Generating Function Names to Improve
Comprehension of Synthesized Programs

Amirmohammad Nazari*, Swabha Swayamdipta®, Souti Chattopadhyay* and Mukund Raghothaman*
*University of Southern California
Los Angeles, CA, USA
{nazaria, swabhas, schattop, raghotha}@usc.edu

Abstract—The hope of allowing programmers to more freely
express themselves has led to a proliferation of program synthesis
techniques. These tools automatically derive implementations from
high-level specifications of user intent. These specifications may
take the form of logical formulas, demonstrations, or input-output
examples. Synthesizers guarantee that when synthesis is successful,
the implementation satisfies the specification. However, they pro-
vide no additional information regarding how the implementation
works or the manner in which the specification is realized.
As a result, they remain algorithmic black boxes which are
prone to producing unidiomatic code with procedurally generated
identifier names, like x1, x2, etc. As a result, complicated
implementations produced by modern program synthesizers are
becoming increasingly hard to understand.

One solution to this comprehensibility problem is to produce
meaningful identifier names for its variables, functions, etc.
While large language models (LLMs) suggest a simple way to
obtain human-readable names, our experiments reveal that LLMs
frequently produce nonsensical or misleading names when applied
to code emitted by program synthesizers.

In this paper, we develop an approach to reliably augment
the implementation with explanatory names: We recover fine-
grained input-output data from the synthesis algorithm to enhance
the prompt supplied to the LLM and use a combination of a
program verifier and a second language model to validate the
proposed names before presenting them to the user. Together,
these techniques improve the accuracy of the proposed names
from 24% to 79%. A two-phase user study indicates that users
significantly prefer the names produced by our technique, and
that the proposed names greatly help users in understanding
synthesized implementations.

Index Terms—Program synthesis, function name generation,
large language models, inter-LLM validation

I. INTRODUCTION

The last twenty years have seen an explosion of work in
program synthesis [1], [2] with the hope of aiding programmers
to freely express their intent. This work has been targeted
both towards the underlying algorithms [3]-[9], and their
applications [10]-[18].

However, there has been comparatively less attention given
to the problem of helping users understand this synthesized
code. Synthesizers frequently produce unidiomatic code, and
do not provide intuitive identifier names, comments, or other
hints to help the user understand how the implementation
works. In our user study, we asked 18 student programmers
to examine four programs produced by DreamCoder [19], a
recent state-of-the-art program synthesizer, and discovered that

the participants only received an average score of 23% when
asked simple questions about these programs.

Although there is research on requesting additional guidance
from the user during the synthesis process, this has primarily
been oriented either towards accelerating the synthesis process
itself [20], or in reducing the number of examples needed to
identify the target program [21]. Notably, these approaches do
not directly help the user in understanding how the program
works and whether it accurately realizes their intent.

We contend that the unintuitive code produced by many
program synthesizers reduces users’ confidence in using the
code, and inhibits the impact of program synthesis technologies.
Our focus in this paper is on generating explanatory names for
intermediate functions in synthesized code, with the ultimate
goal of improving user understanding of code.

Recent breakthroughs in large language models [22]-[26]
suggest their possible application to our problem. Unfortunately,
as we will see in Section IV, implementations produced by
program synthesizers are unidiomatic, leading to poor quality
names being suggested by the language model / backend tool.
This issue also affects state-of-the-art systems for automatically
deriving function names [27]-[29].

Our primary contribution is a novel two-step technique to
obtain candidate function names from a first LLM, and use a
combination of a second LLM and a program verifier to validate
these generated names before presenting them to the user. In
our user study, names produced by our technique increased the
average score of participants from 23% to 81% when asked
questions about the code. Across a set of 144 implementations
produced by DreamCoder containing names written by a human
expert, our system produced names with an accuracy of 79%
compared to the baseline (LLM only) accuracy of 24%.

In a second study, we asked another group of 18 programmers
to rate names produced by different name generation algorithms
on a five-point Likert scale. Participants strongly prefered
names produced by our system with 76% of responses marking
these names as appropriate, while only 2% responses found
the names generated by the baseline LLM to be appropriate.

This paper is an example of how generative Al can be
combined with formal techniques in programmer assistance
tools. By generating explanatory names for functions in
synthesized programs, we hope to help users understand
automatically generated code, and thereby improve the adoption
of program synthesis technology.

def g2 (x2):
def g21(x21):
def g22(x22):
return x21 < x22
return len(list(filter(g22, x2))) == 0
return list (filter(g2l, x2))[0]

def gl(x1):
def gll(x1l1l):
def gl2(x12):
def gl3(x13):
return x12 > x13
return x11 > len(list(filter(gl3,
return g2 (list(filter(gl2, x1)))
return gll

x1)))

def f(x1):
def f1(x11):
return gl (x1l) (x11 + 1)
return list (map(fl, range(len(xl))))

Fig. 1: Program produced by DreamCoder to sort a list of
numbers. The top-level function is f. Equation 1 is an excerpt
of the specification given to the synthesizer. We transliterated
this program into Python from the original lambda-expression
which may be found in the supplementary material.

II. OVERVIEW AND MOTIVATING EXAMPLE

Consider a user who wants a program that sorts a list of
numbers. They may describe their intent using input-output
examples such as the following:

ey

They may then realize this intent using any of a number of
inductive program synthesizers [7], [30]-[32].

In this paper, for the sake of concreteness, we focus on
programs synthesized using DreamCoder [19]. Synthesis using
DreamCoder runs in two phases: in the first (offline) phase, the
system uses a corpus of synthesis tasks to construct a library
of reusable components (i.e., functions) which it then uses
to more rapidly discharge the provided specification in the
subsequent (online) synthesis phase.

