2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Safe Whole-Body Task Space Control for Humanoid Robots

Victor C. Paredes' and Ayonga Hereid'

Abstract— Complex robotic systems require whole-body con-
trollers to handle contact interactions, handle closed kinematic
chains, and track task-space control objectives. However, for
many applications, safety-critical controllers are essential to
steer away from undesired robot configurations and prevent
unsafe behaviors. A prime example is legged robotics, where
we can have tasks such as balance control, regulation of
torso orientation, and, most importantly, walking. As the
coordination of multi-body systems is non-trivial, following a
combination of those tasks might lead to configurations that
are deemed dangerous, such as stepping on its support foot
during walking, leaning the torso excessively, or producing
excessive centroidal momentum, resulting in non-human-like
walking. To address these challenges, we propose a formulation
of an inverse dynamics control enhanced with control barrier
functions that allow general higher-order relative degree safe
sets for robotic systems with numerous degrees of freedom.
Our approach utilizes a quadratic program that respects closed
kinematic chains, minimizes the control objectives, and imposes
desired constraints on the Zero Moment Point, friction cone,
and torque. More importantly, it also ensures the forward
invariance of a general user-defined high Relative-Degree safety
set. We demonstrate the effectiveness of our method by applying
it to the 3D biped robot Digit, both in simulation and with
hardware experiments.

I. INTRODUCTION

Humanoid robots have emerged as a highly promising
platform for performing complex tasks in human-centered
environments due to their anthropomorphic structure. With
dedicated legs and arms, these robots are well-equipped
to walk and manipulate objects simultaneously. However,
effectively coordinating the movements of legs and arms
safely and stably is a challenging task. The dynamic coupling
between these components makes independent control prone
to instability and subpar performance. Therefore, developing
a holistic controller that can safely coordinate the entire
body is necessary to accomplish these tasks while respecting
the robot’s dynamics. Safety considerations are of utmost
importance when deploying complex robots in real-world
scenarios. Even if a desired task can be controlled, not taking
into account safety measures might generate unsatisfactory
performance. For instance, a non-safe task-space controller
may successfully track a desired swing foot pose of a
humanoid robot. However, it may fail to check if any leg
joints are approaching mechanical limits or the robot is at
risk of self-collision. By incorporating a safety layer, the
controller explicitly verifies and enforces control solutions
prioritizing safety.
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Fig. 1. The humanoid robot Digit performs different tasks in-
volving CoM motion, torso orientation, and arm movements
using our proposed safe whole body task space control.

Safety-critical control systems have been extensively stud-
ied using barrier certificates [1], [2], defined by state-
dependent sets described by a function that must remain
positive. A control algorithm can ensure this safe set remains
invariant by appropriately restricting the controller action.
There has been active research using the concept of Control
Barrier Functions (CBFs) within the context of Lyapunov
Theory [3] and optimization [4]-[6] to express safety certifi-
cates. Notably, the formulation of High-Order Control Bar-
rier Function [6] (HOCBF) and Exponential Control Barrier
Functions [5] (ECBF) has been a significant advancement,
as it allows safety constraints to have arbitrarily high relative
degrees, making it less restrictive for real-world applications
as it enables to go beyond geometrical constraints [7], [8].
Note that ECBFs are a particular case of ECBFs; moreover,
both formulations are suitable for use in an optimization-
based controller.

Task-space control has been extensively studied using both
model-based inverse dynamics [9] and model-free inverse
kinematics approaches [10]. Inverse dynamics offers the
advantage of considering model constraints such as contact
constraints, friction cone, zero moment point, and torque
limits. However, controlling bipedal systems presents chal-
lenges due to their intrinsic under-actuation and floating
base. Nakanishi et al. [11] proposed a closed-form control
solution that estimates contact forces to obtain the con-
strained dynamics and the Jacobian projection of the task
space objectives. An improved version of this controller [12]
utilizes orthogonal decomposition to work in a reduced
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dimensional space and avoids the need for estimating contact
forces. However, these formulations do not explicitly incor-
porate contact wrenches, limiting their ability to introduce
additional relevant constraints such as the zero moment point
or friction.

