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Abstract— Complex robotic systems require whole-body con-
trollers to handle contact interactions, handle closed kinematic
chains, and track task-space control objectives. However, for
many applications, safety-critical controllers are essential to
steer away from undesired robot configurations and prevent
unsafe behaviors. A prime example is legged robotics, where
we can have tasks such as balance control, regulation of
torso orientation, and, most importantly, walking. As the
coordination of multi-body systems is non-trivial, following a
combination of those tasks might lead to configurations that
are deemed dangerous, such as stepping on its support foot
during walking, leaning the torso excessively, or producing
excessive centroidal momentum, resulting in non-human-like
walking. To address these challenges, we propose a formulation
of an inverse dynamics control enhanced with control barrier
functions that allow general higher-order relative degree safe
sets for robotic systems with numerous degrees of freedom.
Our approach utilizes a quadratic program that respects closed
kinematic chains, minimizes the control objectives, and imposes
desired constraints on the Zero Moment Point, friction cone,
and torque. More importantly, it also ensures the forward
invariance of a general user-defined high Relative-Degree safety
set. We demonstrate the effectiveness of our method by applying
it to the 3D biped robot Digit, both in simulation and with
hardware experiments.

I. INTRODUCTION

Humanoid robots have emerged as a highly promising

platform for performing complex tasks in human-centered

environments due to their anthropomorphic structure. With

dedicated legs and arms, these robots are well-equipped

to walk and manipulate objects simultaneously. However,

effectively coordinating the movements of legs and arms

safely and stably is a challenging task. The dynamic coupling

between these components makes independent control prone

to instability and subpar performance. Therefore, developing

a holistic controller that can safely coordinate the entire

body is necessary to accomplish these tasks while respecting

the robot’s dynamics. Safety considerations are of utmost

importance when deploying complex robots in real-world

scenarios. Even if a desired task can be controlled, not taking

into account safety measures might generate unsatisfactory

performance. For instance, a non-safe task-space controller

may successfully track a desired swing foot pose of a

humanoid robot. However, it may fail to check if any leg

joints are approaching mechanical limits or the robot is at

risk of self-collision. By incorporating a safety layer, the

controller explicitly verifies and enforces control solutions

prioritizing safety.
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Fig. 1. The humanoid robot Digit performs different tasks in-

volving CoM motion, torso orientation, and arm movements

using our proposed safe whole body task space control.

Safety-critical control systems have been extensively stud-

ied using barrier certificates [1], [2], defined by state-

dependent sets described by a function that must remain

positive. A control algorithm can ensure this safe set remains

invariant by appropriately restricting the controller action.

There has been active research using the concept of Control

Barrier Functions (CBFs) within the context of Lyapunov

Theory [3] and optimization [4]–[6] to express safety certifi-

cates. Notably, the formulation of High-Order Control Bar-

rier Function [6] (HOCBF) and Exponential Control Barrier

Functions [5] (ECBF) has been a significant advancement,

as it allows safety constraints to have arbitrarily high relative

degrees, making it less restrictive for real-world applications

as it enables to go beyond geometrical constraints [7], [8].

Note that ECBFs are a particular case of ECBFs; moreover,

both formulations are suitable for use in an optimization-

based controller.

Task-space control has been extensively studied using both

model-based inverse dynamics [9] and model-free inverse

kinematics approaches [10]. Inverse dynamics offers the

advantage of considering model constraints such as contact

constraints, friction cone, zero moment point, and torque

limits. However, controlling bipedal systems presents chal-

lenges due to their intrinsic under-actuation and floating

base. Nakanishi et al. [11] proposed a closed-form control

solution that estimates contact forces to obtain the con-

strained dynamics and the Jacobian projection of the task

space objectives. An improved version of this controller [12]

utilizes orthogonal decomposition to work in a reduced
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dimensional space and avoids the need for estimating contact

forces. However, these formulations do not explicitly incor-

porate contact wrenches, limiting their ability to introduce

additional relevant constraints such as the zero moment point

or friction.

