interaction speed could develop ‘algorithm
aversion,” especially when medical tasks are time-sensitive (Efendic¢
et al., 2020; Fogliato et al., 2022). Secondly, the efficacy of enhancing
Al literacy also appeared marginal, possibly because of the difficul-
ties in educating users within a limited timeframe (Lai et al., 2020;
Leichtmann et al., 2023).

Besides these, another popular approach is XAl, aiming to reduce
over-reliance by enabling users to understand AI’s reasoning (Bussone
et al., 2015; Lai et al., 2020; Zhang et al., 2020; Bansal et al., 2021).
Nonetheless, numerous studies have failed to observe the anticipated
effectiveness of XAI (Schemmer et al., 2022): The potential benefits of
XAI may be offset by the cognitive efforts of interpreting them (Vas-
concelos et al., 2023). Given the already high cognitive demands of
medical professionals, this might result in XAI being less referred to,
countering its potential benefits. This issue of appropriateness usage
of XAI in medicine was raised by Holzinger et al. (2019). Further
research suggested causability, an ability of an explanation that can
enable casual understanding of medical experts, should also consid-
ered and measured to achieve better efficiency, effectiveness, and user
satisfaction (Holzinger et al., 2020; Plass et al., 2023).

Notably, most of the research mentioned above focuses on scenarios
where one human collaborates with Al. Different from these studies,
our approach learns from how critical pathology decisions are usually
made — through a group of pathologists (Black et al., 1999). Specif-
ically, we employ a majority voting approach to synthesize decisions
from multiple Al-assisted pathologists. Based on the results, the ma-
jority voting approach can effectively enable appropriate Al reliance,
which sheds light on the potential of involving multiple professionals
in critical decision-making.

2.2. Decision-making processes by multiple medical professionals

Different from one medical professional examining the specimens
(Pohn et al., 2019; Pena and Andrade-Filho, 2009), decision-making
processes by medical professionals require communication, discussion,
and result sharing (Murphy et al., 1998; Black et al., 1999). Nowa-
days, there are three primary approaches: (1) the Delphi method,
(2) the nominal group technique, and (3) the consensus development
conference. These methods have been historically utilized in medical
decision-making and guideline formulation (Murphy et al., 1998; Black
et al., 1999).

The Delphi method follows an iterative process: Each group member
makes a decision first anonymously. Next, their opinions are collected,
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summarized, and then sent back to all members. Upon reviewing this
summary, each member may choose to modify their opinions secretly.
This process may be iterated multiple times to resolve potential con-
flicts (Taze et al., 2022). The nominal group technique (Van de Ven and
Delbecq, 1972) also starts by collecting each member’s opinions. Then,
in a structured face-to-face meeting, these opinions are presented and
discussed. Next, each member ranks the presented opinions according
to their preferences. These rankings will be summed and posted for
further discussion (McMillan et al., 2016). The consensus development
conference (Ferguson, 1996) is more open in its structure. Group mem-
bers are presented with evidence by external experts during a series
of face-to-face meetings. Group members can then question the expert
presenters, and attempt to reach an agreement afterward.

Regarding employing multiple pathologists to make decisions with
Al assistance, recent research has implemented majority voting among
three doctors to label data for Al development (Bertram et al., 2019;
Aubreville et al., 2020). This process involves two pathologists inde-
pendently annotating data with Al assistance. If there were conflicts,
a third pathologist joined and annotated again to formulate major-
ity (Montezuma et al., 2023). However, these studies primarily focus
on data labeling for Al development, often featuring non-diverse par-
ticipant pools (typically three pathologists) with similar backgrounds.
Furthermore, they lack analyses of Al reliance metrics, which is critical
for assessing the method’s quality.

Our study aims to fill the gap by providing a comprehensive ex-
periment and evaluation of the majority voting on pathology decision-
making. To achieve this, we hosted a multi-stage, multi-institutional
user study involving 32 medical professionals in pathology with varied
experience levels. We examined the quality of these majority-voted,
Al-assisted decisions from two angles: reliance on Al and correct-
ness. Additionally, we evaluated the potential costs of employing this
method, providing empirical data for future research in HCI, cognitive
science, and medicine.

2.3. Human-AI collaboration in pathology

Al particularly deep learning, holds promise in performing a wide
variety of pathology tasks to assist medical professionals (Regitnig
et al., 2020), ranging from conducting high-level diagnoses (e.g.,
prostate cancer grading (Pantanowitz et al., 2020)), to detecting low-
level pathological patterns (e.g., cell detection (Amgad et al., 2022)).
Notably, recent studies have suggested that AI’s performance is on par
with human experts in specific pathology tasks (Hekler et al., 2019;
Zhang et al., 2019; Wang et al., 2023). Due to legislative and ethical
concerns, Al algorithms and software cannot replace pathologists’ ex-
aminations (Chauhan and Gullapalli, 2021; Veale and Zuiderveen Bor-
gesius, 2021). Instead, they are regarded as medical devices to assist
doctors,’ with one designed for prostate cancer pathology receiving the
first official approval in 2021.% By 2023, a plethora of human-AI col-
laborative tools have been introduced, demonstrating improvements in
speed and correctness in detecting pathological patterns (Litjens et al.,
2016; Lindvall et al., 2021; Van der Laak et al., 2021; Ba et al., 2022),
inter-observer consistencies (Balkenhol et al., 2019; Van Bergeijk et al.,
2023), mental workload and confidence (Gu et al., 2023b,c), compared
to pathologists examining manually.

