
Generating Function Names to Improve

Comprehension of Synthesized Programs

Amirmohammad Nazari∗, Swabha Swayamdipta∗, Souti Chattopadhyay∗ and Mukund Raghothaman∗

∗University of Southern California

Los Angeles, CA, USA

{nazaria, swabhas, schattop, raghotha}@usc.edu

Abstract—The hope of allowing programmers to more freely
express themselves has led to a proliferation of program synthesis
techniques. These tools automatically derive implementations from
high-level specifications of user intent. These specifications may
take the form of logical formulas, demonstrations, or input-output
examples. Synthesizers guarantee that when synthesis is successful,
the implementation satisfies the specification. However, they pro-
vide no additional information regarding how the implementation
works or the manner in which the specification is realized.
As a result, they remain algorithmic black boxes which are
prone to producing unidiomatic code with procedurally generated
identifier names, like x1, x2, etc. As a result, complicated
implementations produced by modern program synthesizers are
becoming increasingly hard to understand.

One solution to this comprehensibility problem is to produce
meaningful identifier names for its variables, functions, etc.
While large language models (LLMs) suggest a simple way to
obtain human-readable names, our experiments reveal that LLMs
frequently produce nonsensical or misleading names when applied
to code emitted by program synthesizers.

In this paper, we develop an approach to reliably augment
the implementation with explanatory names: We recover fine-
grained input-output data from the synthesis algorithm to enhance
the prompt supplied to the LLM and use a combination of a
program verifier and a second language model to validate the
proposed names before presenting them to the user. Together,
these techniques improve the accuracy of the proposed names
from 24% to 79%. A two-phase user study indicates that users
significantly prefer the names produced by our technique, and
that the proposed names greatly help users in understanding
synthesized implementations.

Index Terms—Program synthesis, function name generation,
large language models, inter-LLM validation

I. INTRODUCTION

The last twenty years have seen an explosion of work in

program synthesis [1], [2] with the hope of aiding programmers

to freely express their intent. This work has been targeted

both towards the underlying algorithms [3]–[9], and their

applications [10]–[18].

However, there has been comparatively less attention given

to the problem of helping users understand this synthesized

code. Synthesizers frequently produce unidiomatic code, and

do not provide intuitive identifier names, comments, or other

hints to help the user understand how the implementation

works. In our user study, we asked 18 student programmers

to examine four programs produced by DreamCoder [19], a

recent state-of-the-art program synthesizer, and discovered that

the participants only received an average score of 23% when

asked simple questions about these programs.

Although there is research on requesting additional guidance

from the user during the synthesis process, this has primarily

been oriented either towards accelerating the synthesis process

itself [20], or in reducing the number of examples needed to

identify the target program [21]. Notably, these approaches do

not directly help the user in understanding how the program

works and whether it accurately realizes their intent.

We contend that the unintuitive code produced by many

program synthesizers reduces users’ confidence in using the

code, and inhibits the impact of program synthesis technologies.

Our focus in this paper is on generating explanatory names for

intermediate functions in synthesized code, with the ultimate

goal of improving user understanding of code.

Recent breakthroughs in large language models [22]–[26]

suggest their possible application to our problem. Unfortunately,

as we will see in Section IV, implementations produced by

program synthesizers are unidiomatic, leading to poor quality

names being suggested by the language model / backend tool.

This issue also affects state-of-the-art systems for automatically

deriving function names [27]–[29].

Our primary contribution is a novel two-step technique to

obtain candidate function names from a first LLM, and use a

combination of a second LLM and a program verifier to validate

these generated names before presenting them to the user. In

our user study, names produced by our technique increased the

average score of participants from 23% to 81% when asked

questions about the code. Across a set of 144 implementations

produced by DreamCoder containing names written by a human

expert, our system produced names with an accuracy of 79%

compared to the baseline (LLM only) accuracy of 24%.

In a second study, we asked another group of 18 programmers

to rate names produced by different name generation algorithms

on a five-point Likert scale. Participants strongly prefered

names produced by our system with 76% of responses marking

these names as appropriate, while only 2% responses found

the names generated by the baseline LLM to be appropriate.

This paper is an example of how generative AI can be

combined with formal techniques in programmer assistance

tools. By generating explanatory names for functions in

synthesized programs, we hope to help users understand

automatically generated code, and thereby improve the adoption

of program synthesis technology.

def g2(x2):

def g21(x21):

def g22(x22):

return x21 < x22

return len(list(filter(g22, x2))) == 0

return list(filter(g21, x2))[0]

def g1(x1):

def g11(x11):

def g12(x12):

def g13(x13):

return x12 > x13

return x11 > len(list(filter(g13, x1)))

return g2(list(filter(g12, x1)))

return g11

def f(x1):
def f1(x11):

return g1(x1)(x11 + 1)

return list(map(f1, range(len(x1))))

Fig. 1: Program produced by DreamCoder to sort a list of

numbers. The top-level function is f . Equation 1 is an excerpt

of the specification given to the synthesizer. We transliterated

this program into Python from the original lambda-expression

which may be found in the supplementary material.

II. OVERVIEW AND MOTIVATING EXAMPLE

Consider a user who wants a program that sorts a list of

numbers. They may describe their intent using input-output

examples such as the following:

f([9, 2, 7, 1]) = [1, 2, 7, 9]. (1)

They may then realize this intent using any of a number of

inductive program synthesizers [7], [30]–[32].

In this paper, for the sake of concreteness, we focus on

programs synthesized using DreamCoder [19]. Synthesis using

DreamCoder runs in two phases: in the first (offline) phase, the

system uses a corpus of synthesis tasks to construct a library

of reusable components (i.e., functions) which it then uses

to more rapidly discharge the provided specification in the

subsequent (online) synthesis phase.

We adapt the specification in Equation 1 from Figure 1B

of [19]. In response, it produces a lambda term which may

be transliterated into the Python code of Figure 1. Notice that

the program uses non-trivial language features such as higher-

order functions and that its subroutines have uninformative

sequentially-generated names (such as g1, g2, . . .). It is

therefore difficult to understand how the program works, or

even confirm that it always sorts the provided list of numbers.

