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Abstract— The Angular-Momentum Linear Inverted Pendu-
lum (ALIP) model is a promising motion planner for bipedal
robots. However, it relies on two assumptions: (1) the robot
has point-contact feet or passive ankles, and (2) the angular
momentum around the center of mass, known as centroidal
angular momentum, is negligible. This paper addresses the
question of whether the ALIP paradigm can be applied to
more general bipedal systems with complex foot geometry
(e.g., flat feet) and nontrivial torso/limb inertia and mass
distribution (e.g., non-centralized arms). In such systems, the
dynamics introduce non-negligible centroidal momentum and
contact wrenches at the feet, rendering the assumptions of
the ALIP model invalid. This paper presents the ALIP plan-
ner for general bipedal robots with non-point-contact feet
through the use of a task-space whole-body controller that
regulates centroidal momentum, thereby ensuring that the
robot’s behavior aligns with the desired template dynamics.
To demonstrate the effectiveness of our proposed approach, we
conduct simulations using the Sarcos© Guardian® XO® robot,
which is a hybrid humanoid/exoskeleton with large, offset feet.
The results demonstrate the practicality and effectiveness of our
approach in achieving stable and versatile bipedal locomotion.

I. INTRODUCTION

A. Motivation

Humanoid robots have long been studied and are of
particular interest for their ability to navigate complex and
challenging terrains as humans would. However, bipedal lo-
comotion is not easily achievable as these systems are under-
actuated1 and therefore prone to falling as they repeatedly
come in and out of contact with the ground.

Attempts to model and plan stable gait trajectories using
these complex, nonlinear humanoid-robot dynamics usually
result in limited walking modes that lack proper feedback
control, making them fragile to disturbances and un-modeled
dynamics. Alternatively, a simplified template model for gait
can be used to allow for more scalable gaits to be computed
in real time and can include feedback when certain conditions
are met. However, these conditions do not hold true for
general bipedal robots, limiting the use of these feedback-
based gait planners. This paper modifies one such template
(the Angular Momentum-based Linear Inverted Pendulum or
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ALIP model) and removes its limiting conditions to allow for
it to be generalized to all bipedal robots.

B. Related Work

Linear Inverted Pendulum (LIP) models of bipedal gait are
often used as templates to simplify a robot’s dynamics and
formulate center of mass (CoM) trajectories that keep the
center of pressure (CoP) of the system within the support
foot polygon[1]. These methods are useful for generating
gaits in real-time but lack proper feedback control, which
leads to limited-speed, conservative gaits.

Alternatively, by considering passive ankles and a fixed
step duration, the resulting under-actuated system exhibits
naturally linear behavior such that its states at the end of
each step can be predicted. This allows for these LIP-based
walking planners to incorporate feedback based on real-time
predictions and foot placements to produce periodically sta-
ble gait cycles [2]–[4]. However, this passive ankle condition
is more readily met for robots with (near) point-contact feet,
which makes the use of these planners difficult to implement
on general robots with complicated foot geometry (e.g., flat
feet). Additionally, humanoids with non-trivial torso/limb
inertia (e.g., those with non-centralized arms and heavier
limbs) need explicit momentum regulation to allow for the
centroidal dynamics to be approximated by these simplified
LIP models. For this paper, we choose to expand upon the
Angular Momentum-based Linear Inverted Pendulum (ALIP)
model/planner since it is reported to present numerical ad-
vantages over other models like the Hybrid Linear Inverted
Pendulum (H-LIP) [2], [3]. We will show that by using an
appropriate task-space control formulation (that regulates the
centroidal momentum and the center of mass position) the
ALIP model can be applied to more general bipedal robots,
thus removing the limiting assumptions needed to use this
model.

Task-space controllers for bipedal robots must handle the
floating base coordinates in order to deal with the full-
order robot dynamics while enforcing contact constraints.
Moreover, the control objectives must be defined such that
the system can handle them while respecting any physi-
cal restrictions. Leveraging these tasks and constraints can
be realized by formulating a quadratic-programming based
controller such as [5]–[7], in which the tasks are appropri-
ately weighted so as to not interfere with the constraints
(which does not guarantee the completion of certain tasks or
constraints). Another option is to use hierarchical quadratic
programming whereby tasks/constraints are solved sequen-
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tially in the null space of any previous tasks such that
any subsequent objectives cannot violate the optimality of
preceding objectives [8]–[11]. This paper extends upon the
control structure presented in [11] as it produces a fast
computation time while explicitly handling prioritized tasks.