To effectively address these constraints, it is crucial to

explicitly consider the contact wrenches in an inverse dy-

namics controller that leverages the dynamics of user-defined

general task outputs. Herzog et al. [13] proposed a quadratic

programming (QP) formulation that incorporates the robot

dynamics and treats the contact wrenches as decision vari-

ables. This QP-based approach offers advantages in reducing

the complexity of matrix operations and enabling the han-

dling of multiple constraints. Building upon this foundation,

Reher et al. [14] introduced a similar QP optimization

structure to construct a Control Lyapunov Function (CLF)

that respects constraints such as the zero moment point

(ZMP), contact, and friction cone. Instead of using the robot

torques as the decision variable, it used a decision variable

that utilized acceleration, torque, and constraint wrenches,

providing enhanced control capabilities over these variables

and avoiding solving the constrained dynamics explicitly.

However, the inverse dynamics formulations in these works

do not consider safety. The work of [8] provides a formula-

tion of whole-body control with a Control Barrier Function

(CBF) designed explicitly for position-based objectives. On

the other hand, Nguyen et al. [15], [16] presented a QP-based

controller incorporating an ECBF. This formulation extends

the CBF by considering general state-space-based safety sets

with arbitrary relative degrees. They employed a CLF-based

controller that explicitly constructs safety certificates in both

cases. Their results show applications to constrain footstep

placements on stepping stones and limit the velocity to avoid

collisions on cruise control. However, their optimization

formulation utilized only motor torques as decision variables,

resulting in increased numerical complexity due to the inver-

sion of the mass matrix. Nevertheless, the formulation does

not consider friction or ZMP constraints important for more

realistic implementations. To overcome this challenge, we

extend the work of Reher et al. [14] by reformulating the

barrier functions as an acceleration-based certificate instead

of a torque-based certificate. The safety certificates can be

based on ECBF or more generally HOCBF; however, ECBFs

are considered for simplicity. This novel formulation avoids

explicit dependence on torques and effectively alleviates the

numerical cost associated with the QP formulation.

The main contribution of this paper is the development

of a novel Quadratic-Programming (QP)-based safe inverse

dynamics controller that offers several key advantages:

1) Avoidance of mass matrix inversions: Building upon

previous work on inverse dynamic formulations, we

leverage a numerically efficient program that explicitly

considers joint accelerations, torques, and wrenches as

decision variables. This approach eliminates the need

for computationally expensive mass matrix inversions.

2) Handling of kinematics constraints: Our QP-based

inverse dynamics formulation enables the straightfor-

Fig. 2. A humanoid robot with floating base is described by

its internal body coordinates qb and its floating coordinates

qe as shown in the left. Furthermore, this robot experiences

contact wrenches and forces due to the closed chain mech-

anisms as seen in the right.

ward incorporation of closed-loop kinematics and other

essential constraints, such as contacts, zero moment

point (ZMP), and the friction cone. This flexibility

allows for more accurate and realistic modeling of the

robot’s behavior.

3) Enforcement of safety through acceleration-based

exponential control barrier functions (A-ECBFs):

To ensure the safety of the system, we construct an

exponential control barrier function that guarantees the

invariant behavior of a predefined safe set. By formu-

lating this safety certificate as an inequality constraint

dependent solely on joint accelerations, we exploit the

inherent structure of the controller formulation.

4) Application of safe control actions to a 3D hu-

manoid robot: We demonstrate the performance and

effectiveness of our controller through extensive sim-

ulation and hardware experiments on a 3D humanoid

robot. These experiments validate the controller’s abil-

ity to achieve desired tasks while maintaining safety.

The remainder of the paper is organized as follows.