Among these improvements, of particular interest is achieving com-
plementary team performance, where pathologist-Al collaboration
could outperform both the pathologist and AI (Bansal et al., 2021):
In 2016, Wang et al. reported that combining Al and pathologist’s
predictions could reduce error rates in breast cancer classification,
theoretically confirming the existence of such complementary team

1 https://www.fda.gov/media/145022/download.
2 https://www.fda.gov/news-events/press-announcements/fda-authorizes-
software-can-help-identify-prostate-cancer.
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performance (Wang et al., 2016). Despite this theoretical backing,
there is a lack of empirical evidence to support it for the pathology
domain. In the general domain, several studies have failed to observe
the task accuracy improvement in human-AI collaboration compared to
Al alone (Bansal et al., 2021; Lai and Tan, 2019; Jacobs et al., 2021b).
This issue may stem from users’ accepting incorrect Al recommenda-
tions, a factor that can significantly impact the outcome of human-Al
collaboration (Kaur et al., 2020; Cao and Huang, 2022; Vasconcelos
et al., 2023).

To date, research remains sparse on how pathologists would rely on
AL This work fills this gap and by recruiting pathology professionals
and studying their AI reliance, which can help future researchers
understand pathologists’ behavior, and develop potential solutions to
enable appropriate Al reliance.

3. Task design & medical background
3.1. Task selection & generalizability of the task

This work selects the task of mitosis (a type of histology pattern)
detection in brain tumors of meningiomas (Fig. 1(a)). The significance
of mitosis stems from its critical role in tumor assessment and patient
management for meningiomas (Cree et al., 2021; Louis et al., 2021;
Goldbrunner et al., 2021). Despite their importance, pathologists’ eval-
uation of mitoses often faces substantial difficulties. The intricacies
lie in mitotic figures’ small size, low prevalence, and heterogeneous
distribution (Aubreville et al., 2020; Bertram et al., 2020). These com-
plexities contribute to low reported sensitivities, consistencies among
pathologists, and examination efficiencies for mitosis evaluation (Col-
lan et al., 1996; Meyer et al., 2005; Veta et al., 2016; Gu et al., 2023c),
which could negatively impact medical outcomes.

According to the 2021 World Health Organization central nervous
system tumor classification guidelines, mitosis serves as a critical diag-
nostic criterion for grading numerous brain tumors, such as IDH-mutant
astrocytoma, oligodendroglioma, and ependymoma (Louis et al., 2021).
Going beyond mitoses, pathologists may also be required to detect
small-scale, sparsely distributed patterns in large scans, such as finding
small tumor deposits within lymph nodes in breast cancer or malignant
melanoma (Regitnig et al., 2020). In a more general context, similar
visual search tasks also exist in high-stakes domains where Al assistance
could be valuable. For instance, security personnel must swiftly identify
potential threats like explosives in X-ray scans (Wolfe et al., 2007), and
emergency responders rely on timely assessments of disaster impacts
from satellite imagery (Morrison et al., 2023).

3.2. Sample selection & mitosis ground truth acquisition

Meningioma specimens were collected from a local hospital after re-
ceiving ethics approval. These specimens were digitized into 19 digital
slides with an Aperio CS2 Scanner (Manufacture: Leica, Germany). A
specialist pathologist examined these slides and selected 51 regions of
interest (ROIs) based on predefined criteria. Each ROI has a dimension
of 1600 x 1600 pixels (400 x 400 pm), with one example shown in
Fig. 1(a). This image dimension matches the field-of-view under the
40x objective lens in light microscopy, which can reduce the mental
effort for pathologists to adapt to the digital interface.

As for collecting the mitosis ground truth, two residents indepen-
dently annotated all 51 images initially. Next, a third specialist pathol-
ogist reviewed these initial annotations and provided a final decision.
To ensure the accuracy of the ground truth, the three doctors referred
to the results of an additional antibody test (the Phosphohistone-H3
immunohistochemistry test, a mitosis indicator usually used in medical
research (Duregon et al., 2015; Fukushima et al., 2009), Fig. 1(b)) in
the ground truth annotation process.

Within the 51 selected ROI images, three were selected for the
tutorial, leaving the rest 48 for testing purposes. The 48 test images
have 88 mitoses in total. The count of mitoses per image varies between
zero and six, which can cover the majority of mitosis prevalence in a
single ROI in meningiomas.
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Fig. 1. (a) An example region-of-interest image used in the user study, with arrows pointing at the ground truth mitoses; (b) The anti-body test used by the three doctors to
annotate the ground truth mitoses. Mitoses were shown in brown (as pointed by the arrows) in the anti-body test.
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Fig. 2. Organization of the user study.

3.3. Experience level of pathologists

In the United States, pathology professionals can be classified into
four levels based on their training progress and experience (Genzen,
2013):

1. A medical student is currently receiving medical education.

2. A resident has earned their Medical Doctor or an equivalent
degree and is in post-graduate residency training.

3. A general pathologist has completed their residency training
and holds general board certification in pathology.

4. A specialist pathologist has received/ is undergoing further
training in a sub-specialty area (in this study, neuropathology)
after becoming certified as a general pathologist.