We adapt the specification in Equation 1 from Figure 1B
of [19]. In response, it produces a lambda term which may
be transliterated into the Python code of Figure 1. Notice that
the program uses non-trivial language features such as higher-
order functions and that its subroutines have uninformative
sequentially-generated names (such as g1, g2, ...). It is
therefore difficult to understand how the program works, or
even confirm that it always sorts the provided list of numbers.

We also remark that the top-level auxiliary functions, g1

and g2, correspond to reusable components discovered by
DreamCoder from the training data. Because the synthesizer
concluded that they are useful across a range of tasks, it appears
plausible that they perform some high-level conceptually salient
operations over lists. Several recent program synthesizers,
including Babble [33], Enumo [34] and Stitch [35], similarly
learn libraries of reusable components / rewrite rules.

f(te, 2, 7, 11)=11, 2, 7, 9.

Upon reflecting on this program, one may conclude that
invoking the function gl (1) (n) produces the n-th smallest
element of the list 1, and that the function g2 returns the
largest element of the list x2 that it accepts as input. In
fact, in the original example of [19], the authors manually
add expository comments describing the behavior of these
intermediate functions. In this section, we provide an overview
of our system NOMNOM: it accepts as input a specification-
implementation pair (¢, f) such that f satisfies ¢, and uses
an LLM to algorithmically produce names for each subroutine
g that appears in f.

A. The Baseline LLM

As a baseline, one may request an LLM, such as one from
the GPT family, to provide a name for each function g in
question. Each prompt includes the body and type of the
function ¢ : 7" being named, and (recursively) any auxiliary
functions in the call graph rooted at g. We provide the baseline
prompt templates in the supplementary material.

However, when using GPT-3.5,! it fails to produce appro-
priate names for any of the functions in Figure 1. As an
example, it suggests the name “largestSmallestIndices”
for the top-level function f, and “findNearestNumber” and
“getFirstItemMinThanArgumentValue” for the functions
gl and g2 respectively.

This is unsurprising, because the program in Figure 1 is
unidiomatic Python code. If one were to replace the function
bodies for g1 and g2 with the more conventional:
def gl(1):

def gll(n):

return sorted(l) [n]
return gll

and
def g2(1):

return max (1)
respectively, then the system produces accurate names for each
function: get_sorted_values for the top-level function f,
and get_nth_sorted_element and calculateMax for gl
and g2 respectively.

The poor performance of baseline name suggestion tech-
niques is not limited to LLMs: as we will see in Section IV,
even Code2Vec [27], a state-of-the-art graph embedding-based
name generation tool, produces poor quality names when
applied to such unidiomatic code.

As we observe in our user study in Section V, nonsensical
and misleading names massively inhibit program comprehen-
sion, and diminish the user’s confidence in future synthesized
code. In this context, the central problems that we consider in
this paper are: (a) How do we provide additional information to
the LLM in order to guide it towards better-chosen names? And
(b) can we validate the names produced by the system before
presenting them to the user? We will describe our solution to
these problems in the rest of this section.

IFor consistency with the user study, which was done with GPT-3.5, we
will use this model throughout the paper. Informal experiments indicate that
similar results would be obtained even with newer language models.

B. Prompt Expansion Using Subspecifications

Recall that our computational problem is to produce a name
for each subroutine g that appears in the implementation f.
The first part of our solution involves providing additional
information to the language model about the role of g in the
operation of f. For example, one might conceptually extend
the function g2 with instructions to log its execution:

def g2 (x2):

ans = list(filter(g2l, x2))[0]

print (£f'g2 ({x2}) = {ans}’) # Instrumentation

return ans
Note that the original specification is in the form of input-output
examples which can be mechanically evaluated to confirm
that the implementation satisfies the spec. Upon testing the
implementation with the logging code enabled, one finds that:

g2([11) =1, 2

g2(12, 11)=2, 3)
g2(12, 7, 11)=7, and @)
g2(19, 2, 7, 11)=9. 5)

These observations immediately suggest that the function g2
is computing the largest element of the list that it takes as
input. While this does not provide conclusive proof, careful
reading of the code confirms this hypothesis. In addition,
one may conclude that any function g2’ which satisfies
Equations 2-5, regardless of whether or not it is otherwise
semantically equivalent to g2, can be substituted into the
original implementation of Figure 1 without affecting the fact
that f satisfies the global specification, Equation 1.

This motivates us to extend the prompt supplied to the LLM
with local input-output behavior of the function g being named.
For example, for the function g2, we use the extended prompt
shown in Figure 2.

With new information of this kind, the LLM is able to choose
a more appropriate name for g2: findLargestElement. It
also manages to recover the intent of the top-level function, f,
for which it suggests the name sortList. In our experiments
in Section IV, when applied to the list processing benchmarks
solved by DreamCoder, providing logs of input-output behavior
measurably improves the accuracy of names suggested by the
LLM from 24% to 60% respectively.

Note 11.1. The behavior of the function g2, as described by
Equations 2-5, is closely related to the concept of subspecifica-
tions recently introduced by [36]. The major difference is that
while subspecifications are necessary and sufficient conditions
that characterize alternative implementations, monitoring input-
output behavior merely provides sufficient conditions: there
might conceivably be alternative implementations g2’ that
violate Equations 2—-5 but which would nevertheless result in
the global specification, Equation 1 being satisfied. Regardless,
we will adopt their terminology, and refer to these input-output
logs as the subspecifications of individual subroutines.