We also remark that the top-level auxiliary functions, g1

and g2, correspond to reusable components discovered by

DreamCoder from the training data. Because the synthesizer

concluded that they are useful across a range of tasks, it appears

plausible that they perform some high-level conceptually salient

operations over lists. Several recent program synthesizers,

including Babble [33], Enumo [34] and Stitch [35], similarly

learn libraries of reusable components / rewrite rules.

Upon reflecting on this program, one may conclude that

invoking the function g1(l)(n) produces the n-th smallest

element of the list l, and that the function g2 returns the

largest element of the list x2 that it accepts as input. In

fact, in the original example of [19], the authors manually

add expository comments describing the behavior of these

intermediate functions. In this section, we provide an overview

of our system NOMNOM: it accepts as input a specification-

implementation pair (φ, f) such that f satisfies φ, and uses

an LLM to algorithmically produce names for each subroutine

g that appears in f .

A. The Baseline LLM

As a baseline, one may request an LLM, such as one from

the GPT family, to provide a name for each function g in

question. Each prompt includes the body and type of the

function g ∶ T being named, and (recursively) any auxiliary

functions in the call graph rooted at g. We provide the baseline

prompt templates in the supplementary material.

However, when using GPT-3.5,1 it fails to produce appro-

priate names for any of the functions in Figure 1. As an

example, it suggests the name “largestSmallestIndices”

for the top-level function f , and “findNearestNumber” and

“getFirstItemMinThanArgumentValue” for the functions

g1 and g2 respectively.

This is unsurprising, because the program in Figure 1 is

unidiomatic Python code. If one were to replace the function

bodies for g1 and g2 with the more conventional:

def g1(l):

def g11(n):

return sorted(l)[n]

return g11

and

def g2(l):

return max(l)

respectively, then the system produces accurate names for each

function: get_sorted_values for the top-level function f ,

and get_nth_sorted_element and calculateMax for g1

and g2 respectively.

The poor performance of baseline name suggestion tech-

niques is not limited to LLMs: as we will see in Section IV,

even Code2Vec [27], a state-of-the-art graph embedding-based

name generation tool, produces poor quality names when

applied to such unidiomatic code.

As we observe in our user study in Section V, nonsensical

and misleading names massively inhibit program comprehen-

sion, and diminish the user’s confidence in future synthesized

code. In this context, the central problems that we consider in

this paper are: (a) How do we provide additional information to

the LLM in order to guide it towards better-chosen names? And

(b) can we validate the names produced by the system before

presenting them to the user? We will describe our solution to

these problems in the rest of this section.

1For consistency with the user study, which was done with GPT-3.5, we
will use this model throughout the paper. Informal experiments indicate that
similar results would be obtained even with newer language models.

B. Prompt Expansion Using Subspecifications

Recall that our computational problem is to produce a name

for each subroutine g that appears in the implementation f .

The first part of our solution involves providing additional

information to the language model about the role of g in the

operation of f . For example, one might conceptually extend

the function g2 with instructions to log its execution:

def g2(x2):

...

ans = list(filter(g21, x2))[0]

print(f’g2({x2}) = {ans}’) # Instrumentation

return ans

Note that the original specification is in the form of input-output

examples which can be mechanically evaluated to confirm

that the implementation satisfies the spec. Upon testing the

implementation with the logging code enabled, one finds that:

g2([1]) = 1, (2)

g2([2, 1]) = 2, (3)

g2([2, 7, 1]) = 7, and (4)

g2([9, 2, 7, 1]) = 9. (5)

These observations immediately suggest that the function g2

is computing the largest element of the list that it takes as

input. While this does not provide conclusive proof, careful

reading of the code confirms this hypothesis. In addition,

one may conclude that any function g2
′ which satisfies

Equations 2–5, regardless of whether or not it is otherwise

semantically equivalent to g2, can be substituted into the

original implementation of Figure 1 without affecting the fact

that f satisfies the global specification, Equation 1.

This motivates us to extend the prompt supplied to the LLM

with local input-output behavior of the function g being named.

For example, for the function g2, we use the extended prompt

shown in Figure 2.

With new information of this kind, the LLM is able to choose

a more appropriate name for g2: findLargestElement. It

also manages to recover the intent of the top-level function, f ,

for which it suggests the name sortList. In our experiments

in Section IV, when applied to the list processing benchmarks

solved by DreamCoder, providing logs of input-output behavior

measurably improves the accuracy of names suggested by the

LLM from 24% to 60% respectively.

Note II.1. The behavior of the function g2, as described by

Equations 2–5, is closely related to the concept of subspecifica-

tions recently introduced by [36]. The major difference is that

while subspecifications are necessary and sufficient conditions

that characterize alternative implementations, monitoring input-

output behavior merely provides sufficient conditions: there

might conceivably be alternative implementations g2
′ that

violate Equations 2–5 but which would nevertheless result in

the global specification, Equation 1 being satisfied. Regardless,

we will adopt their terminology, and refer to these input-output

logs as the subspecifications of individual subroutines.

The primary technical difficulty in formalizing and obtaining

these subspecs is the presence of higher-order functions. For

The implementation satisfies the specification. Choose

a meaningful name for the function “g2(x: List[

int])-> int”:

Specification:

g2([1]) = 1,

g2([2, 1]) = 2,

g2([2, 7, 1]) = 7, and

g2([9, 2, 7, 1]) = 9.

Implementation:

def g2(x2):

def g21(x21):

def g22(x22):

return x21 < x22

return len(list(filter(g22, x2)))==0

return list(filter(g21, x2))[0]

Fig. 2: Example prompt for name generation when extended

with local input-output subspecifications. We provide all prompt

templates in Appendix B.

example, naively instrumenting the function g1 would produce

outputs of the form:

g1([9, 2, 7, 1]) =<function g11 at 0x...> .