Regarding familiarity with the mitosis detection task, specialist
pathologists are expected to have the highest level because of their
sub-specialty training. General pathologists should have a moderate
familiarity, having acquired their general board certification. As for res-
idents and medical students, their familiarity depends on their exposure
during rotations and any subsequent training they have received. In
this study, 32 medical professionals from ten institutions participated,
covering all four aforementioned categories.

4. User study

An online user study was conducted under the Institutional Review
Board approval of the University of California, Los Angeles (IRB#21-
000139). The user study has two major stages (Fig. 2): (1) Stage 1
(February 2023-April 2023): participants performed the mitosis detec-

tion task in 48 test images manually; (2) Stage 2 (July 2023-August
2023): participants detected mitoses in the same 48 images with Al-
assistance. This sequential arrangement follows previous work (Schem-
mer et al.,, 2023), and was designed to investigate potential shifts in
pathologists’ decisions influenced by Al. The majority voting decisions
were synthesized offline after the stage 2 responses had been collected.
The main research questions are:

» RQ1: How did pathologists use Al and XAI while performing the
“mitosis detection” task?

» RQ2: How does the majority voting mechanism influence the
appropriateness of Al reliance compared to one pathologist col-
laborating with AI?

* RQ3: Is the majority voting mechanism more likely to achieve
complementary team performance compared to one pathologist
collaborating with AI?

4.1. Participants

Participants were recruited through sending emails to the mailing
list and snowball recruitment. As a result, 32 pathology professionals
from 10 medical centers in the United States took part in both study
stages, including 12 specialist pathologists, six general pathologists, ten
residents, and four medical students.® The demographic information of
participants is shown in the supplemental material.

3 The four medical student participants underwent a 45-minute training
session overseen by a specialist pathologist before participating, to ensure their
familiarity with the mitosis detection task.
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images, an evaluation page will inform the performance metrics to the participant.

4.2. Study procedure

Stages 1 and 2 of the user study were conducted in an unmoderated
manner. At each stage, each participant joined online with their com-
puters at the recommended display settings. The study of each stage
consisted of the following parts (Fig. 2):

1. Demographic information: Participants filled in a demographic
information questionnaire.

2. Tutorial: Participants saw a tutorial video describing how to
participate, followed by an interactive tutorial of three example
images. No Al details were revealed to participants.

3. Test: Participants examined the 48 images without (stage 1) or
with (stage 2) Al assistance. Their task was to detect and report
mitoses from these images with their threshold of daily practice.

Two methods were introduced to reduce the learning effect of
participants in the stage 2:

+ Random image transforms: Including random flipping (vertical
and/or horizontal) and random rotation (randomly chosen from
{0°, 90°, 180°, and 270°}). For instance, the image shown in
Fig. 3(b) was rotated 270° anti-clockwise from that in Fig. 3(a).
Wash-out period and ground truth blinding: After completing
stage 1, participants received personalized online report docu-
ments highlighting disagreements between their mitosis report-
ings and the ground truth. After two weeks, they were prevented
from accessing these online documents. Next, after a wash-out
period of three months, they were invited to participate in the
stage 2 study.

4.3. User interfaces & key features

For each stage, we deployed an interface online to enable partici-
pants to examine the images and report mitoses.

4.3.1. Stage 1: Manual mitosis detection

This interface only showed participants the images and logged their
interactions (Fig. 3(a)). If the user found a mitosis, they could left-click
on where it resided to leave a mark (Fig. 3(a)®-®). The user could
go to the next image after examining one. However, they could not
return to the previous image to ensure a precise measurement for time
consumption. After all images were examined, a status page (Fig. 3(d))
was displayed to inform the participant of the performance of their
mitosis detection.

4.3.2. Stage 2: Al-assisted mitosis detection

The AI model used in this stage was an EfficientNet-b3 Convo-
lutional Neural Network (CNN), trained from a meningioma mitosis
dataset (Tan and Le, 2019; Gu et al., 2023a). The website displayed
Al mitosis detections through recommendation boxes (Fig. 3(b)). Ad-
ditionally, following previous works, we included four components to
mitigate the negative influence of improper Al reliance:

» Warning messages: A “black-box” style* warning message was
presented in the tutorial video, suggesting that the users should

4 ... the highest safety-related warning assigned by the U.S. Food and Drug

Administration (Delong and Preuss, 2019).
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Step 2: Majority Voting

Mitoses agreed by more
than k/2 pathologists
remained as the majority
voting judgment.

Fig. 4. Steps for synthesizing the majority voting decisions from k Al-assisted pathologists: (a) random sampling: mitosis reportings from an odd number of k randomly-sampled,
Al-assisted pathologists were collected, (b) majority voting: mitoses candidates reported by > k/2 pathologists remained as the final decision.

always rely on their judgments. The message was also shown in
a highlighted box on the website (Fig. 3(b)®@).

XAI: Each Al recommendation was accompanied by an evidence
card which attempts to provide XAI assistance (Plass et al., 2023).
The user could right-click on the AI recommendation box to see
the XAI evidence card on-demand. Four popular XAI techniques
were included following previous work (Evans et al., 2022),
including:

Saliency map: Generated by GradCAM++ (Chattopadhay

et al., 2018).

