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Abstract

This paper proposes a computational framework for the design optimization of stable structures under large deformations

by incorporating nonlinear buckling constraints. A novel strategy for suppressing spurious buckling modes related to low-

density elements is proposed. The strategy depends on constructing a pseudo-mass matrix that assigns small pseudo masses

for DOFs surrounded by only low-density elements and degenerates to an identity matrix for the solid region. A novel

optimization procedure is developed that can handle both simple and multiple eigenvalues wherein consistent sensitivities of

simple eigenvalues and directional derivatives of multiple eigenvalues are derived and utilized in a gradient-based optimization

algorithm — the method of moving asymptotes. An adaptive linear energy interpolation method is also incorporated in nonlinear

analyses to handle the low-density elements distortion under large deformations. The numerical results demonstrate that, for

systems with either low or high symmetries, the nonlinear stability constraints can ensure structural stability at the target load

under large deformations. Post-analysis on the B-spline fitted designs shows that the safety margin, i.e., the gap between the

target load and the 1st critical load, of the optimized structures can be well controlled by selecting different stability constraint

values. Interesting structural behaviors such as mode switching, and multiple bifurcations are also demonstrated.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Starting from the seminal paper by Bendsœ and Kikuchi [1] introducing homogenization-based topology

ptimization, the development of computational methods for structural topology optimization has undergone

remendous progress [2]. Besides the linear elastic structures on which the vast majority of the research is still

ocused [3], the extension to inelasticity [4,5], finite deformations [6–8], and multi-physics [9] has also been

ddressed. To ensure that the optimized structures can operate under the defined loading conditions without failure,

he design optimization must, accordingly, incorporate appropriate failure mechanisms. Moreover, the meaning of

ailure can be quite diverse depending on the context. For example, the failure can be related to the loss of structural

tability [10], the emergence of plasticity in the material [11], and the degradation of the material mechanical

roperties [12,13], among others. In this study, attention is focused on structures with hyperelastic materials that
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can sustain large strains within the elastic domain. Accordingly, the failure mechanism is defined as a “buckling-
type” instability and for conservative systems, the energy criterion can be used for investigating stability [14], as
compared to non-conservative systems which may require a more general Lyapunov criterion [15].

For elastic solids, the most commonly used optimization formulation is minimum compliance subject to material
volume constraint also referred to as the stiffness design formulation [2,6]. For stiffness design, the optimization
process may generate slender members, and the stability considerations are then important in producing meaningful
practical designs, especially under large deformations [16]. In past, the majority of the topology optimization studies
with buckling constraints were devoted to truss structures, mostly limited to linear truss structures, with constraints
ranging from simple local buckling constraints using the Euler buckling criterion on each member [17] to the global
buckling constraints on the entire structure [18]. The extension to geometrically nonlinear buckling-constrained truss
topology optimization was carried out by Li and Khandelwal [19]. In contrast to the truss structures, there are fewer
studies on the topology optimization of continuum structures with buckling constraints. For continuum, the first
work was carried out by Neves et al. [20], where a linear buckling constraint was incorporated. The linear buckling
analysis can be written as a generalized eigenvalue problem

(K 0 − λK σ )φ = 0 (1)

here K 0 is the initial stiffness matrix, i.e., at zero displacements, K σ is the stress stiffness matrix that is evaluated
rom the displacement field u solved from the linear equations K 0u = P where P is the applied force. The smallest
igenvalue is denoted as λ1 represents the buckling load factor that gives the approximate buckling load λ1 P , while

the corresponding eigenvector φ1 represents the buckling mode. It is noted that the linear buckling analysis in Eq. (1)
implicitly assumes that the stress stiffness depends linearly on the loads and that the displacements at the critical
point are small. Furthermore, for incorporating linear buckling constraints in a density-based topology optimization
framework two main challenges have been identified: (a) the presence of spurious buckling modes in the low-density
regions [10,20]; (b) non-differentiability of multiple/repeated eigenvalues λ [21].

In Neves et al. [20], spurious buckling modes were suppressed by ignoring the contributions from the low-density
elements to the stress stiffness matrix, and the non-differentiability of multiple eigenvalues is circumvented using
the generalized gradient concept. Later, in Bendsœand Sigmund [2], different penalization schemes for the initial
stiffness and stress stiffness matrices were proposed to handle the spurious buckling mode issue. Bruyneel [22]
demonstrates the necessity of including enough representative buckling modes to handle the switching of buckling
modes to avoid poor convergence in linear buckling optimization. The derivatives of repeated eigenvalues have been
extensively studied by Seyranian et al. [21] for structural optimization, see also Refs. [23,24]. The differentiability
of the symmetric polynomials of the repeated eigenvalues has been employed in [25] for tackling the non-
differentiability related to repeated eigenvalues. Other important contributions to the linear buckling topology
optimization can be found in [26–28]. Recent years have seen an increasing interest in structural buckling topology
optimization. For instance, Gao and Ma [29] avoided spurious buckling modes by the eigenvalue shift and mode
identification via computing modal strain energy ratio; Dunning et al. [30] used an effective iterative block conjugate
gradient method to solve large eigenvalue problems; Thomsen et al. [31] combined linear buckling with Bloch-wave
analysis for the design of 2D periodic materials with improved buckling strength; Ferrari et al. [32] studied the use
of aggregation functions for approximating the lowest eigenvalue in the buckling constraints, which was adopted by
Russ and Waisman [33] for designing elastoplastic structures with damage and linear buckling constraints; Ferrari
et al. [34] also developed a multilevel approach for reducing computational cost in large scale optimization problems
with linearized buckling constraints; Gao et al. [35] combined linear buckling with stress constraints for the structural
stiffness design with improved strength and stability.

Linear buckling analysis is only valid when the deformations are small in the pre-buckling stage and under large
deformations, the linear buckling analysis can lead to erroneous results. However, the extension to nonlinear buckling
analysis in the topology optimization is not yet fully investigated due to many challenges, e.g., accurate estimation
of critical points or other stability indicators, nontrivial sensitivity analysis (even for simple eigenvalues) since the
tangent stiffness matrix is a function of the displacement, low-density mesh distortions under large deformations,
among others. For instance, Kemmler et al. [36] exploited the so-called extended system of equations to directly
calculate the critical point which was constrained from below to minimize compliance. The difficulty is to find the

solution to the critical point as the current solution point must be close enough, which is not always guaranteed.
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As an alternative approach, Lindgaard and Dahl [37] proposed to approximate the critical point at a precritical load
step by(

K 0 + K n
u

)
φ = −λK n

σφ (2)

where K n
u and K n

σ are the displacement stiffness and stress stiffness at the precritical nth step, respectively. As
shown in [19], the accuracy of the approximate critical point depends on the proximity of the precritical step to
the critical point. In [36,37], concerns related to mesh distortions and multiple eigenvalues were not addressed. In
a recent study by Dalklint et al. [10], the approach in [37] is extended by adopting a linear energy interpolation
scheme [38] to address mesh distortion together with an aggregation function approach for tackling sensitivities of
multiple eigenvalues.

On the other hand, as both are concerned with eigenvalue problems, structural eigenfrequency optimization shares
common features with structural buckling optimization. It is often formulated as a generalized eigenvalue problem
with both mass matrix and stiffness matrices, as compared to the static buckling analysis where only the stiffness
matrix is involved. Likewise, most works are confined to linear elasticity. For example, Pedersen [39] maximized
the fundamental eigenfrequency in which a new interpolation for stiffness and mass is used in combination with
a strategy to neglect nodes surrounded by only low-density elements to avoid spurious vibration modes; Du and
Olhoff [40] adopted higher penalization on the mass of low-density elements to suppress spurious eigenmodes,
and proposed a two-loop optimization procedure where the inner loop consider directional derivatives to handle
the non-differentiability of multiple eigenvalues. This procedure was extended to the geometrically nonlinear case
by Dalklint et al. [41]. Besides that, the geometrically nonlinear eigenfrequency optimization was studied by Yoon
et al. [42] where the fundamental eigenfrequency of a structure at deformed configuration was maximized in an
element-connectivity topological parameterization framework and it was shown that eigenfrequencies of nonlinear
systems can be significantly affected by large deformations.

This study focuses on the topology optimization of structures with minimized end compliance while satisfying
material volume and nonlinear stability constraints. The main contributions of this work are: (a) A novel strategy
for removing spurious buckling modes based on the construction of a pseudo-mass matrix is proposed; (b) A
new formulation of nonlinear stability analysis in topology optimization is considered by directly computing the
eigenvalues of the tangent stiffness matrix where no other approximations are made; (c) The optimization problem
is formulated to incorporate a fixed number of clusters of eigenvalues rather than a fixed number of eigenvalues
so that it can handle arbitrary multiplicities of eigenvalues during the optimization process; and (d) Finally, the
post-analysis on the B-spline fitted optimized topologies is carried out to evaluate the stability performance of the
optimized structures.

The rest of the paper is organized as follows. In Section 2, the density-based framework is briefly reviewed. The
nonlinear finite element analysis with a fictitious domain approach used in topology optimization is presented in
Section 3. A novel pseudo-mass matrix is developed to handle the spurious buckling modes in the fictitious region
in Section 4 together with an illustrative example. Section 5 gives the derivation of the sensitivity analysis for both
simple and multiple eigenvalues. In Section 6, a novel optimization formulation that is capable of handling both
simple and multiple eigenvalue scenarios is presented. In Section 7, four numerical examples are carried out to
demonstrate the effectiveness of the nonlinear buckling constraints in controlling the structural stability under large
deformations. Finally, concluding remarks are given in Section 8.

2. Density-based framework

In the density-based topology optimization [2], with finite element discretization (see Section 3), a design is
parameterized by an element-wise constant density field ρ (X) that indicates the presence (ρ = 1) or absence
(ρ = 0) of the material in an element, where X ∈ Ω0 denotes an arbitrary material point position in the undeformed
reference configuration Ω0. To accommodate gradient-based optimization algorithms, the discrete density variables
are relaxed to continuous values, i.e., ρ ∈ [0, 1], where 0 < ρ < 1 represents the mixture of void and solid phases.

2.1. Material interpolation

To link the density variable (ρ) to the structural performance measures that are to be optimized or constrained,
the material properties are parameterized by ρ. For instance, for compressible elastic materials, Young’s modulus
3
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(E) can be interpolated such that E (ρ = 0) = Emin , E (ρ = 1) = E0 and Emin < E (0 < ρ < 1) < E0, where
Emin is a small number to avoid singularity while E0 represents Young’s modulus of the solid material used in
the topology optimization. In this study, hyperelastic media is considered in the topology optimization and the
so-called Simplified Isotropic Material with Penalization (SIMP) approach [43,44] is adopted, wherein Young’s
modulus E (ρ) for an element with density ρ is interpolated as

E (ρ) =
[
ϵ + (1 − ϵ) ρ p] E (3)

where E represents the Young’s modulus of the media inside solid element, ϵ = 10−8 is the lower bound that
assigns void element a negligible stiffness Emin = ϵE to avoid singularity, p ≥ 1 is the penalization power that
penalizes intermediate densities. Detailed descriptions of the topology optimization process are given in Section 6.