The primary technical difficulty in formalizing and obtaining
these subspecs is the presence of higher-order functions. For

The implementation satisfies the specification. Choose
a meaningful name for the function “g2 (x: List[
int])-> int™:
Specification:
g2([11) =1,
g2(12, 11)=2,
92(12, 7, 11)=7, and
g2(19, 2, 7, 11)=09.
Implementation:
def g2 (x2):
def g2l (x21):
def g22(x22):
return x21 < x22
return len(list(filter (g22, x2)))==
return list (filter (g2l, x2))[0]

Fig. 2: Example prompt for name generation when extended
with local input-output subspecifications. We provide all prompt
templates in Appendix B.

example, naively instrumenting the function g1 would produce
outputs of the form:

g1(19, 2, 7, 11)=<function gll at 0x...>.

This output arises from the difficulty in serializing closures
and higher-order functions. Our solution in Section III-A
will involve a new specially designed interpreter to recover
subspecifications for higher-order functions, yielding the result:

g1(19, 2, 7, 11)(1)=1, (6)
g1(re, 2, 7, 11)(2) =2, @)
g1(19, 2, 7, 11)(3)=7, and 8)
g1(r9, 2, 7, 11)(4) =9,)

which immediately suggests that evaluating g1 (1) (n) pro-
duces the n-th smallest element of the list 1.

Unfortunately, even with this new information, in the run
we consulted while writing this paper, the language model
still suggested incorrect names for g1 (the suggested name is
“genNextGreater-Value”) and the other subroutines in the
implementation. Note however that responses from language
models are inherently stochastic, so a subsequent run might
not exactly reproduce these observations. In fact, our final
implementation in NOMNOM makes productive use of this
non-determinism.

C. Algorithmic Sanity Checks

Our next insight is that when a function is appropriately
named, that name can be used to substantially recover the origi-
nal implementation. For example, recall that GPT-3.5 suggested
the name findLargestElement for the function g2. Given
this proposed function name and its type, we can request a

second language model to reproduce the corresponding function,
to which it responds:

def findLargestElement (x: List[int]):

maxValue = 0
for val in x:
if maxValue < val:
maxValue = val
return maxValue

Observe that this resynthesized implementation, g2’ =
findLargestElement, is not semantically equivalent to the
original function g2. In particular, it does not fail on empty
inputs and it also assumes that the list does not contain any
negative numbers. Despite these differences, observe that g2’
continues to satisfy the same subspecification in Equations 2-5.
It can therefore be substituted into the larger implementation
of Figure 1 without affecting overall correctness, i.e., Equa-
tion 1. This suggests that findLargestElement is indeed an
appropriate name for the subroutine g2.

Conversely, recall that with the extended prompt of
Section II-B, the language model suggested the name
GenNextGreaterValue for gl. Once again, we might ask the
LLM to produce an alternative implementation of a function
with this name, and type List[int] -> Callable[[int],

int]. We provide a listing of its output in the supplementary
material. Unsurprisingly, the implementation does not satisfy
the subspecification corresponding to g1, i.e., Equations 6-9.

Although such checks do not guarantee the appropriateness
of names, they at least confirm some degree of internal
consistency. This gives us a mechanism to detect and filter
out inappropriate names. In fact, in the run we consulted
while writing this paper, this algorithmic sanity check provides
support for the proposed names findLargestElement and
sortList for the functions g2 and f respectively. It also
successfully refuted the spurious name suggestions for the
remaining functions in the implementation.

Overall, in our experiments in Section IV, this further boosts
the accuracy of the name suggestions from 60% to 82%
respectively. On the other hand, notice that this technique is
essentially a censor that filters out inappropriate names, whose
use reduces the response rate from 97% to 42% respectively.
One of the final optimizations in our system, NOMNOM, is
a technique to exploit the non-determinism in LLM outputs
and regenerate names upon failure of the sanity check. This
manages to recover the drop in response rate from 42% to
72%, albeit with a slight decrease in accuracy from 82% to
79% respectively.

Note 11.2. Given the extensive use of LLMs in our approach,
the reader might wonder whether: (a) it might be possible to
directly use the language model to synthesize code, and com-
pletely bypass the use of the underlying program synthesizer,
and (b) whether the alternative implementation g’ produced
by the language model might somehow be more idiomatic
and appropriate for presentation to the user. While this is
certainly possible, this approach would sacrifice guarantees
inherited from the underlying synthesizer, including that the
implementation f satisfies the provided input-output examples.

Examples, E Implementation, f

v l
NomNom LM1 LM2
Subroutine, g —
iy @:T, Eg)
Name, w
: Proposal
IFlg'/ o] # E, |
retry :
W, T) R
Alternative impl, g'
Itflg'/ 9] E E, Validation

done!

Fig. 3: Overall architecture of NOMNOM. We begin with a
specification-implementation pair, (F, f), and a subroutine g of
interest. The system alternates between querying a first LLM to
obtain proposals w for g and validating w by resynthesizing an
alternative implementation ¢’ using a second language model.

In addition, many synthesis tasks are formulated in the
context of a target DSL, and there is no guarantee that an
implementation produced by a language model would follow
the syntactic constraints of the target DSL.

We describe the overall architecture of NOMNOM in Figure 3.
We describe its underlying algorithms in the next section.

III. ALGORITHMIC NAME SYNTHESIS

We devote this section to describing our algorithm and
some optimizations. The user starts by providing a set of
input-output examples, E = {(i1,01), (i2,02),..., (in,0n)}.
These examples may be drawn from integers, Boolean values,
and lists of values. Upon successful synthesis, DreamCoder
returns a program f which satisfies the specification F, i.e.,
for all (i,0) € E, f(i) = o. We indicate this by writing
f e E. The implementations produced by DreamCoder
are expressed as lambda-terms, examples of which may be
found in the supplementary material. Given this specification-
implementation pair, our system proposes meaningful names
for each subroutine g appearing in f. We present the top-level
procedure in Algorithm 1.

