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ABSTRACT. We consider the problem of active learning for level set estimation
(LSE), where the goal is to localize all regions where a function of interest
lies above/below a given threshold as quickly as possible. We present a finite-
horizon search procedure to perform LSE in one dimension while optimally
balancing both the final estimation error and the distance traveled during ac-
tive learning for a fixed number of samples. A tuning parameter is used to
trade off between the estimation accuracy and distance traveled. We show
that the resulting optimization problem can be solved in closed form and that
the resulting policy generalizes existing approaches to this problem. We then
show how this approach can be used to perform level set estimation in two
dimensions, under some additional assumptions, under the popular Gaussian
process model. Empirical results on synthetic data indicate that as the cost of
travel increases, our method’s ability to treat distance nonmyopically allows it
to significantly improve on the state of the art. On real air quality data, our
approach achieves roughly one fifth the estimation error at less than half the
cost of competing algorithms.

1. Introduction.In recent years, there has been a growing interest in autonomously
sampling real-world environmental phenomena, owing in part to the increasing oc-
currence of extreme events such as wildfires in the United States. In particular, the
problem of adaptively sampling the environment to determine all regions where a
phenomenon of interest is above or below a critical threshold—a problem known as
level set estimation (LSE)—has received a great deal of attention within the signal
processing and machine learning communities [21, 7, 32]. The resulting algorithms
are often designed with the goal of deployment on an autonomous, mobile sampling
vessel, such as an unmanned aerial vehicle (UAV) [37]. Since these vehicles are
tasked with covering regions on the order of hundreds of square kilometers, a key
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FiGURE 1. Map of PM 2.5 following the California Camp Fire on
November 18, 2018. (a) Full level set boundary (black) denoting
all locations where PM 2.5 is above 100 pg / m3. (b) Subset of
region and samples collected via proposed method, which performs
a series of one-dimensional searches. Dots denote sample locations
with measurement values indicated by their color, red solid line
is estimated boundary, and gray dashed line is path traversed by
sensor ground truth. Corresponding sub-region is approximately
111 km x 111 km.

component of adaptive sampling methods is the ability to account for the costs
associated with both the number of measurements taken and the distance traveled
throughout the sampling procedure.

As a motivating problem, we consider the task of tracking wildfires, where our
goal is to determine the spatial extent of particulate matter 2.5 (PM 2.5) caused by
wildfire smoke (see Fig. 1). Algorithms designed to rapidly determine the boundary
of such a region fall within the category of active learning or adaptive sampling
[45, 11] and typically try to maximize a notion of information gain per sample.
However, this approach fails to account for the distance traveled throughout the
sampling procedure. Hence, standard approaches to active learning based in search
space reduction [38, 14, 55] or adaptive submodularity [20], which seek to minimize
only the number of samples taken, will be accompanied by potentially dramatic
drawbacks in terms of total sampling cost. While the approaches in [23, 7] account
for arbitrary costs, these treat costs myopically, failing to account for the expected
future cost after sampling a given location. Newer, bisection-style search methods
such as quantile search (QS) [34] and its extension [33] both achieve an explicit
tradeoff between the number of samples and distance traveled. Although these
improve upon previous methods in terms of total sampling time, neither guarantees
to find the optimal search procedure.

For any fixed N > 1, our procedure collects N measurements such that the
weighted combination of distance traveled and final estimation error is optimally
balanced. At its extremes, this algorithm minimizes either the final entropy or
total distance traveled, with a tradeoff achieved by varying a user-specified tuning
parameter. We show that for a one-dimensional step function, fixing N allows
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the resulting cost to be optimized in closed form, eschewing the need for dynamic
programming. We prove that the resulting policy is indeed a global minimum, as
opposed to a critical point only. We then present a method for handling noisy
measurements and prove this approach converges almost surely to the true change
point of a one-dimensional step function. We extend this idea to show how the
proposed search algorithm can be used to perform LSE in Gaussian processes (GPs),
a topic that has received a great deal of attention in the machine learning literature
[21, 24, 7, 48]. We provide extensive simulations on both synthetic data, as well as
air quality data obtained from the AirNow database [52]. Finally, we compare our
approach with the state-of-the-art in Gaussian process level set estimation (GP-
LSE) [7] and demonstrate that the proposed method is capable of estimating the
level set at a lower sampling cost while requiring a fraction of the computation time.

2. Problem formulation & related work. As stated in the introduction, we are
ultimately concerned with the problem of level set estimation in spatial domains,
i.e., of estimating the superlevel set

S:{xERd:f(x)Z'y}, (1)

where f :[0,1]¢ — R is a function governing some phenomenon of interest and -y
is a user-defined threshold. In this work, we are primarily concerned with the case
where f is a one-dimensional step function belonging to the class

F={fo: fo(x) =1{[0,0)},0 €[0,1]},

where 1 {E} denotes the indicator function, which takes the value one when x € E
and zero otherwise. In this case, the superlevel set is S = {z € [0,1] : < 0}, and
LSE is equivalent to estimating the change point 6. Although this model may seem
highly restrictive, we will show that two-dimensional level set boundaries can be es-
timated using a series of one-dimensional step functions, and that such an approach
outperforms state-of-the-art algorithms that consider the two-dimensional problem
directly. An example of using a series of one-dimensional searches to estimate a
two-dimensional boundary is illustrated in Fig. 1(b).

To perform boundary estimation, our sampling proceeds as follows. Assume we
obtain observations {Y;}"_, € {0,1}" from the sample locations {X,,}"_, in the
unit interval in a sequential fashion according to Y,, = 1{x € S}, where S is the
superlevel set defined in (1). In the case of one-dimensional step functions, each
sample obtained reduces the interval in which the change point may lie. We treat
the unknown change point § as a random variable. Our goal is then to estimate
the change point location while minimizing the sampling cost for a fixed number of
samples, a function of both the final expected interval size and expected distance
traveled.

2.1. Related work. A variety of adaptive sampling methods have been proposed
throughout the literature from various communities. Several popular approaches to
LSE assume that the underlying function of interest is a GP [42], which yields a
posterior distribution on the value at each point. In [21], the authors leverage the
GP model to construct confidence intervals around the value of each point, sequen-
tially sampling points of highest ambiguity. This approach was extended in [24] and
[7], providing novel approaches for sampling while also accounting for the distance
traveled between points. Another method for path-efficient LSE that seeks to re-
duce the distance traveled by the mobile sensor is proposed in [8], but this method
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assumes the vehicle can continuously acquire measurements with a negligible cost.
A closely related body of work exists within the uncertainty quantification litera-
ture, where LSE is sometimes referred to as exzcursion set estimation [1]. Within
these approaches, many rely on the stepwise uncertainty reduction (SUR) strategy
[18, 3], which maximizes the uncertainty reduction according to a given criterion.
In [3], the authors aim to minimize a quadratic loss on the volume (measure) of the
superlevel set. This approach is extended in [2], where a criterion is introduced that
gives direct control over false positives by using a conservative estimate of the su-
perlevel set. This conservative estimate is closely related to the confidence intervals
utilized by [21, 24, 7]. In [17], a variation of the Bichon criterion is proposed for
SUR with the goal of obtaining a greater degree of exploration. These approaches
allow for selecting a single point or a batch of points to reduce uncertainty. How-
ever, they all begin with an initial set of points distributed throughout the region
of interest (e.g., via Latin hypercube sampling), and none considers the additional
cost of moving a sensor throughout the sampling region.

The authors of [46] introduce the idea of adaptive data collection for mobile path
planning, or informative path planning, where previous samples are used to guide
the motion of the sensing vehicles for further sampling. Algorithms for informative
path planning typically focus on maximizing information gain over a scalar field
for an underwater autonomous vehicle. The approaches presented in [46, 6, 57]
accommodate a wide range of sampling scenarios that include varied sampling time,
path constraints, and limited battery. However, these methods often require a coarse
sampling of the entire region of interest, which is not feasible for the large spatial
regions considered here. In contrast, boundary detection methods like those in
[36, 10, 29] use mobile sensors to map a spatial threshold as closely as possible.
These methods provide efficient and accurate mappings of a binary classification
boundary but unfortunately do not account for the cost of obtaining each sample.