3. FEA considering finite deformations

Let Ω0 ∈ R3 be the reference configuration of a deformable continuum body with X ∈ Ω0 denoting the position
vector of an arbitrary material point in Ω0. It is assumed that a motion that carries the continuum body from its
reference configuration to its current configuration Ωt ∈ R3 can be described by a smooth one-to-one mapping
ϕ : X → x with u (X) = ϕ (X)− X , where u represents the displacement field. The associated local deformation
gradient is defined by F := ∇Xϕ with J := det F > 0, where ∇X denotes the gradient w.r.t. the reference
coordinates X . The strong form of the quasi-static boundary value problem is to find the displacement field (u)
such that⎧⎪⎪⎨⎪⎪⎩

∇X .P = 0 in Ω0

u = u on ∂Ω0u

P .N̂ = T on ∂Ω0σ

(4)

here the body force is ignored, the boundary ∂Ω0 is decomposed into the disjoint sets ∂Ω0u and ∂Ω0σ such that
Ω0 = ∂Ω0u ∪ ∂Ω0σ and ∂Ω0u ∩ ∂Ω0σ = ∅, P is the 1st Piola–Kirchhoff (PK) stress tensor and is related to the
eformation gradient F through a specified constitutive model, u and T are the prescribed displacement and 1st

PK traction vectors, respectively, on the boundaries ∂Ω0u and ∂Ω0σ with unit outward normal N̂ .
The corresponding weak form is given by: find u ∈ U such that∫

Ω0

δF : PdV −

∫
∂Ω0σ

δu : Td S = 0 ∀δu ∈ V (5)

here δF = ∇Xδu and the appropriate solution and variation spaces are

U =
{
u (X) |u (X) ∈ H 1 (Ω0) , u (X) = u for X ∈ ∂Ω0u

}
V =

{
v (X) |v (X) ∈ H 1 (Ω0) , v (X) = 0 for X ∈ ∂Ω0u

} (6)

n which H 1 (Ω0) =
{
v|vi ∈ L2 (Ω0) , ∂vi/∂X j ∈ L2 (Ω0) , i, j = 1, 2, 3

}
and L2 (Ω0) represents the space of

quare-integrable functions.
Using the Galerkin method, the same finite element (FE) mesh is used to construct finite-dimensional approx-

mations of the spaces U and V by Uh and Vh . This leads to the following system of nonlinear equilibrium
quations

R (u) = Fint (u)− Fext = 0

with Fint (u) =

nele
A

e=1
Fe

int and Fe
int =

∫
Ωe

0

BT PdV and Fext = A
e∈Sσ

∫
∂Ωe

0σ

NT Td S (7)

where the global residual R (u) is solved for the unknown displacement u ∈ Uh , and N is the shape function matrix,
B is the gradient operation matrix. Ω e

0 represents the eth element integration domain and nele is the total number
f elements. ∂Ω e

0σ represents a part of the boundary ∂Ω0σ that is shared with eth element and ∂Ω0σ =
⋃

e∈Sσ ∂Ω
e
0σ .

he external load Fext is assumed to be independent of displacement. For all the examples considered in this study,
he standard bilinear Q4 element for the 2D plane strain problem is used. With conforming FE mesh, Eq. (7) is
olved using Newton–Raphson (NR) method with the tangent stiffness matrix K T = ∂Fint/∂u computed to achieve
uadratic convergence. With non-conforming mesh (fictitious domain), a modification to Fint and its associated K T

s made to handle low-density elements distortion, see Section 3.2.
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3.1. Constitutive model

In this study, hyperelastic media is considered in the topology optimization. In particular, a regularized
neo-Hookean model is adopted with the free energy function given by

ψ (C) =
κ

2
(J − 1)2 +

µ

2

(
I 1 − 3

)
(8)

where I 1 = tr
(
C
)

with C = J−2/3C and C = FT .F is the right Cauchy–Green strain tensor; κ and µ are the
bulk and shear moduli which are related to Young’s modulus E and Poisson’s ratio ν by κ = E/ (3 (1 − 2ν)) and
µ = E/ (2 (1 + ν)). The 1st PK stress tensor is given by

P =
∂ψ

∂F
= κ (J − 1)

∂ J
∂F

+
µ

2
∂ I 1

∂F

with
∂ J
∂F

= J F−T and
∂ I 1

∂F
= −

2
3

I 1 F−T
+ 2J−2/3 F

(9)

nd the tangent modulus that is used in the calculation of the tangent stiffness matrix is

A =
∂2ψ

∂F∂F
= κ (J − 1) J

∂F−T

∂F
+ κ (2J − 1) J F−T

⊗ F−T

+
µ

2

(
−

2
3

I 1
∂F−T

∂F
−

2
3

F−T
⊗
∂ I 1

∂F
+ 2J−

2
3 I4 −

4
3

J−
2
3 F ⊗ F−T

) (10)

ith (I4)i jkl = δikδ jl and(
∂F−T

∂F

)
i jkl

= −
(
F−1)

li

(
F−1)

jk (11)

Remark. Based on the topological parameterization using element density variable ρ (see Section 2), the constitutive
odel is a function of the density variable ρ. Specifically, here the bulk (κ) and shear (µ) moduli are functions of
via the interpolation of the Young’s modulus by ρ in Eq. (3).

.2. Fictitious domain with (adaptive) linear energy interpolation

In density-based topology optimization, the fictitious domain approach is mostly used as it facilitates finite
lement analysis (FEA) of structures with evolving topologies. However, as pointed out in Refs. [6,38], the fictitious
omain approach can lead to mesh distortions of void (or low-density) elements under finite deformations which
eads to numerical convergence issues during the solution process. Several strategies have been proposed to tackle
his issue, e.g., neglect of the degrees of freedom (DOFs) related to void elements in the NR convergence [6], element
emoval and reintroduction strategy [45], novel topological parameterization by inter-element zero-length elastic
inks [46], element distortion indicator informed design update [47], linear energy interpolation scheme [16,38,48],
tc. Among them, the adaptive linear energy interpolation method proposed by the authors [16] that has shown
obust performance in handling mesh distortions in the previous studies [13,49,50] is adopted in this work. For
ompleteness, this approach is briefly described in this section.

The main idea of the linear energy interpolation is to interpolate the element deformation energy by linear energy
ased on the density variable ρ such that when ρ → 0 small deformation (linear) theory is used while when ρ → 1
nite deformation theory is used. To this end, the deformation gradient F is interpolated as

F = I + η (ρ)∇X u with η (ρ) =
exp (βρ)

exp (cβ)+ exp (βρ)
(12)

where c and β are interpolation parameters chosen as β = 120 and c = c0 = 0.08. The element internal force in
Eq. (7)2 is accordingly modified to

Fe
int (u) =

∫
e
ηBT PdV +

∫
e

(
1 − η2) BT

L [C : ε] dV (13)

Ω0 Ω0

5
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where BL denotes the strain–displacement matrix for the small strain measure, i.e., [ε] = BL u with ε := ∇
s
X u

and ∇
s
X the symmetric gradient operator and C is the linear isotropic elastic moduli determined by the interpolated

Young’s modulus using Eq. (3) but with a higher penalization power pL , i.e., pL > p, in order to discourage
sing low-density values to exploit small deformation kinematics. Here, a bracket outside the tensor denotes the
atrix–vector form of the tensor.
Note that in the considered adaptive strategy, the c value is adaptively updated if FEA fails to converge after

eaching a predefined minimum step size, i.e., c → c + ∆c with ∆c = 0.05. As the c is increased more linear
inematics is employed, and with this adaptive strategy, the FEA eventually converges when c is sufficiently high.
he parameter c is reset to its default value c0 after the convergence of FEA at the current optimization step. It is
mphasized that this adaptive scheme on the interpolation parameter c is crucial for improving the robustness of
he linear energy interpolation method, as it is difficult to pre-select a single or a series of c values that can work
or all the intermediate topologies during the optimization process. The necessity of this adaptive scheme can be
een from the results in Section 7.1.

With Fe
int being replaced by Eq. (13), the global nonlinear equilibrium Eq. (7) is solved using the NR method

ith an adaptive step-size strategy. To achieve quadratic convergence, the tangent stiffness matrix is computed as

K T =

nele
A

e=1
ke

T with ke
T =

∫
Ωe

0

η2 BT [A] BdV +

∫
Ωe

0

(
1 − η2) BT

L [C] BLdV (14)

here A is the tangent moduli from the material subroutine, see Eq. (10) for its expression corresponding to the
eo-Hookean model.

. Nonlinear structural stability analysis with fictitious domain

For a conservative system, an equilibrium state is said to be stable if the potential energy of the system in that state
s a proper minimum. After FE discretization with a conforming mesh, the structural stability can be assessed by
xamining the positive definiteness of the tangent stiffness matrix K T (after the application of boundary conditions).
hat is, a structure loses stability at a critical point (limit or bifurcation) where the tangent stiffness matrix loses
ositive definiteness, i.e., one or more eigenvalues become zero. At a critical point that corresponds to a limit
oint, the magnitude of the external load that the structure can withstand cannot further increase. At the bifurcation
oint, the uniqueness of the solution is lost, i.e., there exist other solution branches beside the primary branch, and
he stability of these branches can be similarly examined via the check of the positive definiteness of the tangent
tiffness matrix.

Assuming that the eigenpairs of K T are denoted by
(
λq ,φq

)
, the eigenvalue problem is given by(

K T − λq I
)
φq = 0, q = 1, 2, . . . , s (15)

here λq are listed in increasing order, i.e., λ1 ≤ λ2 ≤ · · · ≤ λs and s is the size of the tangent stiffness matrix
K T . It is assumed that the boundary conditions are applied such that the rigid-body motion is suppressed and the
esulting K T is stable in the initial undeformed state. Therefore, the structure is stable at a given state with tangent
tiffness K T if λ1 > 0. Suppose that the external load is scaled by its magnitude by a scalar γ (often called load
actor), i.e., Fext = γ P̂ with P̂ taking the expression of Fext in Eq. (7), and the structure loses stability at the load
actor γcr , the nature (limit or bifurcation) of the critical point (γcr ) is determined by the condition

φT
c P̂ =

{
= 0 bifurcation point

̸= 0 limit point
(16)

here φc is the eigenvector associated with zero eigenvalue (λc = 0) at a load factor γcr . A further classification
f the type of instability requires higher-order derivatives [51], which is not pursued in this study.

As void and/or low-density elements are present in the fictitious domain that has relatively much smaller stiffness
ompared to the solid elements, spurious buckling modes in these elements can exist in the stability analysis. To
uppress spurious buckling modes, a new strategy is proposed that uses a diagonal pseudo-mass matrix (SM ) which
as one for the DOFs attached to solid element(s) and a small number for the DOFs attached to void elements. The
dea is similar to the interpolation strategy of a mass matrix in the dynamic case for removing spurious vibration
odes [40]. Accordingly, the eigenanalysis of the tangent stiffness matrix is modified to( )
K T − λq SM φq = 0, q = 1, 2, . . . (17)

6
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q
(

Fig. 1. Illustration of the nodal pseudo density.

Fig. 2. Illustration of the set of element IDs of different types of nodes.

where for conforming mesh with all elements being solid, Eq. (17) degenerates to Eq. (15) as SM = I , i.e., an
identity matrix. As both K T and SM are symmetric, without loss of generality, the eigenvectors φq are SM -
orthonormalized, i.e., φT

p SMφq = δpq . The construction of the pseudo-mass matrix (SM ) is detailed in the following
section.