We begin by performing a best-effort analysis of the program,
and associate each sub-expression ¢ of the program with a type
t:T. In addition, while presenting these programs to the user
and to the language model, we freely alternate between their
representations as lambda-terms and as programs expressed
in a restricted subset of Python. For example, we present the

lambda-term (lambda (x) (cons (+ x 1) (cons (+ x 2)
nil))) to users as follows, inventing placeholder identifiers
as needed:
def f(x):

return [x + 1, x + 2]

Algorithm 1 NoMNOM(E, f,g). Given a set of input-output
examples E = {(i1,01), (i2,02),...,(in,0,)}, implementa-
tion f = F, and a subroutine g of f, produces a name w for
g.

1) Compute the local subspecification for g, E; =

{(igh Ogl)v (iQQa OgZ)v s }
2) Repeat until retries are exhausted:

a) (PE.) Request a name w for g by supplying its type
g + T and the subspecification F, and by using the
prompt template from Figure 8b.

b) Request an alternative implementation ¢’ : T of a
function named w by using the prompt template from
Figure 8c.

¢) (PE+SC.) Substitute the new implementation ¢’ into
f-If f[g'/g] = E, then return the name w.

3) Report failure.

We now discuss the two principal elements of the algorithm,
namely prompt expansion using subspecifications and the
subsequent algorithmic sanity checks.

A. Prompt Expansion Using Subspecifications

As discussed in Section II-B, obtaining the local input-output
examples F, for prompt expansion is conceptually simple: one
can place instrumentation code at appropriate points inside the
function body, and log the inputs and outputs being sent into
and produced by the function g currently being named. The
hope is that the local input-output behavior provides clues to
the overall purpose of g that is not apparent from its function
body. However, this procedure is tricky because of the presence
of higher-order functions. In particular, the function g might
either itself take a function (closure) as input, or produce
a closure as output, or possibly even both. Our solution is
a custom interpreter that can print (serialize) closures. We
provide additional details in Appendix A.

B. Algorithmic Sanity Checks

The names proposed by the LLM in response to the query in
Step 2a are sometimes directly embedded in the original source
code, or are presented with some other decoratory text, such
as “Name: «name»”. We have devised a set of simple extractor
routines and regular expressions that detect these patterns and
appropriately extract the proposed name. We hope to simplify
this process by using structured prompting techniques in future
versions of the system [37].

We then forward the proposed name w and the type T of the
subroutine g being named to a second language model using the
prompt template from Figure 8c. We interpret the response from
the LLM as an alternative implementation g’ of the original
subroutine g. This step might fail either because the response
from the LLM is not a syntactically well-formed program,
or if it fails to have the desired type 7', or if substituting it
into the surrounding implementation compromises the overall
correctness specification, f[g'/g] # E. In any of these cases,
we reject the name w being proposed in response to the naming

query in Step 2a. Note that we only generate names for top-
level subroutines, so we do not have to consider the possibility
of variable capture. This assumption greatly simplifies our
implementation.

Finally, if f[¢’/g] = E, then we certify the name w as
having passed the sanity check.

C. Optimizations

Finally, our implementation in NOMNOM includes two
optimizations which increase the overall response rate of the
system without losing accuracy.

a) Retries: It turns out that the algorithmic sanity checks
of Section III-B are very effective in discovering inconsisten-
cies between functions and their proposed names. Filtering
names using this heuristic therefore massively improves the
accuracy of the naming algorithm. Unfortunately, this accuracy
improvement is accompanied by a corresponding drop in the
number of queries successfully answered, as we will see in
Section IV. The non-deterministic responses generated by
language models provide an easy approach to mitigate this drop.
When a proposed name fails the sanity check, we repeatedly
retry (with a limit of 20 attempts) until the check succeeds,
leading to the outermost loop in Algorithm 1.

b) Bottom-up name generation: Finally, there are certain
functions which prove to be difficult to name even after multiple
independent queries. One example is the following function f:

def f(x1):
return a2 (x1) (5)
def a2 (x2):
def a2l (x21):
def a22(x22):
return x22>0
return a22 (countOccurrences (x2) (x21))
return a2l

Observe first that calling the function a2 (1) (n) tests the
output of countOccurrences to determine whether the value
n occurs in the list 1. It therefore follows that calling the top-
level function f(l) checks whether the provided list contains
an occurrence of the number 5.

The last optimization in NOMNOM facilitates this reasoning
process by iteratively finding names for higher-level functions
only after all lower-level functions, i.e., those reachable from
it in the call graph have been successfully named.” In our
experiments, this turns out to cause a slight increase in the
response rate of the system, including for the function f above.
This optimization has a flavor similar to emerging techniques
for prompting language models such as scratchpads and chain-
of-thought reasoning [38], [39].

IV. EXPERIMENTAL EVALUATION

Our implementation of NOMNOM uses text-davinci
-003 as our backend language model. We use the default
language model settings for name generation, and only change

Note that the concepts learned by DreamCoder naturally have a hierarchical
structure in the form of a DAG.

max_tokens to 1,000 for the reverse code generation pass.
Our evaluation focuses on the following research questions:

RQ1. How effective is our system in producing well-chosen
names for subroutines?

RQ2. How frequently does the system produce suggestions
for subroutine names?