This output arises from the difficulty in serializing closures

and higher-order functions. Our solution in Section III-A

will involve a new specially designed interpreter to recover

subspecifications for higher-order functions, yielding the result:

g1([9, 2, 7, 1])(1) = 1, (6)

g1([9, 2, 7, 1])(2) = 2, (7)

g1([9, 2, 7, 1])(3) = 7, and (8)

g1([9, 2, 7, 1])(4) = 9, (9)

which immediately suggests that evaluating g1(l)(n) pro-

duces the n-th smallest element of the list l.

Unfortunately, even with this new information, in the run

we consulted while writing this paper, the language model

still suggested incorrect names for g1 (the suggested name is

“genNextGreater-Value”) and the other subroutines in the

implementation. Note however that responses from language

models are inherently stochastic, so a subsequent run might

not exactly reproduce these observations. In fact, our final

implementation in NOMNOM makes productive use of this

non-determinism.

C. Algorithmic Sanity Checks

Our next insight is that when a function is appropriately

named, that name can be used to substantially recover the origi-

nal implementation. For example, recall that GPT-3.5 suggested

the name findLargestElement for the function g2. Given

this proposed function name and its type, we can request a

Algorithm 1 NOMNOM(E,f, g). Given a set of input-output

examples E = {(i1, o1), (i2, o2), . . . , (in, on)}, implementa-

tion f ⊧ E, and a subroutine g of f , produces a name w for

g.

1) Compute the local subspecification for g, Eg =

{(ig1, og1), (ig2, og2), . . .}.
2) Repeat until retries are exhausted:

a) (PE.) Request a name w for g by supplying its type

g ∶ T and the subspecification Eg and by using the

prompt template from Figure 8b.

b) Request an alternative implementation g′ ∶ T of a

function named w by using the prompt template from

Figure 8c.

c) (PE+SC.) Substitute the new implementation g′ into

f . If f[g′/g] ⊧ E, then return the name w.

3) Report failure.

We now discuss the two principal elements of the algorithm,

namely prompt expansion using subspecifications and the

subsequent algorithmic sanity checks.

A. Prompt Expansion Using Subspecifications

As discussed in Section II-B, obtaining the local input-output

examples Eg for prompt expansion is conceptually simple: one

can place instrumentation code at appropriate points inside the

function body, and log the inputs and outputs being sent into

and produced by the function g currently being named. The

hope is that the local input-output behavior provides clues to

the overall purpose of g that is not apparent from its function

body. However, this procedure is tricky because of the presence

of higher-order functions. In particular, the function g might

either itself take a function (closure) as input, or produce

a closure as output, or possibly even both. Our solution is

a custom interpreter that can print (serialize) closures. We

provide additional details in Appendix A.

B. Algorithmic Sanity Checks

The names proposed by the LLM in response to the query in

Step 2a are sometimes directly embedded in the original source

code, or are presented with some other decoratory text, such

as “Name: «name»”. We have devised a set of simple extractor

routines and regular expressions that detect these patterns and

appropriately extract the proposed name. We hope to simplify

this process by using structured prompting techniques in future

versions of the system [37].

We then forward the proposed name w and the type T of the

subroutine g being named to a second language model using the

prompt template from Figure 8c. We interpret the response from

the LLM as an alternative implementation g′ of the original

subroutine g. This step might fail either because the response

from the LLM is not a syntactically well-formed program,

or if it fails to have the desired type T , or if substituting it

into the surrounding implementation compromises the overall

correctness specification, f[g′/g] /⊧ E. In any of these cases,

we reject the name w being proposed in response to the naming

query in Step 2a. Note that we only generate names for top-

level subroutines, so we do not have to consider the possibility

of variable capture. This assumption greatly simplifies our

implementation.

Finally, if f[g′/g] ⊧ E, then we certify the name w as

having passed the sanity check.

C. Optimizations

Finally, our implementation in NOMNOM includes two

optimizations which increase the overall response rate of the

system without losing accuracy.

a) Retries: It turns out that the algorithmic sanity checks

of Section III-B are very effective in discovering inconsisten-

cies between functions and their proposed names. Filtering

names using this heuristic therefore massively improves the

accuracy of the naming algorithm. Unfortunately, this accuracy

improvement is accompanied by a corresponding drop in the

number of queries successfully answered, as we will see in

Section IV. The non-deterministic responses generated by

language models provide an easy approach to mitigate this drop.

When a proposed name fails the sanity check, we repeatedly

retry (with a limit of 20 attempts) until the check succeeds,

leading to the outermost loop in Algorithm 1.

b) Bottom-up name generation: Finally, there are certain

functions which prove to be difficult to name even after multiple

independent queries. One example is the following function f :

def f(x1):
return a2(x1)(5)

def a2(x2):

def a21(x21):

def a22(x22):

return x22>0

return a22(countOccurrences(x2)(x21))

return a21

Observe first that calling the function a2(l)(n) tests the

output of countOccurrences to determine whether the value

n occurs in the list l. It therefore follows that calling the top-

level function f(l) checks whether the provided list contains

an occurrence of the number 5.

The last optimization in NOMNOM facilitates this reasoning

process by iteratively finding names for higher-level functions

only after all lower-level functions, i.e., those reachable from

it in the call graph have been successfully named.2 In our

experiments, this turns out to cause a slight increase in the

response rate of the system, including for the function f above.

This optimization has a flavor similar to emerging techniques

for prompting language models such as scratchpads and chain-

of-thought reasoning [38], [39].

IV. EXPERIMENTAL EVALUATION

Our implementation of NOMNOM uses text-davinci

-003 as our backend language model. We use the default

language model settings for name generation, and only change

2Note that the concepts learned by DreamCoder naturally have a hierarchical
structure in the form of a DAG.

TABLE I: Confusion matrix from one run of PE+SC. We

compare the suggested names to our reference names and

declare a match when the Jaro similarity exceeds 0.7.

Reference Filter Approves Filter Rejects

Match 122 / 344 78 / 344
Mismatch 25 / 344 119 / 344

We therefore measured the response rate of the system, and

we include this data in Figure 4.

