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Direct magnetic imaging of fractional Chern 
insulators in twisted MoTe2

Evgeny Redekop1, Canxun Zhang1, Heonjoon Park2, Jiaqi Cai2, Eric Anderson2, 
Owen Sheekey1, Trevor Arp1, Grigory Babikyan1, Samuel Salters1, Kenji Watanabe3, 
Takashi Taniguchi4, Martin E. Huber5, Xiaodong Xu2,6 & Andrea F. Young1 ✉

Orbital magnetization provides a sensitive probe of topology and interactions, with 
particularly rich phenomenology in Chern insulators in which the topological edge 
states carry large equilibrium currents. Here we use a nanoscale superconducting 
sensor1,2 to map the magnetic fringe fields in twisted bilayers of MoTe2, in which 
transport3,4 and optical sensing5,6 experiments have revealed the formation of 
fractional Chern insulator (FCI) states at zero magnetic field. We observe oscillations 
in the local magnetic field associated with fillings ν = −1, −2/3, −3/5, −4/7 and −5/9  
of the first moiré hole band, consistent with the formation of FCIs at these fillings.  
We determine the local thermodynamic gaps of the most robust FCI state at ν = −2/3, 
finding −2/3Δ as large as 7 meV. We also characterize sample spatial disorder, which  
is dominated by both inhomogeneity in the effective unit cell area7 as well as 
inhomogeneity in the band edge offset and bound dipole moment. Our results 
highlight both the challenges posed by structural disorder in the study of twisted 
homobilayer moiré systems and the opportunities afforded by the robust nature of 
the underlying correlated topological states.

Fractional Chern insulators (FCIs) are generalizations of the fractional 
quantum Hall states to lattice systems with broken time-reversal sym-
metry. Interest in FCIs arises from the fact that they may emerge as the 
ground state of interacting fermions on a lattice, including at zero mag-
netic field for which time-reversal symmetry is broken spontaneously.

FCIs were first observed experimentally in moiré heterostructures 
composed of graphene and hexagonal boron nitride (hBN) at partial fill-
ings of topological Harper–Hofstadter bands8 at 30 T magnetic fields. 
In this context, the applied magnetic field plays a key part in forming 
the bands leading to energy gaps comparable to those observed in 
conventional fractional quantum Hall states. Prospects for realizing 
more robust lattice-based Chern insulators improved with the realiza-
tion of narrow, topologically nontrivial bands at zero magnetic field 
in moiré systems, including twisted bilayer graphene9, rhombohedral 
graphene multilayers aligned to hBN10 and transition metal dichalco-
genide bilayers11–15. In these systems, experiments showed evidence 
of time-reversal symmetry breaking by spontaneous valley polariza-
tion, manifesting most dramatically with the observation of quantized 
integer anomalous Hall effects at zero magnetic field16–20, as well as FCI 
states at finite applied magnetic fields21.

Most recently, zero-magnetic-field FCIs were discovered in rotation-
ally faulted bilayers of MoTe2 near 4° angle3–6,22 and in rhombohedral 
graphene pentalayers aligned to an hBN substrate23. These observations 
raise key questions about the microscopic origin of these states, their 
competition with other correlated ground states and the possibility 
of realizing new topological phases absent in partially filled Landau 
levels, leading to a growing body of theoretical work24–34.

 
Local magnetometry of FCIs
In a Chern insulator, equilibrium currents carried by the chiral edge 
states contribute a topological magnetization

m
CΔ
Φ

Δ = , (1)
0

which represents the change in magnetization across the incompress-
ible bulk gap (here C is the total Chern number, Δ is the thermodynamic 
energy gap and Φ0 is the non-superconducting flux quantum). This 
universal contribution occurs atop a non-universal background of 
spin and orbital magnetic moments arising from the filled electronic 
states in the sample bulk. Here we take advantage of the compatibility 
of zero-magnetic-field FCIs with superconducting sensors to perform 
ultrasensitive magnetometry of the fringe magnetic fields associated 
with spin and orbital magnetism in twisted MoTe2 on the submicron 
scale.

We use an indium nSOT sensor with an effective diameter of approx-
imately 200 nm to map the fringe magnetic field above several twisted 
bilayer MoTe2 samples with a spatial resolution of  about 250 nm. Our 
sensors represent a notable improvement over the state-of-the-art 
sensors35, with a measured sensitivity of 0.2 nT Hz−1/2 (Methods and 
Extended Data Fig. 1) corresponding to 4nΦ Hz−1/2, where Φ0 is the 
superconducting flux quantum. Our samples consist of a twisted bilayer 
MoTe2 active layer encapsulated by hBN dielectrics with graphite top 
and bottom gates (Fig. 1a and Extended Data Fig. 2). Together, the gates 
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allow independent control of the charge carrier density ne and electric 
displacement field D. The graphite gates are transparent to the fringe 
magnetic fields, making magnetic imaging an ideal tool for probing 
the ne and D-tuned phase diagram. We measure the fringe fields either 
in direct current mode by the static magnetic field Bd.c. at fixed n and 
D or in alternating current mode through lock-in readout of the mag-
netic response to modulations applied to the sample and/or top and 
bottom gate voltages. Appropriate choice of the relative magnitude 
and phase of these voltages allows us to measure either the density or 
displacement field derivatives of the fringe field, δB δn≈n