Section II presents the mathematical modeling of humanoid

robots with floating base coordinates, contacts, closed-

loop mechanisms, and critical dynamics constraints. In

Section III, we present a task-space inverse dynamics control

algorithm that is expressed as a quadratic program, followed

by formulating an Acceleration-based Exponential Control

Barrier Function that can be naturally included in the in-

verse dynamics formulation. In Section IV, we showcase the

effectiveness of our whole body controller and its safety

enforcement with various tasks for the 3D bipedal robot,

Digit (Fig. 1). This section provides empirical evidence of

the controller’s performance and demonstrates its ability to

handle complex tasks.
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Fig. 3. The closed loop kinematics on the right can be

expressed as the open kinematic chain on the left with

a holonomic constraint that enforces nAB constant. This

constraint will relate the actuated torque τ1 to the passive

joint torque τ4.

II. HUMANOID DYNAMICS WITH CONSTRAINTS

The kinematics of humanoid robots can be described by

a floating frame fixed to a base point, introducing respective

floating coordinates qe ∈ SE(3), as shown in Fig. 2, and the

body coordinates describe the relative motion of its joints.

For a robot with nb joints, we represent body coordinates as

qb ∈ R
nb . The configuration space Q of a legged robot with

a floating base, such as Digit as shown in Fig. 2, then can

be represented by q = [q⊤e ,q
⊤
b ]

⊤ ∈ Q = R
n with n = nb + 6

being the total degrees of freedom of the robot. The dynamics

of the multi-body system can be described by the Euler

Lagrangian equations of motion [17]:

M(q)q̈+C(q, q̇)q̇+G(q) = Bu+ J(q)⊤λ , (1)

where M(q) ∈ R
n×n, C(q, q̇) ∈ R

n×n, and G(q) ∈ R
n are

inertia matrix, Coriolis matrix, and gravity vector, respec-

tively, B ∈ R
n×m is the torque distribution matrix that maps

the torque of the m actuators u ∈ U ⊂ R
m, λ ∈ R

nh is

the collection of constraint wrenches or external forces,

and J(q) ∈ R
nh×n its respective Jacobian matrix. Constraint

wrenches are due to kinematic closed-chains, or contacts, as

illustrated in Fig. 2 and discussed below.

A. Closed kinematic chain constraints

A closed kinematic chain, such as the four-bar linkage

shown in Fig. 3, is popular in legged robot designs. How-

ever, many existing controllers do not explicitly address

constraints associated with closed-chain kinematics [18]. To

model a closed kinematic chain without resolving the con-

strained dynamics, we can virtually disconnect each closing

link and use their lengths given by nk(q) ∈ R,∀k ∈ Ωchain

(e.g., nAB in Fig. 3) to construct appropriate holonomic

constraints that enforce n̈k(q, q̇, q̈) = 0,∀k ∈ Ωchain [19]. The

inertial effects of the connecting rods are typically neglected

as they have a much smaller mass than other links. The

collection of such constraints generates,

Jchain(q)q̈+ J̇chain(q, q̇)q̇ = 0 (2)

where, Jchain(q) is the jacobian of the collection of the closed

kinematic constraints.

B. Contact constraints

The contact constraints are included whenever the robot

must preserve contact with a point or a surface. While

such ground contacts are unilateral, they can be modeled

as holonomic constraints with additional inequality con-

straints describing the limitations imposed by friction and

the direction of the normal force. Similarly to the closed

kinematic constraints, for a set of contacts c ∈ Ωcont , and

their respective pose nc(q) ∈ R
6, we enforce its invariance

through:

Jcont(q)q̈+ J̇cont(q, q̇)q̇ = 0 (3)

Additionally, to impose friction constraints and avoid slip-

ping we use the pyramidal friction cone approximation [17].

For each contact wrench we can decompose it into forces

and moments as λ c =
[
λ c

f x,λ
c
f y,λ

c
f z,λ

c
mx,λ

c
my,λ

c
mz

]T
indexed

by c ∈ Ωcont . We impose the following constraints that can

be expressed in linear form,

|λ c
f x| ≤

µ√
2

λ c
f z, (4)

|λ c
f y| ≤

µ√
2

λ c
f z, (5)

λ c
f z > 0, (6)

by incorporating a soft-finger contact type:

|λ c
mz| ≤ γλ c

f z, (7)

where γ is the torsional friction coefficient and λ c
mz is the

rotational moment component of a wrench along the z-axis

of the contact frame.