First, observe that providing additional information to the

language model, i.e., going from the baseline algorithm to one

with prompt expansion, PE, modestly increases the overall

response rate from 82% to 97% respectively. The real benefit

of prompt expansion comes from the massive increase in the

number of queries correctly answered, Acc × RR, from 19%

to 58%.

Next, we observe that the greater accuracy of PE+SC is

accompanied by a corresponding drop in response rate from

97% to 42% respectively. Indeed, it is not possible for a filtering

pass to increase the total number of queries which are correctly

answered, so that the product, Acc ×RR, actually experiences

a drop upon its application. We also provide the confusion

matrix from one run of PE+SC in Table I. The overall F1

score of the filter turns out to be 0.70, so better filter designs

is an important direction of future work.

Lastly, the figure also confirms the need for the final two

algorithmic variants, (PE+SC)⟳ and NOMNOM: By giving

the system multiple opportunities to produce an internally

consistent response, they somewhat restore the response rate

and provide modest increases in the product measure from

33% to 56% and 59% respectively.

Note IV.1. We repeated this experiment using the more recent

gpt-4-0125-preview as the backend language model. The

accuracy and the response rate of the baseline increased to 38%

and 100% respectively, while the accuracy and the response rate

of our final tool NOMNOM were 77% and 81% respectively.

C. RQ3: Number of LLM Queries Used

Finally, we measured the number of LLM queries needed

by the different algorithmic variants to name each function.

We list these statistics in Table II. Both the baseline approach

and the variant with prompt expansion, PE, require just one

LLM query to produce their response, while the version with

algorithmic sanity checks enabled, PE+SC, needs two queries:

the first to produce a name suggestion and the second to reverse-

synthesize the subroutine body. On the other hand, the last

two variants, with retries enabled, need to make additional

queries when the first query either fails to elicit a response or

receives a response which fails validation. Note that we report

the median number of queries in Table II as the average is

skewed by subroutines for which we hit the limit of 20 retries

and eventually fail to produce a name.

While we did not explicitly track the time needed to name

each subroutine or the cumulative cost of LLM queries, the

TABLE II: Number of LLM queries needed by the algorithmic

variants to name each subroutine. We report the median over

five independent runs. The last 2 algorithms have higher query

amounts because of failures listed in Section III.

Algorithm Num Queries

Baseline 1
PE 1

PE+SC 2

(PE+SC)⟳ 4

NOMNOM 4

statistics in Table II provide some guidance. Note that the time

needed to name each subroutine is dominated by the response

time from the OpenAI servers, and depends on numerous

other factors such as load on the LLM implementation.

In our experience, the most resource-intensive algorithms,

(PE+SC)⟳ and NOMNOM, produce responses within 5–

10 seconds for each subroutine.

V. USER STUDY

To determine whether names help users in understanding

the outputs of program synthesis tools, we conducted two user

studies to answer the following questions:

RQ4. Do names help users in inferring the top-level purpose

of each subroutine?

RQ5. Do names help users in understanding subroutines and

the relationships between them?

RQ6. How do user preferences vary among the names pro-

duced by different algorithmic variants?

a) Participant selection: After IRB approval, we recruited

36 students who were familiar with Python from the engineering

schools (Computer Science, Electrical Engineering, Mechanical

Engineering, and Materials Science departments) of 7 promi-

nent U.S. and Canadian universities. These participants had

different levels of experience in programming and were a mix

of undergraduate, Masters’, and Ph.D. students. We posit that

the variation in experience is representative of users of program

synthesizers. We randomly divided the 36 participants into two

groups with 18 participants for each user study.

A. Tasks and Study Structure

Before each user study, we had a short screening quiz asking

participants to write a Python program that computes the sum

of the elements in a list. Disregarding minor syntactic errors,

all participants passed the screening quiz. We then showed

participants a short video describing the tasks they needed to

complete, and a brief introduction to aspects of the Python

language that would be heavily used, including higher-order

functions and some syntactic quirks. After the study was

complete, we had a short discussion with each participant.

During the discussion, participants gave their feedback about

which aspects of the study they found easy or difficult, and

their experience while answering questions. The study materials

may be found in Appendices C and D.

such as NomNom might be useful both to obtain more idiomatic

code from program synthesizers, and as interactive mechanisms

to help users understand code. Conversely, it would be an

interesting question to see whether ideas similar to ours can

be used to more reliably synthesize code using LLMs.

Another concern involves the brittleness of LLM outputs in

response to minor changes in the provided prompt. While this

cannot be completely mitigated, we hope that the full text of

prompts provided in the supplementary material will at least

partially address issues with reproducibility.

One might also object to human-written reference names

being used for evaluation in Section IV. To mitigate this

concern, we had our reference names cross-verified by another

student programmer not among the authors of this paper.

A final concern involves potential biases in our choice

of participants for the user study in Section V. Are these

participants representative of actual users of program synthe-

sis tools? While we attempted to mitigate this concern by

drawing broadly from graduate and undergraduate students

across engineering schools of various prominent American and

Canadian universities, conducting a larger study with working

programmers is an important direction of future work.

VII. RELATED WORK

a) Comprehension of Synthesized Programs: While pro-

gram synthesizers are meant to realize logical correctness

specifications, their output is rarely easy to understand. This

obscurity partly stems from the use of procedurally generated

identifier names (v1, v2, f1, f2, etc.) in synthesized code.

Human programmers use different practices to make code

comprehensible, such as by writing detailed comments [49],

using meaningful names and identifiers [50], or maintaining

documentation of their rationale. Of these approaches, the use

of meaningful names has been found to make a significant

contribution to improve the comprehensibility [47]. This is

intuitive, as 70% of source code consists of identifiers [45].

Thus, the lack of meaningful names in synthesized code

inhibits understanding. Although the automatic generation

of meaningful function and variable names is a well-studied

problem in software engineering: see [51] for a survey, and

Code2Vec [27] and JSNice [28] for prominent examples. Still,

the unintuitive nature of automatically generated programs

makes it challenging to apply existing techniques.