C. Contribution

This paper presents the following contributions:
• We analyze and provide the conditions needed for any

bipedal robot to have its full dynamics captured by the
ALIP model.

• We formulate a task-space hierarchical controller that
enforces these conditions as tasks which enables the
full-order robot dynamics to be approximated by the
simplified ALIP dynamics.

• We then extend the ALIP planner (which is typically
applied to point-contact robots with lumped torso mass
and lighter limbs) to robots with flat feet, non-trivial
torso/limb inertia, and larger non-centralized arms.

The effectiveness of our proposed approach is demonstrated
in simulation, where the Sarcos© Guardian® XO® robot (a
hybrid humanoid/exoskeleton with large, offset feet and non-
centralized arms) is made to follow a variety of stable gait
patterns.

II. ALIP MODEL

A. Floating Base Humanoid Dynamics

Consider the following rigid body dynamics for a floating
base (FB) humanoid system:

M ¨⃗q+C(⃗q, ˙⃗q)+G(⃗q)− J⊤c λ⃗ c = S⊤τ⃗ (1)

where M, C, and G represent the mass matrix, Coriolis
vector, and gravity vector, respectively, q⃗ is the configuration
of the system (FB position/orientation + joint angles), τ⃗ is
the torque applied to each degree-of-freedom (with S being

Fig. 1. During the single support phase, the bipedal robot
will experience a resolved contact wrench λ⃗ c = [⃗τ⊤c f⃗ ⊤

c ]⊤ at
the reference contact frame {c} (assuming that the no-slip
contact constraint is maintained).

a selector matrix to denote that the FB is not actuated), Jc
is the contact Jacobian and λ⃗ c are the generalized contact
wrench(es). In the general case, the robot makes contact with
the ground using one or both feet at the contact point(s) c,
such that the contact Jacobian can be written as:

Jc ≜ Sc

[
J⊤c,LF J⊤c,RF

]⊤
(2)

where Sc selects the active contacts. This imposes a holo-
nomic constraint of the form:

Jc ¨⃗q+ J̇c ˙⃗q = 0 (3)

which ensures the current position(s) and orientation(s) of
the contact(s) are held constant (i.e., the no-slip condition).

B. Centroidal Dynamics

The ALIP model is commonly applied to bipedal robots
with point-contact feet, where (in single support) the contact
point is assumed to (i) coincide with the CoP and (ii) have
zero reaction moments [12]–[15]. However, for more general
robots with non-point-contact feet, the CoP location can
change during the gait cycle and is not easily measured
or estimated. We instead project the centroidal dynamics to
a user-defined, arbitrary contact frame {c} (consistent with
the contact Jacobian, Jc) located within the foot polygon.
Moreover, we orient the contact frame {c} for each step such
that the x− and y−axes coincide with the forward and lateral
directions of motion for the center of mass, respectively,
as illustrated in Fig. 1. Once the calculations are carried
out in this arbitrary frame, they are re-expressed in global
coordinates to be used in the control formulation.

During single support, the dynamics of a bipedal robot
can be represented in {c} by the angular momentum at
the contact point (or contact angular momentum; L⃗c

c) and
the relative vector to the center of mass (CoM; p⃗ c

CoM)2.
Using the parallel axis theorem, we relate the contact angular
momentum to the centroidal angular momentum (or angular
momentum of the CoM; L⃗c

CoM) via:

L⃗c
c = L⃗c

CoM + p⃗ c
CoM × (m ˙⃗p c

CoM) (4)

= L⃗c
CoM +m

py ṗz − pz ṗy
pz ṗx − px ṗz
px ṗy − py ṗx

 (5)

where p⃗ c
CoM = [px py pz]

⊤ and ˙⃗p c
CoM = [ ṗx ṗy ṗz]

⊤ denote the
relative position and velocity of the CoM w.r.t. the contact
point, respectively, and m denotes the mass of the system.
As the remaining derivations are carried out in the contact
frame, we will ignore the superscript notation for simplicity
(e.g., L⃗c

c := L⃗c = [Lcx Lcy Lcz]
⊤).