RQ3. How many queries does the system require in order to
propose these names?

a) Benchmarks: Our evaluation dataset started with
155 specifications involving list processing programs which
were synthesized by DreamCoder.®> Each of these specifications
was associated with a name, indicating the user’s intent, and
a varying number of implementations (from 1 to 16). Upon
manually inspecting these implementations, we discovered
that 3 of them did not satisfy the stated user intent, and
8 implementations which we were unable to explain. We
eliminated these programs, and chose the largest remaining
implementation for each specification, which left us with a
dataset consisting of 144 specification-implementation pairs
and which consisted of a total of 344 subroutines. We manually
provided reference names for each of these subroutines. The
appropriateness of these names was subsequently validated by
a visiting student researcher who was not among the authors
of this paper.

b) Baselines: In addition to the baseline LLM and our
algorithmic variants, we also evaluated the performance of
Code2Vec [27]. Because Code2Vec works with Java code, we

translated each of the benchmark programs into Java by hand.

We will include these implementations in our artifact.

A. RQI: Effectiveness of Explanations

In order to measure the effectiveness of NOMNOM in
producing evocative function names, we ran five variants of our
algorithm across the subroutines in our evaluation dataset. We
then compared the algorithmically produced function names to
our reference names and computed the Jaro similarity between
the two [41], [42]. We declared the proposed name to be
appropriate if this similarity measure exceeded 0.7. Finally, in
order to estimate the variability of the overall procedure, we
ran each algorithm five times for each subroutine. We present
our observations in Figure 4.

Notice the consistent improvement in accuracy as we
incorporate algorithmic improvements from a baseline score of
24% to the final value of 79%. One example of a successfully
named function is the following:

def a2 (x2):
def a2l (x21):
def a22(x22):
return x2[x22]
return list (map(a22,
return a2l

range (x21)))
Evaluating the function a2 (1) (n) returns the first n elements
of the list 1. Only the last two algorithms consistently suggest

ﬁMenamuijobs/list_hard_test_ellisk_ZOl9702715
T11.43.28 from the DreamCoder artifact [40].

100 [Accuracy

Response Rate
E=ZER Acc X RR

80

60

40

20

Z 7
PE PE+SC (PE+SC)> NomNom

ot

0 code2vec Baseline

Fig. 4: Effectiveness of the algorithmic variants. PE indicates
prompt expansion with local input-output subspecifications,
PE +SC indicates the subsequent algorithmic sanity check,
(PE+SC) ¢ indicates the version which repeatedly retries
upon failure, and NOMNOM indicates our final system with
bottom-up name generation. The bars represent the median of
five independent executions.

names such as getFirstNItems, selectFirstElements
, etc., while PE and PE+SC occasionally produce appro-
priate names. On the other hand, without any additional
information, the baseline LLM suggests the misleading name,
transformList.

Also, observe that Code2Vec generates poor quality names:
this is because our benchmarks make heavy use of higher-order
functions, resulting in unidiomatic Java code. In many cases,
in the absence of an alternative, the system simply regurgitates
the original placeholder function name, £1, £2, etc.

One concern with our evaluation methodology might involve
the validity of the reference names. Of the 40 proposed function
names polled in our user study, we only observed 3 names
which we thought were appropriate (with sufficiently high
Jaro similarity to the reference), but for which the average
score of the users was “Neutral” or less. Conversely, we
did observe situations where we marked a proposed name
as inappropriate, even though users subsequently thought
otherwise. One example is the following function c2:

def c2(x3):
def ¢31(x31):
def c32(x32):
return x32==x31
return len(list (filter (c32,
return c31

x3)))

Evaluating the function c2 (1) (k) counts the number
of occurrences of k in 1. Our reference name was
countOccurrencesOfK, while (PE+SC) C suggested the
name countElementsMatchingValue, which we rejected
based on an insufficient Jaro similarity to the reference name.

B. RQ2: Response Rate of Tools

Although the algorithmic sanity check, PE + SC, signifi-
cantly improves the accuracy of the overall algorithm, one
concern is that suppressing responses from the LLM might lead
to the overall system answering a smaller number of queries.

TABLE I: Confusion matrix from one run of PE+SC. We
compare the suggested names to our reference names and
declare a match when the Jaro similarity exceeds 0.7.

Reference Filter Approves Filter Rejects
Match 122 / 344 78 / 344
Mismatch 25/ 344 119 / 344

We therefore measured the response rate of the system, and
we include this data in Figure 4.

First, observe that providing additional information to the
language model, i.e., going from the baseline algorithm to one
with prompt expansion, PE, modestly increases the overall
response rate from 82% to 97% respectively. The real benefit
of prompt expansion comes from the massive increase in the
number of queries correctly answered, Acc x RR, from 19%
to 58%.

Next, we observe that the greater accuracy of PE + SC is
accompanied by a corresponding drop in response rate from
97% to 42% respectively. Indeed, it is not possible for a filtering
pass to increase the total number of queries which are correctly
answered, so that the product, Acc x RR, actually experiences
a drop upon its application. We also provide the confusion
matrix from one run of PE+SC in Table I. The overall F1
score of the filter turns out to be 0.70, so better filter designs
is an important direction of future work.

Lastly, the figure also confirms the need for the final two
algorithmic variants, (PE+SC) ¢ and NOMNOM: By giving
the system multiple opportunities to produce an internally
consistent response, they somewhat restore the response rate
and provide modest increases in the product measure from
33% to 56% and 59% respectively.

Note IV.1. We repeated this experiment using the more recent
gpt-4-0125-preview as the backend language model. The
accuracy and the response rate of the baseline increased to 38%
and 100% respectively, while the accuracy and the response rate
of our final tool NOMNOM were 77% and 81% respectively.

C. RQ3: Number of LLM Queries Used

Finally, we measured the number of LLM queries needed
by the different algorithmic variants to name each function.
We list these statistics in Table II. Both the baseline approach
and the variant with prompt expansion, PE, require just one
LLM query to produce their response, while the version with
algorithmic sanity checks enabled, PE + SC, needs two queries:
the first to produce a name suggestion and the second to reverse-
synthesize the subroutine body. On the other hand, the last
two variants, with retries enabled, need to make additional
queries when the first query either fails to elicit a response or
receives a response which fails validation. Note that we report
the median number of queries in Table II as the average is
skewed by subroutines for which we hit the limit of 20 retries
and eventually fail to produce a name.