Researchers have investigated the nature of comprehensible

code [52], and studied techniques to help improve compre-

hension like program debugging [53], [54], slicing [55], [56],

automatic summarization [57], and user-guided program syn-

thesis [58]. However, none of these techniques have been used

to generate names for synthesized programs. [36] introduced

subspecs to allow programmers to reason about individual parts

of synthesized code. Our paper investigates how subspecs can

be used to help LLMs produce meaningful identifier names.

b) Large Language Models in Program Synthesis: LLMs

have been shown to be surprisingly capable of generating code

from natural language specifications of programmer intent [25].

Such LLMs also have the potential to improve the explainability

of code by augmenting it with natural language explanations.

However, these large language models do not understand

program semantics, and offer no guarantees about quality and

accuracy of the suggested code or explanations.

To provide guarantees with LLMs, researchers have sug-

gested using LLMs as a complementary approach to formal

methods which can guarantee accuracy and adherence to

specifications. For example, Jigsaw [59] is a program synthesis

tool that augments LLMs with post-processing steps based on

program analysis and synthesis techniques, NLX [60] marries

pre-trained natural language models and component-based

program synthesis for multi-modal program inference. In this

paper, we follow this approach of combining program synthesis

and LLMs to augment synthesized programs with explanatory

names that help users understand the intent of the code.
c) Prompting: The effective use of LLMs depends on

carefully chosen prompts: Researchers have investigated various

prompting techniques like LLM programming [37] which

is a combination of text prompting and scripting, chain-of-

thought prompting [39] which uses a series of intermediate

reasoning steps to perform complex reasoning, and probabilistic

inference paradigm [61] which probabilistically reasons over

sets of objects using LLMs. While researchers have investigated

these approaches to improve the accuracy of language models,

it is not evident how to use these techniques to justify the

appropriateness of names for program elements.

In this paper, we discuss two novel prompting approaches

to improve the accuracy of explanatory names generated by

LLMs for synthesized programs. First, we expand the prompt

using subspecifications by recovering input-output data from

the synthesis algorithm. Second, we conduct sanity check of

the algorithm by using another language model to validate the

proposed explanations.

VIII. CONCLUSION

In this paper, we showed how to use a large language

model (LLM) to annotate automatically synthesized code

with meaningful names. Our procedure principally relies on

a combination of two relatively simple techniques: first, by

including additional information about the implementation as

part of the prompt, and next, by validating the proposed names

with an algorithmic sanity check. Both experiments and a user

study show the effectiveness of our technique in producing

well-chosen function names. Our research contributes to the

emerging body of work on combining language models with

formal reasoning techniques. In future, we hope to extend these

ideas to automatically produce free-form comments, and also

potentially techniques that confirm the validity of comments,

identifiers and other natural language artifacts in code.

The artifact supporting the claims in this paper may be

downloaded from https://doi.org/10.5281/zenodo.12682854.

ACKNOWLEDGMENTS

We thank all the participants in our user study and the

anonymous reviewers for immeasurably improving this paper.

The research described in this paper was supported by the NSF

under grants CCF #2146518, #2124431, and #2107261.

REFERENCES

[1] S. Gulwani, A. Polozov, and R. Singh, Program Synthesis. NOW,
August 2017, vol. 4. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/program-synthesis/

[2] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based
program synthesis,” Commun. ACM, vol. 61, no. 12, p. 84–93, nov 2018.
[Online]. Available: https://doi.org/10.1145/3208071

[3] A. Udupa, A. Raghavan, J. Deshmukh, S. Mador-Haim, M. Martin,
and R. Alur, “Transit: Specifying protocols with concolic snippets,” in
Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI. ACM, 2013, p.
287–296.

[4] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program
synthesis via divide and conquer,” in 23rd International Conference

on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), ser. Lecture Notes in Computer Science, vol. 10205, 2017, pp.
319–336.

[5] Y. Feng, R. Martins, O. Bastani, and I. Dillig, “Program synthesis using
conflict-driven learning,” in Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, ser.
PLDI 2018. ACM, 2018, p. 420–435.

[6] T. Lau, P. Domingos, and D. Weld, “Version space algebra and its
application to programming by demonstration,” in Proceedings of the

Seventeenth International Conference on Machine Learning, ser. ICML.
Morgan Kaufmann Publishers Inc., 2000, pp. 527––534.

[7] P.-M. Osera and S. Zdancewic, “Type-and-example-directed program
synthesis,” in Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI. ACM,
2015, pp. 619––630.

[8] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, R. Jhala, and N. Po-
likarpova, “Program synthesis by type-guided abstraction refinement,”
Proceedings of the ACM on Programming Languages, vol. 4, no. POPL,
Dec. 2019.

[9] W. Lee, K. Heo, R. Alur, and M. Naik, “Accelerating search-based
program synthesis using learned probabilistic models,” in Proceedings of

the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI 2018. ACM, 2018, p. 436–449.

[10] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in Proceedings of the 18th International Conference on Architectural

Support for Programming Languages and Operating Systems, ser.
ASPLOS. ACM, 2013, p. 305–316.

[11] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and
R. Bodik, “Chlorophyll: Synthesis-aided compiler for low-power spatial
architectures,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI. ACM,
2014, pp. 396––407.

[12] J. McClurg, H. Hojjat, and P. Černý, “Synchronization synthesis for
network programs,” in Computer Aided Verification. Springer, 2017,
pp. 301–321.

[13] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser. POPL.
ACM, 2011, p. 317–330.

[14] R. Singh, “Blinkfill: Semi-supervised programming by example for
syntactic string transformations,” Proceedings of the VLDB Endowment,
vol. 9, no. 10, p. 816–827, Jun. 2016.

[15] V. Le and S. Gulwani, “Flashextract: A framework for data extraction by
examples,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI. ACM,
2014, pp. 542—-553.

[16] L. Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with
quantiative objectives,” in 27th International Conference on Computer

Aided Verification, ser. CAV, July 2016.

[17] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013

International Conference on Software Engineering, ser. ICSE. IEEE
Press, 2013, p. 772–781.

[18] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI. ACM, 2013, p. 15–26.