Among the approaches from active learning, many rely on the principle of search
space reduction [14, 55, 38], which aims to rapidly reduce the set of points where the
level set boundary may lie through intelligent sampling. In general, these methods
do not permit the inclusion of distance-based or other penalties, and as a result
they tend to yield bisection-type solutions [9] that require few samples but may
travel large distances. These methods can also be viewed as “greedy” approaches
that aim to maximize search space reduction at each step. While greedy methods
have been shown to be near optimal in terms of sample complexity [38, 14], they
frequently ignore additional costs that may be incurred during the sampling proce-
dure. Moreover, methods such as [16] that greedily incorporate realistic costs into
the algorithm formulation have been shown to perform worse than the alternative
approaches when applied to distance-penalized searches [34].

A popular greedy approach to active learning relies on the concept of adaptive
submodularity (AS) [19]. AS is a diminishing returns principle, which informally
states that samples are more valuable early in the search procedure. The work of
[20] shows that a greedy procedure is optimal up to a constant factor for several
active learning problems, including the case of nonuniform label costs. However,
AS is a property of set functions, and does not consider a sequential dependency
among sampling locations. A notion of submodular optimization with sequential
dependencies was presented in [49], but the proposed algorithm relies on a reordering
procedure that is not applicable to our problem. While [23] provides a theoretical
analysis of greedy active learning with non-uniform costs, the authors only consider
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the case of query costs being fixed. In contrast, our scenario has non-uniform and
dynamic costs, where travel time depends on the distance between points.

Of primary relevance to the work presented in this paper is the work of [34],
which introduces the quantile search (QS) algorithm for determining the change
point of a one-dimensional step function while balancing the above costs. QS is a
generalization of binary bisection [12, 26, 9], where the idea is that by successively
sampling a fixed fraction 1/m, where m > 2, into the remaining feasible interval, the
desired tradeoff between number of samples and distance traveled can be achieved.
The authors characterize the expected error after a fixed number of samples as well
as the distance traveled; they further provide an approach to handling noisy mea-
surements and prove its convergence. This work was extended in [33], introducing
the uniform-to-binary (UTB) algorithm, where the key observation is that QS can
be improved by allowing the search parameter m to vary with time. While both
QS and UTB provide promising empirical results, neither algorithm provides guar-
antees of optimality in terms of the total sampling cost. Most recently, an optimal
approach based on dynamic programming was presented in [54], where the search
procedure is cast as a stochastic shortest path problem [5, Ch. 2]. However, the use
of dynamic programming requires an increased computation time, and the resulting
solution depends heavily on the discretization used. In this work, we present an ap-
proach that strictly generalizes the QS algorithm while still admitting a closed-form
solution that can be easily deployed on a mobile sensing device.

3. Finite horizon search. In this section, we describe our approach to distance-
penalized LSE, which we refer to as finite horizon search (FHS). To appropriately
penalize distance, FHS considers a fixed number of measurements (i.e., a finite sam-
pling horizon) and optimizes the weighted sum of distance traveled and entropy in
the posterior distribution of the change point 6 after obtaining these measurements.
A tuning parameter allows the user to control the importance of distance penaliza-
tion, resulting in binary search at one extreme and sampling adjacent locations at
the other. In the case of noiseless measurements, we show that the optimal sam-
pling policy can be obtained in closed form. We then show how this policy can
be extended to handle noisy observations and prove the resulting method converges
almost surely to the true change point. Finally, we describe an approach to the well-
studied GP-LSE problem in the case where the level set boundary can be written
as a function in one dimension.

3.1. Noiseless measurements. We first consider the simple case of noiseless,
binary-valued measurements, where our goal is to estimate the change point 6 on
the unit interval. It is convenient, while not restrictive, to define search strategies
in terms of the fraction of the remaining interval to move at each step, whether
forward or backward, in an analogous fashion to [34, 33]. The resulting class of
policies is adaptive to the unknown location of 6 and non-restrictive in the sense
that any optimal policy will not sample in locations with probability zero (locations
outside the remaining interval).

Begin with a uniform prior on the change point 6, and let the N fractions be
{Zn}nN:p where z, € [0,1] for n = 1,...,N. A straightforward Bayesian update
yields the posterior distribution for € after each sample. Let Hy be the entropy of
the posterior distribution after N observations, Dy be the total distance traveled,
and A > 0 be a tuning parameter that governs the tradeoff between these costs.
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We define the expected sampling cost after NV observations as the weighed sum of
exponentiated entropy and distance

J(21,...,2n) = Eg [ + ADy]. (2)

Note that for a uniform distribution on an interval of length a, e~ = elo8(a) = 4;
thus, when beginning with a uniform prior on 6, (2) is equivalent to minimizing a
weighted combination of the (expected) final interval length and distance traveled.
In what follows, we will derive a closed-form solution to this problem, as well as a
means of computing the number of samples required to obtain an expected interval
length below a given threshold (see Alg. 1).

3.1.1. Closed-form solution. We now demonstrate that the global optimum of (2)
can be found in closed form. We first define the feasible interval as the interval in
which the change point may lie. Formally,

Definition 1. Assume n measurements at locations X1, ..., X,, have been obtained
and define

X =max{X; € X;,...,X,: Y, =1, i<n}
and

X, =min{X; € X7,...,X,,:Y; =0, i <n}.
Then the feasible interval after n samples is [X;, X,].

To derive the optimal sampling fractions, we begin by rewriting (2) in terms of
the expected size of the feasible interval at each step, recognizing that the distance
traveled at a given step is equal to the product of the interval size and the sampling
fraction. The resulting cost function can be differentiated to find a critical point.
The principle of dynamic programming verifies that the resulting solution is indeed
a global optimum (see Thm. 3.2).

Theorem 3.1. Let A\ € [0,2) and assume the unknown change point has distribution
0 ~ Unif([0,1]). Further, assume the N measurements are defined via N fractions

21,...,2n € [0,1] denoting the proportion of the current feasible interval to sample.
Then the critical points of the cost function (2) are of the form
1 1
r=——XA—, k=1,...,N 3
Z]c 2 4pk7 ) 9 9 ( )

where PN = ]_’ g;k = (Z;k)z =+ (1 — Z;-k)2, and

N N i—1
= [ &+x > = [[ & *k=1...N-1, (4)

i=k+1 i=k+1  j=k+1
depends only on the fractions zgxy1,...,2N-
Proof. The proof begins by rewriting the cost function in terms of the expected
length of the feasible interval. Let Hpy be the entropy of the posterior distribution

after N measurements, so that Hy = 0. Let & = 22 + (1 — 2;)? and define & = 1.
Then by Lemma A.1 (see Appendix A), we have that

N

B[] =]+ 027 =]]e&

7 =1
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Let Dy be the distance traveled after N samples. Note that this distance is exactly

the product of the interval length and the fraction of the interval to be traveled at
each step, i.e.,

Therefore

i=1
N
= ZZJE [eHiil}
i=1
Applying Lemma A.1 then yields
i—1
E[DN] =)z ][4

i=1 =0

We can rewrite the cost function (2) as

J(z1,...,2x) = E[e"™] +AE[Dy]

N N i1
[I&+2> =]]¢4 (5)
i=1

i=1 j=0

After rewriting in the form (5), we can easily compute the gradient to be

-1
(% = (H sz-) (42 = 2) pr + ), (6)

i=1
and setting the gradient to zero yields
1 1

== —A—.