B
n e

∂
∂ e

d.c.  and 
δB δD≈D

B
D

∂
∂

d.c. .
Figure 1b shows Bd.c. measured locally at a height 50 nm above the 

surface of sample A. Magnetic signal is observed in a broad region of the 
phase diagram centred at a low displacement field, consistent with pre-
vious optical and transport measurements3,6,20. We associate this regime 
with a valley-imbalanced ferromagnetic phase. Features previously 
identified as Chern insulators at ν = −1 and ν = −2/3 are visible in this 
image as subtle vertical lines. These become visible in measurements 

of δBn, shown in Fig. 1c. In this contrast mode, the decrease in mag-
netization with increasing chemical potential, characteristic of the 
edge states of Chern insulators with negative C, manifests as a sharp, 
negative (blue) signal that appears at a D-independent density. Simi-
lar phase diagrams were obtained from three samples, as shown in 
Extended Data Fig. 2. The charge carrier density in the tMoTe2 may 
be independently calibrated using magnetic features associated with 
Landau levels in the graphite top gate, and measurements in device C  
confirm that the negative δBn feature associated with the ν = −2/3 state 
occurs at filling factor of ν = 0.66 ± 0.02 (Extended Data Fig. 3). Previous 
measurements of the same device3 have shown quantized Hall resist-
ance and magnetic-field-dependent density consistent with Chern 
insulator states at ν = −1, −2/3 and −3/5 with Chern number C = ν.

Our high-sensitivity local measurement allows us to examine several 
aspects of the phase diagram that have been ambiguous in previous 
studies of the same system. For example, we find that although the 
signal associated with the Chern insulator gap is the strongest at zero 
effective displacement field (Extended Data Fig. 4), it remains finite 

–4.1 –4.0 –3.9 –3.8
–140

–135

–130

–125

–120

–4.1 –4.0 –3.9 –3.8
–100

–50

0

–6 –5 –4 –3 –2 –1

–1.4 –1.2 –1.0 –0.8 –0.6 –0.4

–150

–100

–50

0

50

100

D
 (m

V
 n

m
–1

)

–250 250

v

150–150

G

G

hBN

hBN

hBN

�vb

�vs

vs

vb

θ

MoTe2

a b c

f

–2/3 –3/5 –4/7

–5/9

–0.5

0

0.5

1.0

1.5

ne (1012 cm–2)

ne (1012 cm–2) ne (1012 cm–2)

ne (1012 cm–2)

ne (1012 cm–2)

ne (1012 cm–2)

–300

–200

–100

0

100

200

300

–1.2 –1.0 –0.8 –0.6 –0.4

v

θ = 3.6°

–5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5

θ = 3.76°

d

D
 (m

V
 n

m
–1

)

e

�B
n

(n
T)

–6 –5 –4 –3 –2 –1

–1.4 –1.2 –1.0 –0.8 –0.6 –0.4

–150

–100

–50

0

50

100

D
 (m

V
 n

m
–1

)

–0.1 1.5

Bd.c. (�T)

θ = 3.74°

v

D
 (m

V
 n

m
–1

)

–2.5 –2.0 –1.5

–60

–30

0

70–70

�Bn (nT)

�Bn (nT)

�Bs (nT)

70 –70

�Bn (nT)

�B
n

(n
T)

B
d

.c
. (
�T

)

Fig. 1 | Local magnetometry of FCIs in twisted MoTe2. a, Schematic of the 
experimental geometry, showing an nSOT sensor above a van der Waals 
heterostructure consisting of a dual graphite-gated twisted MoTe2 bilayer with 
a twist angle of 3.7°. Static voltages vs and vb and modulated voltages δvs and δvb 
are applied to the sample and bottom gate as shown, allowing finite-frequency 
readout of the modulated magnetization, shown in overlay for finite δvs and 
δvb = 0 at moiré filling ν = −1 in sample B. b, Static magnetic field Bd.c. measured 
at a single point as a function of charge carrier density ne and applied electric 
displacement field D at 1.6 K in sample A. c, δBn with an applied modulation of 
δn ≈ 3.8 × 1010 cm−2, measured at the same position as the data in b. d, δBn 