To effectively address these constraints, it is crucial to
explicitly consider the contact wrenches in an inverse dy-
namics controller that leverages the dynamics of user-defined
general task outputs. Herzog et al. [13] proposed a quadratic
programming (QP) formulation that incorporates the robot
dynamics and treats the contact wrenches as decision vari-
ables. This QP-based approach offers advantages in reducing
the complexity of matrix operations and enabling the han-
dling of multiple constraints. Building upon this foundation,
Reher et al. [14] introduced a similar QP optimization
structure to construct a Control Lyapunov Function (CLF)
that respects constraints such as the zero moment point
(ZMP), contact, and friction cone. Instead of using the robot
torques as the decision variable, it used a decision variable
that utilized acceleration, torque, and constraint wrenches,
providing enhanced control capabilities over these variables
and avoiding solving the constrained dynamics explicitly.
However, the inverse dynamics formulations in these works
do not consider safety. The work of [8] provides a formula-
tion of whole-body control with a Control Barrier Function
(CBF) designed explicitly for position-based objectives. On
the other hand, Nguyen et al. [15], [16] presented a QP-based
controller incorporating an ECBF. This formulation extends
the CBF by considering general state-space-based safety sets
with arbitrary relative degrees. They employed a CLF-based
controller that explicitly constructs safety certificates in both
cases. Their results show applications to constrain footstep
placements on stepping stones and limit the velocity to avoid
collisions on cruise control. However, their optimization
formulation utilized only motor torques as decision variables,
resulting in increased numerical complexity due to the inver-
sion of the mass matrix. Nevertheless, the formulation does
not consider friction or ZMP constraints important for more
realistic implementations. To overcome this challenge, we
extend the work of Reher et al. [14] by reformulating the
barrier functions as an acceleration-based certificate instead
of a torque-based certificate. The safety certificates can be
based on ECBF or more generally HOCBF; however, ECBFs
are considered for simplicity. This novel formulation avoids
explicit dependence on torques and effectively alleviates the
numerical cost associated with the QP formulation.

The main contribution of this paper is the development
of a novel Quadratic-Programming (QP)-based safe inverse
dynamics controller that offers several key advantages:

1) Avoidance of mass matrix inversions: Building upon
previous work on inverse dynamic formulations, we
leverage a numerically efficient program that explicitly
considers joint accelerations, torques, and wrenches as
decision variables. This approach eliminates the need
for computationally expensive mass matrix inversions.
Handling of kinematics constraints: Our QP-based
inverse dynamics formulation enables the straightfor-
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Fig. 2. A humanoid robot with floating base is described by
its internal body coordinates g, and its floating coordinates
q. as shown in the left. Furthermore, this robot experiences
contact wrenches and forces due to the closed chain mech-
anisms as seen in the right.

ward incorporation of closed-loop kinematics and other
essential constraints, such as contacts, zero moment
point (ZMP), and the friction cone. This flexibility
allows for more accurate and realistic modeling of the
robot’s behavior.

Enforcement of safety through acceleration-based
exponential control barrier functions (A-ECBFs):
To ensure the safety of the system, we construct an
exponential control barrier function that guarantees the
invariant behavior of a predefined safe set. By formu-
lating this safety certificate as an inequality constraint
dependent solely on joint accelerations, we exploit the
inherent structure of the controller formulation.
Application of safe control actions to a 3D hu-
manoid robot: We demonstrate the performance and
effectiveness of our controller through extensive sim-
ulation and hardware experiments on a 3D humanoid
robot. These experiments validate the controller’s abil-
ity to achieve desired tasks while maintaining safety.