2 4py
O

Thm. 3.1 characterizes the critical points of (2). Although setting (6) to zero
yields a unique solution, this is not sufficient to guarantee global optimality (a
global optimum could lie on the boundary of [0, 1]V). Further, even in its simplified
form (5), the cost function is a high-order polynomial whose convexity is difficult
to analyze.

Theorem 3.2. The critical point characterized by Thm. 3.1 is the global optimum
of the cost function (2).

Proof. The argument is based on the dynamic programming lemma [4], restated
here for convenience.

Lemma 3.3. Suppose a sequence 25, ..., zx€ [0, 1)V is such that for any z1, ..., zn
(also lying in the unit interval)
J(z1,. - 2n) > J(21, - 2N =1, 2N) (7)

and for1 <p < N —1 and any z1,..., %, that

J(2150 5 2p, 2p s 2N) 2 (2150005 2, 2p 155 ZN)- (8)
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Then for all sequences z1,...,zN
J(z1,.. 0y 2n) > J (2], ..., 2N). 9)
We verify that the local minimum defined in Thm. 3.1 satisfies the hypothesis of

Lemma 3.3. For any z1,...,2,, define m, = [['_, &. To verify the statement (7),
for a fixed z1,...,2,_1, we let

fn(Z) = J(Zl,...,Zn_l,Z)
n—1
= Tpo1§+Azmpo1 + A Z ZiTi—1,
i—1

where € = 22 + (1 — 2)%. The final term above does not depend on z, indicating that
fn(z) is a second-order polynomial in z. Moreover, 7,,—1 > 0, so the above is strictly
convex, and hence a unique global minimizer can be found by differentiation. It
is easily verified that this corresponds to the critical point found in Thm. 3.1. We
next verify statement (8). Let

fp(Z) = J(Zh .- '7Zp—1aZ7Z;+17 . ,Z:)

= Tp—-1 f H £:+

i=p+1

n—1 p—1
Meatagpabt+a [T &) | +AD zmia
i=p+1 i=1
p—1
=1 (A2 +Epp) + A zimia,
i=1
where p, is defined in (4). The above is again a second-order polynomial in z
and therefore convex. Minimization through differentiation again yields a global
minimizer that corresponds with the critical point defined in Thm. 3.1. Therefore,

both statements of Lemma 1 are satisfied for the sequence z7,...,2} defined in
Thm. 3.1, indicating that the critical points are indeed global minimizers of the
cost function (2). O

The above results show that the optimal N-step FHS policy can be obtained in
closed form. Further, the sampling fractions can be computed in linear time, be-
ginning with zy = 1/2—\/4 and proceeding backwards. While the above considers
the case of the unit interval, it is straightforward to show that the cost (2) is linear
in the length of the interval, and hence the search fractions are independent of the
initial length. As a first observation, we note that when N = 1, FHS is a greedy
approach that minimizes the one-step lookahead for the value function without con-
cern for future consequences. In this case, the policy samples a constant fraction
into the feasible interval, independent of the size of this interval. This is exactly
the QS approach described in [34], and thus QS may be considered an instance of
our proposed method with N = 1.

Examining Thm. 3.1, we see that p; is monotonically increasing in k, and hence
the sampling fractions are monotonically increasing with k, as can be seen in Fig. 2.
The resulting behavior is to perform small movements early on in the sampling
procedure, when the feasible interval is large, avoiding large movements at the
sacrifice of information gain. As the feasible interval is reduced, the steps get
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FIGURE 2. Sampling behavior of proposed FHS policy, showing
fractions of the interval to travel at each step of a 20-step policy,
where a larger A penalizes distance traveled more heavily. The FHS
policy increases the sampling fraction over time to avoid traveling
large distances.

proportionally larger and emphasize information gain/entropy reduction, since the
incurred distance penalty is smaller. This extends the intuition behind the UTB
sampling procedure of [33] in a more principled manner.

The closed-form policy also provides insight into the range of admissible values of
A. Taking A = 0 results in all fractions taking the value of 1/2, which is consistent
with the well-known fact that binary bisection performs entropy minimization [53].
A higher value for the distance penalty parameter A results in a less aggressive
policy, as the higher cost for potential overshoot encourages smaller steps. When
A > 2, the cost of traveling to obtain a measurement, Az, is larger than the expected
reduction in entropy, 1 — &1, and the trivial sample which requires no displacement
is preferred. This is seen most directly by the fact that the final step is zy = 0 in
this case, making pp = 1 for all k, and therefore all sampling fractions identically
Zero.

Finally, we note that (2) may be solved directly using dynamic programming by
discretizing the interval and allowing states to correspond to the possible lengths
of the feasible interval. The corresponding cost is then the A-penalized distance
traveled at each step, with a terminal cost corresponding to the length of the final
interval. In this light, the closed-form policy above may be viewed as an instance
of dynamic programming, where each subproblem is solved in closed form.

3.1.2. Searching with a fized estimation error. In certain instances, a user may
wish to terminate the search procedure when the length of the feasible interval is
below a given threshold to guarantee a fixed estimation error. By noting that the
exponential entropy is equal to the feasible interval length, the result of Lemma A.1
can be used to determine the number of steps required to reduce the expected
interval length below the threshold € > 0. In particular, we leverage the fact that
the tail subproblem of length N — k is equivalent to the solution to the (N — k)-step
problem for any k € {1,...,N — 1}, and hence the expected interval size can be
computed sequentially until it is below the threshold . Further, it is easy to show
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Algorithm 1 Policy calculation for fixed estimation error

1: Input: stopping error ¢ > 0, distance penalty A € [0,2), initial interval length
L

2: Initialize: zy < 2 — 2 en =1+ 27 k0
3: while LT[ y_, & > ¢ do

4 k+k+1

5. compute py_j according to (4)

6: ZN—k < % — )\/(4pN_k)

7 EN—k <_212v7k+(1_ZN—k)2

8: end while

9: N+ k

that intervals of arbitrary length L are reduced by the same fraction, and hence
we are not restricted to intervals of unit length. Pseudocode for determining the
expected number of samples and search fractions for each sample is given in Alg. 1.
In the case where a search terminates only after a given estimation error has
been obtained, we follow a two-phase procedure. Before the search begins, we use
the method presented in Alg. 1 to calculate the N steps such that the expected
final interval size is less than . Then, in the first search stage, samples are taken
according to this N-step policy. If the feasible interval is smaller than the desired
threshold before all N samples have been taken, the search terminates. Otherwise,
the algorithm performs a greedy search (optimal 1-step policy, line 7) until the
interval is sufficiently small. This corresponds to the maximum entropy reduction
among all IV step sizes computed by the policy. Since entropy reduction has been
shown to be optimal in terms of sample complexity [28], our choice may be viewed
as minimizing the number of further samples required subject to a small amount of
distance penalization. Pseudocode for this procedure is provided in Alg. 2.

3.2. Noisy measurements. In Section 3.1, we assume the measurements are ob-
tained in a noiseless manner, i.e., Y; = fy(X;) exactly. However, low-cost environ-
mental sensors are known to obtain measurements corrupted by noise. Further, in
most real-world scenarios, the measurements themselves are real valued and then
discretized to values of 0 (below level set threshold) or 1 (above threshold). In
this case, values obtained near the true level set boundary are more likely to be
erroneous, since small perturbations of the measurement can result in an incorrect
assignment. The work of [9, 12, 34] accounts for noisy binary-valued measurements
by maintaining a posterior distribution over the change point # and sampling at
quantiles of this distribution. However, these assume both a constant search frac-
tion and a constant probability of erroneous measurements (i.e., a bit flip with
probability p). In this section, we show how the policy derived from FHS can be
extended to handle continuous-valued measurements corrupted by Gaussian noise
and prove that the resulting method converges almost surely to the true change
point.