Additional Zero Moment Point (ZMP) constraints should

be enforced to prevent tipping over edges [17], [20] during

fully actuated operation, i.e., when the support ankle is not

passive. The typical contact cases are single and double

support configurations, as seen in Fig. 4. For a series of

contacts, we need to project each wrench into a unique

frame, for instance, the world frame with an associated global

wrench λ w. We can achieve this by applying the adjoint

transformation (represented by Adg) to every single contact

wrench to obtain the equivalent contact wrench expressed in

the world frame:

λ w =
Nc

∑
i=1

AdT
gc→w

(q)λ c
i =A(q)λ c (8)

where gc→w is the homogeneous transformation matrix of

the world frame w.r.t. the contact frame and c ∈ Ωcont .

The ZMP is computed as px
zmp = λ w

my/λ w
f z, p

y
zmp =

−λ w
mx/λ w

f z and must be inside the support polygon P de-

fined by the contact geometry, as shown in Fig. 4, i.e.
[
px

zmp p
y
zmp

]
∈P . In the simplest case P can be represented

as a rectangle and the ZMP constraints can be written as:

Lminλ w
f z ≤ λ w

my ≤ Lmaxλ w
f z (9)

Wmaxλ w
f z ≤ λ w

mx ≤Wminλ w
f z (10)

Since the global wrench λ w is linearly related to the contact

wrenches λ c as described by (8), the constraints in (9) and

(10) are also linear in λ .
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Fig. 4. Typical cases: One contact point on the left and two

on the right; in both cases, the wrenches are projected into

λ w for ZMP computations.

III. SAFE TASK SPACE WHOLE BODY CONTROL VIA

CBF-QP

This section presents an inverse dynamics controller based

on quadratic programming (QP) that incorporates holonomic

constraints arising from contacts and closed chain mech-

anisms. This approach avoids the need for matrix inver-

sions and the calculation of constrained dynamics, pro-

viding numerical benefits. Subsequently, we introduce our

paper’s main contribution: applying a safety certificate as

an Exponential Control Barrier Function (ECBF) to ensure

the invariance of a user-defined safe set. Specifically, we

formulate an acceleration-based ECBF compatible with the

whole-body inverse dynamics control, as shown in Fig. 5.

A. Task Space Inverse dynamics

We consider task space outputs as general positions and

orientations of user-defined frames. These outputs can spec-

ify the robot’s desired behavior, such as the center of mass

(CoM) position and orientation and the end-effector poses

of the robot’s arms and legs. For simplicity, we present an

output that is of relative degree two, given as:

y(t,q) := ya(q)− yd(t), (11)

where, ya(q),yd(t) ∈ R
m are the actual and desired outputs

respectively. Since the task considers positions and orienta-

tions, the outputs are relative degree two. In consequence,

ÿ(t,q, q̇, q̈) = J̇y(q, q̇)q̇+ Jy(q)q̈− ÿd(t) (12)

where Jy(q) ∈ R
m×n is the jacobian of ya(q). Moreover, a

relative degree two output will exhibit dependency in the

control input u; however, to avoid solving the dynamics, we

can leave it in terms of the joint acceleration q̈ and implicitly

use the robot dynamics to relate u.

We formulate the inverse dynamics problem as a quadratic

program using the decision variable X := [q̈T ,uT ,λ T ]T .

Hence, the implicit constrained robot dynamics in (1) - (3)

can be rewritten as:

[
M(q) −B −J(q)T

]

︸ ︷︷ ︸

Deq(q)

X =−C(q, q̇)q̇−G(q), (13)

[
J(q) 0 0

]

︸ ︷︷ ︸

Ceq(q)

X =−J̇(q, q̇)q̇, (14)

where J(q) =

[
Jchain(q)
Jcont(q)

]

. To obtain stable output dynam-

ics, we enforce a linear output dynamics ÿ(t,q, q̇, q̈) =
−Kpy(t,q)−Kd ẏ(t,q, q̇), which holds true whenever,

