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(a) Our curved line display and its degrees of freedom. (b) Four examples of curves it can create. (c) A simulation of a multi-segment
display creating the shape of the top of a Talbot-Lago (photo by Jack Snell, CC BY 2.0. Background removed and image overlaid).

Abstract— Shape-changing displays enable real-time visual-
ization and haptic exploration of 3D surfaces. However, many
shape-changing displays are composed of individually actuated
rigid bodies, which makes them both mechanically complex and
unable to form smooth surfaces. In this work, we build a multi-
stable curved line display inspired by physical splines. By using
circular splines to initialize a discrete elastic rods simulator,
we can model multiple stable shapes that fit specific boundary
conditions. We then generate actuation instructions based on
the circular spline initialization to drive the physical display.
We demonstrate our display’s ability to create 16 shapes with
8 different boundary conditions. Our display is consistent in
shape output, with an average standard deviation in height of
0.75 mm or 0.47% of the display’s maximum vertical range.
We also show that our model is consistent with our display,
with a mean RMSE of 6.68 mm or 3.85% of the display’s
maximum vertical range for shapes we could stably simulate.
We then demonstrate potential scalability by simulating a multi-
segment version of the system and show the display’s ability to
withstand loads during contour following in haptic exploration.

I. INTRODUCTION

While much of modern design is done with computational

tools, physical models remain an important part of the

prototyping process. Physical prototyping is essential, from

automotive design [1] to architecture [2], allowing multiple

users to simultaneously view and interact with a tangible

design. Previous work has shown that physical models give a

richer impression of a prototype’s aesthetic and function than

would be available through a digital image alone, mitigating

design fixation [3]. However such models are often static and

must be entirely re-fabricated to reflect iteration.

One way to empower designers and engineers with phys-

ical feedback is through the development of shape-changing

displays, which are a class of robotic systems that dynam-

ically generate multiple physical forms. Pin displays are
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a well-studied type of shape-changing display. They are

composed of an array of linear actuators that move up and

down in concert to discretely approximate 1.5D [4] and

2.5D surfaces [5]–[7]. This type of device has been used

as a computational design tool [8]. Another type of shape-

changing display are displays that approximate shapes using

an articulated series [9] or grid of rigid bodies connected by

actuated hinges [10]–[12], otherwise known as a formable

crust display. Both aforementioned types of shape-changing

displays have similar limitations. First, they are mechanically

complex and, therefore, difficult to scale. Second, they can

only discretely approximate smooth surfaces due to being

composed of discrete, rigid bodies.

In this work, we propose a curved line display inspired by

physical splines [13] as a step toward minimally-actuated,

continuous surface displays. We designed and built the

system pictured in Fig. a that manipulates a flexible rod

by controlling rod length, boundary positions, and boundary

angles. Flexible rods are multi-stable when deformed by their

end points [14], complicating simulation and control, but also

enabling a larger shape space. To determine the actuation

strategy for our under-actuated, multi-stable system, we

employed a discrete elastic rods model [15], [16]. To model

multi-stability, we developed a novel optimization scheme

over circular splines to initialize the simulator. We then

used the actuation strategy determined from our model to

demonstrate the physical display’s ability to reliably generate

a variety of shapes (Fig. b). These shapes were validated

against the simulation. We then simulated a multi-segment

version of the curved line display (Fig. c) as a preliminary

demonstration of scalability. Finally, we tested the system

loading response to determine fitness for haptic exploration.

II. RELATED WORK

Attempts have been made at augmenting pin displays and

formable crust displays to better display continuous surfaces.

Some have augmented the pin display with a spatial low pass

filter, in which a material is stretched over the pin display

surface [5], [17]. While this approach partially smooths out

the pins, the material does not perfectly interpolate a smooth

surface, leaving the final shape with bumpy artifacts [18].



Fig. 1. (a) Direct control of points along continuous display. (b) End point
control of continuous display. (c) Proposed single-segment, bi-stable curved
line display.

Layer jamming is a way to augment the formable crust

display to display smoother surfaces, replacing previously

rigid grids with flexible materials [19], [20]. This approach

is also smoother than the pin display, but requires selectively

locking segments along the surface itself, constraining dis-

play resolution to the grid size. Some works combine aspects

of these approaches by using rigid actuators to bend, stretch,

and twist flexible material by directly actuating points (Fig.

1a) [21]–[23] on a flexible material, or actuating a shape

memory alloy embedded in a flexible material [24].