To handle noisy measurements, we utilize a probabilistic approach as in [9, 34],
in which we sample a fraction into the posterior distribution on # instead of the re-
maining interval. Beginning with a uniform prior over the change point, a posterior
distribution m,, () is obtained after each measurement via a Bayesian update. Con-
sider sampling a fraction z into the distribution 7,1, resulting in the measurement
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Algorithm 2 Finite Horizon Search

1: Input: search fractions z1, ..., zy, stopping error
2: Imitialize: X+ 0, Yy« 1,a+ 0,0+ 1, n«1
3: while b —a > ¢ do

4 if n < N then

5 Z 4 Zp

6: else

7 ze3-2

8 end if

9. ifY,_1=1then

10: Xp— Xn1+2z(b—a)
11:  else

12: X, X1 — Z(b — a)
13:  end if

14: Y, « f(X,)

15 a=max{X;:Y;=1,1<n}
16:  b=min{X;:Y; =0,i <n}
17: én — %‘_b

188 n+<n+1

19: end while

location X,,. In the case where Y, > =, the resulting update is

Lo ’/Tnfl(x)v x < Xn
() = Z9Pn - 10
e {;gmlﬂ@’x>Xm (10)

where p,, is the probability of an erroneous binary measurement and
zop:=zp+(1—-2)(1-p).

In this case, a positive measurement indicates that the change point likely lies to

the right of X, but there is still a nonzero probability that the change point is

to the left, due to the possible erroneous measurement. Similarly, for Y,, < ~, the

Bayesian update becomes

(11)

(@) = Log1(x), x> X,,

2%Pn

{;gwwm@,xsxn

where
zxp:=z(1—p)+ (1 —2)p.

After each update, the estimate 0,, is taken to be the median of the resulting poste-
rior distribution, and the expected absolute error is computed using the distribution
Ty

The above Bayesian updates assume binary-valued measurements and require
the probability of an erroneous measurement. To handle more realistic sampling
scenarios, we assume measurements are corrupted by zero-mean Gaussian noise, so
that

where A(u,0?) denotes the normal distribution with mean g and variance o2.

These measurements are then thresholded based on whether they are above or below
the level set threshold . Let ®(-) denote the cumulative distribution function of
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Algorithm 3 Probabilistic Finite Horizon Search

1: Input: search fractions z1, ..., zy, noise variance o2, stopping error &
2: Initialize: Xy =0, mo(x) =1 for all x € [0,1], n + 1

5. while g, ’9n - 9‘ > ¢ do
4: if n < N then

5: Z 4 Zn
6: else
. 1_ A
7: z (— 5 1
8: endif
9: set Xy, X7 such that

Xo 1
/ Tn—1(z) =2z and C Tpe1(x) =1—2
0 X
10: X, + arg minXe{f(o,f(l} | Xpn-1 — X]|
11: Y, « f(X,)
12: if Y, >~ then

13: Pp—1— (@)
14: ( ) _ 2107;;72’ 7T'n_1(l’), X S Xn
’ %) = L=Pn o (), z>X
Z0pn n—1 ) n
15:  else
16: pn < O (—Y"‘W)
: " =
1—p,
17: T () = e 1 (), S X
: n(2) =
Zf;n Tn-1(x), =>X,
18: (;nd if

19: 60, « median,m,(z)
200 m<+<n—+1
21: end while

a standard normal random variable. Under the measurement model (12), if we
measure Y; < v when f(X;) > v, an error occurs with probability p; = ® (@)
Similarly, if ¥; > v but f(X;) < 7, an error occurs with probability p; = 1 —
P (%) Note that in both cases, the probability of error p; depends both on the

noise variance o2 and the distance from the level set threshold. This is essential, as
a measurement far from the level set threshold can handle much larger corruptions
than one for which |Y; — ~| is small.

Our search procedure computes this noise level after each measurement, updating
the posterior to reflect high uncertainty when samples are obtained near the change
point. Note that for a given search fraction z,, equal information is gained by
moving to the z, quantile of 7, or the 1 — z, quantile. To account for the goal
of minimizing the distance traveled, we move to the nearer of these two quantiles
at each measurement. Finally, to ensure the algorithm always moves toward the
median of the posterior, we follow the truncation approach of [34]. We refer to this
algorithm as probabilistic finite horizon search (PFHS), and pseudocode is given in
Alg. 3. In the case where 0 = 0, PFHS is exactly equivalent to FHS.
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Below we show that, given sufficiently many measurements, a discretized version
of the PFHS algorithm converges almost surely to the true change point. This
approach discretizes the unit interval into bins of width A and facilitates analysis
more easily than the continuous version [11, 53]. We extend the analysis laid out
in [34] to allow for varying noise level and varying step sizes.

Theorem 3.4. Assume measurements are obtained following the noise model (12).
Then a discretized version of the PFHS algorithm converges almost surely to the
true change point.

Proof. We wish to show that for any € > 0 and any 6 € [0, 1]

Pr (hm sup sup

b, — 9‘ > s) ~0. (13)
n—oo  9€[0,1]
For any € > 0, set A < ¢ such that A~! € N and consider a discretized probabilistic
search algorithm with bin size A. By [34], for any A > 0, the discretized proba-
bilistic search algorithm that samples a fraction z into the posterior with a noise
level p < 1/2 satisfies

A 1-A
Sup P (|en — 0 > A) < =) (14)
where o = \/p/(\/p + /1 —p) and
#(2) ::2(11__’;)+£+(2(11__’;)—£) (1-2a)(1—22). (15)

We first show that ¢(z) < 1 as long as z > 0 and p < 1/2. Algebraic manipulations
indicate that for p < 1/2,

1-p p l—p P
2(1a)+2a+(2(1a)_2a)(1_2a>:1'

Since z > 0, we have that 1 —2z < 1, and therefore (15) is of the form a4+ be, where
a,b>0,a+b=1, and ¢ < 1. We wish to show that a + bc < 1. Using the fact
that b = 1 — a, an equivalent statement is

a+(l—a)c<l <= (I1—-a)c<1—a,

which holds as long as ¢ < 1.
Next, observe that since ¢(z) < 1, for any 6 € [0, 1]

iPr (|én — 9> A)

n=1 n

IN

Zl

— A n
5 1)

A ()<

By the Borel-Cantelli lemma, this guarantees that (13) holds. Finally, let z =
min; {Zz}i\; and p be the maximum noise level observed throughout the sampling
procedure. For A < 2, we have z > 0. Further, since p is computed by taking the tail
of a Gaussian distribution in the direction away from the mean, we have p < 1/2.
This guarantees convergence of the discretized form of the PFHS algorithm. O

oo
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The above result also holds for the more general case of sub-Gaussian noise with
parameter o, where the probability of error p; is bounded via Hoeffding’s inequality

2
pi <PAIYs = F(X0)| > |V =11} < 2exp (—'ng”'> (16)
In this case, Thm. 3.4 requires the additional assumption that |Y; — 7| > 04/2log(4)
to ensure that p < 1/2, i.e., the more general case requires a greater gap between
the measurement and the level set threshold. If this condition is not met, repeated
measurements could be obtained until the probability of error falls below 1/2.

The analysis of probabilistic search algorithms has been a topic of significant
study over more than fifty years [26, 9, 41, 30, 39, 53, 50]. While the search frac-
tions used in PFHS are derived from the noiseless setting and therefore suboptimal,
deriving an optimal policy for the noisy case is intractable due to the combinatorial
explosion of potential posterior distributions. Determining approximate solutions
for the noisy case via reinforcement learning is an important topic that lies beyond
the scope of this work.