[19] K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt,
L. Cary, A. Solar-Lezama, and J. Tenenbaum, “Dreamcoder: Bootstrap-
ping inductive program synthesis with wake-sleep library learning,” in
Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, ser. PLDI 2021.
ACM, 2021, p. 835–850.

[20] R. Ji, Y. Sun, Y. Xiong, and Z. Hu, “Guiding dynamic programing
via structural probability for accelerating programming by example,”
Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, Nov. 2020.

[21] L. Laich, P. Bielik, and M. Vechev, “Guiding program synthesis
by learning to generate examples,” in International Conference

on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=BJl07ySKvS

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in

Neural Information Processing Systems, vol. 30, 2017.

[23] OpenAI, “Gpt-4 technical report,” 2023.

[24] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “Llama: Open and efficient foundation language
models,” 2023.

[25] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language
models trained on code,” 2021.

[26] “Github copilot,” https://copilot.github.com/, 2021.

[27] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proceedings of the ACM on

Programming Languages, vol. 3, no. POPL, jan 2019. [Online].
Available: https://doi.org/10.1145/3290353

[28] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from "big code",” in Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser. POPL
’15. ACM, 2015, p. 111–124.

[29] M. Allamanis, E. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. ACM, 2015, pp. 38–49. [Online]. Available:
https://doi.org/10.1145/2786805.2786849

[30] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure
transformations from input-output examples,” in Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 229–239. [Online]. Available:
https://doi.org/10.1145/2737924.2737977

[31] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program synthesis
from polymorphic refinement types,” in Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 522–538. [Online]. Available:
https://doi.org/10.1145/2908080.2908093

[32] A. Miltner, A. T. Nuñez, A. Brendel, S. Chaudhuri, and I. Dillig,
“Bottom-up synthesis of recursive functional programs using angelic
execution,” Proc. ACM Program. Lang., vol. 6, no. POPL, jan 2022.
[Online]. Available: https://doi.org/10.1145/3498682

[33] D. Cao, R. Kunkel, C. Nandi, M. Willsey, Z. Tatlock, and N. Polikarpova,
“Babble: Learning better abstractions with e-graphs and anti-unification,”
Proceedings of the ACM on Programming Languages, vol. 7, no. POPL,
2023. [Online]. Available: https://doi.org/10.1145/3571207

[34] A. Pal, B. Saiki, R. Tjoa, C. Richey, A. Zhu, O. Flatt, M. Willsey,
Z. Tatlock, and C. Nandi, “Equality saturation theory exploration á la
carte,” Proceedings of the ACM on Programming Languages, vol. 7, no.
OOPSLA2, 2023. [Online]. Available: https://doi.org/10.1145/3622834

[35] M. Bowers, T. X. Olausson, L. Wong, G. Grand, J. B. Tenenbaum,
K. Ellis, and A. Solar-Lezama, “Top-down synthesis for library learning,”

Proc. ACM Program. Lang., vol. 7, no. POPL, jan 2023. [Online].
Available: https://doi.org/10.1145/3571234

[36] A. Nazari, Y. Huang, R. Samanta, A. Radhakrishna, and M. Raghothaman,
“Explainable program synthesis by localizing specifications,” Proceedings

of the ACM on Programming Languages, vol. 7, no. OOPSLA2, oct
2023. [Online]. Available: https://doi.org/10.1145/3622874

[37] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is program-
ming: A query language for large language models,” vol. 7, no. PLDI,
2023.

[38] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin,
D. Bieber, D. Dohan, A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and
A. Odena, “Show your work: Scratchpads for intermediate computation
with language models,” 2021.

[39] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le, and
D. Zhou, “Chain of thought prompting elicits reasoning in large language
models,” CoRR, vol. abs/2201.11903, 2022.

[40] K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. L. Morales, L. Hewitt,
L. Cary, A. Solar-Lezama, and J. Tenenbaum, “Dreamcoder software
and data,” 2021. [Online]. Available: https://doi.org/10.1145/3410302

[41] M. A. Jaro, “Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida,” Journal of the American

Statistical Association, vol. 84, no. 406, pp. 414–420, 1989. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.
10478785

[42] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string
metrics for matching names and records,” in Kdd workshop on data

cleaning and object consolidation, vol. 3, 2003, pp. 73–78.

[43] D. G. Feitelson, A. Mizrahi, N. Noy, A. B. Shabat, O. Eliyahu,
and R. Sheffer, “How developers choose names,” IEEE Trans.

Software Eng., vol. 48, no. 2, pp. 37–52, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2020.2976920

[44] A. Swidan, A. Serebrenik, and F. Hermans, “How do scratch programmers
name variables and procedures?” in 17th IEEE International Working

Conference on Source Code Analysis and Manipulation, SCAM 2017,

Shanghai, China, September 17-18, 2017. IEEE Computer Society, 2017,
pp. 51–60. [Online]. Available: https://doi.org/10.1109/SCAM.2017.12

[45] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Software

Quality Journal, vol. 14, pp. 261–282, 2006.

[46] G. Beniamini, S. Gingichashvili, A. K. Orbach, and D. G. Feitelson,
“Meaningful identifier names: The case of single-letter variables,”
in Proceedings of the 25th International Conference on Program

Comprehension, ser. ICPC ’17. IEEE Press, 2017, p. 45–54. [Online].
Available: https://doi.org/10.1109/ICPC.2017.18

[47] E. Avidan and D. G. Feitelson, “Effects of variable names on compre-
hension: An empirical study,” in 2017 IEEE/ACM 25th International

Conference on Program Comprehension (ICPC), 2017, pp. 55–65.

[48] C. Wong, K. M. Ellis, J. Tenenbaum, and J. Andreas, “Leveraging
language to learn program abstractions and search heuristics,” in
Proceedings of the 38th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 11 193–11 204. [Online].
Available: https://proceedings.mlr.press/v139/wong21a.html

[49] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of modu-
larization and comments on program comprehension,” in Proceedings

of the 5th International Conference on Software Engineering, ser. ICSE
’81. IEEE Press, 1981, p. 215–223.