measured with δn ≈ 3.8 × 109 cm−2 near the valley polarization transition at 
ν = −1. The sharp signal is indicative of a first-order phase transition at which the 
magnetization vanishes. e, Two traces extracted from d. f, δBn and Bd.c. measured 
at T = 1.6 K, B = 34 mT and D = −29 mV nm−1; for δBn the applied δn ≈ 3 × 1010 cm−2. 
We identify the peak at ν ≈ −1.175 and dip at ν ≈ −0.39 with the boundaries of  
the magnetic phase, and the five minima at ν = −1, −2/3, −3/5, −4/7 and  −5/9 with 
the edge state magnetization of Chern insulator states. Inset, δBn measured 
with an applied modulation δn ≈ 1.9 × 1010 cm−2 in the FCI regime, showing 
D-independent minima at ν = −2/3 and  −3/5 within the valley-polarized regime.
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until the sharp, D-tuned phase transitions to a non-magnetic phase. 
This is confirmed by low-excitation, high-resolution measurements 
of δBn in the vicinity of the phase transition at large negative D shown 
in Fig. 1d, in which an exceptionally sharp feature associated with a 
decrease in magnetization appears at ν = −1. As shown in Fig. 1e, the 
fringe magnetic field associated with this feature is about one order of 
magnitude larger than those associated with the Chern insulator edge 
states at ν = −1, and the large negative signal occurs over a narrow range 
of D and ne. This is expected for a first-order phase transition between a 
valley-imbalanced Chern insulator and a topologically trivial insulator 
with no net magnetization (see additional data in Extended Data Fig. 5). 
We conclude that the first-order phase transition in valley polarization 
occurs before any displacement field-tuned change in band topology, 
and find no evidence for a valley-imbalanced metallic state. Notably, 
although the valley-imbalanced transition is sharp at ν = −1, in which 
the transition occurs between a Chern insulator and a topologically 
trivial correlated insulator3, it is broad in the metallic regimes between 
commensurate filling factors.

Figure 1f shows a high-resolution trace of both Bd.c. and δBn acquired at 
T = 1.6 K, B = 34 mT and D = −29 mV nm−1. In this dataset, we observe oscil-
lations in the local magnetic field, with oscillation minima associated 
with band fillings ν = −1, −2/3, −3/5, −4/7 and −5/9. High-resolution data 
acquired near filling ν = −1/2 as a function of both ne and D (Fig. 1f, inset) 
shows negative δBn features at ν = −2/3 and ν = −3/5, which (mimicking 
the behaviour at ν = −1) persist to the valley polarization transition. We 
associate the negative features with the FCI gaps. However, they are 
accompanied by a positive δBn feature at slightly higher hole density. 
We associate this feature with a non-topological magnetization that 
arises for small doping of the system away from the FCI gaps.

Current theoretical understanding of twisted bilayer MoTe2 suggests 
that the single-particle wave functions of the lowest energy moiré hole 
band in a single valley resemble those of the lowest energy Landau level 
in a two-dimensional electron system, with an emergent composite 
Fermi liquid state at half filling34,36. As in fractional quantum Hall sys-
tems in partially filled Landau levels, then, a sequence of incompressible 
states are observed at fillings p/(2p ± 1) corresponding to the quantum 
oscillations of the composite fermions in the effective magnetic field37, 

which in this case is a completely interaction induced property of the 
magnetic ground state. In this picture, the oscillations we observe in 
Fig. 1f represent de Haas–van Alphen oscillations in the magnetization 
of the composite fermions in the density-tuned emergent magnetic 
field. Our observation of oscillations in the magnetization, m = dF/
dB, where F is the free energy of the system, can be taken as direct evi-
dence for the emergence of topological gaps whose charge density is 
magnetic field dependent.

Quantifying local magnetization
The data in Fig. 1 provide a qualitative picture of the microscopic phase 
diagram. To quantitatively measure the magnetization, we take spatial 
scans of Bd.c. and δBb and use an inversion algorithm to reconstruct 
the static magnetization m and differential magnetization change 
in response to a change in bottom gate voltage, δmb = ∂m/∂vb × δvb 
(Methods and Extended Data Fig. 6). This analysis assumes that mag-
netic moments point only in the out-of-plane direction, an assumption 
that is well justified in strongly spin–orbit-coupled twisted MoTe2. 
Figure 2a–c shows δmb images acquired at applied D = −29 mV nm−1 
and ne corresponding to ν ≈ −1.2, ν ≈ −1 and ν ≈ −2/3, respectively. 
The sample magnetization is inhomogeneous on submicron scales, 
a feature universal to all samples measured. Figure 2d shows the 
ne-dependent total m, obtained by integrating δmb, at several dif-
ferent points in the device shown in Fig. 2c. The static magnetiza-
tion m scales approximately linearly with ne, consistent with a large, 
non-topological orbital magnetization in the ferromagnetic phase 
ranging from 6 to 8 μB per hole, where μB is the Bohr magneton. This 
agrees with estimates for the renormalization of the spin moment 
arising from atomic scale spin–orbit coupling determined from 
band theory and optical experiments38–40. Despite the strong spatial 
inhomogeneity in the internal structure of the ferromagnetic region, 
the entire sample is magnetized, consistent with valley polarization 
being a robust feature of the phase diagram across a range of sample  
parameters (Fig. 2e).