3.3. Gaussian process level set estimation. Given a means of handling noisy
measurements, we now consider the problem of LSE in the case where the underlying
function f is a GP. Formally, a GP is a collection of random variables, one for each
value of f(x), for which every finite subset forms a Gaussian random vector [42]. A
GP is characterized by its mean function p(z) = E[f(x)] and its covariance/kernel
function k(x,2') = E[(f(x) — p(x))(f(z') — u(z"))], which governs the smoothness of
the function over the domain, which in our case is [0, 1]?. In the GP-LSE problem,
we assume measurements are corrupted by Gaussian noise, so that ¥; = f(X;) + (;

with ¢; ~ N(0,02). After obtaining measurements Yj,...,Y, at corresponding
locations X1, ..., X,, the posterior mean and covariance can be obtained as
pn(z) = k()T (K, + 02" ty,
ko(z,2') = k(z,2") — kn(2)T (K, + 02I) 'k, (2),
where ky(z) = [kn(2, X1) kn(2,X3) ... ko(z,X,)]" € R", K,, € R"™" is the

positive-definite kernel matrix whose 4, jth entry is k,,(X;, X;), and y, € R" is the
vector of measurements. The GP model is frequently used in environmental appli-
cations [15, 56, 35] (often referred to as kriging in this context [47]), and the ability
to measure posterior variance has led to a number of approaches to active learning
in GPs [21, 24, 25, 7, 27]. To apply our proposed FHS to the GP-LSE problem,
we consider a subset of GPs wherein one coordinate of the level set boundary is
a function of the other coordinate, as depicted in Fig. 3. This assumption is sim-
ilar to the boundary fragment assumption, which has been widely studied within
the nonparametric active learning literature [43, 12, 31]. This assumption reduces
the superlevel set to a single, simply-connected region, which commonly holds in
environmental applications [13, 58].

Under the above assumption, our approach to GP-LSE is as follows. Assume the
level set boundary 0.5 is a function of one coordinate. We split the unit interval into
a series of transects and perform a one-dimensional PFHS to localize 0.5 along each
transect, initializing transects as described in Sec. 3.3.1. This process is depicted in
Fig. 3. As aresult, our goal is to estimate the one-dimensional function 95 assuming
it is a GP. Along each transect, we run PFHS and treat the estimated change point
as a noisy measurement of 9S at the transect location. Clearly the accuracy of
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FIGURE 3. Example Gaussian process level set estimation when
the boundary is a function of the first coordinate. The unit interval
is split into five equally-spaced transects, and a PFHS procedure
is used to localize the change point along each transect. Change
point estimates are then used to estimate the boundary via GP
regression.

estimating 05 is governed by the number of transects and the accuracy of localizing
the change point along each transect. In this case, the number of transects governs
the approximation error and the stopping error along each transect defines the
estimation error.

Thm. 3.4 shows that PFHS converges almost surely for a single transect. To
obtain an e-accurate guarantee similar to those provided in [21, 7], further assump-
tions must be made on the boundary 95. For example, if one assumes the boundary
is L-Lipschitz on the unit interval, we obtain the following result.

Theorem 3.5. Assume the level set boundary 0S is L-Lipschitz in the first coor-
dinate, and let 0S be the estimate of the level set boundary across B transects, as
described in Sec. 3.53. Take the number of samples per transect n to be such that
%t(z)” < %, where t(z) is defined in the proof of Thm. 3.4. Then with probability
at least 1 — &, we have

5508 < (a4 25) an)

Proof. First, consider a search along a fixed transect. As shown in (14), after n
measurements along the transect we have

1-A

Pr (|én — 0 > A) < t(2)",

where t(z) < 1. To obtain an error of at most A over all B transects simultaneously
with probability at most 1 — §, we set
1-A

5
- = n <
A =3

and apply the union bound.
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Next, let I, I5, ..., Ip partition the unit interval into B subsets of length 1/B.
Under the Lipschitz assumption, the squared error can be written as

2 1 2
H(%—aSH - /‘85(1&)—53(1&)‘ dt
0

Il
Q
N

(t) — 8S(t)| dt

:

IA
Mm
S~
VRS
D2
_l’_
|
~—

L 2
- (a+55)

where the inequality follows from the fact that each transect has an error of at most
A and 95 is L-Lipschitz. O

Thm. 3.5 gives clear insight into the impact of the stopping error A and number
of transects B, showing that each can be used to reduce the overall error. In our
experiments, we tune these parameters though a grid search, and a theoretical
characterization of the optimal balance between these parameters is an important
topic of future study. Finally, the theorem implies a total sample complexity of

. log (%ﬁ)

"= P o)
To gain insight into the above, consider probabilistic binary search, where z = 1/2.
In this case, as p — 0, #(z) — 1/2, and as p — 1/2, t(z) — 1. In either case,
log(t(z)) converges to a negative absolute constant, and the sample complexity
n=0 (B log (5%)), where we make the approximation 1 — A &~ 1 for small A.
While the Lipschitz assumption of Thm. 3.5 may be overly simple, it provides
insight into the relationship between the stopping error, number of transects, and
number of measurements required in our approach.

3.3.1. Initialization and policy calculation. Rather than beginning the search from
the origin at each transect, we make use of information from previous transects and
initialize the search from the previous change point estimate. In the noiseless case,
this initial sample reduces the interval size, and we then compute the optimal policy
for the resulting interval length using Alg. 1. In the noisy case, the initial sample
alters the distribution m,, and we wish to derive an equivalent notion of interval
reduction in order to determine the appropriate policy for each transect. Recall
that in the noiseless case, the length of the feasible interval corresponds to the
exponentiated differential entropy. We therefore compute the effective interval size
based on the exponentiated differential entropy after one sample has been obtained.
Let Xy denote the initial sample location and p denote the corresponding derived
probability of error. Following the update equations (10) and (11), in the case where
Yp > v, we have

Xo
p p
Hy=— lo do—
0 o Xoop g(Xo op)

1
1-p (1p)
lo df
x, Xoop 8 Xoop
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=log (Xoop)—

(pXolog(p) + (1 —p)(1 — Xo)log(1 —p)).

Xgop

Exponentiating gives

Mo — (Xg 0p) (p*pxo/(Xoop)(l _ p)*(lfp)ﬂ*XO)/(XoOP)) .
Similarly, in the case where Yy < -y, we have

eHo — (Xo % p) (pfp(leo)/(Xo*P)(l _p)*(lfp)Xo/(Xo*P)) .

This generalizes the notion of interval length to the case of noisy measurements,
and when p = 0 is exactly equal to the resulting interval length. For each transect,
we obtain the initial measurement, compute the corresponding effective interval size
(exponentiated entropy), and then compute the policy via Alg. 1 using L = efo as
the initial interval length.

4. Simulations & experiments.

4.1. Performance on one-dimensional step functions. In this section, we ver-
ify the performance of the proposed FHS and PFHS policies. We first demonstrate
the reduced cost (as defined by Eq. 2) using PFHS compared to FHS. We then
benchmark FHS and PFHS against the existing QS and UTB algorithms in a time-
penalized search scenario.