- Confidence level: Including a probability score and a trust
score (Zhang et al., 2020). The trust score was the geometric
mean of noise (Ayhan and Berens, 2018) and random Al
variances (Gal and Ghahramani, 2016) of the AI prediction.

— Subclass: A bar plot showcasing potential subclasses of the
mitosis (i.e., pro-phase, meta-phase, ana/telo-phase, atypi-
cal, and not mitosis) in this Al recommendation.

— Similar examples: A set of ten similar instances was re-

trieved from an annotated dataset that includes paired

Hematoxylin and Eosin — immunohistochemistry staining

(Cai et al., 2019a).

Counterfactual explanations were not used because of the low
quality of the retrieval results achieved by the our AI model.
Personalized AI adjustments: The user could toggle on/off
Al recommendations by interacting with the “Show AI” switch
(Fig. 3(b)@) (i.e., Al on-request, suggested by Gaube et al.
(2021)) and adjust the AI sensitivity (Fig. 3(b)®) according to
their preferences. The website provided five Al sensitivity settings
for users: “lowest”, ‘low”, “medium”, “high”, and “highest”. A
higher sensitivity would include more Al recommendations with
lower probabilities.

Random image order: The 48 images were presented to partic-
ipants in a random order to prevent users from anchoring on Al
based on their initial impressions (i.e., the ordering effect Nourani
et al., 2021).

We chose not to reveal Al information to participants because of the
time-consuming nature of the education process.

4.4. Synthesizing majority voting decisions from groups of Al-assisted par-
ticipants

Participants’ majority voting decisions were synthesized offline after
collecting their responses from the stage 2 study. It consisted of two
steps:

Step 1 Random Sampling: Mitosis reportings from an odd num-
ber k participants from stage 2 were aggregated as a group
(Fig. 4(a)). Members in a group were sampled randomly from
the participant pool without replacement.

Step 2 Majority Voting: Mitoses candidates reported by more than
half of members (k/2) in the group remained as the final
majority voting decision (Fig. 4(b)).

Group sizes of odd numbers k = 3,5,7,...,27 were explored. For
each group size, the random sampling-majority voting processes were
run 100 times for further analysis.

4.5. Measures & statistics

4.5.1. Utilization of AI & XAI (RQ1)
We employed two metrics to measure how participants used Al
assistance in the stage 2 study:

+ Al activation rate: Indicating the percentage of the 48 test
images where the AI was activated at least once (Eq. (1)).

+ Al active time percentage: Since the participant might deacti-
vate the “Show AI” feature, this metric represents the percentage
of time when the “Show AI” feature stayed active during the
entire stage 2 study (Eq. (2)).

L Zfl 1[“Show AI” in image; == “On”]
Al activation rate = —— 5 x 100% (1)
Al active time percentage
48 P
> T[“Show AI” in image, == “On”’]
_ 2o & x 100% 2

Z?:S] Time consumption on image;

Participants’ utilization of XAI was measured by the following two
metrics:

» XAI activation rate was calculated according to Eq. (3). The
number of “Al recommendations in image;” was counted based
on the highest sensitivity set by a participant while they examined
the image;. If the “Show AI” was not toggled on in an image, then
it was not counted.

+ XAI activation time was measured by the time elapsed between
a participant opening and closing an XAI evidence card.

XAI activation rate

Z;‘jl |XAI opened in image; |

- E?zsl |AI recommendations in image;| x 1[“Show AI” == “On”]

x 100% 3
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Correctness Scenarios
Mitosis Human |\ o mmendation| Human-Al Did human call it a mitosis? Indication
Ground Truth DO £ (Stage 2) DO En
(Stage 1) g (Stage 2) Stage 1 Stage 2

Not Mitosis TN FP TN No No Correct Self-Reliance
Mitosis TP FN TP Yes Yes (CSR)

Not Mitosis TN FP FP. No Yes Incorrect Al Reliance
Mitosis TP FN FN Yes No (Over-reliance)
Mitosis FN TP TP No Yes Correct Al Reliance

Not Mitosis FP TN TN Yes No (CAIR)
Mitosis FN TP FN No No Incorrect Self-Reliance

Not Mitosis FP TN FP Yes Yes (Under-reliance)

Fig. 5. Combinatorics for reliance incidents in the condition of one pathologist collaborating with Al (i.e., one-human-Al) for the mitosis detection task. This chart is adopted

from the framework described in Schemmer et al. (2023).

4.5.2. Reliance on AI (RQ2)

We used the categorization proposed by Schemmer et al. (2023) to
define the incidents related to the reliance. Four types of events were
defined under the categorization: (1) correct self-reliance, (2) incorrect
Al reliance (over-reliance), (3) correct Al reliance, and (4) incorrect
self-reliance (under-reliance). The criteria for judging these events
were based on the true-positive (TP), true-negative (TN), false-positive
(FP), and false-negative (FN) detections.” We adopted the framework
in Schemmer et al. (2023) for the mitosis detection task, which is
summarized in Fig. 5.