3)

4)

The remainder of the paper is organized as follows.
Section II presents the mathematical modeling of humanoid
robots with floating base coordinates, contacts, closed-
loop mechanisms, and critical dynamics constraints. In
Section III, we present a task-space inverse dynamics control
algorithm that is expressed as a quadratic program, followed
by formulating an Acceleration-based Exponential Control
Barrier Function that can be naturally included in the in-
verse dynamics formulation. In Section IV, we showcase the
effectiveness of our whole body controller and its safety
enforcement with various tasks for the 3D bipedal robot,
Digit (Fig. 1). This section provides empirical evidence of
the controller’s performance and demonstrates its ability to
handle complex tasks.
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Fig. 3. The closed loop kinematics on the right can be
expressed as the open kinematic chain on the left with
a holonomic constraint that enforces n4p constant. This
constraint will relate the actuated torque 7; to the passive
joint torque 4.

II. HUMANOID DYNAMICS WITH CONSTRAINTS

The kinematics of humanoid robots can be described by
a floating frame fixed to a base point, introducing respective
floating coordinates g, € SE(3), as shown in Fig. 2, and the
body coordinates describe the relative motion of its joints.
For a robot with n;, joints, we represent body coordinates as
qp € R™. The configuration space Q of a legged robot with
a floating base, such as Digit as shown in Fig. 2, then can
be represented by ¢ =[q,,q)]" € 0 =R" with n=n;,+6
being the total degrees of freedom of the robot. The dynamics
of the multi-body system can be described by the Euler
Lagrangian equations of motion [17]:
M(q)§+C(g:9)q+G(q) = Bu+J(q) A, (1)
where M(q) € R™", C(q,q) € R, and G(q) € R" are
inertia matrix, Coriolis matrix, and gravity vector, respec-
tively, B € R"*™ is the torque distribution matrix that maps
the torque of the m actuators u € U C R™, AL € R™ is
the collection of constraint wrenches or external forces,
and J(g) € R"™*" its respective Jacobian matrix. Constraint
wrenches are due to kinematic closed-chains, or contacts, as
illustrated in Fig. 2 and discussed below.

A. Closed kinematic chain constraints

A closed kinematic chain, such as the four-bar linkage
shown in Fig. 3, is popular in legged robot designs. How-
ever, many existing controllers do not explicitly address
constraints associated with closed-chain kinematics [18]. To
model a closed kinematic chain without resolving the con-
strained dynamics, we can virtually disconnect each closing
link and use their lengths given by n(q) € R,Vk € Qpain
(e.g., ngp in Fig. 3) to construct appropriate holonomic
constraints that enforce iix(q,q,q) = 0,Vk € Qepgin [19]. The
inertial effects of the connecting rods are typically neglected
as they have a much smaller mass than other links. The
collection of such constraints generates,

Jchain(‘])q""jchain(%qm =0 2
where, J.4in(g) is the jacobian of the collection of the closed
kinematic constraints.
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B. Contact constraints

The contact constraints are included whenever the robot
must preserve contact with a point or a surface. While
such ground contacts are unilateral, they can be modeled
as holonomic constraints with additional inequality con-
straints describing the limitations imposed by friction and
the direction of the normal force. Similarly to the closed
kinematic constraints, for a set of contacts ¢ € Q.,,;, and
their respective pose 7.(q) € R®, we enforce its invariance
through:

Jeont (Q)q"_jcont(%‘pq =0 3)

Additionally, to impose friction constraints and avoid slip-
ping we use the pyramidal friction cone approximation [17].
For each contact wrench we can decompose it into forces
and moments as A = [Af, A A% Ao g, A, ]T indexed

- fx2 Y fyr M Pmxo Prmy s “mz eXe
by ¢ € Q.. We impose the following constraints that can

be expressed in linear form,

4 < 5 @
A, < %A};, )
AL >0, (6)
by incorporating a soft-finger contact type:
e | < YAf, %)
where ¥ is the torsional friction coefficient and AJ,, is the

rotational moment component of a wrench along the z-axis
of the contact frame.