C. ALIP Dynamics and Planner

In general, two main assumptions are made in order to
formulate the ALIP dynamics and planner. A first and reason-
able assumption is that the CoM height is held constant (i.e,
pz = H, ṗz = 0). This allows us to modify (5) to obtain the

2We use x⃗a to denote a vector in the reference frame a. When no
superscript is used, the World frame is assumed (unless otherwise noted).
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Fig. 2. Representation of the ALIP model walking with
positive velocity in the sagittal and frontal planes for two
consecutive steps delimited by the impacts {k− 1,k,k+ 1}
with the states before (-) and after the impact (+). Ideally
the states converge such that x⃗ −

k = x⃗ −
k+1 and y⃗ −

k = y⃗ −
k+1.

horizontal equations of motion by solving for the velocities
ṗx and ṗy, 

ṗx =
Lcy

mH
−

LCoMy

mH

ṗy =− Lcx

mH
+

LCoMx

mH

(6)

(7)

where, LCoMi is the centroidal angular momentum about the
ith axis.

The second assumption is that the centroidal angular
momentum L⃗CoM is negligible compared to the contact
angular momentum L⃗c. This is a reasonable assumption for
point-contact robots with legs that can be considered mass-
less and torso/arm inertia that are not substantial, but for
more complicated bipedal systems this is not always true.
In Section III, we discuss how the task space momentum
controller can enforce these conditions, but for now we
continue on with the derivations assuming these conditions
have been met.

As a consequence of choosing a contact frame that is not
generally coincident with the CoP, the contact frame will
experience non-zero reaction moments during the gait cycle.
As such, the rate of contact angular momentum for a given
step is given by:

˙⃗Lc = p⃗CoM ×mg⃗+ τ⃗ c (8)

where τ⃗ c are the (potentially non-zero) reaction moments
at {c}. For robots with point contacts (where the contact
frame is located near the CoP) it is reasonably assumed

that the reaction moments are zero, which reduces (8) into
a linear system that only depends on the position of the
CoM. Traditionally, these assumptions allow for (6)–(8) to be
rewritten as linear systems that represent the reduced order
ALIP model which can then be used to plan for future states
of the robot during gait.

For the purpose of planning the future states of more
complicated robots without point-contacts, we choose to
ignore these contact moments as well. In reality, the true
rate of contact momentum (as well as the rate of centroidal
angular momentum) for these more complicated systems will
depend on these non-zero reaction moments. In Section III,
we define additional control tasks such that (i) the robot is
made to follow the future states as defined by the reduced
order ALIP model and (ii) that the reaction wrench is limited
by physical constraints to enforce contact conditions (e.g.,
no-slip). In this way, by utilizing the full reaction wrench
to minimize L⃗CoM and to track the future states of the robot
while adhering to physical constraints, the system is made
to behave similarly to the reduced order ALIP model even
with non-zero contact moments.

By defining the states x⃗ = [px Lcy]
⊤ and y⃗ = [py Lcx]

⊤ the
ALIP dynamics can be represented as motion in the frontal
and sagittal planes, respectively.

˙⃗x =
(

ṗx
L̇cy

)
=

[
0 1

mH
mg 0

](
px
Lcy

)
= A⃗x (9)

˙⃗y =
(

ṗy
L̇cx

)
=

[
0 −1

mH
−mg 0

](
py
Lcx

)
=−A⃗y (10)

Solutions to (9) & (10) can be defined as x⃗(t) = Mx(t )⃗x(0)
and y⃗(t) = My(t )⃗y(0), respectively, where:

Mx(t) =
[

cosh(ℓt) 1
mHℓ sinh(ℓt)

mHℓsinh(ℓt) cosh(ℓt)

]
(11)

My(t) =
[

cosh(ℓt) − 1
mHℓ sinh(ℓt)

−mHℓsinh(ℓt) cosh(ℓt)

]
(12)

and ℓ =
√

g/H. These equations explicitly define the hori-
zontal motion of the CoM and the contact angular momentum
(about the horizontal axes) for the ALIP model at time t,
given some initial state of the system at the beginning of
each step (Fig. 2).