4.1.1. Comparison of FHS and PFHS. We first compare the performance of FHS
and PFHS in the case of binary measurements that are erroneous with constant
probability p. We report performance over fifteen measurements, considering twenty
noise levels between 0.01 and 0.49, and fifty values of A between 0.01 and 1.9. For
each configuration, we perform searches over 100 uniformly-spaced values of 6 in
the interval [0, 1], running 100 Monte Carlo simulations for each value of 6, and
report the average cost as defined by (2). In this noisy setting, the interval length
for FHS does not reflect the uncertainty in the change point due to the erroneous
measurements. By [34, Thm. 1], the entropy corresponds to four times the absolute
error in the change point. Hence, in the noisy setting we report the algorithm cost
as

J(z1,. . 2n) = Eg [4\@N—9]+ADN]. (18)

Fig. 4 shows the cost as a function of sample number (averaged over p, A), noise
level (averaged over N, ), and tuning parameter A (averaged over p, N) for each
algorithm. First, we see that the benefits of PFHS are most apparent as more
samples are obtained due to the convergent behavior of PFHS. For FHS, the error
in estimating # can actually increase with more samples, since one erroneous mea-
surement can bias the estimate away from the true value. Second, while no clear
trend in improvement versus noise level is seen, the greatest percent improvement
is obtained at noise levels below 0.2. This behavior is likely due to the fact that
PFHS uses the policy derived from the noiseless case, whose suboptimality is more
apparent as the noise level increases. Third, the benefits of PFHS are more appar-
ent as \ increases. A closer inspection of entropy and distance reveals that for large
A, both algorithms travel a similar distance (making only small movements), but
PFHS has a much lower entropy due to its ability to incorporate knowledge of the
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FIGURE 4. Performance of FHS and PFHS in the case of noisy
measurements, where cost is defined by (2). (a) Cost as a function
of number of samples. (b) Cost as a function of noise level. (c¢) Cost
as a function of tuning parameter X\. The performance improvement
is most significant when more measurements are taken and for large
A

noise level. In all cases, PFHS outperforms FHS, with an average cost reduction
ranging from 6% at p = 0.01 to 27% at p = 0.14.

4.1.2. Cost as a function of sampling time. To minimize the total time that a vehicle
takes to complete a search, we consider a cost function of the form

JT(Zl,...,ZN) :T’SZ\/v—f—T'tl)7 (19)

where T and T; represent the time per sample and time per unit distance traveled,
respectively, and N and D represent the number of samples and total distance. In
order to minimize this cost in expectation, we first calculate the number of samples,
Ny, and total distance, D), expected for the optimal policy for each value of A to
reach a final interval size smaller than desired error £ using Alg. 1. We then select
the value of A that minimizes the total search time,

A =arg min Ty Ny + T3 D). (20)
A

For the noisy setting, the expected interval size cannot be computed in closed form.
We instead evaluate the sample mean of the interval size, computed over a range of
1,000 values of 6 € [0, 1] and 100 Monte Carlo trials for each value of 6.

We compare the performance of the above method with the existing probabilis-
tic QS (PQS) algorithm for distance-penalized search in one dimension, where we
compute the optimal parameter for PQS according to (20). We consider the same
grid of 1,000 values of # for 1,000 different ratios of T} /T in the range of 1 x 1074
to 1 x 103, taking Ty = 100 as the base sampling cost. Fig. 5(a) shows the value of
A* selected by (20) for noise level p € {0,0.1,0.15}. As expected, as T increases, a
higher value of A\* is selected, taking more samples while being less likely to over-
shoot the change point. Additionally, as the noise level increases, lower values of
A* are selected. This results in a search that favors entropy reduction in order to
account for the information loss incurred by noisy measurements. Fig. 5(b) shows
the PFHS policies selected for each noise level at a ratio T3 /Ts = 250. As expected,
more samples are required as the noise level increases, with the lower values of A
resulting in a larger maximum step size. The ability of PFHS to utilize small step
fractions at early stages allows the algorithm to keep the total distance traveled
low while still converging rapidly. Fig. 5(c) shows the cost difference between PQS
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FIGURE 5. Performance of noisy search algorithms for varying
noise level p when optimized for total sampling time as defined
by (19). (a) Optimal tuning A as a function of the ratio of travel
time 7} to sampling time Ts. (b) Policies selected by PFHS for
each noise level considered. (c) Cost difference between PQS and
proposed PFHS algorithms. As the noise level increases, PFHS
favors entropy reduction (smaller \) over distance penalization.

and PFHS for each noise level. In nearly all cases, PFHS outperforms PQS, with
a greater difference as both the noise level and the ratio T; /T increase. Although
difficult to see, PQS does outperform PFHS by a small amount for a noise level of
p = 0.15 and a ratio of T3 /T, < 24. However, PQS obtains a performance improve-
ment of less than 4%, whereas FHS obtains as much as a 15% improvement as the
ratio of travel to sample time increases.

4.2. Performance on GP-LSE. Next, we examine the performance of our ap-
proach to GP-LSE using the proposed PFHS algorithm. As a benchmark, we com-
pare to the state-of-the-art Truncated Variance Reduction (TruVaR) algorithm [7],
which is designed explicitly for cost-sensitive GP-LSE. To perform LSE, TruVaR
maintains estimates of the super-level and sub-level sets, as well as a third set
for points whose level set membership is uncertain. Points are placed into the
super/sub-level set estimates only after the algorithm is sufficiently confident they
lie above/below the level set threshold, with confidence estimates being obtained
from the GP model. TruVaR selects samples based on the ratio of (truncated)
variance reduction to cost

X,, = arg max T<x), (21)

zes C({E)

where 7(x) is the truncated variance reduction after sampling location x

@)= Y max{Buoia @t} - > max{Buoi @)l ), (22)

ZEM,_1 ZEM, _1

M,,—1 denotes the set of points whose super-/sublevel set membership is currently
uncertain, ;) is a confidence parameter for the ith epoch of the algorithm, o2 1 (z)
is the posterior variance at the point Z after obtaining n—1 measurements, 072;71|z(55)
is the posterior variance after obtaining n — 1 measurements in addition to sam-
pling at location x, and 7y > 0 is a truncation parameter determined by the
algorithm. In [7], simulations are performed on chlorophyll concentration data
from Lake Ziirich, and the authors use a sampling cost that considers both dis-

tance traveled and sensor depth. Since we do not consider sensor depth, we set
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c(z) = |X,n—1 — x|, ie., the distance from the current location to the potential
sampling location z.

We consider two-dimensional GP realizations with level set boundaries satisfying
the assumption described in Section 3.3. In all simulations, we provide TruVaR with
the true kernel parameters used to generate the two-dimensional GP realization

under consideration. We set the parameter 3;) = alog (M t?i)> as in [7], where ;)

denotes the time at which the epoch starts, M denotes the number of elements in
the two-dimensional realization, and a is a constant. We found the best performance
resulted from setting a = 0.0001. All other parameters were set according to the
recommendations in [7]. We measure the error in terms of the symmetric difference
between the true and estimated super-level set divided by the total number of points
in the realization, i.e.,

E:%‘SAS'

; (23)

where M is the total number of points in the realization and S denotes the estimated
super-level set. When considering the LSE problem as binary classification, the
above may be viewed as the classification error.

4.2.1. Synthetic GP data. We first compare algorithm performance on synthetic GP
data. To ensure the boundary assumption described in Section 3.3 holds, we begin
by generating a one-dimensional GP realization defining the level set boundary. We
then generate a two-dimensional GP realization by taking the true value to be the
positive or negative distance from the boundary, obtaining 500 measurements cor-
rupted by Gaussian noise with variance 0.0001. Finally, we fit a two-dimensional GP
to the obtained measurements, which is then treated as the true function value f(z)
over the M points in the realization. An example boundary and two-dimensional
realization are shown in Fig. 3. For both the one-dimensional boundary and the
two-dimensional realization, we use the radial basis function (RBF) kernel. For the
boundary, we consider lengthscales of 0.3, 0.6, and 0.9 to simulate varying degrees of
smoothness in 0S. The two-dimensional realization is always fit using a lengthscale
of 0.1. Both PFHS and TruVaR are given the true kernel parameters when per-
forming GP-LSE. In all experiments, we generate realizations of size M = 21 x 20;
this size is chosen largely due to the high computation time required by TruVaR.
To test our approach to handling noisy measurements, we consider noise variances
0% € {0.01,0.1,0.2}, which govern the additive noise on top of f(z) as modeled by
(12).