Additional Zero Moment Point (ZMP) constraints should
be enforced to prevent tipping over edges [17], [20] during
fully actuated operation, i.e., when the support ankle is not
passive. The typical contact cases are single and double
support configurations, as seen in Fig. 4. For a series of
contacts, we need to project each wrench into a unique
frame, for instance, the world frame with an associated global
wrench A". We can achieve this by applying the adjoint
transformation (represented by Ad,) to every single contact
wrench to obtain the equivalent contact wrench expressed in
the world frame:

Ne
A=Y A

i=1
where g._,,, is the homogeneous transformation matrix of

the world frame w.r.t. the contact frame and ¢ € Q.-

The ZMP is computed as p,, = A /AR, pimp =
—Apc/Af, and must be inside the support polygon P de-
fined by the contact geometry, as shown in Fig. 4, i.e.

[p“Z“m " pﬁm,,] € P. In the simplest case P can be represented
as a rectangle and the ZMP constraints can be written as:

dg, ., (9)Af

8c—w i

Alg)A¢ (8)

Lmin )L}l; < ly‘;,v) < Lmaxl;; (9)
Wmaxxf}é S )‘;pfx S Wminl}vz (10)

Since the global wrench A" is linearly related to the contact
wrenches A¢ as described by (8), the constraints in (9) and
(10) are also linear in A.
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Fig. 4. Typical cases: One contact point on the left and two
on the right; in both cases, the wrenches are projected into
AY for ZMP computations.

III. SAFE TASK SPACE WHOLE BODY CONTROL VIA
CBF-QP

This section presents an inverse dynamics controller based
on quadratic programming (QP) that incorporates holonomic
constraints arising from contacts and closed chain mech-
anisms. This approach avoids the need for matrix inver-
sions and the calculation of constrained dynamics, pro-
viding numerical benefits. Subsequently, we introduce our
paper’s main contribution: applying a safety certificate as
an Exponential Control Barrier Function (ECBF) to ensure
the invariance of a user-defined safe set. Specifically, we
formulate an acceleration-based ECBF compatible with the
whole-body inverse dynamics control, as shown in Fig. 5.

A. Task Space Inverse dynamics

We consider task space outputs as general positions and
orientations of user-defined frames. These outputs can spec-
ify the robot’s desired behavior, such as the center of mass
(CoM) position and orientation and the end-effector poses
of the robot’s arms and legs. For simplicity, we present an
output that is of relative degree two, given as:

¥(t,q) :=y"(q) —y"(0), (1)
where, y*(q),y%(t) € R are the actual and desired outputs
respectively. Since the task considers positions and orienta-
tions, the outputs are relative degree two. In consequence,

3(t.4.4:9) = K(g. 94+ I(@)g =) (12)
where Jy(q) € R™*" is the jacobian of y*(¢q). Moreover, a
relative degree two output will exhibit dependency in the
control input u; however, to avoid solving the dynamics, we
can leave it in terms of the joint acceleration ¢ and implicitly
use the robot dynamics to relate u.

We formulate the inverse dynamics problem as a quadratic
program using the decision variable X := [¢7,ul AT]T.
Hence, the implicit constrained robot dynamics in (1) - (3)
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can be rewritten as:

M(g) —B —J(q)"]X =—Clq,9)4—G(q),  (13)
Deq(‘])
[J(g) 0 0]X=—J(q,9)q, (14)
N——’

Ceq (’1)

O

ics, we enforce a linear output dynamics j(¢,q,q,§) =
—K,y(t,q) — Kay(t,q,¢), which holds true whenever,

Q)i +Jy(q,4)q = —Kpy(t,q) — Kay(t,q,4) +5(t) (15)

y*

]. To obtain stable output dynam-

where, K,,K; € R™ ™ are positive definite gain matrices. We
formulate the QP-based inverse dynamics controller with the
optimal decision variable X* as,

X —argmmHJ (@)i+Jy(q.9)a—y* |P+X"TX  (16)
Dy(q)X = —C(q,4) — G(q)
Ceq(q9)X = —J(q)q
Alg)XeXx

where X captures the domain constraints such as torque
limits and also friction cone, and ZMP constraints expressed
on (4) - (7), (9) and (10). We use the regularization term
XTTX, with T’ > 0 with a weight represented by a diagonal
matrix, to avoid high-frequency changes in the optimization
variables.