As the motion of the ALIP dynamics is completely defined
by the initial states of the system, the ALIP planner can then
fundamentally rely on the estimation of the contact angular
momentum at the end of the current step (L̂cy, L̂cx) in order
to calculate the desired landing position of the swing foot
(ux,uy) such that the contact angular momentum at the end
of the next step can be regulated. Tracking these desired foot-
placements then allows the robot to track ALIP states that
are periodically stable (Fig. 3). The state planning for each
horizontal direction is calculated as follows:

1) Sagittal plane: We rely on the ALIP trajectories to
relate the current state x⃗(t) = [px(t) Lcy(t)]⊤ to the estimated
contact angular momentum about the y-axis at the end of
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Fig. 3. Phase portrait for the sagittal and frontal plane of
motion. The ALIP template produces stable hybrid orbits
represented by the thick grey lines for the continuous part
of the dynamics and the dashed lines for the instantaneous
impact. Note that the contact angular momentum is impact
invariant. The blue lines show the effect of using the feed-
back regulation (ux,uy) to drive an initial state (here xtest and
ytest ) to a desired orbit.

each step (after T seconds).

L̂cy = mHℓsinh(ℓ(T − t))px(t)+ cosh(ℓ(T − t))Lcy(t) (13)

For a desired forward velocity, ṗd
x , the desired con-

tact angular momentum Ld
cy is derived from the expected

displacement between two impacts (ṗd
x T = px(T )− px(0))

which is then used to calculate the desired forward foot
placement (ux; Fig. 2a).

Ld
cy =

mHℓṗd
x T

2

(
1+ cosh(ℓT )

sinh(ℓT )

)
ux =

Ld
cy − cosh(ℓT )L̂cy

mHℓsinh(ℓT )

(14)

(15)

2) Frontal plane: Analogously, the estimated contact an-
gular momentum about the x-axis at the end of each lateral
step is a function of the current state y⃗(t) = [py(t) Lcx(t)]⊤.

L̂cx =−mHℓsinh(ℓ(T − t))py(t)+ cosh(ℓ(T − t))Lcx(t) (16)

For a desired lateral velocity, ṗd
y , the desired contact angu-

lar momentum Ld
cx is derived from the expected displacement

( ṗd
y T = py(T )− py(0); Fig. 2b) as:

Ld
cx =−mHℓ

sinh(ℓT )
1+ cosh(ℓT )

p∗−mHℓcoth(ℓT )ṗd
y T (17)

p∗ =

{
W
2 −min(0, ṗd

y )T (Left Support)
−W

2 −max(0, ṗd
y )T (Right Support)

(18)

where W is the desired width between feet during in-place
walking. Note that in (18) we make sure that the distance
between the contact foot and the CoM at the beginning and
end of each step is no less than W

2 . This results in the lateral
foot placement (uy) given by:

uy =−Ld
cx − cosh(ℓT )L̂cx

mHℓsinh(ℓT )
(19)

The feedback actions ux and uy render the ALIP dynamics
periodically stable in each plane of motion [16].

III. TASK-SPACE HIERARCHICAL MOMENTUM CONTROL

As previously mentioned, the ALIP planner assumes (i) a
constant CoM height and (ii) negligible centroidal angular
momentum compared to the contact angular momentum.
While these assumptions may be more easily made for
smaller bipedal systems with point-contact feet, it is difficult
to do so for larger bipedal systems with complicated foot
geometry, non-trivial torso/limb inertia, and larger moving
arms. In order to apply the ALIP template model and
planner to these systems, a task-space controller must be
used in order to explicitly control the centroidal momentum
of the system while ensuring that foot contact constraints
are not violated. For this, we specifically utilized a task-space
hierarchical quadratic programming controller modified from
[8], [11]. In this way, the dynamics more closely resemble
the ALIP model of a mass rotating about a contact point and
the ALIP planner can be used to produce stable gait.

The task space controller primarily relies on the condi-
tion that the FB of the system is always controllable (i.e.,
rank(Jc) ≥ 6), which is satisfied when one or both feet
are (i) in contact with the ground and (ii) motionless (3).
Inverting this no-slip condition produces an equation for joint
accelerations that ensures solutions lie in the nullspace of this
constraint,

¨⃗q = J†
c (−J̇c ˙⃗q)+Zc⃗zc (20)

where Zc = Null(Jc) and z⃗c is the optimization variable.
Using a hierarchical quadratic program and (20) it is then
possible to solve for the value of z⃗c that satisfies any
number of acceleration tasks/constraints while ensuring that
any/all subsequent tasks do not violate the optimality of any
preceding tasks (including the no-slip condition) [8]–[11].