To select the number of transects and stopping error for PFHS, we generate
100 examples of GP realizations and corresponding level set boundaries using the
above procedure and perform a grid search over both parameters. We then select
the parameters that give the lowest total cost while maintaining an average error
over all 100 realizations below 8% for noise variances o2 € {0.01,0.1} and an error
below 11% for 02 = 0.2." This procedure is used to select the best parameters for
each lengthscale and noise level under consideration, and an empirical evaluation
of performance as a function of number of transects and stopping error can be
found in Appendix B. Note that an equivalent procedure would be required to
select the GP kernel and bandwidth parameters for TruVaR; however, to avoid the
large computational cost of tuning these parameters, we provide TruVaR with the

IThe latter choice was made to match the accuracy achieved by TruVaR for the given
parameters.
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FIGURE 6. Difference in cost between TruVaR and proposed PFHS
for GP-LSE on synthetic data. (a) Fixed noise level o2 and varying
lengthscale [. (b) Varying noise level 02 and fixed lengthscale I.
The proposed PFHS obtains the most significant benefit when the
ratio of travel time to sample time (7} /T) is large.

true kernel used to generate the GP realizations, not seen in the validation stage
for selecting transects and stopping error parameters. Finally, we compare both
algorithms on 100 separate GP realizations for each lengthscale. Since the resulting
errors (23) are nearly identical, we compare the sampling cost between the two
approaches.

Fig. 6 displays the average cost difference between TruVaR and PFHS over the
100 random realizations, showing the cost difference as a function of the ratio T3 /T
for varying values of (a) lengthscale and (b) noise variance. In both cases, we
see that for high ratios of travel-to-sample time, FHS outperforms TruVaR by a
significant margin, while for low ratios, the performance is comparable. Fig. 6(a)
shows that this improvement reduces with lengthscale, indicating that PFHS excels
when the boundary is least smooth. Fig. 6(b) shows the improvement for different
noise levels and indicates that PFHS obtains the largest improvement for higher
noise levels. Although difficult to see from the figures, TruVaR does outperform
FHS for T;/Ts € {1,10,100}. However, the mean and maximum improvement
are 58 sec and 269 sec, respectively, whereas PFHS achieves a mean/maximum
improvement of 1200/3900 sec. Further, PFHS typically obtains an error that is
1-4% lower than that of TruVaR for these values of T; /Ty, indicating a more careful
tuning of parameters may allow PFHS to obtain better performance. Hence, while
FHS is most beneficial when travel time is significant relative to measurement time,
it is still competitive even for low values of T;. Further performance comparison
and box plots can be found in Appendix B.

Finally, we comment that one additional drawback of TruVaR is that of com-
putational complexity. To perform sample selection, TruVaR must compute the
posterior variance after sampling for every location in the set of uncertain points.
As a result, the average computation time for each search in the above experiments
was 2.45 sec for TruVaR compared to 0.34 sec for PFHS. While both times are suffi-
ciently small for practical applications, we remark that we chose a small realization
size (21 x 20) that would result in limited resolution over large spatial regions. This
consideration is especially important when attempting to deploy adaptive sampling
algorithms on low-cost mobile sensing devices, which will have limited resources
for computation and power. Investigation of speedups obtained by approximations
of the posterior variance or through specialized hardware is an important topic
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Sampling Time (s) 8 8 30 30
Velocity (km/hr) 32 65 32 65
Search Cost (hr) 9.58 || 4.90 || 10.46 || 5.54

PFHS Error (%) 287 || 3.26 || 3.16 || 3.37
Search Cost (hr) 25.1 || 12.75 | 24.88 || 12.96
Truval Error (%) 14.62 || 14.56 | 14.30 || 14.86

TaBLE 1. Total sampling time (in seconds) and estimation error in
air quality data following the Camp Fire in November 2018. Region
considered and example sampling pattern of PFHS are depicted in
Fig. 1. For all sampling times and velocities considered, PFHS
achieves a significant reduction in both cost and estimation error.

for future research that would make GP-based approaches such as TruVaR more
competitive in terms of computation time.

4.2.2. Air quality data. Finally, we compare the performance of PFHS, FHS, and
TruVaR on real air quality data obtained from the AirNow database [52]. One
potential application of LSE approaches is to provide a high-quality estimate of
regions containing high levels of particulate matter. Of particular importance is the
problem of rapidly estimating such regions during major wildfire events, such as the
2018 Camp Fire in California [51] or the more recent series of wildfires impacting
the western U.S. in 2020, which resulted in the worst air quality in the world for
major cities such as Portland, OR and San Francisco, CA [40].

We consider PM 2.5 data from November 18, 2018, using 124 sensors in the region
of Butte County, CA. Since the measurements are spatially sparse, we interpolate
the values using two-dimensional GP regression with a summation of RBF and bias
kernels optimized and implemented via the GPy package [22]. We set the threshold
at 100 pg / m3, which corresponds to the “unhealthy for sensitive groups” level
according to the AirNow standards [52]. We perform LSE over the region depicted
in Fig. 1(b), which is approximately 111 km per side. We consider sampling times of
8 and 30 seconds, corresponding to the extremes of the settling time of the Sensirion
SPS30 particulate matter sensor [44]. This sensor has a precision of £10 pg/m?;
treating errors uniformly throughout this range, we set the noise variance of the GP
to that of a uniform distribution with support [—10, 10], resulting in 02 = 20%/12.
This choice minimizes the Kullback-Leibler divergence between the uniform and
normal distributions when computed over the support of the uniform distribution.
Finally, we consider travel times of 32 km/hr and 65 km/hr based on the maximum
speed of the DJI Matrice 600 UAV. We provide TruVaR with the two-dimensional
kernel used to perform GP regression over the realization and set the parameter
a = 6, as we found that the recommended parameter a = 1 resulted in very high
estimation errors for the high noise variance considered. For PFHS, we model the
boundary using a one-dimensional GP with RBF kernel having lengthscale and
variance both set to unity. We search over five transects and set the stop error for
each transect to 0.03.

Table 1 shows the resulting search cost and error for PFHS and TruVaR in
the four scenarios considered. Compared with the results on synthetic data, we
see that the sampling time required by TruVaR is significantly greater than that
of PFHS in this high-noise regime. In all cases, PFHS achieves a lower cost and
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FicURE 7. Map of sample locations and trajectory followed by
TruVaR algorithm on Camp Fire data. Dots denote sample loca-
tions with measurement values indicated by their color, red solid
line is estimated boundary, and gray dashed line is path traversed
by sensor. Compared to PFHS (see Fig. 1(b)), TruVaR does not
sufficiently penalize distance in this noisy regime.

lower estimation error, typically yielding an estimation error approximately one
fifth that of TruVaR at less than half the cost. We display the sample locations
and path traveled by TruVaR in Fig. 7. In this high-noise regime, TruVaR places
too much emphasis on variance reduction and fails to appropriately penalize for
distance traveled. Although not pictured, we also tested the lower-noise regime and
found TruVaR to be more competitive in this setting, focusing samples near the
level set boundary and traveling a smaller distance. Further, we note that PFHS
relies on the assumption that the superlevel set is a single, connected region with a
boundary that can be written as a function of one coordinate.

While this assumption is realistic in the case of tracking a wildfire front, it may
not be appropriate in other settings (e.g., that considered in [7]), and TruVaR
has the added flexibility of discovering superlevel sets consisting of multiple dis-
joint regions. Hence, we consider an additional region covering [38°N,39°N]| x
[121°W,122°W], which contains two distinct boundaries. We apply PFHS assum-
ing that the boundary is a function of the vertical coordinate (latitude), using the
same stopping error and number of transects as before. In this case, PFHS only
discovers one of the two boundaries, resulting in an average error of almost 30%.
For comparison, we report the cost required by TruVaR both to achieve an error
of approximately 15% and an error of 30%. The average sampling costs and errors
over 100 trials are given in Table 2. TruVaR is able to capture both boundaries,
resulting in a much lower error at the cost of significantly greater sampling time.
In the high error setting, TruVaR requires slightly more sampling time than PFHS
and obtains an estimate that is slightly worse on average. Combining these two
approaches to allow for the flexibility of TruVaR with the efficiency of PFHS is
therefore an important topic of future research.
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Sampling Time (s) 8 8 30 30

Velocity (km/hr) 32 65 32 65

PFHS Search Cost (hr) 5.07 || 2.73 || 5.96 | 3.33
Error (%) 29.43 1| 29.13 || 29.18 || 29.32
TruVaR Search Cost (hr) || 28.15 || 14.38 || 29.33 || 14.63
(low error) Error (%) 14.51 || 15.48 || 14.98 || 15.18
TruVaR Search Cost (hr) 6.04 || 2.93 || 6.58 | 3.29
(high error) Error (%) 32.29 || 32.09 || 30.70 || 30.97

TABLE 2. Total sampling time (in seconds) and estimation error
in air quality data that does not meet the assumptions of PFHS
for two-dimensional sampling. TruVaR has the potential to obtain
much lower error in this setting but requires more time to achieve
an error similar to PFHS.