4.1. Pseudo-mass matrix construction

In contrast to the mass matrix interpolation in the eigenfrequency optimization case, the desired pseudo-mass
matrix is diagonal and is supposed to degenerate into an identity matrix when all the elements are solid. Under this
guidance, the first step is to identify, for each node, whether it belongs to a solid/high-density or void/low-density
region. To this end, a nodal pseudo-density (ϖi , i = 1, . . . , #nodes) is introduced which is defined as the maximum
of the element densities that the node is surrounded by (Fig. 1). For the sake of differentiability, this maximum is
approximated by a p-norm function as

ϖi =

⎛⎝∑
r∈Bi

ρq
r

⎞⎠1/q

, i = 1, . . . , #nodes (18)

where Bi is the set of element IDs that the i th node is attached to, q is the power of the p-norm here chosen as
= 15. For a regular 2D domain discretized with uniform Q4 elements, Bi can contain 1 (convex corner node), 2

side node), 3 (concave corner node), or 4 (inner node) element IDs depending on the nodal location, see Fig. 2.
Using the nodal pseudo density ϖi , the nodal pseudo-mass is interpolated by

m̃i =

⎧⎪⎪⎨⎪⎪⎩
ϵ̂ +

(
1 − ϵ̂

)
ϖ

pm
i if ϖi ≤ ϖL

a0 + a1ϖi + a2ϖ
2
i + a3ϖ

3
i if ϖL < ϖi < ϖH (19)
1 if ϖi ≥ ϖH

7
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ρ

Fig. 3. Nodal pseudo-mass m̃ as a function of nodal pseudo-density ϖ with cut-offs ϖL = 0.1 and ϖH = 0.2 and different power values
pm ..

where ϵ̂ is a small positive number to avoid singularity, pm is the penalization power, ϖL and ϖH are two cut-off
values incorporated such that the nodal pseudo-mass is interpolated by ϖi in a similar manner as stiffness in Eq. (3)
when ϖi ≤ ϖL , and is equal to one when ϖi ≥ ϖH . The transition between the two interpolations is carried out
by a cubic polynomial with continuity on both function value and its 1st order derivative at two ends, ϖi = ϖL

and ϖi = ϖH . To this end, the parameters a0, a1, a2 and a3 are determined by the following linear equations⎡⎢⎢⎢⎢⎢⎣
1 ϖL ϖ 2

L ϖ 3
L

0 1 2ϖL 3ϖ 2
L

1 ϖH ϖ 2
H ϖ 3

H

0 1 2ϖH 3ϖ 2
H

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a0

a1

a2

a3

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
ϵ̂ +

(
1 − ϵ̂

)
ϖ

pm
L

pm
(
1 − ϵ̂

)
ϖ

pm−1
L

1

0

⎤⎥⎥⎥⎥⎥⎦ (20)

As an illustration, Fig. 3 shows the curves of the function m̃i (ϖi ) in Eq. (19) with cut-off values ϖL = 0.1 and
ϖH = 0.2 and different pm values. As can be seen, the transitions at the two cut-offs have continuous slope.

Finally, the pseudo-mass matrix SM is constructed as

SM =

⎡⎢⎢⎣
m̃1 Id×d 0 0

0
. . . 0

0 0 m̃#nodes Id×d

⎤⎥⎥⎦ (21)

where Id×d denotes a d × d identity matrix with d representing dimension (d = 2 for 2D case and d = 3 for 3D
case). It should be noted that the boundary conditions should be applied to SM in the same way, as done for K T

before used in the eigenanalysis in Eq. (17). It is also noted that the construction of the nodal pseudo-mass in this
section remains valid for both uniform and non-uniform FE meshes. The effectiveness of the stability analysis with
a fictitious domain and the proposed pseudo-mass matrix is illustrated with an example in the next section.

4.2. Example

In a topology design problem, the buckling modes in the low-density region should be discarded and only the
buckling modes in the solid parts or the regions with high-density values should be considered. To illustrate the
issue of the spurious mode the column under compressive loads shown in Fig. 4a is investigated. The finite element
of size 10 mm × 10 mm is used for the discretization of all the FE meshes in Fig. 4. The column is immersed
in a fictitious domain by adding void elements of negligible stiffness in Fig. 4b. Furthermore, the topology of the
column is blurred in Fig. 4c by considering four columns of solid elements, two columns of ρ = 0.8, ρ = 0.6,
= 0.3 and ρ = 0.1 elements, respectively, and ρ = 0.001 for the rest of the elements. The material interpolation

8
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Fig. 4. The nonlinear stability analysis of a compressive pinned column with conforming and fictitious domain FE meshes and
ntermediate-density elements.

Table 1
Comparison of the eigenvalues by nonlinear stability analysis using Eq. (15) or (17) on conforming or fictitious domain FE meshes.

Stability analysis with Eq. (15) Stability analysis with Eq. (17)

Conforming FE mesh
in Fig. 4a

Fictitious domain with
solid-void Fig. 4b

Solid-intermediate-void
topology in Fig. 4c

Fictitious domain with
solid-void Fig. 4b

Solid-intermediate-void
topology in Fig. 4c⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.8326 × 10−8

0.01052993

0.05912481

0.06507443

0.18120229

0.41148828

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.9900 × 10−10

8.9900 × 10−10

2.0254 × 10−9

3.1175 × 10−9

3.4448 × 10−9

4.2193 × 10−9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0418 × 10−9

1.0418 × 10−9

3.3478 × 10−9

3.3482 × 10−9

4.7736 × 10−9

4.7737 × 10−9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.4671 × 10−8

0.01052995

0.05912486

0.06507443

0.18120235

0.41148836

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.6913 × 10−6

0.00677015

0.03760269

0.03838094

0.11421241

0.25709518

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

scheme in Eq. (3) is used for those intermediate densities with ϵ = 10−8, p = 3 and pL = 6. The parameters
regarding the construction of the pseudo-mass matrix are chosen as: q = 15, ϵ̂ = 10−9, pm = 6, ϖL = 0.1 and
ϖH = 0.2, see Eqs. (18)–(21).

The stability analysis is carried out at the final loading step using Eq. (15) for Fig. 4(a)–(c) and Eq. (17) for
ig. 4(b)–(c). The comparison of the first six eigenvalues of the three cases in Fig. 4 is given in Table 1, while the
ssociated eigenmodes are plotted in Fig. 5, Fig. 6, and Fig. 7. The comparison of Fig. 5 and Fig. 6a illustrates

the presence of spurious modes with void elements, whereas the comparison of Figs. 5 and 7a demonstrates the
ffectiveness of the proposed pseudo-mass idea in suppressing the spurious modes. Furthermore, the eigenvalue
alculation with the pseudo-mass matrix produces almost the same eigenvalues as compared to the conforming
esh, see Table 1. Due to high penalization (p = 3) on the intermediate densities, the blurred topology gives

onsistently smaller eigenvalues. However, as shown in Fig. 7b, no spurious modes are present with both void and
ow-density elements.

. Sensitivity analysis of simple/multiple eigenvalues

This section discusses the calculation of the derivatives of eigenvalues w.r.t the design changes as it is an
mportant ingredient in the gradient-based optimization algorithms in topology optimization. When the eigenvalues

re simple, the eigenvalues are differentiable, and the calculation details for this case are given in Section 5.1. When

9
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Fig. 5. Eigenmodes of the conforming mesh in Fig. 4a: from the left to the right are φ1,. . . , φ6..

Fig. 6. Eigenmodes of the nonconforming meshes in Fig. 4(b) and (c) without pseudo-mass matrix: from the left to the right are φ1,. . . ,
φ6..

Fig. 7. Eigenmodes of the nonconforming meshes in Fig. 4(b) and (c) with pseudo-mass matrix: from the left to the right are φ1,. . . , φ6..
10
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the eigenvalues are multiple (repeated), the eigenvalues are not differentiable and only the directional derivatives
exist. In this scenario, the perturbation approach proposed by Seyranian et al. [21] can be applied to compute the
directional derivatives of the multiple eigenvalues.

5.1. Sensitivity analysis of simple eigenvalues

The sensitivity of simple eigenvalues w.r.t the density variable ρ for linear elastic structure has been well
ocumented in the literature for various design optimizations, e.g., Ref. [21,29]. For geometrically nonlinear
tructures, the calculation of simple eigenvalue derivatives becomes more computationally involved, as the tangent
tiffness matrix K T depends on the density variable ρ explicitly by the material interpolation as well as implicitly
hrough the dependence on the displacement u. The extension to geometrically nonlinear structure was carried
ut by Dalklint et al. [41] with an adjoint formulation which is computationally more efficient when the number
f design variables exceeds the number of objective and constraint functions [52]. The adjoint approach is also
dopted here, and the derivation is given below.

Suppose the nonlinear structural analysis has been carried out by solving Eq. (7)1 with Fint given in Eq. (13),
ollowed by an eigen analysis in Eq. (17), the goal is to compute the derivative of the simple eigenvalue λq ,
.e., dλq/dρ. To this end, consider the total differentiation of the adjoint equation

φT
q

(
K T − λq SM

)
φq + ηT R = 0 (22)

here η is the adjoint vector, φT
q

(
K T − λq SM

)
φq = 0 and R = 0 are implied from Eqs. (7) and (17)1 which hold

irrespective of the change of the density variables ρ. The total differentiation w.r.t. ρ ≡
[
ρ1 . . . ρnele

]
gives

dλq

dρ
=
∂
(
φT

q K T φq
)

∂ρ

⏐⏐⏐⏐⏐
φq fixed

− λq
∂
(
φT

q SMφq
)

∂ρ

⏐⏐⏐⏐⏐
φq fixed

+ ηT ∂R
∂ρ

+

⎡⎣ ∂ (φT
q K T φq

)
∂u

⏐⏐⏐⏐⏐
φq fixed

+ ηT ∂R
∂u

⎤⎦ ∂u
∂ρ

(23)

here the condition φq SMφq = 1 implied from the SM -orthonormalization and Eq. (17) are used for the
simplifications. Finally, the sensitivities dλq/dρ are given by

dλq

dρ
=
∂
(
φT

q K T φq
)

∂ρ

⏐⏐⏐⏐⏐
φq fixed

− λq
∂
(
φT

q SMφq
)

∂ρ

⏐⏐⏐⏐⏐
φq fixed

+ ηT ∂R
∂ρ

with ηT
= −

∂
(
φT

q K T φq
)

∂u

⏐⏐⏐⏐⏐
φq fixed

[
∂R
∂u

]−1 (24)

here the following derivatives are needed

∂
(
φT

q K T φq
)

∂ρ

⏐⏐⏐⏐⏐
φq fixed

,
∂
(
φT

q K T φq
)

∂u

⏐⏐⏐⏐⏐
φq fixed

,
∂
(
φT

q SMφq
)

∂ρ

⏐⏐⏐⏐⏐
φq fixed

,
∂R
∂ρ
,
∂R
∂u

(25)

hich are given in Appendix A.