Schemmer et al. further introduced two normalized metrics, Rela-
tive Al Reliance (RAIR), and Relative Self-Reliance (RSR), to represent
the Appropriateness of Reliance (AoR). The RAIR relates to the under-
reliance events (Eq. (4)). And the RSR relates to the over-reliance events
(Eq. (5)). The Appropriateness of Reliance is encapsulated by the tuple
of PAIR and RSR (Eq. (6)), which can be graphically represented on a
2D chart with the RAIR on the x-axis and the RSR on the y-axis.

Correct Al Reliance

Relative Al reli RAIR) =
elative Al reliance ( ) Correct Al Reliance + Under-reliance

@
. . Correct Self Reliance
Relative Self rel RSR) =
elative Self reliance ( ) Correct Self Reliance + Over-reliance
()
Appropriateness of Reliance (AoR) = (RSR; RAIR) 6)

To measure Al reliance on majority voting decisions, we also im-
plemented the majority voting process for stage 1. To ensure a “with-
in-subject” nature of the analysis, for each majority voting run for
stage 2, a vis-a-vis majority voting from the same group of participants
in stage 1 was conducted. The definitions of “human decisions”, “Al
recommendations”, and “human-Al decisions” were adjusted to fit the
majority voting condition and are summarized in Table 1.

Because participants might employ different Al sensitivity settings
in stage 2, the random sampling process to formulate groups was also
adopted with regard to each participant’s Al sensitivity setting: for the
Al reliance analysis, the k pathologists were exclusively drawn from the
subset of pathologists who majorly set the same Al sensitivity, which
ensured the Al conditions among all group members were similar.

5 A TP was defined as “there was a ground truth within 60 pixels (15 pm)
of a participant-reported mitosis”, a TN was “no participant-reported mitoses
were found surrounding a non-mitotic figure”, an FP was “no ground truth
was found within a 60-pixel radius of a participant-reported mitosis”, and an
FN was “no participant-reported mitoses were found within 60-pixel radius of
a ground truth”.

Table 1
Modified definitions to measure Al reliance for the majority voting decisions synthesized
from a group of k pathologists.

Items Majority voting decisions (Group size = k)

Human decision (stage 1) Majority voting results based on the stage 1

decisions from k participants

AI recommendation (stage 2) For each image, Al recommendations under the
highest sensitivity set by more than k/2 of

participants while they were seeing the ROI
Human-Al decision (stage 2) Majority voting results based on the stage 2

decisions from the same k participants

To study RQ2, we compared five conditions: one pathologist col-
laborating with AI (i.e., one-human-AlI collaboration), and majority
voting for the four group sizes (k = 3,5,7,9). For each criterion of RAIR
and RSR, a Kruskal-Wallis test was first applied to show significance
among these five conditions. A post-hoc Dunn’s test with Bonferroni
correction was then used to test pair-wise significance. Appropriateness
of Reliance scatter plots was also drawn to visualize the distribution of
RAIR and RSR for these five conditions.

4.5.3. Correctness of mitosis detection (RQ3)
We used precision (Eq. (7)) and recall (Eq. (8)) to measure the
correctness of the mitosis detection.
TP

Precision = ————— (2]
TP+ FP
Recall = _TIr ®)
TP+ FN

Here, we compare the precision and recall of five conditions: one-
human-AI collaboration, and majority voting decisions from Al-assisted
pathologists (group sizes k = 3,5,7,9). Results of larger group sizes are
reported in the supplemental material. Similar to the comparisons in
the AI reliance metrics, for each of precision and recall, a Kruskal—
Wallis and a post-hoc Dunn’s test with Bonferroni correction was
employed to test the significance among the condition pairs.

Because our previous work showed AI achieved higher overall
performance than all participants in stage 1 (Gu et al.,, 2024), the
“complementary team performance” in this work refers explicitly to
cases where the human+AI approach outperforms Al (RQ3, i.e., super-
Al performance). Here, the Al operating point was selected based on
the best threshold in the model validation process. For precision and
recall, we defined the “success rate of achieving super-Al performance”
using Eq. (9). This equation was applied to both the one-human-Al
collaboration, and majority voting decision conditions with group sizes
k ranging from 3 to 27.
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Fig. 6. (a) Bar-plot of Al activation rates; (b) Bar-plot of Al active time percentage; Example plots showing how “Show AI” status changed for (c) a participant with a high
(92.31%) Al active time percentage and (d) a participant with a low (14.48%) Al active time percentage; (e) Stacked bar-plot of participants’ Al sensitivity settings; (f) XAI
activation rates; (g) Histogram of XAI activation time; (h) Box-whisker plot of total time consumption of each participant spent on image examination in the stage 1 and stage 2

study. No significance (n.s.) was observed between the two stages.

Success Rate
_ Number of participants/runs exceeding Al performance

Total number of participants/runs

x 100% (C)]

5. Result

3/32 participants in stage 2 chose not to activate Al recommenda-
tions at all for over 45/48 test images. Therefore, they were classified
as non-Al users and were excluded from subsequent analyses. For the
remaining 29 participants, we report the utilization of Al and XAI in
Section 5.1. 25/29 of the participants majorly set the sensitivity as
either “highest” (N = 15) or “medium” (N = 10) during the stage 2
study, and they were included in the Al reliance analysis (Section 5.2).
The responses from all 29 Al-users were used for correctness analyses
in Section 5.3.