While we did not explicitly track the time needed to name
each subroutine or the cumulative cost of LLM queries, the

TABLE II: Number of LLM queries needed by the algorithmic
variants to name each subroutine. We report the median over
five independent runs. The last 2 algorithms have higher query
amounts because of failures listed in Section III.

Algorithm Num Queries

Baseline
PE
PE +SC
(PE+SC) C
NoMNOM

BN -

statistics in Table II provide some guidance. Note that the time
needed to name each subroutine is dominated by the response
time from the OpenAl servers, and depends on numerous
other factors such as load on the LLM implementation.
In our experience, the most resource-intensive algorithms,
(PE+SC) C and NOMNOM, produce responses within 5—
10 seconds for each subroutine.

V. USER STUDY

To determine whether names help users in understanding
the outputs of program synthesis tools, we conducted two user
studies to answer the following questions:

RQ4. Do names help users in inferring the top-level purpose
of each subroutine?

RQS. Do names help users in understanding subroutines and
the relationships between them?

RQ6. How do user preferences vary among the names pro-
duced by different algorithmic variants?

a) Farticipant selection: After IRB approval, we recruited
36 students who were familiar with Python from the engineering
schools (Computer Science, Electrical Engineering, Mechanical
Engineering, and Materials Science departments) of 7 promi-
nent U.S. and Canadian universities. These participants had
different levels of experience in programming and were a mix
of undergraduate, Masters’, and Ph.D. students. We posit that
the variation in experience is representative of users of program
synthesizers. We randomly divided the 36 participants into two
groups with 18 participants for each user study.

A. Tasks and Study Structure

Before each user study, we had a short screening quiz asking
participants to write a Python program that computes the sum
of the elements in a list. Disregarding minor syntactic errors,
all participants passed the screening quiz. We then showed
participants a short video describing the tasks they needed to
complete, and a brief introduction to aspects of the Python
language that would be heavily used, including higher-order
functions and some syntactic quirks. After the study was
complete, we had a short discussion with each participant.
During the discussion, participants gave their feedback about
which aspects of the study they found easy or difficult, and
their experience while answering questions. The study materials
may be found in Appendices C and D.

n)
{ X X X E,
Participants n

Fig. 5: Process followed for Study 1. 18 participants examined
four programs with names either produced by the baseline
LLM or by NoMNOM. We counterbalanced the study so each
participant attempted two questions with names produced by
the baseline, and the remaining two with names produced by
our tool. Three domain experts independently graded their
responses, and we report their average scores in Figure 6.

Graders

a) Study 1: Explanations: We chose four programs
from the larger dataset of 144 implementations produced
by DreamCoder with no mutual overlap in the subroutines
used. In the first study, we asked participants to examine
these programs and explain how they worked. We first asked
participants to explain what each subroutine did, and then we
asked them to walk us through the execution of the program on
a specific input. We conducted the study in one of two randomly
chosen conditions, with names suggested either by the baseline
language model, or our final bottom-up name synthesizer,
NoMNoOM. We ensured that each participant attempted two
tasks with names from the baseline approach, and the remaining
two tasks with names from our system. In every case, the names
were directly embedded inside the program.

For the first class of questions (i.e., what each subroutine
did), we awarded responses with grades depending on whether
it adequately captured the high-level goal of the function.
For the second class of questions (i.e., walking us through
an execution), we assessed whether participants accurately
described how each function made use of the auxiliary functions
that it called. Three domain experts independently provided
these grades, and we present the average scores of participants
for each question and condition in Figure 6.

b) Study 2: Preferences: The second study consisted of
four tasks in which we presented users with a program and
asked them to rate their preferences among different suggestions
for function names on a five-point Likert scale (“Inappropriate”,
“somewhat inappropriate”, “neutral’, “somewhat appropriate”,
“appropriate”). We used the same programs as in the previous
study. All participants undertook this study in the same

condition, and had access to local subspecs for each subroutine.

We measure the distribution of their responses in Figure 7.

B. RQ4: Understanding What Functions Do

We first measured the impact of the proposed function
names on users’ understanding of the top-level purpose of each
function, and the effect of the different naming algorithms on
this understanding. From Figure 6b, we observe that names
suggested by our tool unambiguously help users in determining
the purpose of each function.

Notice that for a majority of questions, all responses from
participants looking at names from the baseline LLM were
incorrect. We discovered that for the 12 subroutines in question,
the baseline algorithm never suggested an appropriate name:
four of its suggestions were nonsensical, and eight name
suggestions were actually misleading.

By our estimate, all participants critically examined the pro-
grams shown to them. When faced with misleading names, they
responded in a few different ways: one subset of participants
chose to skip the question, another group of participants sensed
a mismatch but chose to trust the stated names anyway, while
the last subset disregarded the stated names upon discovering
their inappropriateness and attempted to manually recover the
function specification. In any case, apart from the program
in Task 3, they were uniformly unable to discover the true
purpose of the corresponding functions.

In contrast, all names produced by the final algorithm
were appropriate, leading to massively higher accuracies when
participants encountered questions in this condition.

C. RQ5: Understanding How They Work

Our next question involved determining the effect of names
on users’ understanding of how functions work. In particular,
we asked users to walk us through an execution of the program,
and focused on whether they were able to articulate the
relationships among the various subroutines, i.e., why and
how a particular subroutine called another.