.2. Sensitivity analysis of multiple eigenvalues

When the eigenvalues are repeated, e.g., N -fold multiple eigenvalues λ1 = λ2 = · · · = λN , the associated
eigenvectors are not uniquely defined, and the multiple eigenvalues are not differentiable. However, the directional
derivatives of multiple eigenvalues can be obtained and used together with the constraints on the design change
directions in the topology optimization, see Section 6. To this end, consider an N -fold multiple eigenvalues with
value λ̃, i.e.,

˜
λ1 = λ2 = · · · = λN = λ (26)

11
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and a set of SM -orthonormalized eigenvectors φr , r = 1, . . . , N . In this case, these eigenvectors are not unique,
and any orthogonal transformation of these vectors also yield SM -orthonormalized eigenvectors. For a given design
erturbation ρ → ρ +∆ρ, there exist eigenvectors φ̃r (r = 1, . . . , N ) that are continuous w.r.t the design changes.
owever, the determination of these continuous eigenvectors is not trivial and may require higher-order derivatives,

ee Friswell [23] for more details. Following the work of Seyranian et al. [21] (see also Ref. [53], Ch. 5–13),
he attention is focused on directional derivatives where the perturbation of the density ρ in the direction ∆ρ is
onsidered, i.e., ρ → ρ + ε∆ρ, where ε is the perturbation parameter. Let φ̃r be the basis that is continuous w.r.t
his perturbation, then there exists an orthogonal matrix Q such that φ̃r can be expressed as

φ̃r =

N∑
k=1

Qrkφk, r = 1, . . . , N (27)

here Qrk are the unknown coefficients of the orthogonal matrix Q. The resulting perturbation expansion of the
ultiple eigenvalues λr and eigenvectors φ̃r are given by

λr (ρ + ε∆ρ) = λ̃+ ε∆λr + O
(
ε2) , r = 1, . . . , N

φ̃r (ρ + ε∆ρ) = φ̃r + ε∆φ̃r + O
(
ε2) , r = 1, . . . , N

(28)

here λ̃ = λ̃(ρ), φ̃r = φ̃r (ρ), and ∆λr and ∆φ̃r are the first-order corrections.
Considering up to the first order perturbation O (ε) terms, the eigenequation (17) becomes(

K T + ε
d K T

dρ
∆ρ

) (
φ̃r + ε∆φ̃r

)
=

(
λ̃+ ε∆λr

)(
SM + ε

d SM

dρ
∆ρ

) (
φ̃r + ε∆φ̃r

)
(29)

hich, by expansion and dropping higher order O
(
ε2
)

terms give(
K T − λ̃SM

)
∆φ̃r +

(
d K T

dρ
∆ρ − ∆λr SM − λ̃

d SM

dρ
∆ρ

)
φ̃r = 0 (30)

ext, pre-multiplying Eq. (30) with φT
s (s = 1, . . . , N ) gives

φT
s

(
d K T

dρ
∆ρ − ∆λr SM − λ̃

d SM

dρ
∆ρ

)
φ̃r = 0, s = 1, . . . , N (31)

hich can be further rephrased by expanding φ̃r using φk in Eq. (27) as
N∑

k=1

Qrk

[
φT

s

(
d K T

dρ
∆ρ − λ̃

d SM

dρ
∆ρ

)
φk − ∆λrδsk

]
= 0, s = 1, . . . , N (32)

q. (32) can be seen as a system of N linear equations Ax = 0 with A ∈ RN×N , x ∈ RN×1, Ask =

T
s

(
d K T
dρ

∆ρ − λ̃
d SM
dρ

∆ρ
)

φk − ∆λrδsk , and xk = Qrk . Therefore, for x to have non-trivial solution requires that

det
[
φT

s

(
d K T

dρ
∆ρ − λ̃

d SM

dρ
∆ρ

)
φk − ∆λrδsk

]
= 0, s, k = 1, . . . , N (33)

y introducing a series of vectors zsk ∈ Rnele×1 (s, k = 1, . . . , N ) with

zsk =

[
φT

s

(
d K T

dρ1
− λ̃

d SM

dρ1

)
φk . . . φT

s

(
d K T

dρnele

− λ̃
d SM

dρnele

)
φk
]

nele×1
(34)

q. (33) can be rewritten as

det [T − ∆λr I N ] = 0, s, k = 1, . . . , N (35)

here the components of matrix T are Tsk = zT
sk∆ρ, Tsk = Tks , and I N is an N × N identity matrix. Thus, the

rst-order corrections ∆λr in Eq. (35) are obtained via eigenanalysis on matrix T . Moreover, in case if ∆λr ̸= ∆λs

or r ̸= s, the eigenvectors that are continuous w.r.t the design change can be uniquely determined from Eqs. (27)
nd (32), otherwise higher order corrections are required [23]. Nevertheless, the first-order corrections ∆λr are still

alid in this case.

12



G. Zhang, K. Khandelwal and T. Guo Computer Methods in Applied Mechanics and Engineering 413 (2023) 116119

w

s
e

∂

o

w

S

a

6

s
(
s
m
b
e
f

6

o
t
t

o

Further simplifications can be made if the perturbation vector ∆ρ is chosen such that all the off-diagonal terms
in T vanishes, i.e., Tsk = zT

sk∆ρ = 0 for r ̸= s. In this case, consider the directional derivative operator D∆ρ [∗] is
defined by

D∆ρ [ f ] := lim
h→0+

f (ρ + h∆ρ)− f (ρ)
h

(36)

here f (∗) is a function of ρ that is continuous along the direction ∆ρ with finite value in Eq. (36). Then,
D∆ρ [λr ] = ∆λr = zT

rr∆ρ, (r = 1, . . . , N ) which is a linear function of the direction ∆ρ. Therefore, for this
pecial choice of direction ∆ρ, the directional derivative of the repeated eigenvalues can be computed, and further
mployed in a gradient-based optimization algorithm.

As the total differentiation of K T leads to d K T /dρ = ∂K T /∂ρ + (∂K T /∂u) (∂u/∂ρ) and the implicit derivative
u/∂ρ can be evaluated by the total differentiation of Eq. (7)1 as ∂u/∂ρ = − [∂R/∂u]−1 (∂R/∂ρ), the component
f zsk in Eq. (34) can be computed more efficiently by

[zsk]r =
∂
(
φT

s K T φk
)

∂ρr

⏐⏐⏐⏐⏐
φs ,φk fixed

− λ̃
∂
(
φT

s SMφk
)

∂ρr

⏐⏐⏐⏐⏐
φs ,φk fixed

+ η̂T
sk
∂R
∂ρr

, r = 1, . . . , nele (37)

ith

η̂T
sk = −

∂
(
φT

s K T φk
)

∂u

⏐⏐⏐⏐⏐
φs ,φk fixed

[
∂R
∂u

]−1

(38)

o, the terms that remain to be calculated are
∂
(
φT

s K T φk
)

∂ρ

⏐⏐⏐⏐⏐
φs ,φk fixed

,
∂
(
φT

s K T φk
)

∂u

⏐⏐⏐⏐⏐
φs ,φk fixed

,
∂
(
φT

s SMφk
)

∂ρ

⏐⏐⏐⏐⏐
φs ,φk fixed

s, k = 1, . . . , N

(39)

nd are given in Appendix A.

. Topology optimization

The goal is to design structures with minimum end compliance for a given amount of material and specified
tability objective under the given loads. The stability objective is specified in terms of the constraints on the first
smallest) m different eigenvalues of the tangent stiffness matrix at the final deformation stage. It is noted that m
hould be large enough to incorporate all the relevant buckling modes for handling mode switching. If the first

eigenvalues are always simple for all the optimization iterations, gradient-based optimization procedures can
e employed for optimization, as the design sensitivities can be computed (Section 5.1). However, if some of the
igenvalues are multiple, then only directional derivatives are available (Section 5.2) and appropriate optimization
ormulations will be required that can employ these directional derivatives.

.1. Optimization formulations

Inspired by [40], a new optimization procedure is developed to handle the presence of multiple eigenvalues during
ptimization. The overall idea is to optimize the design variables directly when all the eigenvalues are simple and
o optimize design variables increment when there are multiple eigenvalues via a sub-optimization problem. The
wo optimization formulations are described next.

Case (a): Simple Eigenvalues
For optimization iterations that involve only simple eigenvalues of K T , i.e., λ1 < λ2 < · · · < λm < λm+1, the

ptimization problem is formulated as

min
x

f0 (x) = FT
ext u

s.t. f1 (x) = V (x) /V f − 1 ≤ 0

fq+1 (x) = 1 − λq/λ̂ ≤ 0, q = 1, . . . ,m
(40)
0 ≤ x ≤ 1
13
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Case (b): Multiple Eigenvalues
For optimization iterations that involve multiple eigenvalues of K T (i.e., λk−1 = λk for some k), say at nth

iteration, a sub-optimization problem is formulated in terms of design increments. Let xn be the design variable
at nth iteration, the goal is then to optimize the incremental design update ∆x where xn+1 = xn + ∆x. To this
end, the sub-optimization problem is constructed using linear approximations of compliance, volume, and stability
constraints at x = xn , and the eigenvalue constraints are applied to the first m clusters of different eigenvalues,
e.g., λ1 = · · · = λN1  

cluster−1

< λN1+1 = · · · = λN1+N2  
cluster−2

< · · · < λN1+···+Nm−1+1 = · · · = λN1+···+Nm  
cluster−m

with m := N1+· · ·+Nm .

he sub-optimization problem is formulated as

min
∆x

f̌0 (∆x) =
d f0

dx

⏐⏐⏐⏐
xn

∆x

s.t. f̌1 (∆x) = V (xn + ∆x) /V f − 1 ≤ 0

f̌q+1 (∆x) = 1 −
(
λq + ∆λq

)
/λ̂ ≤ 0, q = 1, . . .m

f̌ j (∆x) = gsk (∆x) = 0, j = (m + 2) , . . . , (m + 1 + cnt )(
with gsk (∆x) = zT

sk∆ρ, s > k, for multiple eigenvalues
)

max {−xn,−θ1} ≤ ∆x ≤ min {(1 − xn) , θ1}

(41)

In the above formulations, for addressing mesh-dependency and checkerboard issues [54], a density filter [7,55]
s used that maps the design variables x to the density variables ρ by

ρ = W x with Wpq =
wpqvq∑nele

q=1wpqvq
and wpq = max

(
rmin −

X p − Xq
 , 0

)
(42)

in which rmin is the filter radius, vq the volume of qth element and X p the coordinates of the centroid of the pth
element. This filter is also applied to the density increments, i.e., ∆ρ = W∆x, in the sub-optimization problem,
i.e., case (b) above.

In Eqs. (40) and (41), λ̂ > 0 is a user-defined threshold value on the eigenvalues of K T that are enforced for
the structural stability, V f denotes the allowable material volume fraction, and the material volume of the design,
V (x), is calculated by

V (x) =
1
Vs

ρT ṽ (43)

here ṽ is a vector of element volumes and Vs is the total volume of the design domain Ω0.
In Eq. (41), the constraints gsk (∆x) = 0 are used to achieve vanishing off-diagonal terms in the matrix

[Tsk] where Tsk = zT
sk∆ρ, (s, k = 1, . . . , N ), for some N -fold multiple eigenvalues, such that the increments

of the multiple eigenvalues are ∆λr = zT
rr∆ρ (r = 1, . . . , N ), which implies a linear dependence of ∆λr on

ρ. Suppose there are k multiple eigenvalues of N1, . . . , Nk multiplicities in the first m clusters of eigenvalues,
hen the number of this set of constraints, cnt , can be computed as cnt =

∑k
r=1 Nr (Nr − 1) /2 which is due to

he fact that zsk = zks . For example, considering the first six clusters of eigenvalues (m = 6) and assuming
hat λ1

cluster−1

< λ2 = λ3  
cluster−2

< λ4 = λ5 = λ6  
cluster−3

< λ7
cluster−4

< λ8 = λ9  
cluster−5

< λ10
cluster−6

(N1 = 2, N2 = 3 and N3 = 2),

nt = 1 + 3 + 1 = 5 and Eq. (41)4 has to be considered separately for N1-fold eigenvalues λ2 = λ3, N2-fold
igenvalues λ4 = λ5 = λ6 and N3-fold eigenvalues λ8 = λ9.