5.1. Utilization of Al & XAI

The mean Al activation rate was M 99.21% (SD 0.481%,
Clys = [98.13%,100.00%], Fig. 6(a)).® And the mean Al active time
percentage was M = 71.39% (SD = 6.713%, Clys = [57.75%, 83.94%],
Fig. 6(b)). 21/29 participants had > 50% Al active time percentages,
with an example of how they interacted with the “Show AI” feature
shown in Fig. 6(c), which suggests the user kept the AI activated
for the majority of the time, with occasional brief flickering between
turning it off and on during the initial interactions. The remaining
8/29 participants had < 25% Al active time percentages: Although the
“Show AI” feature was majority deactivated, these participants would
still activate Al recommendations briefly while examining each image
(Fig. 6(d)). Interestingly, this pattern matches the cognitive forcing
function (Buginca et al., 2021) although these participants had not been
instructed to do so.

For Al sensitivity settings, 15/29 participants set for the “highest”
for over half of the ROI images. The remaining participants preferred
to set the Al sensitivity as “high” (1/29), “medium” (10/29), “low”
(1/29), or showed no clear preference (2/29), as shown in Fig. 6(e).

Regarding XAI utilization, the mean XAI activation rate was M =
14.54% (SD = 4.537%, Clys = [6.43%,24.25%], Fig. 6(). Specifically,
4/29 participants had XAl activation rates higher than 50%, while

6 The mean (M), standard deviation (SD), and 95% confidence intervals
(Clys) were calculated by the bootstrapping method (100% re-sampling with
replacement, 10,000 times).

14/29 participants did not activate any XAI at all. The mean XAI acti-
vation time was M = 4.31 seconds (SD = 0.719 s, Cly5 = [3.17 5,5.95 5],
Fig. 6(8).

On average, participants spent 25 min and 25 s examining all 48
test images in stage 1, and 23 min and 9 s in stage 2 (Fig. 6(h)). The
total time consumption did not show a significant difference between
the two stages (Wilcoxon rank-sum test, p = 0.31).

5.2. Reliance on Al

As shown in Fig. 7(a), the mean RAIR of one-human-Al collabo-
ration was M = 0.779 (SD = 0.021, Clys = [0.735,0.820]). And that
for majority voting decisions of group size k 3 was M 0.852
(SD =0.007, CIys = [0.839,0.866]). The mean RAIR for majority voting
decisions of k = 5,7,9 were 0.866, 0.861, and 0.878. All four majority
voting conditions yielded higher RAIR (~9% increase) than one-human-
Al collaboration. A Kruskal-Wallis test showed a significant difference
among the RAIR values across five conditions (’7%1 = 0.043, p < 0.001).
Post-hoc Dunn’s test with Bonferroni correction indicated significance
in comparison pairs of one-human-Al vs. majority voting decision from
group sizes of k =3 (p = 0.012), k =5 (p < 0.001), k =7 (p = 0.004),
and k=9 (p < 0.001).

The mean RSR of one-human-Al collaboration was M 0.735
(SD = 0.037, Clys = [0.657,0.803], see Fig. 7(b)). As a comparison, the
mean RSR of majority voting decisions of k =3 was M = 0.964 (SD =
0.003, ClIys = [0.959,0.970]). The RSR of majority voting decisions for
k = 5,7,9 were 0.968, 0.976, and 0.967. Similarly, all four majority
voting conditions led to higher RSR (~31% increase). A Kruskal-Wallis
test showed a significant difference among the RSR values across five
conditions (n%{ 0.178, p < 0.001). Post-hoc Dunn-Bonferroni test
showed significance in comparison pairs of one-human-AI vs. majority
voting decision from group sizes of k =3 (p < 0.001), k =5 (p < 0.001),
k=7 (p<0.001), and k =9 (p < 0.001).

Fig. 7(c) presents the appropriateness of reliance (AoR) scatter plots
for five conditions. These plots demonstrate that majority voting deci-
sions could improve higher RAIR and RSR simultaneously, indicating a
high level of AoR was achieved.

5.3. Correctness of mitosis detection

As shown in Fig. 8(a), the mean precision of one-human-AI col-
laboration was M = 0.824 (SD = 0.023, Cly; = [0.776,0.867]). For
majority voting decisions of k = 3, the mean precision was M
0.902 (SD 0.004, Clys = [0.893,0.910]). The majority voting of
k = 5,7,9 had mean precisions of 0.924, 0.934, and 0.934, respec-
tively. The AI achieved a higher precision of 0.961. All four majority
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voting conditions achieved higher precision (~8% increase) than the
one-human-AI collaboration. A Kruskal-Wallis test showed that the
precision significantly differed across five conditions ('7%1 = 0.150, p <
0.001). Post-hoc Dunn-Bonferroni test did not observe significance in
the comparison pair of one-human-AlI vs. majority voting decision k = 3
(p = 0.715). Statistical significance was observed for comparison pairs
of one-human-Al vs. majority voting decision k = 5 (p < 0.001), k =7
(p < 0.001), and k =9 (p < 0.001).

The mean recall of one-human-Al collaboration was M = 0.817
(SD = 0.013, Clys = [0.790,0.841], see Fig. 8(b)). Majority voting
decisions of k = 3 had a mean recall of M = 0.843 (SD = 0.003,
Clys = [0.838,0.851]). Majority voting decisions of k = 5,7,9 had mean

precisions of 0.850, 0.851, and 0.850. In comparison, Al achieved a
precision of 0.841. Kruskal-Wallis test did not show that the recall
differed significantly across five conditions ('7%1 < 0.001, p=0.774).