Our quantitative reconstruction of the magnetization may also be 
used to directly determine the Chern insulator gaps using equation (1). 
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Fig. 2 | Reconstructing local magnetization. a–c, Differential magnetization 
δmb reconstructed from spatial maps of δBb ≈ (∂B/∂vb)δvb, with δvb 
corresponding to δn = 2.1 × 1010 cm2 measured at D = −29 mV nm−1 and density 
corresponding to ν ≈ −1.2 (a), ν ≈ −1 (b) and ν ≈ −0.66 (c). Here A0 = 25.9 nm2 is  

the superlattice unit cell area corresponding to a twist angle of 3.7°. d, Total 
out-of-plane magnetization m, calculated by integrating the differential 
magnetization for the spatial positions indicated in c. e, Spatial image of m  
at D = −29 mV nm−1 and ν ≈ −1.1. Scale bar, 500 nm.
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Figure 3a,b shows m in the vicinity of ν = −1 and ν = −2/3, measured 
with higher resolution in ne and real space as compared with the data 
in Fig. 2d. We extract the change in magnetization from the extent of 
the negative-slope regions at each rational filling factor, obtaining 
Δm−1 = 1.6(1) μB u.c.−1 and Δm−2/3 = 0.52(4) μB u.c.−1, where u.c. is the unit 
cell area of moiré lattice. Assuming C = ν (consistent with transport 
measurements of the same sample3), this yields thermodynamic energy 
gaps of −1Δ = 14(1) meV and −2/3Δ = 7.0(5) meV. Similar results were also 
obtained from a second device (Extended Data Fig. 7).

The ranges in the measured gap sizes reflect the standard deviation in 
gap values measured values within a small area of the device (Extended 
Data Fig. 8) rather than experimental uncertainty. Our determination 
of the gap sizes is, however, susceptible to several sources of error 
(Methods).

In a clean quantum Hall system, the thermodynamic gap measures 
the energy to add one electron of charge to the gapped ground state. 
In states in which the excitations carry only an integer charge, this is 
equivalent to the thermal activation gap. In states in which elemen-
tary excitations carry fractional charge e* = e/q. However, the thermal 
activation gap measured in transport is expected to be smaller than 
the thermodynamic gap by a factor of q. In a disorder-free, partially 
filled Landau level with Coulomb interactions, the ratio of the ther-
modynamic gaps at ν = 1 and ν = 1/3 is expected to be approximately 4  
(ref. 41); we find a ratio of approximately 2—that is, the fractional state 
is larger in comparison with the integer state than for a Landau level 
system. Our data also show a notable discrepancy when compared 
with transport measurements. From our measurements, −1Δ corre-
sponds to a thermal activation gap of 150 K, approximately five times 
larger than the 30 K found in transport measurements3. However, 
our measurement of −2/3Δ ≈ 7 meV corresponds to an estimated ther-
mal activation gap of approximately 27 K, roughly consistent with 
transport measurements3. Quantitatively reconciling these obser-
vations requires a detailed theory that accounts for both the band 

effects unique to lattice Chern bands and the contrasting effects of 
disorder on the thermodynamic and transport gaps at integer and  
fractional filling.

As a final point of comparison, the energy scales measured here are 
also similar in scale to thermodynamic gaps measured in monolayer 
graphene fractional quantum Hall systems at B ≈ 14 T in a similar elec-
trostatic geometry42. We note, however, that sample inhomogeneity on 
length scales smaller than that of our local probe may well contribute 
to the lowering of the measured thermodynamic gaps in twisted MoTe2 
relative to the intrinsic gap size. The intrinsic gaps may thus be even 
larger than reported here, consistent with theoretical analyses that find 
MoTe2 bilayers to be equivalent to conventional quantum Hall states 
at magnetic fields as large as 160 T (ref. 36).

Sources of disorder in twisted MoTe2

A key consideration in the interpretation of both transport and bulk 
thermodynamic data in moiré systems is sample disorder. In particular, 
variations in structural parameters can make the same Chern insulator 
state occur at different values of the applied gate voltages in different 
parts of the sample; the sample will then not be uniformly gapped and 
measurements will be strongly dependent on the size and shape of the 
probed region. Macroscopic thermodynamic probes average both 
incompressible and compressible regions, reducing the measured 
thermodynamic gap, whereas transport measurements may see edge 
state transport shorted by bulk conducting regions of the sample.  
The effect of structural disorder is shown in Fig. 4a, which shows δmb 
as a function of the sum of the applied gate voltages to the top and 
bottom gates, V ≡ vt + vb (with D held constant) and the spatial coordi-
nate along a trajectory that runs along the spine of the Hall bar sample. 
The applied gate voltage required to reach the same moiré density 
varies by about 10%. As the Chern insulator states at ν = −1 and ν = −2/3 
occur at fixed, known filling of the moiré superlattice, the voltages at 
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region (Extended Data Fig. 8). The black curve is the average. We find a change 

of Δm−1 = 1.6(1) μB u.c.−1 across ν = −1 gap, corresponding to −1Δ = 14(1) meV  
gap for C = −1. b, Δm for ν = −2/3 (referenced to the centre of the ν = −2/3 gap), 
measured at the same points as in a. Δm−2/3 = 0.52(4) μB u.c.−1, corresponding  
to the thermodynamic gap −2/3Δ = 7.0(5) meV, assuming C = −2/3.
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which they appear allow us to extract the moiré density, defined as 
n =M

a
θ

−1 3
2sin

2
 using the relation c(V−1 − V−2/3) = nM/3, where c is the capa

citance per unit area of the two gates. The effective interlayer twist 
angle θ corresponding to the trajectory in Fig. 4a is plotted in Fig. 4b, 
whereas a map of the effective twist angle throughout the device is 
shown in Fig. 4c. Qualitatively, the twist angle map is reminiscent of 
twisted bilayer graphene7 with regions of approximately uniform twist 
angle separated by domain walls in which the effective twist angle 
changes suddenly.