In order to formulate the centroidal momentum as an
acceleration task, we derive the centroidal momentum matrix
(ACoM) and its derivative from [17] and then differentiate
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Fig. 4. Sarcos© Guardian® XO® is a 150 kg full-body hybrid
humanoid/exoskeleton robot with non-point-contact feet. We
observe a rendered version on the left and the right, the
MuJoCo model used in the simulation.

the centroidal momentum equation h⃗CoM = ACoM ˙⃗q, thus
producing the equation for the rate of centroidal momentum.

˙⃗hCoM = ACoM ¨⃗q+ ȦCoM ˙⃗q (21)

Note, that h⃗CoM consists of L⃗CoM as well as the linear mo-
mentum of the CoM (K⃗CoM), which can also be represented
as the linear velocity of the CoM scaled by the mass of the
robot. Therefore, the desired rate of centroidal momentum
can be formulated to control (i) for the desired horizontal
CoM trajectories provided by the ALIP planner while (ii)
minimizing centroidal angular momentum and (iii) keeping
the CoM height constant. The desired rate of centroidal
momentum is therefore defined as:

˙⃗hd
CoM =

(
0

m ¨⃗pCoM,d

)
+KD

((
0

m ˙⃗pCoM,d

)
−ACoM ˙⃗q

)
+KP

(
0

mp⃗CoM,d −mp⃗CoM,m

) (22)

where p⃗CoM,m represents the measured CoM position, p⃗CoM,d
and its derivatives represent the desired trajectories generated
by the ALIP model (9) and (10) (with constant CoM height),
and KD and KP and are appropriate positive definite gains.

During single support, if we consider the contact frame
{c} to be the only contact (along with the no-slip condition),
the wrench at that point is fully determined from the desired
rate of centroidal momentum. This desired rate may not
be physically achievable by the system (e.g., the contact
wrench may break stick-slip conditions). We therefore cal-
culate the constrained desired rate of centroidal momentum
by constraining this wrench to adhere to physical bounds
(i.e., friction and torque limits based on foot geometry)
which limits the CoP to stay within the contact polygon.
By closing on this constrained rate of centroidal momentum,
the controller can track the desired ALIP trajectories without
violating contact conditions.

Time (s) 0-2 2-8 8-14 14-20 20-22

ṗdes
x (m/s) 0 0.225 0.45 0.225 0

ṗdes
y (m/s) 0 0 0 0 0

Time (s) 22-28 28-30 30-36 36-38 38-44

ṗdes
x (m/s) 0 0 -0.225 0 0

ṗdes
y (m/s) -0.225 0 0 0 0.225

TABLE I. Desired steps in horizontal CoM velocities.

Lastly, we define an additional task to control for the
position/orientation of the swing foot (which is updated by
the ALIP parameters ux and uy) as well as a task to maintain
some ideal configuration of the arms.

IV. RESULTS

A. Robot description

Sarcos© Guardian® XO® is a full-body industrial hybrid
exoskeleton/humanoid as shown in Fig. 4. This 150 kg robot
has feet that are offset from the ankle joint centers that
make it impossible to consider these as point-contacts or
to apply any passive ankle schemes to recover behavior
similar to point-contact feet. Additionally, the legs cannot
be considered mass-less and the arms and torso substantially
contribute to the momenta of the system, making this a
perfect candidate to test our integrated task-space momentum
controller with ALIP planner.

B. Forward and lateral walking

To demonstrate the effectiveness of the task-space hierar-
chical momentum controller, simulations were conducted in
MuJoCo [18] whereby the robot was made to autonomously
walk in either the sagittal or frontal planes of motion at
variable speeds using the ALIP planner. In particular, the
robot was made to follow the step changes in commanded
horizontal velocity provided in Table I.