Jy(q)q̈+ J̇y(q, q̇)q̇ =−Kpy(t,q)−Kd ẏ(t,q, q̇)+ ÿd(t)
︸ ︷︷ ︸

y∗

(15)

where, Kp,Kd ∈R
m×m are positive definite gain matrices. We

formulate the QP-based inverse dynamics controller with the

optimal decision variable X∗ as,

X∗ = argmin
X∈X

||Jy(q)q̈+ J̇y(q, q̇)q̇− y∗||2 +XT ΓX (16)

s.t Deq(q)X =−C(q, q̇)−G(q)

Ceq(q)X =−J(q)q̇

A(q)X ∈ X

where X captures the domain constraints such as torque

limits and also friction cone, and ZMP constraints expressed

on (4) - (7), (9) and (10). We use the regularization term

XT ΓX , with Γ > 0 with a weight represented by a diagonal

matrix, to avoid high-frequency changes in the optimization

variables.

B. Exponential control barrier functions

To enhance the capabilities of the inverse dynamics con-

trol, we incorporate safety through the use of Exponential

Control Barrier Functions (ECBF) [5], which are a par-

ticular case of the High-Order Control Barrier Function

(HOCBF) [6]. They ensure the forward invariance of a user-

defined safe set. Moreover, we will utilize an acceleration-

based formulation of the ECBF (A-ECBF), which uses the

acceleration q̈ to maintain the inverse dynamics approach’s

numerical benefits by avoiding the explicit analytic solution

of the constrained dynamics. For our formulation, we do

not require analytically constrained dynamics. However, we

include it here to illustrate the standard derivation of the

ECBF and highlight our equivalent approach, A-ECBF, that

requires no explicit dependency on the control variable u.

1) Review of ECBFs: Consider the state x =
[
qT , q̇T

]T ∈
D ⊂ T Q, where D is an open set of admissible states. By

solving analytically the constrained dynamics we can obtain

the following state-space representation,

ẋ = f (x)+g(x)u (17)

where, f (x) ∈ R
2n,g(x) ∈ R

2n×m and u ∈ R
m. A safe region

can be defined as,

C := {x ∈ D : h(x)≥ 0}, (18)
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where h : D → R is, without loss of generality, assumed to

be a smooth function with relative degree rb, i.e.,

h(rb)(x,u) = L
rb
f h(x)+LgL

rb−1
f h(x)u. (19)

where, L
rb
f h(x), LgL

rb−1
f h(x) ∈ R are the respective Lie

derivatives of h(x). Moreover, LgL
rb−1
f h(x) is non-zero by

the definition of the relative degree. We stack the lower

derivatives to form the following state,

ηb(x) =








h(x)

h(1)(x)
...

h(rb−1)(x)







=








h(x)
L f h(x)

...

L
rb−1
f h(x)








(20)

and construct a linear representation of the dynamics of h(x)

through the mapping L
rb
f h(x)+LgL

rb−1
f h(x)u = νb,

η̇b =

[
0 I

0 0

]

︸ ︷︷ ︸

Fb

ηb +

[
0

I

]

︸︷︷︸

Gb

νb (21)

h(x) =
[
1 0 0 ... 0

]

︸ ︷︷ ︸

Cb

ηb (22)

Next, we need a constraint on νb such that h(x)≥ 0. Applying

the feedback νb = −Kα ηb, the trajectory becomes h(x) =
Cbe(Fb−GbKα )tηb(x0).

By the comparison lemma, setting νb ≥ −Kα ηb implies

h(x(t))≥Cbe(Fb−GbKα )tηb(x0).

Definition 1 (Exponential Control Barrier Function [5]).

Consider the set C ⊂ D defined in (18) as the super-level set

of a rb times continuously differentiable function h : D →R.

Then, h is an exponential control barrier function (ECBF) if

there exists Kα ∈ R
1×rb such that,

sup
u∈U

[

L
rb
f h(x)+LgL

rb−1
f h(x)u

]

≥−Kα ηb(x) (23)

∀x ∈ Int(C) originates h(x(t))≥Cbe(Fb−GbKα t)ηb(x0)≥ 0 for

h(x0)≥ 0.