B. Exponential control barrier functions

To enhance the capabilities of the inverse dynamics con-
trol, we incorporate safety through the use of Exponential
Control Barrier Functions (ECBF) [5], which are a par-
ticular case of the High-Order Control Barrier Function
(HOCBF) [6]. They ensure the forward invariance of a user-
defined safe set. Moreover, we will utilize an acceleration-
based formulation of the ECBF (A-ECBF), which uses the
acceleration ¢ to maintain the inverse dynamics approach’s
numerical benefits by avoiding the explicit analytic solution
of the constrained dynamics. For our formulation, we do
not require analytically constrained dynamics. However, we
include it here to illustrate the standard derivation of the
ECBF and highlight our equivalent approach, A-ECBF, that
requires no explicit dependency on the control variable u.

1) Review of ECBFs: Consider the state x = [qT,q'T]T €
D C TQ, where D is an open set of admissible states. By
solving analytically the constrained dynamics we can obtain
the following state-space representation,

X = f(x)+g(x)u
g(x)

a7

where, f(x) € R?",
can be defined as,

€ R?™ and u € R™. A safe region

C:={xeD:h(x) >0}, (18)
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where h: D — R is, without loss of generality, assumed to
be a smooth function with relative degree ry, i.e.,

R0 (x,u) = LPh(x) + LY

i h(x)u.

19)

where, L}”h(x), LgL}"_lh(x) € R are the respective Lie
derivatives of h(x). Moreover, LgL;”_lh(x) is non-zero by
the definition of the relative degree. We stack the lower
derivatives to form the following state,

oo
Y (x
Np(x) = . =

A1) (x) L h(x)

(20)

and construct a linear representation of the dynamics of A(x)
through the mapping L h(x) +LgL}h71h(x)u =V,

=g o/ m+[s] v @n
—— =~
£ Gp
hx)=[1 0 0 0] s 22)
Cp

Next, we need a constraint on Vj, such that 2(x) > 0. Applying
the feedback v, = —Ku1);, the trajectory becomes h(x) =
Che(ﬂ;*GbKa)lnh(xO)'

By the comparison lemma, setting v, > —Ky1);, implies
h(x(t)) > CpelFo=GoKali, (xq).

Definition 1 (Exponential Control Barrier Function [5]).
Consider the set C C D defined in (18) as the super-level set
of a ry times continuously differentiable function h: D — R.
Then, h is an exponential control barrier function (ECBF) if
there exists Ky € R such that,

sup |LPh(x) + LLY ™ h(x)u| > —Kqmp(x)
uclU - °

(23)

Vx € Int(C) originates h(x(t)) > CpelFo=CGeKat)q, (x0) > 0 for
h(xp) > 0.

Such K, can be determined by considering the feedback
Vi, = —KqMp- Its corresponding closed loop system 1), =
(Fy — GpKq)Np has r, roots that are dependent on the
selection of K, and denoted by p, = —[p1, ..., p,,]. We will
construct a family of functions B; : D — R such that,

Bo(x) = h(x)
Bi(x) = Bi_1(x) + piBi1 (%),

(24)

Vi=1,..,r 25)

Note that if B;(x) > 0 then B;_;(x) > 0 whenever p; > 0,
Bi—1(x0) > 0 and B;(xp) > 0, where xo is the initial state of
the system at # = 0. This inductive constraint will terminate
at Bo(x) = h(x) which is the barrier function of the safe set
C. This is the basis for the next theorem that is proved in [5].