We also identify additional microscopic sources of disorder.  
Figure 4d shows measurements of δBD as a function of D and V. Apart 
from the twist angle, V−1 and V−2/3 also allow us to determine the thresh-
old voltage associated with the valence band edge, V0 = 3V−2/3 − 2V−1. 
This quantity, which we term the band edge offset, may be determined 
by the band gap of the MoTe2 layers as well as bound electric charges 
(for example, in an impurity band) that must be filled before the first 
itinerant hole populates the MoTe2 valence band. Figure 4e shows a 
spatial map of this quantity, which varies by as much as 1 V across the 
sample. Variations in this parameter are confirmed by chemical poten-
tial sensing measurements that leverage the magnetic response of the 
top graphite gate (see Extended Data Fig. 3). We also find evidence for a 
built-in dipole moment. As shown in Fig. 4d, the ferromagnetic region 
of the phase diagram is symmetric about a fixed but non-zero value  
of D. We associate this displacement field offset D0 with a built-in elec-
tric field, which we find varies spatially on the micron scale as shown 

in Fig. 4f. This electric field may be associated with heterostrain in the 
MoTe2 bilayer, which breaks the layer-inversion symmetry of the ideal-
ized bilayer system at D = 0 mV nm−1 and induces bound dipole charge 
within the layers. Apart from these sources of inhomogeneity, FCI states 
are observed over most of the sample area, suggesting a certain degree 
of robustness of the underlying phenomena.

Conclusion
In conclusion, our results highlight both the promise and challenges 
of twisted homobilayer moiré materials for the study of FCI physics. 
Although the domain of stability of Chern insulator physics in tMoTe2 
is larger than in twisted bilayer graphene17,43, the samples studied here, 
nevertheless, show a large range in the effective filling factor at fixed 
gate voltage. Interferometric detection of quasiparticle statistics44, for 
example, typically requires highly uniform two-dimensional electron 
systems in which the trajectory of the current-carrying edge states can 
be precisely controlled, requiring marked improvements in sample 
homogeneity.
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offset, V0, corresponding to ne  = 0. The D-induced valley-polarization 
transitions, meanwhile, are used to extract the displacement field offset D0.  
e, Spatial map of V0 in device A. f, Spatial map of D0 in device A.
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Methods

Device fabrication
Devices used in this study are fabricated using methods previously 
described in the literature. Transport data from device A was previously 
reported in ref. 3, in which it appears as device D (3.7°). Device B was 
previously studied in ref. 5.

nSOT sensor fabrication and local magnetometry measurements
We perform magnetic imaging with a superconducting quantum inter-
ference device on the apex of a sharp quartz pipette (nSOT)1,2,35. We use 
a quartz micropipette with an inner tube diameter of 0.5 mm to pull a 
sharp tip with an apex diameter of about 150 nm. To form the coarse 
contacts, we deposit gold films by electron beam evaporation at a depo-
sition rate of 2 Å s−1 to produce a thickness of (50 Å Ti/500 Å Au). A shunt 
resistor is further deposited with (80 Å Ti/150 Å Au) within 500 μm from 
the tip apex, resulting in an approximately 10 Ω shunt resistance. We 
next cover the coarse contact pads with a thick layer of indium solder 
to minimize contact resistance and to improve contact with the leaf 
springs used to hold the tip in the holder. We then evaporate indium in a 
custom-built thermal evaporator at three angles to cover two contacts 
at 110° to the apex, with a head-on deposition performed last. The tip 
holder is mounted on a cryostat and protected by radiation shielding 
and LN2 jacketing. It is kept at a temperature of 20 K throughout the 
deposition process. Each evaporation step is preceded by 5–10 min of 
thermalization time during which the evaporator chamber is flooded 
with He exchange gas at a pressure of 5 × 10−3 mbar. Typical thicknesses 
for the indium depositions are 350 Å for the side contacts and 300 Å 
for the head-on deposition for 150 nm tip diameter, with a 1 Å s−1 depo-
sition rate for all steps. These parameters enable a highly uniform, 
low-grain-size film to form near the tip apex (Extended Data Fig. 1a).

The magnetic field at the tip apex is read out by measuring the tip 
in a quasi-voltage bias configuration using a series SQUID array ampli-
fier (SSAA)45. To calibrate the sensitivity of the nSOT, we measure the 
frequency domain output of the SSAA amplifiers at the nSOT oper-
ating point. The nSOT voltage is converted to magnetic field by the 
transfer function, which we measure by monitoring the d.c. output 
voltage response to  about 20 μT step in the magnetic field. This gives 
the transfer function in units of V T−1. As shown in Extended Data Fig. 1b, 
our nSOT sensors show a maximum sensitivity (typically near a flux 
bias point of Φ0/2) of about 300 pT Hz−1/2 with an effective diameter 
of 200 nm, corresponding to about 6nΦ0 Hz−1/2.

Magnetization reconstruction
To reconstruct the magnetization, we follow standard Fourier domain 
techniques (see, for example, the supplementary information of 
ref. 46). The magnetization shown in the main text is computed by 
performing zero padding of the measured magnetic field map before 
Fourier transforms are computed. This constitutes an unphysical 
assumption about magnetic fields outside the measurement area that 
were not constrained experimentally—that is, that they vanish—and 
constitutes a source of systematic error.