Finally, in the box constraint in Eqs. (40) and (41), 1 is a vector of ones, and the min and max operators are
applied in an element-wise manner. As the sub-optimization formulation for the design increment ∆x in Eq. (41)
consider linearized approximations at the last converged design xn , the overall design change should be confined to
a small neighborhood of xn . Therefore, a move limit parameter θ is introduced to control the step size of the design
increments ∆x. In this study, a move limit value θ ≤ 0.1 is used. A flowchart of the overall topology optimization
process is given in Fig. 8. Detailed descriptions related to the optimization algorithms and associated parameter

settings are given in the following subsection.

14
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Fig. 8. Flow chart of the finite strain topology optimization with nonlinear buckling constraints.

Remarks.
1. The equality (equilibrium and eigenvalue) constraints in Eqs. (7)1 and (17) that specify the dependence of

displacement u and eigenpairs
(
λr ,φr

)
on the design variables x are not enforced by the optimization algorithm

but through finite element analysis and eigenanalysis, respectively.
2. The number of constraints in Eq. (41) may change during optimization iterations due to the change in the

multiplicity of the eigenvalues. However, this creates no difficulties as the solution of ∆x from Eq. (41) is an
independent optimization problem.

3. In the design phase, the stability constraints are only enforced at the final load step, and it is assumed that the
system is stable below this load. This is indeed the case for all the numerical examples considered in this study.

6.2. Optimization algorithms

The method of moving asymptotes (MMA) [56] is used for both the optimization problem in Eq. (40) as well as
the sub-optimization problem in Eq. (41), wherein the default parameter values are used unless otherwise specified.
The optimization process sketched in Fig. 8 consists of two main loops for solving Eqs. (40) and (41), which
re referred to as outer-loop and inner-loop, respectively. The inner loop is only present when there are repeated
igenvalues in the eigenvalue clusters incorporated. The inner loop refers to the fact that a full sub-optimization
roblem (Eq. (41)) is solved to update the design variable at a single iteration of the outer loop.
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6.2.1. Outer loop
In the outer loop of the optimization, there are optimization parameters, i.e., moving upper and lower asymptotes

in the MMA algorithm that are iteratively updated by the MMA optimizer. If there are optimization iterations that
have multiple eigenvalues, then sub-optimizations problems have to be formulated using Eq. (41) and solved for
ach of these iterations with multiple eigenvalues. In this case, the upper and lower asymptotes in the outer loop
MA algorithm are reinitiated to their initial values after the inner loop sub-optimization is completed. The criterion

or outer-loop termination is based on the total number of iterations, which is chosen as 800 in this study.

.2.2. Inner loop
If the considered clusters of eigenvalues of some intermediate design include multiple eigenvalues, the sub-

ptimization problem in Eq. (41) becomes activated and is again solved using the MMA optimizer. The criteria for
erminating the sub-optimization iterations are based on: (a) the change of two successive (linear) objective function
alues normalized by its initial value, i.e.,

⏐⏐⏐ f̌ (I+1)
0 − f̌ (I )0

⏐⏐⏐ / | f0| ≤ 10−8, or (b) the 2-norm of two successive design
ariables difference, i.e.,

∆x(I+1) − ∆x I


2 ≤ 10−4, or (c) the total number of inner loop iterations, i.e., I > 100,
here I denotes the sub-optimization iteration number.

. Numerical examples

Before topology optimization, the correctness of the sensitivity analysis is verified. With the derivations given
n Section 5, Appendices A and B, the verification of the sensitivity analysis by the central difference method is
iven in Appendix C. In the topology optimization, the optimization starts with an initial design consisting of a
omogeneous distribution of the target volume fraction values (i.e., ρ = V f , where V f is the threshold value in
he volume fraction constraint in Eqs. (40) and (41)) and is terminated after 800 iterations (Section 6.2.1) when

discrete topology has emerged. Except for the pinned column example in Section 7.2 where m = 4 clusters
f different eigenvalues are included, in rest of the examples m = 6 clusters of eigenvalues are included in the
onlinear stability constraints in Eqs. (40) and (41). In the numerical implementation, the two eigenvalues are
onsidered to be equal if their absolute difference is less than 1.0E−8. In the following examples, the move limit
or the sub-optimization in Eq. (41) is chosen as θ = 0.04, except for the symmetric compressive block example in
ection 7.4 where θ = 0.1. A continuation scheme is used to slowly increase the penalization powers p [Eq. (3)]
nd pL [see descriptions following Eq. (13)] to avoid analysis failure during early optimization iterations due to
arge deformations, and to relax the nonconvexity of the optimization problem. Specifically, p is raised from 1 to

@ 0.1 per 5 iterations; pL is increased from 4 to 6 @ 0.1 per 5 iterations. Besides, the penalization power pm

n the nodal pseudo-mass construction [Eq. (19)] is also increased from 1 to 6 @ 0.1 per 5 iterations, while all
ther parameters related to the pseudo-mass matrix are chosen the same values as those in Section 4.2, i.e., q = 15,

ˆ = 10−9, ϖL = 0.1 and ϖH = 0.2. All the optimization examples consider load control and the solver in the finite
lement analysis uses the Newton–Raphson scheme with an adaptive step-size strategy and convergence is assumed
hen the energy residual drops below 1.0E−12 [57].
The B-spline fitting of the optimized designs for post-performance analyses is carried out using Rhino [58] with a

evel-set value of 0.5 unless otherwise stated. For the post-buckling analysis, the branch-switching method described
n Appendix D is used that can effectively capture multiple secondary branches emanating from the bifurcation
oint, while the cylindrical arc-length method [57] is adopted to trace primary/secondary solution paths. All the
umerical computations are conducted in a Matlab-based in-house finite element library CPSSL-FEA developed at
he University of Notre Dame.

.1. Double clamped beam

The first example considers the double-clamped beam problem sketched in Fig. 9 with the design domain
iscretized by a 120 × 40 FE mesh. The volume constraint is considered with V f = 0.1, and the density filter
adius rmin = 50 mm. Due to the symmetry of the problem, the optimization space considers only half of the
esign domain, while the full domain is included in the nonlinear FEA to capture asymmetric buckling modes.
his example has been examined in various works [6,8,38,46] and is challenging for two reasons: (a) There is a
inear-type design featured by a flipped V-shape [38] and a nonlinear-type design that has features shown in Fig. 10a,
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Fig. 9. Sketch of the double-clamped beam problem.

Fig. 10. Topology optimization of the double-clamped beam without buckling constraint.

nd these two designs compete with each other during the optimization process. The linear design cannot support
he load as the penalization power p is raised to a high value and this leads to FEA failure. (b) Even if the design
ith nonlinear features emerges during the optimization process, the FEA may still fail as the design can be unstable
epending on the overall depth of the design and other unstable features.

The first difficulty can be overcome by using a relatively fast continuation scheme [38] or starting with a higher
enalization power p, say 2 as done in [59], or by choosing an initial design that is perturbed to favor nonlinear
eatures [8]. The second issue, however, cannot be remedied without stability constraints. To demonstrate this,
ig. 10a shows an optimized topology without stability constraints, i.e.,Eq. (40) with fq (q = 2, . . . ,m + 1) being
emoved. The optimization is initiated by a homogeneous design and runs with a continuation scheme: p starts with
.6 and increased by 0.2 every 25 iterations. The optimization is interrupted at the 102th iteration by a FEA failure
herein a critical point is reached before the target load, see the plotted load–displacement curve in Fig. 10b where

he displacement is measured at the loading point, i.e., the middle node on the top surface.
By considering buckling constraints in optimization formulations, i.e., Eqs. (40) and (41), the second difficulty

can be well addressed. To show this, we consider the nonlinear buckling constraints with different threshold values
λ̂ in Eqs. (40) and (41), which can be intuitively perceived as targeting different levels of safety margins. To avoid
large jumps in design updates during optimization iterations, the move parameter in the MMA algorithm is set to
0.3. Four cases with different λ̂ values are given in Table 2. The optimized topologies of these cases are given in
Fig. 11 with the optimization histories of objective and constraint values shown in Fig. 12. It is noted that all the
constraints are satisfied at the final optimization stage and the objective function is decreasing smoothly after the
desired nonlinear features appear. In addition, from Fig. 12, during the optimization process, only the first stability

ˆ
constraint related to λ1 is activated while other eigenvalues are well above the threshold λ. With the increase of the

17



G. Zhang, K. Khandelwal and T. Guo Computer Methods in Applied Mechanics and Engineering 413 (2023) 116119
Table 2
Four cases of topology optimization of the double-clamped beam with different stability threshold values λ̂.

Case number Stability
threshold λ̂

Minimized objective
value f0 [kN m]

First six eigenvalues of the optimized
topology

Case-1 0.002 18.21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00200001

0.00326693

0.00597627

0.01280943

0.01591148

0.03901548

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Case-2 0.004 21.94

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00400000

0.00606846

0.01731487

0.01828198

0.02475417

0.05668777

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Case-3 0.006 27.31

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00599953

0.00599969

0.02345340

0.02457844

0.03094318

0.06674226

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Case-4 0.008 46.38

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00800098

0.00919497

0.02950062

0.03670040

0.05752595

0.05953313

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 11. Optimized topologies for the four cases listed in Table 2.
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Fig. 12. Optimization histories of objective, material volume constraint function values, as well as the first six eigenvalues of the tangent
stiffness matrix of the designs at the target load for the four cases in Table 2.
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Fig. 13. History of cutoff parameter c updates in the adaptive linear energy interpolation during the optimization for the four cases listed
n Table 2.

Fig. 14. Multiplicities of the included first m (= 6) clusters of eigenvalues of the designs at the target load during the optimization for the
four cases listed in Table 2.

stability thresholds, the optimized topology tends to become shallower. When compared to the topology in Fig. 10,
it is clear that the shallower topology is to stabilize the two bars under compression by shortening their lengths.
Besides, from Table 2 it can be seen that as the stability threshold (λ̂) increases, the objective value tends to increase,

eaning that these two targets are competitive, as expected. In Fig. 13, the number of updates of c value in the
daptive linear energy interpolation (Section 3.2) at each optimization iteration is plotted for all the cases. As can
e seen, the adaptive scheme is necessary for guaranteeing the convergence of FEA during early stages where there
re large amounts of the gray region for geometrically nonlinear topology optimization, which is especially true for
ase-4 as both the objective and constraint values are experiencing lots of oscillations (Fig. 12d) when the optimizer

s looking for feasible solutions that satisfy the stringent stability constraints. Fig. 14 shows the proportions of the
imple- and multiple-eigenvalue scenarios during the optimization process, where it can be seen that for a large
roportion of the iterations the first m (= 6) eigenvalues are simple and more importantly at the final optimization
tage the eigenvalues are simple (Table 2). Finally, the six eigenmodes of the optimized structures of the four cases
re plotted in Fig. 15, where it can be confirmed that all the buckling constraints are enforced on the “real” buckling
odes.
To study the stability performance of the optimized topologies under the same load pattern, the optimized designs

n Fig. 11 are fitted using B-splines to get rid of the void and intermediate densities, and the corresponding FE
odels are shown in Fig. 16. The fitted designs are then analyzed under the same load pattern using arc-length

ontrol together with the branch switching technique (Appendix D.1) for tracing secondary branches. The load–
isplacement curves of the fitted designs together with the deformed shapes are shown in Fig. 17. As expected, the
20
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Fig. 15. Eigenmodes of the optimized designs for the four cases listed in Table 2 at the target load: from the top to the bottom are φ1,. . . ,
φ6. (Note: appropriate scales are applied to the eigenvectors for visualization purposes).