Fig. 5. Comparing the desired CoM trajectories (red) pre-
scribed by the ALIP planner with the measured CoM values
produced by the centroidal momentum controller (blue).
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To render the full-order dynamics closer to the ALIP
model, our hierarchical task-space controller must (i) mini-
mize the centroidal angular momentum while (ii) maintain-
ing a constant CoM height and (iii) following the desired
horizontal ALIP CoM trajectories. Our contact frame {c}
lies in the center of the contact foot and is aligned such
that x is forward and z is up. We see in Fig. 5 that the
controller reliably tracks the prescribed lateral CoM position
while maintaining a constant height. Alternatively, Fig. 6
demonstrates that the controller is able to sufficiently track
the horizontal linear momentum (i.e., the CoM velocity)
while minimizing (i) the centroidal angular momentum and
(ii) the linear momentum of the CoM along the z-axis (to
maintain a constant CoM height).

Once the robot reaches a desired CoM velocity, the
measured ALIP states behave in a manner consistent with
the ALIP template, which can be seen when those values
are overlaid on the respective phase portraits from in Fig. 7.
This demonstrates that by minimizing the centroidal angular
momentum and tracking the CoM trajectories as prescribed
by the ALIP planner, the robot dynamics can indeed be
captured by the ALIP template model (even though the
reaction moments are non-zero). Additionally, we find that
the contact momentum estimates at the end of each step are
close to the measured values (an important assumption for
calculating the feedback actions for periodic gait; Fig. 8),
which further strengthens the claim that the full-robot model
is being captured by the ALIP dynamics when controlled
via this momentum controller. Note that following contact
with the ground, the robot exhibits a brief peak in angular
momentum, attributed to a discrete jump in vertical CoM
velocity, which causes a discrepancy between actual and es-
timated contact momentum at the start of each step. Observe
that the resulting centroidal angular momentum in Fig. 6 is
about an order of magnitude less than the resulting contact
angular momentum in Fig. 8, consistent with the assumptions
of the ALIP model.

Lastly, as the feedback actions rely on some desired

Fig. 6. Desired (red) vs. measured (blue) centroidal momen-
tum for various steps in desired CoM velocity.

Fig. 7. Measured ALIP states overlaid on the ideal ALIP
phase portraits in the sagittal and frontal planes as the robot
tracks various horizontal speeds (See Table I). The measured
states as the robot transitions between target velocities have
been omitted.

horizontal velocity, it is important to explore how well the
controller is able to track these desired velocities. Using the
values from Table I, we compare the desired and measured
horizontal CoM velocities in Fig. 9. Note that in order to
achieve a large speed command, smaller intermediate speeds
are used to avoid large swing foot movements which can
be mathematically correct but physically too demanding for
the robot. When comparing the desired velocities to a 1
second moving average of the measured values, we find that
the controller does a remarkable job at tracking the desired
velocity in both the forward and lateral directions.

V. CONCLUSIONS

The main highlight of this paper is the extension of the
ALIP paradigm to robots with non-point-contact feet, non-
trivial torso/limb inertia, and non-centralized arms. We have
shown that the full-order dynamics of the Sarcos© Guardian®

XO® can be captured by the ALIP dynamics when a
task-space controller is formulated to minimize the cen-
troidal angular momentum and to track the CoM references
prescribed by the ALIP planner while regulating contact
wrenches/constraints. We demonstrate that this new formu-
lation is able to accurately predict robot states based on the
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Fig. 8. Current contact angular momentum (blue) vs. the
predicted values at the end of each step (red). For each
2 second window of the non-zero desired CoM velocities
from Table I, we find that the expected and measured values
converge at the end of each step. After the robot makes
contact with the ground it exhibits a brief peak in angular
momentum, attributed to a discrete jump in vertical CoM
velocity, causing the expected and measured values at the
start of each step to deviate.

ALIP paradigm even though this robot does not have point-
contact feet and, as a result, non-zero reaction moments at
the defined contact frame.

Under the conditions imposed by the controller, we were
then able to apply the ALIP planner, which, produced stable
longitudinal and lateral gaits of variable speeds. Specifically,
we were able to obtain a maximum of 0.45 m/s in the forward
direction (slightly more than 1 mph) and 0.225 m/s in either
lateral directions. We therefore show that the fundamental
assumptions previously needed to use ALIP models (i.e.,
point contact feet, massless limbs, and lumped torso mass)
can be relaxed when the planner is combined with an
appropriately-constrained centroidal momentum controller.
These results, therefore, expand on the applicability of the
ALIP template model to a more general type of bipedal robot
when combined with an appropriate task space controller.
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