To address this source of error in m, we analyse the influence of the 
choice of padding on the reconstructed magnetization (Extended 
Data Fig. 9). Our base model assumes zero magnetic field outside the 
region in which the fields are measured. We then compare this to two 
alternative assumptions: first, we replicate the signal between the 
contacts on the left and right sides of the frame, extending the finite 
magnetic fields observed at the boundary into a region 500 nm wide. 
As a second comparative model, we extend the fields on the edge of this 
region by an additional 500 nm above and below the measured region. 
As shown in Extended Data Fig. 9, the reconstructed magnetization 
differs from the base model by  about 10% in the neighbourhood of 
both ν = −1 and −2/3, with comparable or smaller effects on the inferred  
gap size.

Magnetization reconstruction error analysis
Although some uncertainty is contributed by the calibration of our mag-
netometer (which we measure to a reproducibility of approximately 5%), 
systematic errors are probably more substantial. One source of error 
arises from the fact that our measurement window does not capture the 
entire region of the physical magnetic field. Because magnetic dipole 
fields are long-range, the magnetic inversion algorithm takes as an input 
both the field in the measured region and an assumed field outside the 
measured region. In the data shown in the main text, this field is assumed 
to be zero. To estimate the magnitude of the error resulting from this 
assumption, we compare m calculated using zero padding to calcula-
tions done with different physically motivated padding assumptions 
(Methods and Extended Data Fig. 9). Across several models, we find 
that m is consistent to within 10%. A second source of uncertainty is 
conceptual and arises from our empirical definition of the thermody-
namic gap, for which we assume that the region of the steepest negative 
slope in m arises entirely from the chiral edge states. Although this is 
known to be true in the clean limit for fractional Hall states in partially 
filled Landau levels, theoretical calculations accounting for the effects 
of finite disorder and inhomogeneous Berry curvature are not available 
to justify this empirical definition of the thermodynamic energy gap.

Measurement conditions for presented data
All voltages indicated denote root mean square values. The external 
magnetic field was kept constant at 34 mT.

Figure 1a and Extended Data Figs. 2e and 6: transfer function =  
100 V T−1; height = 150 nm; δvs = 20 mV; δn = 2.7 × 1010 cm−2; 
δD = 0.5 mV nm−1; frequency = 511.777 Hz.

Figure 1b,c and Extended Data Figs. 2d, 4 and 5: transfer func-
tion = 250 V T−1; height = 100 nm; δvt = 40.1 mV; δvb = 35.8 mV; 
δn = 3.8 × 1010 cm−2; frequency = 151.777 Hz.

Figure 1d,e: transfer function = 500 V T−1; height = 50 nm; δvt = 4.1 mV; 
δvb = 3.6 mV; δn = 3.8 × 109 cm−2; frequency = 511.777 Hz.

Figure 1f: transfer function = 500 V T−1; height = 50 nm; δvt = 40.1 mV; 
δvb = 35.8 mV; δn = 3 × 1010 cm−2; frequency = 90.777 Hz.

Figure 1f (inset): transfer function = 500 V T−1; height = 50 nm; 
δvt = 20 mV; δvb = 18 mV; δn = 1.9 × 1010 cm−2; frequency = 90.777 Hz.

Figures 2 and 4a–c,e: transfer function = 280 V T−1; height = 190 nm; 
δvb = 40 mV; δn = 2.1 × 1010 cm−2; δD = 2 mV nm−1; frequency = 511.777 Hz.

Figure 3a: transfer function = 500 V T−1; height = 100 nm; δvs = 5 mV; 
δn = 5 × 109 cm−2; frequency = 151.777 Hz.

Figure 3b: transfer function = 500 V T−1; height = 100 nm; δvs = 20 mV; 
δn = 2.1 × 1010 cm−2; δD = 2 mV nm−1; frequency = 151.777 Hz.

Figure 4d: transfer function = 500 V T−1; height = 50 nm; δvt = 60.6 mV; 
δvb = −53 mV; δD = 5 mV nm−1; frequency = 1151.777 Hz.

Figure 4f: transfer function = 500 V T−1; height = 190 nm; δvs = 50 mV; 
δn = 5 × 1010 cm−2; frequency = 511.777 Hz.

Extended Data Fig. 2f: transfer function = 100 V T−1; height = 180 nm; 
δvs = 28 mV; δn = 4.2 × 1010 cm−2; frequency = 251.777 Hz.

Extended Data Fig. 3: transfer function = 500 V T−1; height = 100 nm; 
δvb = 28 mV; δn = 4.2 × 1010 cm−2; frequency = 251.777 Hz.

Data availability
All data are available at Dryad (https://doi.org/10.5061/dryad. 
0zpc86769) (ref. 47).

Code availability
All the software supporting the data processing pipeline is available at 
Zenodo (https://doi.org/10.5281/zenodo.13621665) (ref. 48).
 