Fig. 16. FE meshes of the B-spline fitted designs for the four optimized topologies in Fig. 11.

esigns with higher stability thresholds (λ̂) have higher critical load at the expense of stiffness. Moreover, for the
ptimized designs with λ̂ = 0.002, 0.004 and 0.006, both the principal and bifurcated branches are unstable after
he critical (bifurcation) point.

.2. Pinned column

The second example considers a pinned column design problem with dimension, load and boundary condition,
nd material properties specified in Fig. 18. The design domain is discretized by a 60 × 180 FE mesh, and the
in and roller boundaries are applied to the middle three nodes on the bottom and top sides, respectively. The total
oad is equally distributed to the three middle nodes. The volume fraction constraint is considered with V f = 0.3,
nd the density filter radius rmin = 40 mm. Due to the structural symmetry, the optimization space considers only
quarter of the design domain. However, to simulate asymmetric buckling modes, the full domain is included in

he nonlinear FEA. Similar to the previous example, the move parameter in the MMA algorithm is set to 0.3 for

his case as well.
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Fig. 17. Load–displacement curves of the B-spline fitted optimized double-clamped beam topologies corresponding to different stability
onstraints and their deformed shapes (solid line corresponds to stable region, while dashed line corresponds to unstable region).

Fig. 18. Sketch of the pinned column problem.

The optimized topology without stability constraint is shown in Fig. 19a which is a straight bar. A stability
analysis using Eq. (17) shows that the bar will buckle before reaching the load as the minimum eigenvalue is

2 × 10−4 at the target load and the buckling mode is similar to the first eigenmode in Fig. 5. To achieve a stable
esign, the stability constraints are then included and the optimized topologies corresponding to three different
tability thresholds (λ̂) are shown in Fig. 19(b), (c) and (d). With the increase in the stability thresholds, the topology
ends to expand horizontally with an increasing number of supporting bars inside. The optimization histories of the
bjective and constraints are given in Fig. 20, where a smooth decrease of the objective after the emergence of
esired features can be seen, and all the constraints are well satisfied at the final optimization stage. It should be
oted that in Fig. 20c the first two eigenvalues (λ1 and λ2) are, although, visually indistinguishable, their difference
s greater than the set threshold (1.0E−8). This is further confirmed in Fig. 21, which shows the multiplicity of
he eigenvalues of the designs during the optimization. Roughly, only the first hundred iterations have repeated
igenvalues. Fig. 22 plots the controlled eigenmodes of the final optimized designs at the target load. Again, with
the proposed pseudo-mass strategy there are no spurious modes, as desired. The load–displacement curves of these
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Fig. 19. Optimized topologies of the pinned column problem for different stability constraints.

optimized designs up to the target load with stability examined are shown in Fig. 23, where the displacement is
measured at the middle node on the top surface. As can be seen, all the designs with stability constraints are stable
at the target load of 1500 kN, while the one without stability constraints loses stability at a load of 1188 kN.

To investigate the stability performance of these optimized designs, the B-spline fitting is carried out, and the
FE meshes are shown in Fig. 24. To preserve all the features in the optimized topologies, the level set is chosen
as 0.4 for Fig. 24d. The fitted designs are then analyzed using arc-length control under the same load pattern. The
displacement–load curves and the corresponding deformations at the marked loading stages are shown in Fig. 25. It
can be seen that with the incorporation of stability constraints the stability of the structure is significantly enhanced,
and this improvement can be controlled by specifying different threshold values (λ̂) of the constraints. It is remarked
hat for the designs in Fig. 24, the principal branch above the 1st critical point may have multiple critical (limit and
ifurcation) points that lead to complex responses which are not investigated here.

.3. L-bracket

The third example considers an L-shape problem shown in Fig. 26 discretized with a uniform FE mesh of element
ize 0.02 m × 0.02 m, where a total load of 300 kN is applied to the rightmost four nodes distributed as 50 kN,
00 kN, 100 kN, and 50 kN. The allowable volume fraction is V f = 0.4, and the density filter radius rmin = 40 mm.
he optimized topologies with and without stability constraints are shown in Fig. 27. It can be observed that the

ncorporation of stability constraints leads to the emergence of supporting bars that connect the two vertical bars on
he left side. These connecting bars become thicker as the stability threshold (λ̂) increases. Besides, the peripheral
urved bar that undergoes compression becomes thicker and shorter as the stability threshold (λ̂) increases. The
tabilization effect of these features will be discussed in the stability analysis. The optimization histories of the
bjective, volume constraint and the constrained first six eigenvalues are plotted in Fig. 28. During optimization,
he first six eigenvalues of all the designs are simple, i.e., λa ̸= λb for a ̸= b, a, b = 1, . . . , 6. As is shown, both
he material volume constraint and the stability constraints are satisfied at the final optimization iteration and the
bjective function is decreasing smoothly after a few oscillations. These oscillations are due to the adaptive linear
nergy interpolation scheme where the cutoff parameter c is updated because of mesh distortion. The corresponding
ix eigenmodes of the optimized structures at the target load are plotted in Fig. 29. Again, all the eigenmodes that are
onstrained are “real” eigenmodes. The load–displacement curves of the three optimized designs are compared in
ig. 30, where the displacement is measured as the vertical displacement at the right corner node of the top surface
n which the load is applied. It can be seen that all the designs including the one without stability constraint are
table up to the target load and increasing stability threshold (λ̂) leads to structures with reduced stiffness.

To investigate the stability performance of the optimized topologies, the designs are fitted using B-splines with
E meshes shown in Fig. 31, which are then analyzed under the same load pattern with arc-length control. The

btained load–displacement curves are shown in Fig. 32 together with deformations at different loading stages. As
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Fig. 20. Optimization histories of objective, material volume constraint function values, as well as the first four eigenvalues of the tangent
stiffness matrix of the designs at the target load for the different stability threshold values in the pinned column problem.

shown, the design without stability constraint encounters a 1st critical (limit) point at the load of 418.07 kN, where
the left vertical bar buckles under compression. Incorporating stability constraints with threshold λ̂ = 0.001 helps
to postpone the critical point to the load of 820.59 kN. After reaching the critical load, the left vertical bar, although
supported by the two connecting bars, still buckles. With the stability constraints using threshold λ̂ = 0.002, the
optimized design does not encounter the critical point before the load of 834.00 kN. The compressive peripheral
curved bar remains stable due to the thicker supporting bars, the increase in its width, and the reduction of its
length.
24
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Fig. 21. Eigenvalue multiplicity during optimization for different stability thresholds in the pinned column problem.

Fig. 22. Eigenmodes of the optimized stable designs at the target load: from the left to the right are φ1,. . . , φ4. (Note: appropriate scales
are applied to the eigenvectors for visualization purposes).
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Fig. 23. Load–displacement curves of the optimized pinned column topologies corresponding to different stability constraints and their
deformed shapes at the target load or buckling state (solid line corresponds to stable region, while dashed line corresponds to unstable
region).

Fig. 24. FE meshes of the B-spline fitted designs for the four optimized topologies in Fig. 19.

Fig. 25. Load–displacement curves of the four B-spline fitted optimized pinned column topologies and their deformed shapes ((solid line
corresponds to stable region, while dashed line corresponds to unstable region).
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Fig. 26. Sketch of the L-shape problem.

Fig. 27. Optimized topologies of the L-shape domain for different stability constraints.

.4. Symmetric compressive block

The last example considers a square block subject to compressive loads from its four sides, as shown in Fig. 33.
The design is discretized by a 100 × 100 FE mesh and the point load on each side is equally distributed to the
hree middle nodes. Due to the symmetry of the load and boundary conditions as well as the geometry, the optimal
esign is expected to have high symmetry. Therefore, only the eighth part of the design domain is optimized but
he entire domain is included in the FEA to capture asymmetric buckling modes. The allowable volume fraction
s V f = 0.2, and the density filter radius rmin = 20 mm. Three cases are considered — one without stability

constraint and two with different stability thresholds λ̂ = 0.001 and λ̂ = 0.002.
The optimized topologies of the three cases are shown in Fig. 34, with their objective function values and

the first eight eigenvalues given in Table 3. From Table 3 it can be observed that the design in case 1 without
stability constraint already lost stability before reaching the target load. Due to symmetry, there always are multiple
eigenvalues in the considered first six clusters of eigenvalues during the optimization, and therefore, the sub-
optimization in Eq. (41) is activated throughout the optimization process for case 2 and case 3. Fig. 35 plots

m) during the optimization process, where it can be seen that in roughly
the number of eigenvalues included (
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Fig. 28. Optimization histories of objective, material volume constraint function values, as well as the first six eigenvalues of the tangent
stiffness matrix of the designs at the target load for the different stability threshold values in the L-shape problem.

Fig. 29. Eigenmodes of the optimized stable designs at the target load: from the left to the right are φ1,. . . , φ6. (Note: appropriate scales
are applied to the eigenvectors for visualization purposes).
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Fig. 30. Load–displacement curves of the three optimized L-shape topologies and their deformed shapes at the target load.

Fig. 31. FE meshes of the B-spline fitted designs for the three cases in Fig. 27.

Fig. 32. Load–displacement curves of the three B-spline fitted optimized L-shape topologies and their deformed shapes (solid line corresponds
to stable region, while dashed line corresponds to unstable region).

the first hundred iterations there can be as many as 27 eigenvalues (Fig. 35b) in the first six clusters of different
eigenvalues and m = 8 for the rest of the iterations. Fig. 36 presents the optimization history of the objective
function, volumetric constraint function, and the first eight eigenvalues, where all the constraints are satisfied, and
the objective is decreasing. The constrained eigenmodes of the final optimized designs are depicted in Fig. 37 which
are all “real” modes.
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Fig. 33. Sketch of the symmetric compressive block problem.

Table 3
Three cases of topology optimization of the symmetric compressive block with different stability constraints.

Case number Case-1 Case-2 Case-3

Stability constraint No stability constraint λ̂ = 0.001 λ̂ = 0.002

Minimized objective
value f0 [kN m]

24.71 25.09 26.43

First eight
eigenvalues of the
optimized topology

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.00047528

−0.00047528

0.00333745

0.00387963

0.02189753

0.08101026

0.08101026

0.12860280

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00100007

0.00100007

0.00100012

0.00658858

0.02030942

0.06050304

0.06050304

0.06557759

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00200017

0.00200017

0.00302139

0.00664495

0.01716183

0.05217245

0.05217245

0.07241556

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The optimized topologies in Fig. 34 are further fitted using B-splines and discretized with FE meshes as shown in
Fig. 38. Under the same load pattern, with arc-length continuation and branch-switching methods in Appendix D.2,
the load–displacement curves of the three designs are plotted in Fig. 39, where the 1st bifurcation loads for cases 1,
2, and 3 are 912.49 kN, 992.61 kN, and 1295.55 kN, respectively. In Fig. 39, it should be noted that for simplicity,
out of every two/four symmetric solutions only one is plotted. As an illustration, Fig. 40 shows four different
solutions that are symmetric. Out of these four solutions only the one corresponding to the deformation A1 is
plotted in Fig. 39. In addition, the load–displacement curve of case 2 (λ̂ = 0.002) reveals that the bifurcated branch
at the 1st bifurcation point does not follow the modes associated with the smallest eigenvalue at the design load
(Fig. 37b), as case 1 does. To investigate this further, Fig. 41 traces each eigenmode and its associated eigenvalue in
the eigenvalue clusters during the loading process. As shown in Fig. 41, before the external load reaches 1000 kN,
the order of the eigenmodes is the same as that in Fig. 37b. However, mode switching happens between the load
1000 kN and 1200 kN, after which the eigenvalue associated with the initial eigenmode φ4 becomes the smallest
while the multiple eigenvalues in pair with the eigenmode lying on the hyperplane spanned by the initial eigenbases

φ1 and φ2 switch to the second cluster.
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Fig. 34. Optimized topologies of the symmetric compressive block domain for different stability constraint values.