Compliant rods present a promising alternative to purely

rigid or soft materials by allowing two fixed actuators at

either end to control a large state space (Fig. 1b). Prior works

in computer graphics have used this paradigm as an input

method [25], a fabrication tool [26], and a haptic display

[27]. These inherently smooth (continuous) devices come

with their own challenges. While they do produce smooth

lines or surfaces, all of these devices use a fixed length or

area of deformable material for their displays (Fig. 1a & b).

This means that while these devices can produce continuous

surfaces, they are limited in curvature by the area or elasticity

of the flexible material employed. Our insight is that it

may be possible to overcome this limitation by injecting or

removing material from a display (Fig. 1c).

In addition to the shape space limitations, the accuracy of

shape generation in smooth, shape-changing displays is more

challenging than in their discretely actuated counterparts. In

the cases where devices directly actuate points on a flexible

material [21]–[23], the devices have positional control over

the end effectors of their actuators, but do not measure or

control the shapes of the intervening flexible material. A

validated computational model for the bending of material

between actuators would not provide real-time positional

information, but it would provide additional geometric in-

formation without requiring additional sensors or cameras.

To this end, we propose a forward solution to model the

rod’s nonlinear deformation in between adjacent actuators

and show agreement with our constructed device.

One of the challenges in modeling flexible rods is their

multi-stability under certain boundary conditions [14], [28].

Our system utilizes sets of boundary conditions that produce

up to two stable states. To find these, we optimize over spline

control points, then discretize and relax these splines into

physically stable curves. The system multi-stability means

that to control the output shape, we must understand how

to reach a specific stable state. This both motivates our

investigation of different deployment strategies and expands

the accessible shape space of our device.

III. DESIGN OF A MULTI-STABLE CURVED LINE

DISPLAY

A. Mechanical Design

A single segment of this display is comprised of a flexible

rod actuated between two individually operated nodes (Fig.

2a). As shown in Fig. 2a, the controllable dimensions of the

system are the length of the flexible rod between the nodes

(L), the height between the nodes (y), and the angle of the

tangent vectors (t1 and t2) at each end of the curved line

(θ1 and θ2, respectively). The discrete elastic rods model

uses a perfectly elastic rod with a constant cross-section.

However, for ease of actuation, we chose a flexible rack

(KHK DR1-2000, Duracon) as the flexible rod for this curved

line display, which is not perfectly elastic.

Each node has three actuated mechanisms. The extrude

mechanism is a locally prismatic joint through which the

flexible rod moves. It controls how much of the rod is

on either side of the node (Fig. 2b, orange). The value

of L between the two nodes is controlled by the extrude

mechanisms on either side of the segment working in concert.

The biasing mechanism is a revolute joint that controls the

angle (θi) at which the rod passes through the node (Fig.

2b, magenta), corresponding to the node’s tangent vector, ti.

Rigid bearing surfaces above and below the rod constrain a

20 mm section of the rod to the desired angle at the center of

θ1

θ2

Fig. 2. (a) Curved line display between two nodes showing the controllable dimensions of the system: the length of flexible rod between the nodes (L),
the height between the nodes (y), and the angle of the tangent vectors (t1 and t2) at each end of the curved line (θ1 and θ2, respectively). The two nodes
are a fixed 500 mm apart horizontally. CAD model of node module of the curved line display showing (b) extrude mechanism labeled with orange, bias
mechanism labeled with magenta, and (c) translate mechanism labeled with yellow.



Fig. 3. Diagram of electronic components in main and nodes and the
communication between main and nodes.

rotation for the bias mechanism. The translation mechanism

is a prismatic joint that controls where the node is along a 20

mm x 20 mm aluminum extrusion (Fig. 2c, yellow), which

corresponds to y. There is an aluminum extrusion on either

side of the curved line segment for each node to travel on, as

pictured in Fig. 2c, and these aluminum extrusions are fixed

at 500 mm apart horizontally.

B. Electronics and Communication

Each node is an individually operated robot, with multiple

nodes working simultaneously to actuate the curved line

display. We used an N20 geared DC motor with an attached

magnetic encoder (Adafruit 4641) driven via a motor driver

chip (Texas Instruments DRV8833RTYT) to actuate each

degree of freedom (extrude, bias, translate). A Teensy LC

microcontroller manages the logic computation and commu-

nication (Fig. 3). A main computer was used to wirelessly

communicate pre-determined shape generation instructions

with each node using a 2.4 GHz radio chip (nRF24L01+

chip on SparkFun WRL-00691 breakout board). Motors, en-

coders, and the wireless communication module are attached

to the microcontroller using embedded electronics on a

custom PCB (Bay Area Circuits). Each node is continuously

polled for state information. When all nodes are finished

with their current instruction, the main computer sends out

the next step from the generated instructions.