5. Conclusions & future work. We have presented a finite-horizon approach
to sensing the change point of a one-dimensional step function that optimally bal-
ances the distance traveled and number of samples acquired. We have shown that
the resulting policy can be obtained in closed form, making it easily deployable on
mobile sensors such as those mounted on a UAV. Aside from outperforming heuris-
tic methods for one-dimensional search, our proposed FHS algorithm outperforms
existing methods on the problem of Gaussian process level set estimation under
certain assumptions on the level set boundary.

Our approach to two-dimensional sampling requires localizing the change point
over a series of transects. While we optimized both the number of transects and
the error per transect numerically, an important open problem is determining the
optimal values of these quantities analytically. Another important next step is to
incorporate other realistic vehicle costs, such as acceleration and battery life, into
the policy calculation.

Appendix A. Proofs of technical results.

Lemma A.1. Let Hy be the entropy of the posterior distribution after N measure-
ments, so that Hy = 0. Under the conditions of Theorem 3.1, we have

N

E[e"] =] (27 + (1 —2)%). (24)

i=1
Proof. First note that under the uniform distribution on the unit interval, the expo-
nentiated differential entropy is the length of the feasible interval after IV samples.
The proof will proceed by induction on N. Consider the base case, N = 1, for
which it is trivial to show that

Ele™] =2 +(1-2)=&.

Now assume that (24) holds for some N € N. Sampling some fraction zy11 into
the remaining feasible interval e~ results in two potential entropies

eHNt1 ZN+1€ W.p.  2ZN41
H,
(1 —-2n41)e™, w.p. 1—2zn41.

Hpn
bl

Therefore
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E[eHNJrl] = 212\/+1E[6HN] + (1 - ZN+1)2E[6HN]
= (2F41 + (1= 2n11)) B[]
N+1
= H (zl2 +(1- 21)2) .

O

Proof of Lemma 3.3. Define z1., = 21, ..., 2. Using the hypothesis of Lemma 3.3,
For any z1.p,,

J(21:m) > J(21m-1,2p) = J(21m—2, 25 _1.) = - > J(21)- (25)
O

Appendix B. Additional experimental results.

B.1. Impact of transects and stopping error on PFHS. In Figs. 8 - 11 below,
we depict the super-level set estimation error (23) and sampling cost as a function
of the number of transects and the stopping error used by PFHS on the synthetic
GP data considered in Sec. 4.2.1. For each figure, the top row depicts results for
a noise level of 2 = 0.01, and the bottom row uses a noise level of o2 = 0.2.
The travel time increases per column, with values of Ty, = 1,100, and 10,000. The
horizontal orange line denotes the median, boxes indicate the inter-quartile range
(IQR), whiskers cover 1.5 times the IQR, and circles denote values outside this
range.

Fig. 8 shows the error as a function of the number of transects used for a fixed
transect stopping error of 0.05. As stated in the text, we see that the error decreases
with the number of transects, with minimal decrease in error after six transects.
Fig. 9 shows the resulting sampling cost for the same scenarios and indicates a linear
increase in sampling cost with the number of transects. For both the low- and high-
noise settings, the error IQR remains stable and relatively small. As depicted in
Fig. 9, the sampling cost IQR increases for larger travel times (right column) but
remains approximately the same fraction of the total cost for all values of T;. All
settings show a small number of outliers, indicating stable performance across the
range of parameter values.

In Figs. 10-11, we show the error and cost, respectively, as a function of the
stopping error per transect. PFHS exhibits the expected tradeoff, with a larger
per-transect error resulting in a higher overall error but requiring less sampling
time.

B.2. Box plots for synthetic data. Below we display box plots for both PFHS
and TruVaR on the synthetic test data from Sec. 4.2.1. Fig. 12 shows the cost for
a fixed measurement noise of o2 = 0.01, with PFHS performance shown on the
top row and TruVaR on the bottom row. The lengthscale increases per column,
with values of [ = 0.3,0.6 and 0.9. Fig. 13 shows the cost for a fixed lengthscale
I = 0.3, with the noise level increasing per column. Both figures show that PFHS
has a higher variability than TruVaR, with the greatest variation in interquartile
range at the highest lengthscale. However, PFHS still outperforms TruVaR across
the majority of Monte Carlo trials. For example, for a ratio of T; /T = 10,000 and
measurement noise o2 = 0.01, the PFHS cost is lower than the median TruVaR
cost in 85, 83, and 75 of 100 trials for lengthscales of 0.3, 0.6, and 0.9, respectively.
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Similarly, for a fixed lengthscale of [ = 0.3, the PFHS cost is lower than the median
TruVaR cost in 85, 86, and 98 of 100 trials for measurement noise levels of 0.01, 0.1,



FINITE-HORIZON ACTIVE LEVEL SET ESTIMATION

27

|
1]

i
T

e

-
il

0.1 0.2 0.3 0.4

Stopping error along transect

(a)

0.5

0.1 0.2 0.3 0.4
Stopping error along transect

(B)

0.5

m
1]

Stopping error along transect

()

0.5

TT 1

.

LoP PRy

01 02 03 04
Stopping error along transect

(D)

0.5

0.1 0.2

0.3 0.4
Stopping error along transect

(®)

|
1
00

0.2 0.3 0.4

Stopping error along transect

(¥)

0.5

FicURE 10. Error in estimating super-level set as a function of
transect stopping error for PFHS on synthetic GP data considered
in Sec. 4.2.1. Number of transects is fixed to 7. Top row: Increasing
travel time for measurement noise level 02 = 0.01. Bottom row:
Increasing travel time for measurement noise level o2 = 0.2.

35000
; 0 o
00
L|J i 00 L FL 250 L JW
- [ s 105 : BN g
4 oe T‘Trl\ﬁﬁ%rl\ﬁ 0 T HAJ%TLF
?@. 200 TTTTTT
L s s = s § o 8 o
cEEEEE ° ° 5000 ° o
01 02 03 04 05 0T 02 03 04 05 01 02 03 04 05
Stopping error along transect Stopping error along transect Stopping error along transect
(B) (c)
.
500 FL 30000 JW
(
40 L g < 25000 JW
’L B z F|:\ R .
300 T g
LI‘ L S 20000 & L ,L L ,L L
Tdzzgll TTT]1]
200 s
_ T TITITIT? 15000 N
01 02 03 04 05 01 02 03 04 05 01 02 03 01 05
Stopping error along transect Stopping error along transect Stopping error along transect
(D) (E) (¥)

FIGURE 11. Sampling cost as a function of transect stopping error
for PFHS on synthetic GP data considered in Sec. 4.2.1. Number
of transects is fixed to 7. Top row: Increasing travel time for
measurement noise level o2 = 0.01. Bottom row: Increasing travel
time for measurement noise level o2 = 0.2.

and 0.2, respectively. Hence, although PFHS has greater variation, it still maintains
a significant performance advantage over TruVaR in terms of sampling cost.
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