Fig. 35. Number of eigenvalues included in the optimization process, i.e., the value of m of the intermediate designs in the symmetric
ompressive block problem for different stability constraint values.

. Conclusions

This study presents a computational framework for geometrically nonlinear topology optimization with nonlinear
tability constraints. Unlike the linear buckling constraints that may only provide accurate results when the
eformations are small, the nonlinear stability constraints used in the current study provide accurate control over
he potential buckling at large deformations. The nonlinear stability analysis at finite deformations is realized with
he help of the proposed pseudo-mass matrix which can effectively remove spurious buckling modes related to
oid and low-density elements. This pseudo-mass matrix eventually degenerates into an identity matrix when all
he elements are solid. The lack of differentiability of multiple (repeated) eigenvalues is addressed by computing
he directional derivatives using the perturbation strategy proposed by Seyranian et al. [21] and the framework is
xtended to incorporate the nonlinear tangent stiffness and pseudo-mass matrices. A novel optimization formulation
s proposed to accommodate both the simple and multiple eigenvalue scenarios that consist of outer loops optimizing

esign variables and inner loops optimizing the incremental design variables with linearized objective and constraint
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Fig. 36. Optimization histories of objective, material volume constraint function values, as well as the first eight eigenvalues of the tangent
stiffness matrix of the designs at the target load for the different stability threshold values in the symmetric compressive block problem.

functions. The mesh distortion issue due to geometric nonlinearity is addressed by the adaptive linear energy
interpolation scheme proposed by the authors in [16].

The numerical examples demonstrate the effectiveness of the developed framework for handling design opti-
mization problems with both simple and multiple eigenvalues. From the presented results it can be concluded that
by incorporating the nonlinear buckling constraints, the structural stability of the optimized designs up to the target
load can be guaranteed. Moreover, increasing the stability threshold (λ̂) value in the stability constraints can lead to
optimized structures with a higher critical load. As the results suggest, higher stability performance can be achieved
using the proposed framework but at the expense of lower stiffness. It is also worth mentioning that due to mode
switching the eigenmode(s) corresponding to the smallest eigenvalue in the stability constraint might not be the
buckling mode of the optimized structure at its 1st critical load which is often greater than the target design load.
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Fig. 37. Eigenmodes of the optimized stable designs at the target load (Note: appropriate scales are applied to the eigenvectors for visualization
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Appendix A. Derivatives for the sensitivity analysis of simple/multiple eigenvalues

This appendix gives details on the calculation of the terms needed for the sensitivity analysis of simple/multiple

igenvalues, i.e., the terms given in Eqs. (25) and (39).
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Fig. 38. FE meshes of the B-spline fitted designs for the three cases in Fig. 34.

Fig. 39. Load–displacement curves of the three B-spline fitted optimized symmetric compressive block topologies and their deformed shapes
(solid line corresponds to stable region, while dashed line corresponds to unstable region).

Fig. 40. Illustration of the symmetric solutions related to the deformation A1 in Fig. 39.
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Fig. 41. Mode switching during the loading process of the fitted design with stability threshold λ̂ = 0.002 (Note: the curves above the 1st
critical load are following the primary branch).

A.1. Derivatives
∂
(
φT

s K T φk

)
∂ρ

⏐⏐⏐⏐
φs ,φk fixed

As the density field is element-wise constant, the derivatives can be computed in an element-by-element manner.
hat is, the eigenvectors φs are first decomposed in an element-by-element format φe

s (e = 1, . . . , nele), and then
he derivatives can be computed as

∂
(
φT

s K T φk
)

∂ρe

⏐⏐⏐⏐⏐
φs ,φk fixed

= φe
s

T ∂ke
T

∂ρe
φe

k, e = 1, . . . , nele (A.1)

here using Eqs. (14), (12), and (3) the derivative ∂ke
T /∂ρe for the eth element is calculated by

∂ke
T

∂ρe
= 2η

∂η

∂ρe

∫
Ωe

0

BT [A] BdV + η2
∫
Ωe

0

BT
[
∂A
∂ρe

⏐⏐⏐⏐
Ffixed

+
∂A
∂F

:
∂F
∂ρe

]
BdV

− 2η
∂η

∂ρe

∫
Ωe

0

BT
L [C] BLdV +

(
1 − η2) ∫

Ωe
0

BT
L

[
∂C
∂ρe

]
BLdV

(A.2)

in which ∂η/∂ρe is computed using Eq. (12)2, ∂A/∂ρe|Ffixed and ∂C/∂ρe are straightforward as they are proportional
to Young’s modulus, and the derivative ∂A/∂F for the considered neo-Hookean hyperelastic model in Eq. (8) is
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given by
∂A
∂F

= κ (2J − 1) J
∂F−T

∂F
⊗ F−T

+ κ (J − 1) J
∂2 F−T

∂F∂F
+ κ (4J − 1) J F−T

⊗ F−T

⊗ F−T
+ κ (2J − 1) J

∂
(
F−T

⊗ F−T )
∂F

−
µ

3
∂F−T

∂F
⊗
∂ I 1

∂F
−
µ

3
I 1
∂2 F−T

∂F∂F

−
µ

3
F−T

⊗
∂2 I 1

∂F∂F
−
µ

3
∂F−T

∂F
⊡
∂ I 1

∂F
−

2
3
µJ−

2
3 I4 ⊗ F−T

+
4
9
µJ−

2
3 F

⊗ F−T
⊗ F−T

−
2
3
µJ−

2
3
∂
(
F ⊗ F−T )
∂F

(A.3)

where[
∂2 F−T

∂F∂F

]
ijklpq

= F−1
qi F−1

lp F−1
jk + F−1

qk F−1
j p F−1

li[
∂
(
F−T

⊗ F−T )
∂F

]
ijklpq

= −F−1
qi F−1

j p F−1
lk − F−1

qk F−1
lp F−1

j i[
∂
(
F ⊗ F−T )
∂F

]
ijklpq

= δi pδ jq F−1
lk − Fi j F−1

qk F−1
lp

∂2 I 1

∂F∂F
= −

2
3

F−T
⊗
∂ I 1

∂F
−

2
3

I 1
∂F−T

∂F
−

4
3

J−2/3 F ⊗ F−T
+ 2J−2/3I4

(A.4)

nd the calculation of the terms ∂ I 1/∂F and ∂F−T /∂F can be found in Eqs. (9) and (11), respectively, and the
operator ⊡ is defined by (H⊡ H)ijklpq

def
= Hi j pq Hkl where H is a 4th-order tensor and H is a 2nd-order tensor.

In Eq. (A.2), the dependence of the deformation gradient F on the element density variable ρe is determined by
he linear energy interpolation, see Eq. (12), and the derivative is[

∂F
∂ρe

]
=
∂η

∂ρe
Bue (A.5)

A.2. Derivatives
∂
(
φT

s K T φk

)
∂u

⏐⏐⏐⏐
φs ,φk fixed

The calculation of this term can be carried out in an element-by-element format by FE assembly, i.e.,

∂
(
φT

s K T φk
)

∂u

⏐⏐⏐⏐⏐
φs ,φk fixed

=

nele
A

e=1

∂
(
φe

s
T ke

T φe
k

)
∂ue

(A.6)

in which the term φe
s

T ke
T φe

k is first expanded as

φe
s

T ke
T φe

k =

∫
Ωe

0

η2 (Bφe
s

)T [A]
(
Bφe

k

)
dV +

∫
Ωe

0

(
1 − η2) (BLφe

s

)T [C]
(
BLφe

k

)
dV (A.7)

and can be further rewritten to

φe
s

T ke
T φe

k =

∫
Ωe

0

η2 [A] :

[(
Bφe

k

) (
Bφe

s

)T
]

dV

+

∫
Ωe

0

(
1 − η2) [C] :

[(
BLφe

k

) (
BLφe

s

)T
]

dV
(A.8)

where the double-dot product ‘ : ’ works similarly as tensor contraction but applies between two matrices,
i.e., [A] : [B] =

∑
i, j Ai j Bi j . Hence, the derivative ∂

(
φe

s
T ke

T φe
k

)
/∂ue can be computed by

∂
(
φe

s
T ke

T φe
k

)
∂ue

=

∫
Ωe

0

η2
[(

Bφe
k

) (
Bφe

s

)T
]

:

[
∂A
∂ue

]
dV (A.9)
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since the linear part is not a function of displacement. In Eq. (A.8), the matrix [A] is 4 × 4 matrix for 2D (and
9 × 9 for 3D) case. Accordingly,

[(
Bφe

k

) (
Bφe

s

)T
]

is of the same size as the matrix [A]. To simplify the numerical

mplementations, the matrices
[(

Bφe
k

) (
Bφe

s

)T
]

and [A] for 2D case can be reshaped to a vector of size 16 × 1,
and the double-dot product becomes a dot product between two vectors. Therefore, the matrix form of the tensor
[∂A/∂ue] is of size 16 × 8. The derivative ∂A/∂ue is derived as

∂A
∂ue

=
∂A
∂F

:
∂F
∂ue

(A.10)

here the derivative ∂F/∂ue in a matrix form is simply [∂F/∂ue] = ηB.

.3. Derivatives
∂
(
φT

s SM φk

)
∂ρ

⏐⏐⏐⏐
φs ,φk fixed

First, the term φT
s SMφk is expanded by arranging the eigenvector φs in a nodal format. That is, the eigenvector

φs is reshaped to a matrix of size 2 × #node for 2D case and 3 × #node for 3D case. Each column represents the
displacement of a node in the corresponding eigenmode. We denote the new format of the eigenvector as

φs =
[
φ̂

1
s φ̂

2
s . . . φ̂

#node
s

]
d×#node (A.11)

As a result, the term φT
s SMφk can be expressed as

φT
s SMφk =

#node∑
i=1

m̃i φ̂
i
s

T
φ̂

i
k (A.12)

he density vector ρ is decomposed into nodal density vectors ρ̂i (i = 1, . . . , #node), where

ρ̂i =

⎡⎢⎢⎣
...

ρr
...

⎤⎥⎥⎦ , r ∈ Bi (A.13)

aybe of different sizes depending on the number of element IDs inside Bi , see explanations following Eq. (18).
rom Eqs. (18) and (19), it is clear that

∂m̃i

∂ρ̂i
=
∂m̃i

∂ϖi

∂ϖi

∂ρ̂i
(A.14)

with

∂m̃i

∂ϖi
=

⎧⎪⎪⎨⎪⎪⎩
pm
(
1 − ϵ̂

)
ϖ

pm−1
i if ϖi ≤ ϖL

a1 + 2a2ϖi + 3a3ϖ
2
i if ϖL < ϖi < ϖH

0 if ϖi ≥ ϖH

∂ϖi

∂ρ̂i
=

1
q

⎛⎝∑
r∈Bi

ρq
r

⎞⎠ 1
q −1

⎡⎢⎢⎣
...

qρq−1
r
...