IV. FORWARD SOLUTION USING DISCRETE ELASTIC

RODS

While some analytical solutions exist for elastic rods [30],

[31], they exist only under specific boundary conditions,

requiring a numerical model to describe the bending of

flexible rods in most practical applications. One popular

approach is to approximate a flexible rod or strip as being

a series of discrete pieces. This approach has been used to

describe the positioning of continuous robotic parts [32], [33]

and estimate the shape of a deformed rod manipulated by its

ends [26], [34]–[36]. Such models have not yet been adopted

in the design of shape-changing displays.

We rely on the discrete elastic rods method [15], [16], a

model that discretizes Kirchhoff rods and computes bending,

twisting, and stretching energy on the discrete segments. This

model and has been physically validated [37] and can accom-

modate different rod material properties and cross-sections.

We use the manufacturer-given young’s modulus and density

along with a rectangular cross-section to approximate the

notched rod in our device. Because the energy landscape of

elastic rods is non-convex, we witness multi-stability, where

different stable states lie at local minima. We first discuss

the mathematical boundary conditions of our system, then

generate different initializations to try to push the solver to

converge to different stable states.

A. Mathematical Boundary Conditions

One module of our system consists of an elastic strip

coupled to a vertical frame at two points. The boundary

conditions for one module of our system consist of the left

and right nodes’ relative vertical position (y) and tangent

vectors (t1 and t2), and the flexible strip’s arc length between

nodes (L). Given these conditions alone, we cannot uniquely

determine the output shape of the strip, due to system multi-

stability. We can however choose the output shape by using

different initializations to our solver that satisfy the boundary

conditions but converge to different final shapes (Sec. IV-B).

Our strip can be approximated by a 1D curve that is an

embedding in the frame plane of a real-valued function c(t) :
[0, 1] → R

2. The endpoints of this curve are given as two

planar points, p1 and p2, and we set our frame origin to p1.

The vertical component of p2 is a degree of freedom, y:

c(0) = p1 = {0, 0}, c(1) = p2 = {x2, y} ∈ R
2 (1)

There is a variable tangent vector at each of these points,

Fig. 4. Diagram of the curve initialization process. (a) A curve used to initialize the solver with the boundary conditions c(0), c(1), t1 and t2. This
curve, S, is a spline creating by blending interpolating circles (see [29]). (b) We optimize over control points pa and pb to match a given arc length and
minimize the splines’ curvature. (c) These two splines, Sa and Sb, which have equal boundary conditions, are used to initialize the solver and relax into
physically-stable curves Ca and Cb.



which have unit length (Fig. 4a):

c′(0) = t1, c
′(1) = t2 ∈ R

2

|t1| = |t2| = 1
(2)

Additionally, we have an arc length of c(t), L ∈ R, which

corresponds to the length of injected material, which we

define as:

L =

∫ 1

0

√

1 + c′(t)dt (3)

Based on empirical observations, we assume that there are

two or fewer achievable stable states for each set of boundary

conditions. These states can be loosely defined as (1) where

the rod’s material is mostly above the endpoints and (2)

below it (Fig. 4b). We built on this observation by using

spline integrals to reduce the infinite-degree problem space

to a finite number of physically plausible solutions.

B. Finding Initializations to the Simulator

Our goal is to develop an initialization that can match

the natural shapes of a flexible rod and provide a close

point from which we can simulate the relaxed state. The

Kirchhoff model for elastic rods uses a term that minimizes

geometric curvature to capture rod bending energy [15].

Therefore we want an initial geometry that is smooth and

twice differentiable such that curvature is a defined quantity.

Rather than use a single function to describe this possibly

complex initial curve, we opt to use a spline, which we can

easily edit through its control points.

Our work uses splines based on a C2 blending function,

adapted from Yuksel et al [29]. The Yuksel formulation

with circular interpolation offers several advantages for our

problem. It is interpolating, which allows us to encode tan-

gent constraints as two points along a vector of infinitesimal

length. This circular interpolation also creates splines that

are close to the final stable shapes they produce (Fig. 4c).

We posit that this is because the geometric properties of

Kirchhoff rods – the minimization of bending energy often

corresponds with the minimization of curvature inherent in

circular splines. We use five control points per spline, with

two points on each end representing the endpoints and the

tangent constraints respectively, and one point in the center,

which we use to control the end shape (Fig. 4a). We call

this central point p. We can adjust p to both match our arc

length constraint and find an initialization that is close to our

final relaxed shape (Fig. 4b).