These measurements correspond to the last question for each
task in Figure 6b. Similar to RQ4, we concluded that partici-
pants have a much easier time understanding synthesized code
when functions are appropriately named. During the post-study
debrief, participants reported being surprised by “unnatural”
code, and complained that the programs realize simple user
intentions in complicated ways. In addition, even when they
had well-chosen function names, effort was needed to confirm
their understanding and frame their responses to the questions
asked. When they were unable to definitively understand the
code, some participants chose to guess functional relationships
based on their names, while others opted to skip the question
rather than make tentative predictions.

Anecdotally, we also found a cascading effect in users’
understanding as they went higher up in the call graph towards
the top-level functions: i.e., if they were unable to explain how
a function f5 used an auxiliary function f3 which was called
in its body, then they were often also unable to determine the
working of a higher-level function f; which in turn called fo.

D. RQ6: Distribution of User Preferences

In our final research question, we measured how user
preferences varied among names produced by different naming
algorithms. See Figure 7. From the figure, it is clear that
the progressive algorithmic improvements that we discussed
in this paper result in names that are well-liked by users.
If we assign numerical values to these user preferences
on a 0 (“Inappropriate”)-1 (“Appropriate”) scale, then the
average score of names produced by the baseline LLM is 0.11,

1.00
— A
P1
. — 50.75
g &
P2
I %0.50
P3 g g
Z0.25
py| —EE
e 0.00
0 20 40 60
Time (minutes)
()
[NomNom

)

PRiE—

I

TN Mmoo m S =N M m ¥ n
~ ~N ~N m mom < <
Program and Question

()
Baseline

Fig. 6: Time needed and accuracy of responses when explaining how implementations worked (Study 1). Each bar is the average
score awarded by three domain experts, with pairwise Pearson correlation coefficients of 0.85, 0.80, and 0.83 respectively.

I Inappropriate
0.7 [Somewhat Inappropriate
1 Neutral

[Somewhat Appropriate
I Appropriate

0.0 PE+SC

(72)

Baseline PE
(162) (180)

(PE+SC)> NomNom

(198) (234)
Fig. 7: Distribution of participant preferences among names
suggested by different algorithms (Study 2). The numbers
in parentheses indicate the total number of user responses
collected for the corresponding naming algorithm.

while the average score of names produced by NOMNOM is
0.89. Furthermore, response rates show a similar trend as in
Section IV, with PE + SC producing the fewest suggestions.
Anecdotally, participants who undertook this study (Study 2)
found it easier to indicate their preferences, as compared to
participants who had to provide more detailed accounts of how
the implementations worked (Study 1). Recall that we included
the local input-output subspecifications as part of this study:
most participants made their judgments by simply checking for
compatibility between the proposed names and the subspecs.

VI. LIMITATIONS AND DISCUSSION

We now discuss some limitations of our approach and the
evaluation methodology employed in this paper.

The first concern is whether function names are sufficient to
help programmers understand the synthesized implementation.
How programmers choose identifier names [43], [44], and their
effect on program comprehension [45] has been the subject
of extensive research. Despite some research indicating other-
wise [46], there is broad agreement that good variable names
are important [47]. This is consistent with our observations in

Section V, where programmers are able to better understand
code with appropriately chosen function names.

We might instead have asked the language model to produce
explanations in the form of longer free-form comments: Note
that our thesis in Section III-B is that well-chosen function
names can be used to recover semantically equivalent implemen-
tations, and can thereby be subject to experimental falsification.
The experimental validation of free-form comments, whether
produced by a language model or a human programmer, is an
important challenge for future work.

An interesting related question in this context is how the
system would respond to project-specific naming conventions,
requiring, for example, the use of Hungarian notation or camel-
case identifiers. An easy solution is for the programmer to
adapt the function name as they see fit. A second solution
might be to extend the LM1 prompt to ensure that function
names follow the necessary conventions. A final option is to
also validate the appropriateness of suggested identifiers as
part of the sanity check procedure.

The reader may also be concerned about our choice of
DreamCoder as the background synthesizer. First, we note
that DreamCoder is an example of a larger family of library
learning tools [19], [33], [35], [48] which aim to learn libraries
of reusable components within a domain specific language.
Furthermore, name generation using subspecifications and
sanity checks is more broadly applicable to other program
synthesizers. For example, consider the following program
generated by A\? [30]:
def gl(xl):

def gll(x1ll):

def gl2(x121, x122):
return x121 or (x122 < x11)

return functools.reduce(gl2, x1, False)
return list (filter(gll, x1))
def f£(x1):
return list (map(gl, x1))

Simulating our technique by hand, we derived the names
removelnnerSmallest and removeSmallestElement for
the functions £ and g1 respectively. More generally, systems

such as NomNom might be useful both to obtain more idiomatic
code from program synthesizers, and as interactive mechanisms
to help users understand code. Conversely, it would be an
interesting question to see whether ideas similar to ours can
be used to more reliably synthesize code using LLMs.

Another concern involves the brittleness of LLM outputs in
response to minor changes in the provided prompt. While this
cannot be completely mitigated, we hope that the full text of
prompts provided in the supplementary material will at least
partially address issues with reproducibility.

One might also object to human-written reference names
being used for evaluation in Section IV. To mitigate this
concern, we had our reference names cross-verified by another
student programmer not among the authors of this paper.

A final concern involves potential biases in our choice
of participants for the user study in Section V. Are these
participants representative of actual users of program synthe-
sis tools? While we attempted to mitigate this concern by
drawing broadly from graduate and undergraduate students
across engineering schools of various prominent American and
Canadian universities, conducting a larger study with working
programmers is an important direction of future work.