Theorem 1. [5] Consider the closed loop system 7, = (Fp —
GpKo)Ny. If Ky is designed to have roots py = —[p1, ..., pr,]
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to be,

Bi—1(xo0)
Bi—1(xo0)’

Then, the constraint v, > —KqM);, renders h(x) an ECBF.

pi >0, pi > — Vi=1,..,r (26)

2) Formulation of A-ECBFs: The ECBF requires to com-
pute the Lie Derivatives of h(x) considering the constrained
dynamics in (17) to have a mapping to u. However, to
avoid explicitly solving the constrained dynamics, we can
directly use the accelerations ¢ that will appear during the
partial derivative operation in A(x) without considering the
system dynamics. Instead, we expect the quadratic program
to implicitly solve the mapping of § to u through the robot
dynamics. In other words, there exists an inverse dynamics
mapping that relates accelerations and torques such that
u=1D(q,q,4) = M{+ H for some M € R"™" and H € R".
Therefore can rewrite (19) as

27)
(28)

W) (x,§) = LPh(x) + LeL? ™ h(x) (M + H)
W (x,G) = F(x) +G(x)g

By choosing the mapping F(x) + G(x)§ = v, (equivalent to
the mapping in the ECBF case), we reach the same linear
dynamics shown in (21). Therefore, using this expression,
we present an equivalent definition of (23), considering
joint accelerations and avoiding the explicit solution of the
constrained dynamics needed to compute (17).

Definition 2 (Acceleration based exponential control bar-
rier function (A-ECBF)). The function h(x) is an A-ECBF
if there exists Ky such that,

sup [F(x) +G(x)§] = —Kanb(q,4)
geRn

(29)

Vx € Int(C) originates h(x(t)) > CypelFo=CGrKat)p, (x0) > 0 for
h(xg) > 0.

Note that, given previous knowledge of the relative degree
of h(x), computing F(x) and G(x) is easier to compute
than L;?’h(x) and LgL;-bflh(x) in several practical cases.
For instance, the CoM height is relative degree two, so to
bound h(x) = p&,,,(x) — p&,i" we only need to compute
h(z) = jCoMq +Jcom§.-

The design of K, follows the Theorem 1 rationale. Once
we have a suitable value for it, we include the constraint (29)
into our inverse dynamics controller (16). In other words, we
simply add the A-ECBF certificate as an additional inequality
constraint as,

Fx)+G(x)§ = —Kas

This new addition enforces forward invariance of the set C
using our equivalent definition of an A-ECBF in the inverse
dynamics formulation (16).

(30)

IV. SIMULATION AND EXPERIMENTAL RESULTS

We implement the controller in simulation and the robotic
hardware using a unique code structure and controller gains.
Our test bed is Digit, a 3D bipedal robot with arms, legs, and

Authorized licensed use limited to: The Ohio State University. Downloaded on March 27,2025 at 04:20:49 UTC from IEEE Xplore. Restrictions apply.



Task-Space Objectives

Safety Objectives

Control Formulation

(e
=g

For instance:

P’ _,d
Ytorso Ytorso \

Pz Pyi Pz
roll; pitch; yaw

Ysp
_ contact
Ysw constraint

)

d
y?w ~ Ysw h(:t) — |:0m’3":| Otorso
y—0 Ytorso dfeet .
brorso € Lol
dfcct € Q;ﬁéf

Fig. 5. The safe task-space control framework starts by defining control objectives and safety sets according to the application.
The optimization will search a control action in the space of safe solutions.

a torso developed by Agility Robotics. It weighs 45 Kg and
has 30 joints with 20 motors. Each leg presents three closed
kinematic chains and two spring joints, as seen in Fig. 6.

== Connecting rod

© Spring joint

@ Passive joint
Reference joint

Fig. 6. The figure on the left shows the passive joints and
the closed chain loops in the robot legs. The figure on the
right shows the fist and the base frames.