[50] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source
code comprehension,” in Proceedings of the 26th Conference on

Program Comprehension, ser. ICPC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 31–40. [Online].
Available: https://doi.org/10.1145/3196321.3196332

[51] L. Jiang, H. Liu, and H. Jiang, “Machine learning based recommendation
of method names: How far are we,” in 34th IEEE/ACM International

Conference on Automated Software Engineering, ser. ASE, 2019, pp.
602–614.

[52] M.-A. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in 13th International Workshop on Program

Comprehension (IWPC’05), 2005, pp. 181–191.

[53] R. Caballero, A. Riesco, and J. Silva, “A survey of algorithmic debugging,”
ACM Computing Surveys, vol. 50, pp. 1–35, 08 2017.

[54] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?”
in Proceedings of the 7th European Software Engineering Conference

Held Jointly with the 7th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, ser. ESEC/FSE. Springer, 1999,
pp. 253–267.

[55] M. Weiser, “Program slicing,” in Proceedings of the 5th International

Conference on Software Engineering, ser. ICSE. IEEE Press, 1981, pp.
439–449.

[56] A. Ko and B. Myers, “Designing the Whyline: A debugging interface
for asking questions about program behavior,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, ser. CHI.
ACM, 2004, pp. 151–158.

[57] Y. Zhu and M. Pan, “Automatic code summarization: A systematic
literature review,” 2019.

[58] T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and E. Glassman,
“Interpretable program synthesis,” in Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems. ACM, 2021.
[59] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-

mani, and R. Sharma, “Jigsaw: Large language models meet program
synthesis,” in Proceedings of the 44th International Conference on

Software Engineering, ser. ICSE. ACM, 2022, pp. 1219–1231.
[60] K. Rahmani, M. Raza, S. Gulwani, V. Le, D. Morris, A. Radhakrishna,

G. Soares, and A. Tiwari, “Multi-modal program inference: A marriage
of pre-trained language models and component-based synthesis,” Pro-

ceedings of the ACM on Programming Languages, vol. 5, no. OOPSLA,
oct 2021.

[61] B. Ozturkler, N. Malkin, Z. Wang, and N. Jojic, “Thinksum: Probabilistic
reasoning over sets using large language models,” 2023.

[62] N. G. de Bruijn, “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem,” Indagationes Mathematicae, vol. 75, no. 5, pp. 381–392,
1972.

[63] M. Shulman, “You could have invented de Bruijn indices,” https://golem.
ph.utexas.edu/category/2021/08/you_could_have_invented_de_bru.html,
2021.

APPENDIX

A. Algorithmic Name Synthesis

We now describe our custom interpreter that can compute

subspecifications in the presence of higher-order functions.

First, our interpreter includes a mechanism to print (serialize)

closures. Thus, for example, the subspecification of g1 in the

following program:

def g1(h):

return h(3)

def f1(x):
return g1(lambda y: x + y)

given the global input-output example f1(2) = 5 is given by:

g1(lambda y: 2 + y) = 5.

Notice that this constraint is satisfied by the original subroutine

g1, but is also satisfied by other implementations, including by

the constant-valued function g1′ = lambda y: 5. Furthermore,

it is safe to use any such new implementation g1
′ instead of

the previous implementation g1.

Next, we consider the case when subroutines themselves

return closures. Consider, for example, the subroutine g2 in

the following program:

def g2(x):

def h(y): return x + y

return h

def f2(x):
return g2(x)(3)

With the global input-output example f2(2) = 5, the subrou-

tine g2 is invoked with the input x = 2. If we instrument

the return value of g2 as before, we would observe that

g2(2) = lambda y: 2 + y. Notice that, given an alternative

implementation g2
′, it is conceptually difficult to compare

closures for equality.

We instead use the following procedure. Say we wish to

produce the subspec for a function g which itself produces

a closure as output. In this case, given the original argu-

ment x1, we wrap the closure g(x1) in a monitor object

m1 = ([x1],g(x1)). We incorporate successive arguments

to m1, say x2, x3, . . . , xk, resulting in the monitor object

mk = ([x1,x2, . . . ,xk],g(x1)(x2)(⋯)(xk)). When the clo-

sure finally reduces to a ground value, the monitor m = (l, v)
prints the sequence of function arguments l and the finally

produced ground value v, which are then included as part of

the subspecification Eg .

In the example above, recall that the global specification

was f2(2) = 5. Querying the subspecification for g2 initially

results in the monitor object m1 = ([2],lambda y: 2 + y).
Further evaluation using this monitor object produces the final

subspec g2(2)(3) = 5. We can show that:

Lemma A.1. Let E be a set of input-output examples, and

f ⊧ E be a conformant implementation. Let g be a subroutine in

f , with local input-output subspecification Eg . Pick a function

g′ such that g′ ⊧ Eg . Then f[g′/g] ⊧ E.

Choose a meaningful name for the function "Name and Type":

Code

(a)

The implementation satisfies the specification. Choose a
meaningful name for the function "Name and Type":

Specification

Code

(b)

Write a function named "Name and Type":

(c)

Fig. 8: Prompt templates utilized in the generation of names and code using the LLMs. Figure 8a is utilized to generate names

for the baseline, while Figure 8b is employed to generate names for our algorithms. Additionally, Figure 8c is employed to

generate programs for our filtering technique.

(lambda

(map (lambda

#(lambda
(lambda

#(lambda
(car (filter $0 (lambda

(empty? (filter $1 (lambda

(gt? $0 $1))))))))
(filter $1 (lambda

(gt? $1 (length (filter $2 (lambda

(gt? $1 $0)))))))))
$1 (+ 1 $0)))
(range (length $0)))

Fig. 9: Sorting a list of numbers. The corresponding Python program is in Figure 13.

B. Prompt Templates

Figure 8 displays the prompt templates utilized in the generation of names and code using the LLMs.

C. Implementation Listings

We list the lambda-expressions emitted by DreamCoder in Figures 9–12 and our corresponding transliterated Python programs

for all examples and user study tasks in Figures 13–16. Note that the lambda-expressions use de Bruijn indices [62], [63],

thereby eliminating variable names.