To find these initializing splines we set up a light-weight

optimization problem over the coordinates of p. The objec-

tive function both minimizes planar curvature and uses a

least-squares approach to match the arc length of the spline

to the amount of injected rod. We want to minimize planar

curvature to find the spline that fits the bending energy in

our discrete elastic rods model.

We estimate curvature and arc length, which are integrated

quantities, with a discrete sum over n samples of the spline

S, s(t) ∈ R
2. This estimation becomes more accurate as n

grows. We first discretize our spline into n points:

sn(t) = s(t/n) (4)

en(t) = sn(t+ 1)− sn (5)

where t ∈ [0, . . . , n − 1]. And en(t) refers to the edge

between spline samples sn(t) and sn(t + 1). We then

approximate arc length with the following sum:

l =
n−1
∑

t=0

||sn(t+ 1)− sn(t)|| (6)

where l is the approximate arc length of the curve. We

approximate curvature, κ, by looking at the change in tangent

directions with each pair of edges. This is normalized by the

Voronoi length region around the point the edges share:

κ =

n−2
∑

t=0

1− en(t)
||en(t)||

· en(t+1)
||en(t+1)||

1
2 ||en(t)||+

1
2 ||en(t+ 1)||

(7)

Finally we can set up our optimization problem,

p∗ = argminp(κ
2 + α(l − l0)

2) (8)

where we find the central spline control point p∗ that

achieves the desired arc length. We use a soft constraint

on arc length with constant α = 10 while minimizing

curvature squared, κ2. This objective function is solved using

automatic differentiation [38] along with Newton’s method

and a line search. To initialize this optimization we start

with the midpoint of the two boundary points and offset it

vertically by a small amount up and down (see Fig. 4b). This

optimization typically converges in fewer than 10 iterations.

V. SHAPE GENERATION ON A CURVED LINE DISPLAY

Actuation instructions to match simulated shapes were

generated based on the spline initialization corresponding

to that shape. Following the intuition described in Sec. IV-

A, we first actuate such that the majority of the material

is close to the final shape’s center of mass, then configure

end conditions. Each degree of freedom is controlled by a

Fig. 5. Shape generation occurs by (a) extruding enough material to allow
biasing, (b) biasing toward the central control point (the pink circle), (c)
extruding until the interior rod is the desired arc length, (d) biasing to match
desired boundary conditions, and (e) translating to desired height difference.
Actuation steps pictured are annotated still frames pulled from a video of
the device being operated.



motor-encoder pair, making position control of each degree

of freedom closed loop. Overall shape control is open loop,

as the current system lacks sensors that would detect which

of the stable shapes the system is in. The following actuation

order was determined empirically to reliably generate the

same shape on a single-segment curved line display starting

with both nodes at the same height (y = 0) and with the

flexible rod at each node horizontal to the ground (θ = 0):

1) Extrude symmetrically until the length of flexible strip

between nodes has enough extra material to allow for

biasing on either end (Fig. 5a).

2) Bias the nodes on either side of segment to the bias

angles such that the lowest curvature arc between

tangent vectors t1 and t2 bends in the same direction

as the central control point p (Fig. 5b).

3) Extrude symmetrically until the length, L, of the

flexible strip matches that of objective shape (Fig. 5c).

4) Bias the nodes on either side of the segment to bias

angles θ1 and θ2 such that they match those of the

objective shape (Fig. 5d).

5) Translate the nodes until height, y, between nodes is

reached (Fig. 5e).

We used this sequence of actuation instructions to control

the curved line display for every shape generated in the

following section.

A. Comparison of Physical Display Segment to Model

In order to test the consistency of the display and compare

the model to the physical display, we generated a series of

shapes both in simulation and physically. Boundary condi-

tions were chosen to demonstrate the variety of achievable

shapes. We tested bias angles that were neutral, biased up, bi-

ased down, and asymmetrically biased with the nodes either

vertically level or vertically staggered. Based on simulation

initializations, different actuation instructions for each shape

were then generated as described in Sec. V.

Physical shape generation was recorded using an iPhone

13 camera. Still frames were then exported and corrected

for lens distortion using an AprilTag calibration [39]. Still

frames were then converted to binary for analysis.