We consider the springs as rigid joints due to their
high stiffness. Those spring joints will be considered
part of the kinematic constraints (kc). The entire kine-
matic constraints are defined as ny. = [nk. nR]", where

L/R stands for left and right, respectively, and nic/R
T )
[nach nyA  NrB  Yshin qheel—spring] L/R’ where, ngp, is the
length of the achilles rod, n,4 and n,p are the lengths of the
rods connecting to the ankles while g, and Gpeer—spring are
the spring joints considered as fixed, as shown in Fig. 6.
We parameterize time by T =t —fy, where 1y indicates the
starting time of a step. We show the results in both, plots and
video !, for different whole body motions including walking.

A. Task: Squatting and bowing

In this case we showcase the whole-body controller with-
out safety constraints. During the Double Support domain,

Uhttps://youtu.be/VNTIcODR6CI

954

Squatting simulation Squatting experiment
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Fig. 7. The squatting motion starts at ¢+ = 10s for both
simulation and experiment. The blue lines are the actual
outputs, and the red dashed lines represent the reference
trajectories.

the controlled outputs are:

PcCoM (q) pdCoM(t)
y(Qat) = GIUVSO(Q) ett(i)rso(t) (3D
Garms (@) ] | qms (t)

where, pcom € R3 is the position of the center of mass,
B,0rs0 € R3 is the torso orientation expressed in Euler ZYX
angles and, gums € R® are the angular positions of the joints
on the left and right arm. Note that during this domain, the
robot must keep both feet in contact with the ground, i.e.,
meet the ZMP and friction constraints.

We test two continuous actions: (1) a squatting motion by
specifying a sinusoidal reference to the CoM’s height and (2)
a bowing motion by commanding the torso pitch to extend
and return to its initial pose. The squatting reference is,

—-0.02
0
1—-0.12(1 —e ") +0.03sin(nt)

Plow(t) = (32)

During this motion, we keep the torso orientation straight

8% ., =0 and the arms fixed. Fig. 7 shows the controller’s

performance in simulation and hardware experiments.
Regarding the bowing motion, we set the

following reference for the torso pitch, 6% (1) =
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[0 0.45max(3—|r—3[,0) 0] the other
are specified as pd,,, = [0 0 0.95]T and the arms fixed.
Applying our controller in the hardware results on the
behavior observed in Fig. 8.

and tasks
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Fig. 8. Tracking the torso orientation while realizing a
bowing movement between 10-14 seconds.

B. Task: Arm motion with height limits

We set arm trajectories during a double support domain,
keeping the robot’s CoM and torso orientation fixed and
straight. We will focus on a simple case of the safety-critical
feature of the controller by providing an A-ECBF for the
first height with respect to the base frame, as seen in Fig.
6. To illustrate the effect of the A-ECBF, we will command
both arms, left and right, with the same reference but only
equip the left fist with the safety certificate. We consider the
safety certificate as,

h(q) = —pt(g) —0.195>0 (33)

where, p(g) is the z-position of the fist of the left arm w.r.t
to the torso base, as seen in Fig. 9. Since h(x) is relative
degree two, the A-ECBF constraint takes the form of J, g +

J',,Zq > —Ky1n. Moreover,
. 0 ..
1=[o ofn+[i]s

0
L

where, J, = % and 1 = [-pL —0.195,—pET. We
design Ky such that the roots of 1) = (F — GKq)n
follow Theorem 1. The references for both left
and right arm are q;’,mL and qffrmR respectively,
@, [0 03sin(Z7) 0 0.2sin(Z7)]"
@ = [0 —03sin(27) 0 —0.2sin(Z7)]"

Applying the QP-based controller with the A-ECBF results
on the motion shown in Fig. 9 in hardware. We note that the
right fist crosses the threshold to reach its desired target,
while the left fist avoids it. Fig. 10 shows the tracking of the
other objectives.