⎤⎥⎥⎦ , r ∈ Bi

nd that ∂m̃i/∂ρ̂ j = 0 if i ̸= j .
Therefore, it is straightforward that

∂
(
φT

s SMφk
)

∂ρ

⏐⏐⏐⏐⏐
φs ,φk fixed

=

#node

Â
i=1

∂
(
φT

s SMφk
)

∂ρ̂i
(A.15)
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where Â is an assembly operator that adds the terms of the same element number together. According to Eq. (A.12),
he derivative ∂

(
φT

s SMφk
)
/∂ρ̂i can be computed as

∂
(
φT

s SMφk
)

∂ρ̂i
=

(
φ̂i

s

T
φ̂

i
k

)
∂m̃i

∂ρ̂i
(A.16)

A.4. Derivative ∂R/∂ρ

The derivative ∂R/∂ρ is calculated by FE assembly as

∂R
∂ρ

=

nele
A

e=1

∂Re

∂ρ
with

∂Re

∂ρ
=

[∂Re

∂ρ1

∂Re

∂ρ2
. . .

∂Re

∂ρnele

]
(A.17)

in which
∂Re

∂ρe
=
∂η

∂ρe

∫
Ωe

0

BT PdV +

∫
Ωe

0

ηBT
(
∂ P
∂ρe

⏐⏐⏐⏐
F fixed

+ A :
∂F
∂ρe

)
dV

− 2η
∂η

∂ρe

∫
Ωe

0

BT
L [C : ε] dV +

∫
Ωe

0

(
1 − η2) BT

L

[
∂C
∂ρe

: ε

]
dV

(A.18)

and ∂Re/∂ρ j = 0 if e ̸= j . The derivatives (∂ P/∂ρe)|F fixed is straightforward as the 1st PK stress P is proportional
to Young’s modulus.

A.5. Derivative ∂R/∂u

By definition, the derivative ∂R/∂u gives the tangent stiffness matrix, i.e.,
∂R
∂u

= K T (A.19)

where K T is given in Eq. (14).

ppendix B. Sensitivity analysis of end compliance and volume fraction

.1. Sensitivity of the objective f0

The sensitivity analysis of the objective function is carried out using the adjoint method
d f0

dρ
=
∂ f0

∂ρ
+ χT ∂R

∂ρ
(B.1)

where χ is the adjoint variable vector of the same size as R and is calculated as

χT
= −

∂ f0

∂u

[
∂R
∂u

]−1

(B.2)

in which the derivatives ∂R/∂ρ and ∂R/∂u are given in Appendix A.4 and Appendix A.5, and the remaining terms
o be computed are ∂ f0/∂ρ and ∂ f0/∂u and are given by

∂ f0

∂ρ
= 0

∂ f0

∂u
= FT

ext

(B.3)

B.2. Sensitivity of the volume fraction f1

The volume fraction function is simply only a function of the density variables and are not dependent on the
structural response. According to Eqs. (40) and (43),

d f1
=

1 1
ṽT (B.4)
dρ V f Vs
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Fig. 42. FE mesh, element numbering, and density distribution of the double-clamped beam for sensitivity verification.

Appendix C. Sensitivity verification

In this appendix, the accuracy of the sensitivity derivations given in Section 5, Appendices A and B is verified
sing a double-clamped beam example with the central difference method (CDM) wherein a perturbation value of

h = 10−5 is used. The dimension, load and boundary conditions, and material properties of the double-clamped
eam are given in Fig. 9. The design domain is discretized by a 30 × 10 FE mesh with (random) density distribution
nd element numbering shown in Fig. 42. The parameters in SIMP are chosen as p = 3, pL = 6, ϵ = 10−8, and
he parameters used in the pseudo-mass construction are the same as those used in Section 4.2.

With the density distribution shown in Fig. 42, the first six eigenvalues are all simple. Fig. 43 and Fig. 44 show
he verification results of the sensitivities of the eigenvalues (d fi/dρ with fi in Eq. (40)3) as well as the objective
unction (d f0/dρ), where the design sensitivities obtained from the proposed adjoint method are compared with
hose obtained via CDM. As shown in Figs. 43 and 44, the sensitivities computed using the adjoint method match
losely with those from the CDM with relative errors between 10−4 to 10−10. It should be remarked that, although
nly the simple eigenvalue case is examined in the sensitivity verification, the ingredients used therein are the same
s those in the multiple eigenvalue case, see Eqs. (25) and (39), and Appendix A. Hence, the adjoint sensitivity
nalysis is correct and can be safely used in topology optimization studies.

ppendix D. Branch-switching bifurcations

When the critical point is a limit point, the solution is unique (i.e., principal solution) and the arc-length
ontinuation can be applied to trace the snap-through or possibly snap-back path. However, when the critical point
s a bifurcation point, post-buckling analysis method has to be capable of switching from the primary branch to the
econdary branch(es). Available treatments for branch-switching following simple/multiple bifurcation points can
e found in Refs. [60–64]. In this appendix, a brief description of the approaches that are adopted in this study for
andling branch-switching is presented.

.1. Simple bifurcation point

At the simple bifurcation point, there is only one bifurcated branch beside the principal/primary branch, and
witching from the primary to the secondary branch can be straightforwardly accomplished by using a perturbed
olution as the initial guess of the NR iteration for the 1st point on the secondary path emanating from the bifurcation
oint [60]. The perturbation considers the addition of a scaled eigenvector on the solution at the bifurcation point,
.e.,

up
= ucr + ζ

φ1φ1

 (D.1)

where up serves as the predictor in NR iteration for the first point on the secondary path following the bifurcation
point. Here ucr represents the solution at the critical (bifurcation) point and φ1 is the eigenvector corresponding to
he simple zero eigenvalue at the bifurcation point. The scaling factor ζ , as suggested in the literature [61,64], can
e estimated by

ζ = ±
∥ucr∥ (D.2)

τ
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Fig. 43. Comparison of the sensitivities of eigenvalue functions fi (i = 2, . . . , 7) computed from the adjoint method and central difference
method. Left: comparison between the two methods; Right: relative error of adjoint method w.r.t. central difference method.

where τ is a factor controlling the magnitude of the perturbation and is suggested to be chosen roughly of the order

of 100 [61]. The sign of ζ indicates the direction to follow of the secondary branch. At simple bifurcation point,
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Fig. 43. (continued).

Fig. 44. Comparison of the sensitivities of the objective function f0 computed from the adjoint method and central difference method. Left:
comparison between the two methods; Right: relative error of adjoint method w.r.t. central difference method.

there exists three directions — one following the primary branch and the other two associated with the secondary
branches. In the post-buckling analysis, with symmetry of the two directions, only one is followed and presented.

D.2. Multiple bifurcation point

Compared to the simple bifurcation case, seeking the post-bifurcation branches at a multiple bifurcation point is
much more computationally involved as the number of branches is not a priori known. Although the perturbation
in Eq. (D.1) can be adopted by replacing the scaled eigenvector with the linear combination of the multiple
eigenvectors [61], it is hard to obtain a full set of branches. A review of the existing branch-switching algorithms is
given by Kouhia and Mikkola [63]. Among these algorithms, the method developed by Huitfeldt [65] by traversing a
branch connecting curve based on the local perturbation algorithm is considered robust for computing all equilibrium
branches. This method belongs to the class of generalized path-following methods [64] that can be seen as an

extension of the traditional equilibrium path following to a multi-dimensional solution manifold exploring [14,62,64]
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r

via a multi-parametric setting (e.g., load factor, material properties, geometric dimensions, etc.) rather than only
one-parameter (i.e., load factor) setting.

Following Refs. [62,64], the global nonlinear equilibrium to be solved, when combined with an auxiliary equation
and arc-length approach, can be expressed as

R (u, γ, γs) =

⎡⎢⎢⎣
Ru (u, γ, γs)

Raux (u)

Rarc (u)

⎤⎥⎥⎦ = 0 with

Ru (u, γ, γs) = Fint (u)− Fext (γ, γs) with Fext (γ, γs) = γ P̂ + γs P̂ s

Raux (u) = (u − ucr )
T (u − ucr )− r2

Rarc (u) = ∆uT∆u − l2

(D.3)

where P̂ is the original external load vector (i.e., the term Fext in Eq. (7)) scaled by a load factor γ , P̂ s stands for
a disturbing force vector with γs used to control the magnitude; ucr denotes the known displacement solution at the
critical point; r serves as the radius of a cylinder enclosing the critical point ucr ; l specifies an arc-length parameter.
Here Ru (u, γ, γs) = 0 defines a perturbed equilibrium state that is parameterized by two parameters γ and γs ,
epresenting a 2-dimensional solution manifold in Rn+2 with u ∈ Rn . The cylindrical auxiliary equation Raux = 0

has been shown to outperform the spherical equation (e.g., Raux (u, γ, γs) = (u − ucr )
T (u − ucr ) + (γ − γcr )

2
+

γ 2
s − r2 with γcr the load factor at the critical point) in Eriksson [62]. The intersection of Ru (u, γ, γs) = 0 and

Raux (u) = 0 defines a closed one-dimensional curve in Rn+2, the so-called branch connecting curve (BCC). It is
clear that the subset of the solutions with γs = 0 are the solutions of the original equilibrium problem in Eq. (7).
The curve passes exactly one point on each branch and the perturbation parameter γs changes sign when passing
such a point. Therefore, the goal is to locate the zero points of γs while tracing the BCC. The BCC curve tracing is
fulfilled by a cylindrical arc-length method [57] by adding Rarc (u) = 0 where ∆u is the displacement increment
from the last step to the current solution step.

Remarks.
1. As suggested in Eriksson [62], the radius of the cylinder defined in Raux (u) = 0 is chosen as r ≈ 0.1 ∥ucr∥2.
2. For the selection of the disturbing force P̂ s , in contrast to Eriksson [62] where a unit vector for the dominant

component of the eigenmode is suggested, it is found that a random vector orthogonalized by the original force P̂
is more robust in achieving all the branches by traversing the BCC, i.e.,

P̂ s =

(
I −

1 P̂
 P̂ ⊗ P̂

)
ξ where ξ =

⎡⎢⎢⎣
ξ1
...

ξn

⎤⎥⎥⎦with ξi ∼ U (−1, 1) , i = 1, . . . , n (D.4)

in which U (−1, 1) denotes a uniform distribution ranging from −1 to 1. P̂ s can be further normalized by dividing
by its norm

 P̂ s


2.
3. For determining the solution points with γs = 0, as mentioned in Refs. [62,64], a linear interpolation between

the positive and negative γs’s can be a good approximation. However, with a relatively big arc-length parameter l,
the accuracy of the solution (u, γ ) might be sabotaged. In this scenario, NR iteration can be applied to improve
the solution accuracy.

4. The arc-length continuation terminates when the BCC curved is closed, i.e., the last found solution point
[(u, γ ) at γs = 0] is the same as the first found solution.

5. Each of the bifurcated branches has two directions (see Fig. 40a or Fig. 40b). Using the presented BCC
traversing approach with an appropriately selected disturbing load vector, it is expected that all the secondary
branches in both directions can be computed.

6. The system of nonlinear equations in Eq. (D.3) is solved for the first point on each secondary branch. After that,
the cylindrical arc-length method is used again starting from the found point to trace along each of the secondary
branches to finish the post-buckling analysis.
42
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