(lambda (#(lambda (lambda ((lambda (gt? $0 0))

(#(lambda (lambda (length (#(lambda (lambda (#(lambda (lambda

(fold $1 empty

(lambda (lambda (fold ($2 $1 range) $0
(lambda (lambda (cons $3 $2))))))))

$1 (lambda (lambda (if ($2 $1) $3 empty)))))) $1
(lambda (eq? $0 $1)))))) $0 $1))))

(+ (+ (+ 1 (+ 1 1)) 1) 1)

$0)

Fig. 10: Checking if a list has 5. The corresponding Python program is in Figure 14.

(lambda (cdr (

#(lambda (lambda (map (lambda (index $0 $2)) (range $0))))
(map (lambda $0) $0) (+ 1 (+ 1 1)))))

Fig. 11: Getting second and third elements of a list. The corresponding Python program is in Figure 15.

(lambda (fold $0 (#(map (lambda (mod (+ $0 1) (+ 1 (+ 1 1))))) empty)

(lambda (lambda (#(lambda (lambda (fold $1 (cons $0 empty)

(lambda (lambda (cons $1 $0)))))) $0 $1))))

Fig. 12: Reversing a list. The corresponding Python program is in Figure 16.

def a3(x3):

def a31(x31):

def a32(x32):

return x31 < x32

return len(list(filter(a32, x3)))==0

return list(filter(a31, x3))[0]

def a2(x2):

def a21(x21):

def a22(x22):

def a23(x23):

return x22>x23

return x21>len(list(filter(a23, x2)))

return a3(list(filter(a22, x2)))

return a21

def a1(x1):

def a11(x11):

return a2(x1)(x11+1)

return list(map(a11, range(len(x1))))

Fig. 13: Sorting a list of numbers.

D. User Study Tasks

Figure III includes all names generated by all algorithms used in two user studies.

TABLE III: The generated names used in two user studies. In the first user study, we only used names generated by the baseline

and NOMNOM. In the second user study, we asked participants to rate the names generated by the baseline, PE, PE+SC,

(PE+SC)⟳, and NOMNOM. We omitted the names produced by Code2Vec because they were uniformly uninformative.

Function Code2Vec Baseline PE PE+SC (PE+SC)⟳ NomNom

T1.a3 a3 foldFuncComposer appendListFunc

T1.a2 a2 addModuloThree getScaledX21Value modulo_plus_one modulo_plus_one addOneModThree

T1.a1 a1 reverseOrderList reverseList reverseMapping reverseList

T2.a3 a3 getLowestUnusedValue getMaxElement getMaxElement getLargestElement

T2.a2 a2 getHighestValueInList getNthElementInList getOrderedElement

T2.a1 a1 findMaxElementIndex findMaxElementIndex sortList sortList

T3.a2 a2 transformList getFirstXElements getFirstNItems

T3.a1 a1 extractNextTwoElements getSecondAndThirdElements

T4.a5 a5 filterFives filterAppendFunc filterFunc

T4.a4 a4 filterIntListByPredicate filterListByPredicate filterList filterListByPredicate

T4.a3 a3 summationFunc countOccurrences countElementsMatchingValue countOccurrences

T4.a2 a2 filterPositiveNumbers hasElementsGreaterThan containsNumber containsNum hasAtLeastOneOccurrence

T4.a1 a1 isOddIntList isEqual5s checkForFiveInSequences hasFiveInList

import functools

def a5(x5):

def a51(x51):

def a52(x52, x53):

def a54(x54, x55):

return [x53]+x52

return functools.reduce(a54, x51(x53)(range)[::-1], x52)

return functools.reduce(a52, x5[::-1], [])

return a51

def a4(x4):

def a41(x41):

def a42(x42):

def a43(x43):

if x41(x42):

return x4

else:

return []

return a43

return a5(x4)(a42)

return a41

def a3(x3):

def a31(x31):

def a32(x32):

return x32==x31

return len(a4(x3)(a32))

return a31

def a2(x2):

def a21(x21):

def a22(x22):

return x22>0

return a22(a3(x2)(x21))

return a21

def a1(x1):

return a2(x1)(((1+(1+1))+1)+1)

Fig. 14: Checking if a list has 5.

def a2(x2):

def a21(x21):

def a22(x22):

return x2[x22]

return list(map(a22, range(x21)))

return a21

def a1(x1):

def a11(x11):

return x11

return a2(a11(x1))(1+(1+1))[1:]

Fig. 15: Getting second and third elements of a list.

import functools

def a3(x3):

def a31(x31):

def a32(x32, x33):

return [x33] + x32

return functools.reduce(a32, x3[::-1], [x31])

return a31

def a2(x2):

return (x2+1)%(1+(1+1))

def a1(x1):

def a11(x11, x12):

return a3(x11)(x12)

return functools.reduce(a11, x1[::-1], list(map(a2, [])))

Fig. 16: Reversing a list.

def genNextGreaterValue(x):

def f(i: int):

greater = []

for e in x:

if e > i:

greater.append(e)

return min(greater)

return f

Fig. 17: Generated code by LLM for the generated name genNextGreaterValue.

	Introduction
	Overview and Motivating Example
	The Baseline LLM
	Prompt Expansion Using Subspecifications
	Algorithmic Sanity Checks

	Algorithmic Name Synthesis
	Prompt Expansion Using Subspecifications
	Algorithmic Sanity Checks
	Optimizations

	Experimental Evaluation
	RQ1: Effectiveness of Explanations
	RQ2: Response Rate of Tools
	RQ3: Number of LLM Queries Used

	User Study
	Tasks and Study Structure
	RQ4: Understanding What Functions Do
	RQ5: Understanding How They Work
	RQ6: Distribution of User Preferences

	Limitations and Discussion
	Related Work
	Conclusion
	References
	Appendix
	Algorithmic Name Synthesis
	Prompt Templates
	Implementation Listings
	User Study Tasks