1
0

0

X (34)

and

C. Task: Walking with the A-LIP template model

In the following tasks, we use a single support domain that
will enable bipedal walking. We use the Angular Momentum-
based Linear Inverted Pendulum (ALIP) model to generate
stable walking patterns [21]. In the ALIP, the support ankle
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Fig. 9. The trajectory of the left fist and right fist. The left fist
is constrained by an A-ECBF that prevents it from crossing
the safe threshold, while the right fist is not constrained and
crosses it at £ = 30s during the hardware experiments.

40

Left Arm Right Arm
0.2 0.2
& o 0
- O\ D\
0.2 -0.2
10 20 30 40 50 5% 10 20 30 40 50
- .
T - 1
R A
0.05 10 20 30 40 50, o 10 20 30 40 50
3
S0 0
[%2]
0.05 -0.05
10 20 30 40 50 10 20 30 40 50
%04 [ O e S S /‘ A A
2 7
o3 SR R PR A
0.2 -0.5
10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)

Fig. 10. Arm joint tracking during the hardware experiment.
The blue lines represent the actual joint positions, and the
red dashed lines show the desired trajectories.

(pitch and roll) is rendered passive to predict the angular
momentum at the end of the step. This strategy allows us to
plan for stabilizing foot positioning targets (u,,u,) and the
feet height profile to impact at a specified period T = 0.35s.
A complete description of the planner can be found at [21],
[22]. The swing foot outputs are defined as:

sz(TO) + S(Mx _xSW(TO))

ysw(TO) —|—S(My _ysw(TO))
0.08sin(2£%)

p(siwing(f) = (35)

where s = (1 — e’5%) is an smoothing factor. The other ALIP
requirements are: the CoM height is constant (H = 0.9), the
orientation of the torso is kept vertical, and the swing foot
remains flat. The controller’s application over the outputs
produces a stable gait with an average forward speed of 0.2
m/s. The task space tracking for the position of the outputs
is summarized in Fig. 11.

D. Task: Collision avoidance

Continuing with the ALIP based gait, we show the effect
of an instantaneous (67 = 0.15s) lateral external force at
the torso with magnitude F,; = —30N. This produces a
collision between the legs, as seen in Fig. 12. However, by
providing collision safety through an A-ECBF, we can avoid
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Fig. 11. Task space tracking under the ALIP planner in the
Mujoco simulator. We note a good tracking performance dur-
ing the walking gait, and a similar performance is observed
for the orientation tasks.

Swing-py

Fig. 12. During the Mujoco simulation, we observe the
swing foot tracking in the y-direction. The upper plot has
an A-ECBF, while the lower does not. The foot placement
reference (red dashed line), crosses the safe region in both
plots. However, the A-ECBF prevents the foot from entering
it. The yellow circles show the collision events.

this event and recover the balance. The safe set is defined by,
harip(q) = yew(q) —0.07 > 0, where, ys,(q) is the y-position
of the swing foot w.r.t the support foot. By enforcing the
constraint, the swing foot will maintain a distance margin
that will avoid collisions. Fig. 12 shows that the reference
provided by the ALIP planner crosses the safety region, but
the A-ECBF disallows the foot to enter that region.

V. CONCLUSIONS

The whole body controller presented realizes stable mo-
tions that respect its closed chain kinematic, ZMP, and other
physical constraints. We achieved fast squatting and bowing
movements that show the controller’s capabilities during
double support. We also conducted walking experiments with
0.2m/s of speed and a stepping time of 7' = 0.35s to show
fast single support events handling. Furthermore, we showed
the formulation of the A-ECBF to provide control safety.
This safe controller has the numerical benefit of expressing
the dynamics and the constraints separately and avoiding
computation of the constrained dynamics. The results of the
A-ECBF were applied to both the arms and the legs to show
its effectiveness in different scenarios. In general, the results
show similar performance between simulation and hardware
experiments regarding tracking and safety.
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