45.	 Huber, M. E. et al. DC SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. 
Appl. Supercond. 11, 1251–1256 (2001).

https://doi.org/10.5061/dryad.0zpc86769
https://doi.org/10.5061/dryad.0zpc86769
https://doi.org/10.5281/zenodo.13621665


46.	 Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 
372, 1323–1327 (2021).

47.	 Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. 
Dryad https://doi.org/10.5061/dryad.0zpc86769 (2024).

48.	 Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. 
Zenodo https://doi.org/10.5281/zenodo.13621665 (2024).

Acknowledgements We thank L. Fu, T. Wang and M. Zaletel for the discussions. Work at UCSB 
was primarily supported by the Army Research Office under award no. W911NF-20-2-0166.  
E.R. and O.S. acknowledge support by the National Science Foundation through Enabling 
Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, 
Engineering and Information (Q-AMASE-i) award no. DMR-1906325. A.F.Y. acknowledges 
additional support from the Gordon and Betty Moore Foundation EPIQS programme under 
award no. GBMF9471. A.F.Y. also acknowledges the support of the W. M. Keck Foundation under 
award no. SB190132 for the development of SQUID microscopy techniques. Work at the 
University of Washington was supported by DoE BES under award no. DE-SC0018171. Device 
fabrication used the facilities and instrumentation supported by NSF MRSEC DMR-230879. 
K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the 

MEXT, Japan (grant no. JPMXP0112101001) and JSPS KAKENHI (grant nos. 19H05790, 20H00354 
and 21H05233).

Author contributions E.R., A.F.Y. and X.X. initiated the experiment. H.P., J.C. and E.A. prepared 
the samples. K.W. and T.T. grew the hBN crystals. E.R. and C.Z. performed the measurements 
and data analysis. O.S., T.A., G.B. and S.S. prepared the nanoSQUID-on-tip. E.R., T.A. and O.S. 
developed the nanoSQUID microscope. M.E.H. provided Series SQUID Array Amplifiers for the 
nSOT readout. E.R. and A.F.Y. wrote the paper with input from all other authors.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-08153-x.
Correspondence and requests for materials should be addressed to Andrea F. Young.
Peer review information Nature thanks Yonglong Xie and the other, anonymous, reviewer(s) 
for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5061/dryad.0zpc86769
https://doi.org/10.5281/zenodo.13621665
https://doi.org/10.1038/s41586-024-08153-x
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | SQUID sensitivity. (a) SEM image of the nSOT sensor 
used in most of the current work, highlighting the superconducting weak links 
on the tip apex. (b) Typical sensitivity of the nSOT as a function of the frequency. 

1/f noise dominates at frequencies below 1 kHz and decays below the 
instrumentation noise floor above 2 kHz allowing for ultra-high magnetic  
field sensitivity well below 1nT/ Hz.



Extended Data Fig. 2 | Devices. (a) Optical micrograph of Device A 
(corresponding to device D(3.7°) from ref. 3); (b) Device B (corresponding  
to device from ref. 5); (c) Device C. Scale bar is 10 μm; (d) δBn phase diagram 

measured in Device A, (e) Device B, and (f) device C. All devices show signals near 
ν = − 1 and ν = − 2/3 characteristic of Chern insulators.
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Extended Data Fig. 3 | Chemical potential sensing and band edge offset.  
(a) δBb for device C as a function of V ≡ vt + vb and vt − vb in the configuration with 
the sample grounded. The phase diagram exhibits both MoTe2 features described 
in the main text as well as features associated with Landau levels of the top 
graphite gate. The band edge is visible as a kink in the constant top gate carrier 
density trajectory, marked as a dashed blue line, with the offset V0 corresponding 
to the voltage that separates the regime where tMoTe2 is insulating and the 
regime where it is hole-doped. The value obtained using this method agrees 

with that described in the main text using the ν = − 1 and ν = − 2/3 gap densities. 
(b) Schematic of the electric field in the hole-doped tMoTe2 regime. Here 
modulations of the bottom gate produce electric fields δEb which are screened 
by the tMoTe2 layer. In this regime, the top gate density nt is tuned solely by  
Vt, and trajectories of constant nt follow slope − 1 on the diagram in panel a.  
(c) Schematic of the electric field in the insulating tMoTe2 regime. Here δEb 
penetrates the tMoTe2, so that nt is tuned by both vt and vb. In this regime, 
constant-nt lines have slope 0 in panel a.



Extended Data Fig. 4 | Chern insulator signal dependence on the 
displacement field. (a) Signal δBn as a function of charge carrier density and 
electric displacement field; (b) Minimum value of δBn in a window around ν = − 1 
gap along displacement field axis. The positions of the values are shown on a. 

The signal from the gap decays slightly as a function of displacement field, 
remaining finite up to the first order phase transition induced by layer 
polarization.
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Extended Data Fig. 5 | First order valley polarization transition at ν = − 1.  
(a) δBn near the valley polarization transition in the vicinity of ν = − 1 at point “a” 
in panel c. (b) δBn measured at point “b”, approximately 200 nm away from 
point “a”. Both panel a and b show a sharp first-order-like signal on the boundary 
of the ν = − 1 Chern insulator peak, but these transitions appear at slightly 
different values of D and ne. (c) Reconstructed magnetization in the point 

indicated by the “×” on panels a and b. The measured m at position “a” is 
consistent with zero to within our experimental error, and we find no evidence 
for non-zero net magnetization in the high ∣D∣ phases. The non-zero signal 
observed in δBn at that position is associated with fringe AC magnetic fields 
arising from areas where where the “×” position in parameter space corresponds 
to the valley transition.