Such Kα can be determined by considering the feedback

νb = −Kα ηb. Its corresponding closed loop system η̇b =
(Fb − GbKα)ηb has rb roots that are dependent on the

selection of Kα and denoted by pb =−[p1, ..., prb
]. We will

construct a family of functions Bi : D → R such that,

B0(x) = h(x) (24)

Bi(x) = Ḃi−1(x)+ piBi−1(x), ∀i = 1, ...,rb (25)

Note that if Bi(x) ≥ 0 then Bi−1(x) ≥ 0 whenever pi ≥ 0,

Bi−1(x0)≥ 0 and Bi(x0)≥ 0, where x0 is the initial state of

the system at t = 0. This inductive constraint will terminate

at B0(x) = h(x) which is the barrier function of the safe set

C. This is the basis for the next theorem that is proved in [5].

Theorem 1. [5] Consider the closed loop system η̇b = (Fb−
GbKα)ηb. If Kα is designed to have roots pb =−[p1, ..., prb

]

to be,

pi > 0, pi ≥− Ḃi−1(x0)

Bi−1(x0)
, ∀i = 1, ...,rb (26)

Then, the constraint νb ≥−Kα ηb renders h(x) an ECBF.

2) Formulation of A-ECBFs: The ECBF requires to com-

pute the Lie Derivatives of h(x) considering the constrained

dynamics in (17) to have a mapping to u. However, to

avoid explicitly solving the constrained dynamics, we can

directly use the accelerations q̈ that will appear during the

partial derivative operation in h(x) without considering the

system dynamics. Instead, we expect the quadratic program

to implicitly solve the mapping of q̈ to u through the robot

dynamics. In other words, there exists an inverse dynamics

mapping that relates accelerations and torques such that

u = ID(q, q̇, q̈) = M̄q̈+ H̄ for some M̄ ∈ R
n×n and H̄ ∈ R

n.

Therefore can rewrite (19) as

h(rb)(x, q̈) = L
rb
f h(x)+LgL

rb−1
f h(x)(M̄q̈+ H̄) (27)

h(rb)(x, q̈) = F(x)+G(x)q̈ (28)

By choosing the mapping F(x)+G(x)q̈ = νb (equivalent to

the mapping in the ECBF case), we reach the same linear

dynamics shown in (21). Therefore, using this expression,

we present an equivalent definition of (23), considering

joint accelerations and avoiding the explicit solution of the

constrained dynamics needed to compute (17).

Definition 2 (Acceleration based exponential control bar-

rier function (A-ECBF)). The function h(x) is an A-ECBF

if there exists Kα such that,

sup
q̈∈Rn

[F(x)+G(x)q̈]≥−Kα ηb(q, q̇) (29)

∀x ∈ Int(C) originates h(x(t))≥Cbe(Fb−GbKα t)ηb(x0)≥ 0 for

h(x0)≥ 0.

Note that, given previous knowledge of the relative degree

of h(x), computing F(x) and G(x) is easier to compute

than L
rb
f h(x) and LgL

rb−1
f h(x) in several practical cases.

For instance, the CoM height is relative degree two, so to

bound h(x) = pz
CoM(x)− pz−min

CoM we only need to compute

h(2) = J̇CoM q̇+ JCoM q̈.

The design of Kα follows the Theorem 1 rationale. Once

we have a suitable value for it, we include the constraint (29)

into our inverse dynamics controller (16). In other words, we

simply add the A-ECBF certificate as an additional inequality

constraint as,

F(x)+G(x)q̈ ≥−Kα ηb (30)

This new addition enforces forward invariance of the set C
using our equivalent definition of an A-ECBF in the inverse

dynamics formulation (16).

IV. SIMULATION AND EXPERIMENTAL RESULTS

We implement the controller in simulation and the robotic

hardware using a unique code structure and controller gains.

Our test bed is Digit, a 3D bipedal robot with arms, legs, and
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Fig. 5. The safe task-space control framework starts by defining control objectives and safety sets according to the application.