Fig. 8(c) presents the precision-recall scatter plots for the five condi-
tions. The plots reveal that the majority voting decision exhibits lower
variation in both precision and recall compared to the one-human-AI
collaboration, indicating a more robust performance. This observation
is further supported by the lower SD values for the majority voting
decisions, as reported above.

Regarding the success rates for achieving super-Al performance, for
precision, none of the majority voting conditions (i.e., k =3 — 27) was
higher than the success rate achieved by one-human-AI collaboration
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(13.87% success rate, Fig. 8(d)). On the other hand, for recall, all
majority voting conditions had higher success rates compared to one-
human-AI collaboration (51.72% success rate): As shown in Fig. 8(e),
the lowest success rate was observed at k = 3 (53% success rate), and
the highest was achieved at k = 27, reaching 76%.

6. Discussion
6.1. Summary of result

6.1.1. Summary of RQ1

For most participants, Al was activated at least once in most im-
ages. However, this does not imply that the AI was constantly active
throughout the entire study. Notably, 8/29 participants deactivated Al
for most of the study, and only activated it briefly occasionally. That
is, in certain instances, the ‘Al on-request’ feature posed effects similar
to the cognitive forcing function.

The utilization of XAI was relatively low; only four participants
opened more than 50% of the XAI evidence, while nearly half of the
participants did not open any. Even when XAI was opened, the time
spent by participants on viewing XAI was relatively short (about four
seconds) - in the context of pathologist-Al collaboration, the effective-
ness of XAI in mitigating over-reliance may be limited. This is likely
because the time-pressing nature of the pathology task outweighed the
benefit of XAI explanations, causing pathologists to use XAI less in
practice. In light of this, we argue that alternative approaches, such
as the majority voting used in this study, need to be investigated to
enable appropriate Al reliance for future pathology applications.

6.1.2. Summary of RQ2

Pair-wise statistical tests revealed significant improvements in both
RAIR and RSR metrics for majority voting decisions (k = 3,5,7,9),
compared to one pathologist collaborating with AL Specifically, RAIR
showed an approximate 9% increase, and RSR showed about 31%
increase. The PAIR-RSR scatter plots indicated simultaneous improve-
ments in both metrics. Such results demonstrate a reduction in the
proportion of over-reliance against correct self-reliance events, and
under-reliance against correct Al reliance events, indicating a higher
level of appropriateness of reliance was achieved (according to the
definitions in Schemmer et al. (2023)).

6.1.3. Summary of RQ3

No significant difference in the precision was observed between the
condition of one-human-AI collaboration and the majority voting with
k = 3. A statistical significance in the precision was observed when
increasing k to 5, 7, and 9. The majority voting conditions improved
precision by approximately 8%. For recall, no significant differences
were observed. The precision-recall scatter plots demonstrated that ma-
jority voting decisions exhibited lower variation, suggesting that they
were robust and less prone to be influenced by the sample selection.

10

All majority voting conditions for k = 3 — 27 did not show a higher
success rate in achieving super-Al precision than one-human-Al collab-
oration. This is because AI had a high precision of 0.961, and there was
a lack of space for improvement. For recall, all majority voting condi-
tions (k = 3 — 27) showed higher success rates. Notably, the highest
success rate, 76%, was achieved at k = 27, indicating a 46.95% increase
over the one-human-AI collaboration condition (51.72% success rate).

6.2. The mechanism and cost of majority voting

To further explore why the majority voting mechanism was ef-
fective, we introduced a metric, “agreement rate”, defined as the
percentage of participants the reported a cell as a mitosis (regardless
of its actual status). We calculated the agreement rates of the 29
participants in both stage 1 and stage 2 studies. These agreement rates
covered all 88 ground truth mitoses (Fig. 9(a)) and 91 false-positive
mitoses reported by at least two participants (Fig. 9(b)). According to
Section 4.4, cells with agreement rates higher than 50% should be kept
as the majority voting decisions. While Fig. 9 is not directly applicable
for interpreting results in smaller sub-groups (e.g., k = 3), it illustrates
the general trends in participants’ agreement rates when influenced by
Al The data revealed two key insights:

* Reducing Over-Reliance on AI False Positives: Al’s false-
positive detections led to higher agreement rates among partici-
pants (as shown in Fig. 9(b)(®), suggesting participants’ tendency
of over-reliance in at stage 2. The majority of these false-positive
detections did not achieve agreement rates higher than 50%
(Fig. 9(b)®). In other words, from a group’s perspective, it
was not usual for the majority of participants to consistently
over-rely when AI made false-positive mistakes. Therefore, the
over-reliance can be reduced by the majority voting mechanism.
Reducing Under-Reliance on Human False Positives: At stage
2, participants may make the same false-positive mistake as in
stage 1, even when Al correctly suggested negative (Fig. 9(b)(D).
This suggests that the under-reliance incidents happened when
one participant collaborated with Al Nevertheless, agreement
rates for these false positives rarely exceeded the 50% majority
threshold (Fig. 9(b)®), indicating that majority voting could
reduce under-reliance.