Extended Data Fig. 6 | Magnetization reconstruction. (a) Schematic of 
analysis to reconstruct the magnetization. We measure the local magnetic field 
δBs in response to a modulated sample voltage δvs; data is from Device B, with 
scale bar of 2 μm. An FFT-based algorithm (see Methods) can be used to directly 
compute the corresponding δms, which may then be integrated over vs to 
obtain m. Alternatively, the δBs signal may be integrated over Vs to obtain B, 

which can in some cases be compared to the directly measured BDC; this can 
them be processed by the FFT algorithm to produce the same m. (b) Comparison 
of the measured δBs (orange) and the reconstructed δms (blue) as a function of 
the filling factor ν at a single given spatial location. While qualitative features 
are preserved, but of course quantitative features differ.
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Extended Data Fig. 7 | Gap reconstruction in device C. (a) δBn with an applied 
modulation of δn ≈ 1.5 × 1010 cm−2; (b) Spatial distribution of δmb in the vicinity 
of ν = − 1 gap. The dashed line outlines the region of the device in the ν = − 1 gap. 
Scale bar is 500 nm; (c) Spatial distribution of δmb in the vicinity of ν = − 2/3 gap. 
The dashed line outlines the region of the device in the ν = − 2/3 gap;  

(d) Reconstructed magnetization drop of Δm = 1.3μB/u. c. corresponding to the 
thermodynamic gap −1Δ = 13 meV across the ν = − 1 gap in the point circled on b; 
(e) Reconstructed magnetization drop of Δm = 0.3μB/u. c. corresponding to the 
thermodynamic gap −2/3Δ = 5 meV across the ν = − 2/3 gap in the point circled on c.



Extended Data Fig. 8 | Magnetization near ν = − 1 and ν = − 2/3. (a) Spatial 
image corresponding to Δm = m(ne = 3.8 × 1012 cm−2) − m(ne = 3.6 × 1012 cm−2)  
near filling ν = − 1. Scale bar is 500 nm; (b) Spatial image corresponding to 
m(ne = 2.55 × 1012 cm−2) − m(ne = 2.35 × 1012 cm−2), near filling ν = − 2/3 in the same 
region as panel a. Scale bar is 500 nm; (c) Δm(ne) (referenced to the center of the 
local ν = − 1 gap) measured at 25 points within the red square in panel a. The 
black curve is the average. Red stars indicate the charge carrier densities used 
to determine spatial distribution of Δm in panel a; (d) Δm(ne) (referenced to the 
center of the local ν = − 2/3 gap) measured at 25 points within the red square in 

panel b. The black curve is the average. Red stars indicate the charge carrier 
densities used to determine spatial distribution of Δm in panel b; (e) Δm(ne) 
(referenced to the center of the local ν = − 1 gap) measured at 25 points within 
the green square in panel a. The black curve is the average. Red stars indicate 
the charge carrier densities used to determine spatial distribution of Δm in 
panel a; (f) Δm(ne) (referenced to the center of the local ν = − 2/3 gap) measured 
at 25 points within the green square in panel b. The black curve is the average. 
Red stars indicate the charge carrier densities used to determine spatial 
distribution of Δm in panel b.



Article

Extended Data Fig. 9 | Estimating systematic error due to padding 
assumptions. (a) Magnetization change Δm (referenced to the center of the  
ν = − 1 gap) in the same location as that shown in Fig. 3 for the three different 
padding assumptions described in panels c, d, and e. (b) Magnetization change 
Δm (referenced to the center of the ν = − 2/3 gap) in the same location as that 
shown in Fig. 3 for the three different padding assumptions described in panels 
f, g, and h. (c) Top row: measured BDC with zero padding assumption across the 
ν = − 1 gap. Scale bar is 600 nm. Left and right panels correspond to ne values 
shown by dotted lines in panel a. Bottom row: reconstructed magnetization in 
the measured range at the same positions, with the zero padding assumption. 
The magnetization change across the gap is 1.61 μB/u.c. Scale bar is 200 nm.  
(d) Same as panel c, except with the padding assumption that data extends to 

the right and left of measured area as shown. The magnetization change across 
the gap is 1.66 μB/u.c. (e)Same as panels c and d but with additional padding as 
shown. Magnetization change across the gap is 1.57 μB/u.c. (f) Top row: 
measured BDC with zero padding assumption across the ν = − 2/3 gap. Left and 
right panels correspond to ne values shown by dotted lines in panel b. Bottom 
row: reconstructed magnetization in the measured range at the same 
positions, with the zero padding assumption. The magnetization change 
across the gap is 0.52 μB/u.c. (g) Same as panel f, with the same padding 
assumption as panel d. Magnetization change across the gap is 0.52 μB/u.c.;  
(h) Same as panels f-g but with the same padding assumption as in panel e. 
Magnetization change across the gap is 0.58 μB/u.c.
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