The optimization will search a control action in the space of safe solutions.

a torso developed by Agility Robotics. It weighs 45 Kg and

has 30 joints with 20 motors. Each leg presents three closed

kinematic chains and two spring joints, as seen in Fig. 6.

Fig. 6. The figure on the left shows the passive joints and

the closed chain loops in the robot legs. The figure on the

right shows the fist and the base frames.

We consider the springs as rigid joints due to their

high stiffness. Those spring joints will be considered

part of the kinematic constraints (kc). The entire kine-

matic constraints are defined as nkc =
[
nL

kc nR
kc

]T
, where

L/R stands for left and right, respectively, and n
L/R

kc =
[
nach nrA nrB qshin qheel−spring

]T

L/R
, where, nach is the

length of the achilles rod, nrA and nrB are the lengths of the

rods connecting to the ankles while qshin and qheel−spring are

the spring joints considered as fixed, as shown in Fig. 6.

We parameterize time by τ = t − t0, where t0 indicates the

starting time of a step. We show the results in both, plots and

video 1, for different whole body motions including walking.

A. Task: Squatting and bowing

In this case we showcase the whole-body controller with-

out safety constraints. During the Double Support domain,

1https://youtu.be/vNTIcODR6cI
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Fig. 7. The squatting motion starts at t = 10s for both

simulation and experiment. The blue lines are the actual

outputs, and the red dashed lines represent the reference

trajectories.

the controlled outputs are:

y(q, t) =





pCoM(q)
θtorso(q)
qarms(q)



−





pd
CoM(t)

θ d
torso(t)

qd
arms(t)



 (31)

where, pCoM ∈ R
3 is the position of the center of mass,

θtorso ∈ R
3 is the torso orientation expressed in Euler ZYX

angles and, qarms ∈R
8 are the angular positions of the joints

on the left and right arm. Note that during this domain, the

robot must keep both feet in contact with the ground, i.e.,

meet the ZMP and friction constraints.

We test two continuous actions: (1) a squatting motion by

specifying a sinusoidal reference to the CoM’s height and (2)

a bowing motion by commanding the torso pitch to extend

and return to its initial pose. The squatting reference is,

pd
CoM(t) =





−0.02

0

1−0.12(1− e−τ)+0.03sin(πτ)



 (32)

During this motion, we keep the torso orientation straight

θ d
torso = 0 and the arms fixed. Fig. 7 shows the controller’s

performance in simulation and hardware experiments.

Regarding the bowing motion, we set the

following reference for the torso pitch, θ d
torso(t) =
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[
0 0.45max(3−|τ −3|,0) 0

]T
and the other tasks

are specified as pd
CoM =

[
0 0 0.95

]T
and the arms fixed.

Applying our controller in the hardware results on the

behavior observed in Fig. 8.
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Fig. 8. Tracking the torso orientation while realizing a

bowing movement between 10-14 seconds.

B. Task: Arm motion with height limits

We set arm trajectories during a double support domain,

keeping the robot’s CoM and torso orientation fixed and

straight. We will focus on a simple case of the safety-critical

feature of the controller by providing an A-ECBF for the

first height with respect to the base frame, as seen in Fig.

6. To illustrate the effect of the A-ECBF, we will command

both arms, left and right, with the same reference but only

equip the left fist with the safety certificate. We consider the

safety certificate as,

h(q) =−pL
z (q)−0.195 ≥ 0 (33)

where, pL
z (q) is the z-position of the fist of the left arm w.r.t

to the torso base, as seen in Fig. 9. Since h(x) is relative

degree two, the A-ECBF constraint takes the form of Jpz q̈+
J̇pz q̇ ≥−Kα η . Moreover,

η̇ =

[
0 1

0 0

]

η +

[
0

1

]

q̈ (34)

where, Jpz = − ∂ pL
z

∂q
and η = [−pL

z − 0.195,− ṗL
z ]

T . We

design Kα such that the roots of η̇ = (F − GKα)η
follow Theorem 1. The references for both left

and right arm are qd
armL

and qd
armR

respectively,

qd
armL

=
[
0 0.3sin(π

5
τ) 0 0.2sin(π

5
τ)
]T

and

qd
armR

=
[
0 −0.3sin(π

5
τ) 0 −0.2sin(π

5
τ)
]T

.