To understand the underlying cost of the majority voting mech-
anism, we analyzed time consumption spent on employing multiple
pathologists, and its association with the correctness. Specifically, we
conducted 100 majority voting runs for each group size (k) ranging
from 3 to 27. We applied Pearson’s correlation analysis to assess the
relationship between precision or recall achieved in each run and
its corresponding time consumption. We found a moderate positive
correlation between precision and time consumption (Pearson’s r
0.39, p < 0.001, N = 1300, Fig. 10(a)), and a weak positive correlation
between recall and time consumption (Pearson’s r = 0.14, p < 0.001,
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N = 1300, Fig. 10(b)). Certain runs with a relatively small time
consumption could reach considerable precision and recall. Note that
this is a ‘bare minimum’ estimation: Delays caused by coordinating
pathologists should be taken into account in practical applications.

6.3. On developing structured decision-making processes with Al+k

Different from traditional one-human-Al collaboration (AI+1), this
study sets the first step towards multiple medical professionals collab-
orating with AI (Al+k) using a simple majority voting technique. We
argue that this majority voting approach has three advantages: (1) It is
flexible and has a simple structure, eliminating the need for face-to-face
or online discussions; (2) It keeps participants anonymous, thus reduc-
ing potential social pressure; (3) It is inherently democratic, ensuring
that each participant’s opinion has an equal weight. We found that this
majority voting approach could effectively improve the appropriateness
of reliance, and achieve higher-quality medical decisions. As for the
limitations of majority voting, one may argue that this approach does
not incorporate the discussion process, and decisions with conflicts (i.e.,
~50% agreement rates) cannot be addressed easily.

Future works might explore Al+k decision-making techniques that
involve structured or semi-structured face-to-face discussions (Black
et al.,, 1999). Traditionally, these discussions were moderated by the
humans. Nonetheless, we envision that future AI can not only help
each group member to reach a decision (e.g., help pathologists detect
mitoses in this study), but can moderate the discussions. For instance,
a large language model (LLM) (Min et al., 2023) might anonymously
gather and summarize comments from each group member and present
a consolidated overview to the group. Members could then have an
opportunity to revise their decisions after hearing from the LLM’s
summary. Given the LLM’s omni-availability, no conflict of interest, and
impartiality to authority or personal factors, such Al-facilitated discus-
sions could offer advantages in speed and bias correction, compared to
traditional discussion coordination with human moderators.

6.4. Towards efficient & reliable medical decisions with Al+k

Section 6.2 showed that the performance of majority voting deci-
sions from Al+k showed a positive relation to the time consumption.
In other words, in general, the more medical professionals involved,
the higher the quality of the majority voting decision. Typically, high-
risk medical decisions involve 7-10 group members (McMillan et al.,
2016), while groups as large as 27 done in this study were quite rare.
Therefore, considering the time taken to reach a result, we argue that
not all medical decisions necessitate the Al+{large k} approach: cases
with high confidence from both AI and humans could be adjudicated
by smaller groups with as few as three experts, while those with low Al
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confidence or prone to human errors could benefit from incrementally
larger group sizes, which can yield better and more robust outcomes.

Determining the optimal balance between decision-making and
time expenditure has been well-explored in previous crowd-sourcing
works (Daniel et al., 2018). However, one should be aware that the
workflow of medical professionals is usually different from that of
general users, and their preferences in using AI and XAI may also
vary (as shown in Section 5.1). Therefore, future research should focus
on exploring which Al+k methods can seamlessly integrate into the
workflow of medical professionals, effectively balancing efficiency and
reliability in the medical decisions of multiple doctors. Additionally,
investigating the role of counterfactual explanations (Zhou et al.,
2022; Del Ser et al., 2024) to build trust and facilitate appropriate Al
reliance could complement approaches like majority voting, potentially
improving interpretability and familiarity with the decision process
when integrating Al into risk-sensitive medical workflows.

6.5. Limitations & future work

The following points are the limitations of this study and are re-
garded as future work.

» The majority voting synthesizing process did not involve any
discussion or communication among participants, which could
influence the outcomes.

+ A 50% threshold was used to represent the majority. Other thresh-
olds and their impacts were not investigated.

» The potential learning effect, particularly among participants in
training (i.e., residents and medical students), between stage 1
and stage 2 of the study cannot be ignored.

+ All participants were from one country, potentially limiting the
generalizability of findings.

7. Conclusion

This study introduces and validates the majority voting approach
to enable doctors’ appropriate reliance on medical Al. By recruiting
32 pathology professionals, we conducted a multi-institutional, multi-
stage user study focusing on detecting mitoses in tumor images. Our
analysis revealed that even with groups of three doctors, the majority-
voting decisions had a higher appropriateness of Al reliance, compared
to one doctor collaborating with Al. Subsequently, the majority voting
decisions demonstrated increased precision and recall, although no
statistical significance in recall was observed. Additionally, majority
voting decisions were more likely to achieve super-Al performance
in the recall. While effective on its own, majority voting can also be
used together with other techniques to enable appropriate Al reliance.
Involving multiple experts in decision-making can yield higher-quality,
more robust outcomes that are less prone to Al errors, which holds
promise in pathology and broader high-stakes domains.
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