The results of these experiments are shown in Fig. 6. Over

a total of 16 different shapes, the overall mean standard de-

viation within N = 3 trials over all 16 shapes of 0.75 mm or

0.47% of the display’s maximum vertical range. These results

show that our curved line display can consistently generate

the same shape given the same actuation instructions, and

can do so for a variety of different final shapes. For most

of the tested shapes, there is also good agreement between

the simulation and the physical display. Excluding the two

shapes marked with ** in Fig. 6, the mean RMSE between

the height physical display and our model was 6.68 mm or

3.85% of the display’s maximum vertical range.

We were unable to match the physical display for the two

shapes marked with ** in Fig. 6. Both of these shapes had

asymmetric boundary conditions and a stable “peak” shape

on the physical display, but when we simulated the display

using those boundary conditions, the final shape collapsed

into the other stable configuration. If the rightmost boundary

condition is allowed to be more horizontal, we can simulate

a shape with better agreement with the physical system

(Fig. 6, curves marked with * in the rightmost column). We

hypothesize that the discrepancy between the simulation and

the physical display may be a result of the irregular flexible

rack cross-section, or also the physical boundary hardware

being incompletely rigid.

Fig. 6. Results comparing physical display to model. Each pane represents a set of boundary conditions, and each boundary condition has two associated
shapes (a “peak” and “valley”). Experimental curves represent the mean of N = 3 trials per shape on the physical display. Mean ± standard deviation is
shaded in, but due to relatively small standard deviation between trials is difficult to see. Mean standard deviation (MSD) between trials and root mean
squared error (RMSE) between trials and simulation are reported on each pane. Curves marked with * represent simulations done with a more relaxed
boundary condition.



B. Modeling Multiple-Segment Curved Line Display

Our simulator can be used to physically simulate a more

complex display with multiple segments that would expand

the shape space of our device. A multi-segment display offers

a range of possibilities for physically creating controllable

curves. We demonstrate a four-segment display in Fig. c, but

there is no mathematical limit to how many segments may

be added to the system by scaling the number of actuators.

Note that while we can achieve smooth curves with high

curvature, even a multiple-segment display cannot achieve

discontinuities like corners or gaps in the output shape.

VI. CONTACT FORCES ON CURVED LINE DISPLAY

To evaluate the viability of our display for haptic surface

exploration, we loaded two shapes at two different points

along our curved line display and determined the deflection

of that point in response to the applied force (Fig. 7). We

added additional load to the force in 0.5 N increments until

the curve snapped through to a different curve. Previous

work in haptic texture exploration observed that most users

employed less than 1 N of force when searching for a tactile

target [40]. Another study in exploratory procedures found

that users employ 2-5 N of force in contour following [41].

Our display can support these previously observed forces,

but not the larger forces employed in other exploratory

procedures such as pressure or enclosure.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we motivate the use of a curved line display

in conjunction with a discrete elastic rods model as a method

for creating a smooth line shape-changing display. We built

a physical curved line display and then developed a model

using the discrete elastic rods formulation. By employing

a circular spline initialization, we can model the inherent

multi-stability of a flexible rod under a single set of boundary

conditions. This then allows us to generate actuation instruc-

tions for our curved line display that utilize multi-stability as

a way of expanding the number of achievable shapes. Our

display is consistent in output shape and matches well with

our model. We demonstrate scalability by simulating a multi-

segment version. Finally, we characterized the behavior of

our display under loading, and we demonstrated that it can

support contour following during haptic exploration.

There are a few notable drawbacks to our current system.

While it has a large variety of shape outputs, it is lacking

in tactile stiffness. Many shape-changing displays are made

with haptic interaction in mind, but certain shapes on this

display only support a few Newtons of load before buckling.

Future work should consider improving mechanical robust-

ness of the system. Furthermore, the current system controls

final shape in an open-loop manner, which means that the

system has no sensing for shape snap-through and recovery.

Future iterations should consider instrumentation for closed-

loop control. Another limitation of our system is that it can

solve the forward problem of determining shape output from

boundary conditions, but it does not solve the inverse prob-

lem of determining appropriate boundary conditions from

Fig. 7. A point load is applied at the spot indicated by the orange arrow
labeled F at (a) the center of the shape and (b) off of the center of the shape.
The left column of each sub-figure shows one example trial for each of the
two shapes, with the unloaded rod shown as a solid line and the loaded
rod as dashed. The right column shows the relationship between the force
applied and the deflection of the point at which the force is applied. Each
loading experiment was repeated N = 3 times.

a desired shape. Future work should implement the inverse

solution to enable a curved line display to approximate

any arbitrary curved shape. Finally, the current system only

displays a single, flexible rod. We propose future work that

configures multiple curved line displays in a grid, making it

possible to display 2.5D surfaces.
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