Applying the QP-based controller with the A-ECBF results

on the motion shown in Fig. 9 in hardware. We note that the

right fist crosses the threshold to reach its desired target,

while the left fist avoids it. Fig. 10 shows the tracking of the

other objectives.

C. Task: Walking with the A-LIP template model

In the following tasks, we use a single support domain that

will enable bipedal walking. We use the Angular Momentum-

based Linear Inverted Pendulum (ALIP) model to generate

stable walking patterns [21]. In the ALIP, the support ankle

Fig. 9. The trajectory of the left fist and right fist. The left fist

is constrained by an A-ECBF that prevents it from crossing

the safe threshold, while the right fist is not constrained and

crosses it at t = 30s during the hardware experiments.

Fig. 10. Arm joint tracking during the hardware experiment.

The blue lines represent the actual joint positions, and the

red dashed lines show the desired trajectories.

(pitch and roll) is rendered passive to predict the angular

momentum at the end of the step. This strategy allows us to

plan for stabilizing foot positioning targets (ux,uy) and the

feet height profile to impact at a specified period T = 0.35s.

A complete description of the planner can be found at [21],

[22]. The swing foot outputs are defined as:

pd
swing(τ) =





xsw(τ0)+ s(ux − xsw(τ0))
ysw(τ0)+ s(uy − ysw(τ0))

0.08sin( 2πτ
T
)



 (35)

where s= (1−e−5 τ
T ) is an smoothing factor. The other ALIP

requirements are: the CoM height is constant (H = 0.9), the

orientation of the torso is kept vertical, and the swing foot

remains flat. The controller’s application over the outputs

produces a stable gait with an average forward speed of 0.2

m/s. The task space tracking for the position of the outputs

is summarized in Fig. 11.

D. Task: Collision avoidance

Continuing with the ALIP based gait, we show the effect

of an instantaneous (δ t = 0.15s) lateral external force at

the torso with magnitude Fext = −30N. This produces a

collision between the legs, as seen in Fig. 12. However, by

providing collision safety through an A-ECBF, we can avoid
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Fig. 11. Task space tracking under the ALIP planner in the

Mujoco simulator. We note a good tracking performance dur-

ing the walking gait, and a similar performance is observed

for the orientation tasks.

Fig. 12. During the Mujoco simulation, we observe the

swing foot tracking in the y-direction. The upper plot has

an A-ECBF, while the lower does not. The foot placement

reference (red dashed line), crosses the safe region in both

plots. However, the A-ECBF prevents the foot from entering

it. The yellow circles show the collision events.

this event and recover the balance. The safe set is defined by,

hALIP(q) = ysw(q)−0.07 ≥ 0, where, ysw(q) is the y-position

of the swing foot w.r.t the support foot. By enforcing the

constraint, the swing foot will maintain a distance margin

that will avoid collisions. Fig. 12 shows that the reference

provided by the ALIP planner crosses the safety region, but

the A-ECBF disallows the foot to enter that region.

V. CONCLUSIONS

The whole body controller presented realizes stable mo-

tions that respect its closed chain kinematic, ZMP, and other

physical constraints. We achieved fast squatting and bowing

movements that show the controller’s capabilities during

double support. We also conducted walking experiments with

0.2m/s of speed and a stepping time of T = 0.35s to show

fast single support events handling. Furthermore, we showed

the formulation of the A-ECBF to provide control safety.

This safe controller has the numerical benefit of expressing

the dynamics and the constraints separately and avoiding

computation of the constrained dynamics. The results of the

A-ECBF were applied to both the arms and the legs to show

its effectiveness in different scenarios. In general, the results

show similar performance between simulation and hardware

experiments regarding tracking and safety.
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