VII. RELATED WORK

a) Comprehension of Synthesized Programs: While pro-
gram synthesizers are meant to realize logical correctness
specifications, their output is rarely easy to understand. This
obscurity partly stems from the use of procedurally generated
identifier names (v1, v2, £1, £2, etc.) in synthesized code.

Human programmers use different practices to make code
comprehensible, such as by writing detailed comments [49],
using meaningful names and identifiers [50], or maintaining
documentation of their rationale. Of these approaches, the use
of meaningful names has been found to make a significant
contribution to improve the comprehensibility [47]. This is
intuitive, as 70% of source code consists of identifiers [45].
Thus, the lack of meaningful names in synthesized code
inhibits understanding. Although the automatic generation
of meaningful function and variable names is a well-studied
problem in software engineering: see [51] for a survey, and
Code2Vec [27] and JSNice [28] for prominent examples. Still,
the unintuitive nature of automatically generated programs
makes it challenging to apply existing techniques.

Researchers have investigated the nature of comprehensible
code [52], and studied techniques to help improve compre-
hension like program debugging [53], [54], slicing [55], [56],
automatic summarization [57], and user-guided program syn-
thesis [58]. However, none of these techniques have been used
to generate names for synthesized programs. [36] introduced
subspecs to allow programmers to reason about individual parts
of synthesized code. Our paper investigates how subspecs can
be used to help LLMs produce meaningful identifier names.

b) Large Language Models in Program Synthesis: LLMs
have been shown to be surprisingly capable of generating code
from natural language specifications of programmer intent [25].
Such LLMs also have the potential to improve the explainability

of code by augmenting it with natural language explanations.
However, these large language models do not understand
program semantics, and offer no guarantees about quality and
accuracy of the suggested code or explanations.

To provide guarantees with LLMs, researchers have sug-
gested using LLMs as a complementary approach to formal
methods which can guarantee accuracy and adherence to
specifications. For example, Jigsaw [59] is a program synthesis
tool that augments LLMs with post-processing steps based on
program analysis and synthesis techniques, NLX [60] marries
pre-trained natural language models and component-based
program synthesis for multi-modal program inference. In this
paper, we follow this approach of combining program synthesis
and LLMs to augment synthesized programs with explanatory
names that help users understand the intent of the code.

c) Prompting: The effective use of LLMs depends on
carefully chosen prompts: Researchers have investigated various
prompting techniques like LLM programming [37] which
is a combination of text prompting and scripting, chain-of-
thought prompting [39] which uses a series of intermediate
reasoning steps to perform complex reasoning, and probabilistic
inference paradigm [61] which probabilistically reasons over
sets of objects using LLMs. While researchers have investigated
these approaches to improve the accuracy of language models,
it is not evident how to use these techniques to justify the
appropriateness of names for program elements.

In this paper, we discuss two novel prompting approaches
to improve the accuracy of explanatory names generated by
LLMs for synthesized programs. First, we expand the prompt
using subspecifications by recovering input-output data from
the synthesis algorithm. Second, we conduct sanity check of
the algorithm by using another language model to validate the
proposed explanations.

VIII. CONCLUSION

In this paper, we showed how to use a large language
model (LLM) to annotate automatically synthesized code
with meaningful names. Our procedure principally relies on
a combination of two relatively simple techniques: first, by
including additional information about the implementation as
part of the prompt, and next, by validating the proposed names
with an algorithmic sanity check. Both experiments and a user
study show the effectiveness of our technique in producing
well-chosen function names. Our research contributes to the
emerging body of work on combining language models with
formal reasoning techniques. In future, we hope to extend these
ideas to automatically produce free-form comments, and also
potentially techniques that confirm the validity of comments,
identifiers and other natural language artifacts in code.

The artifact supporting the claims in this paper may be
downloaded from https://doi.org/10.5281/zenodo.12682854.

ACKNOWLEDGMENTS

We thank all the participants in our user study and the
anonymous reviewers for immeasurably improving this paper.
The research described in this paper was supported by the NSF
under grants CCF #2146518, #2124431, and #2107261.

[1]

[2]

[4]

[5

[t}

[6

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

S. Gulwani, A. Polozov, and R. Singh, Program Synthesis. NOW,
August 2017, vol. 4. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/program-synthesis/

R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based
program synthesis,” Commun. ACM, vol. 61, no. 12, p. 84-93, nov 2018.
[Online]. Available: https://doi.org/10.1145/3208071

A. Udupa, A. Raghavan, J. Deshmukh, S. Mador-Haim, M. Martin,
and R. Alur, “Transit: Specifying protocols with concolic snippets,” in
Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI. ACM, 2013, p.
287-296.

R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program
synthesis via divide and conquer,” in 23rd International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), ser. Lecture Notes in Computer Science, vol. 10205, 2017, pp.
319-336.

Y. Feng, R. Martins, O. Bastani, and I. Dillig, “Program synthesis using
conflict-driven learning,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI 2018. ACM, 2018, p. 420-435.

T. Lau, P. Domingos, and D. Weld, “Version space algebra and its
application to programming by demonstration,” in Proceedings of the
Seventeenth International Conference on Machine Learning, ser. ICML.
Morgan Kaufmann Publishers Inc., 2000, pp. 527—534.

P.-M. Osera and S. Zdancewic, “Type-and-example-directed program
synthesis,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI. ACM,
2015, pp. 619—630.

Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, R. Jhala, and N. Po-
likarpova, “Program synthesis by type-guided abstraction refinement,”
Proceedings of the ACM on Programming Languages, vol. 4, no. POPL,
Dec. 2019.

W. Lee, K. Heo, R. Alur, and M. Naik, “Accelerating search-based
program synthesis using learned probabilistic models,” in Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2018. ACM, 2018, p. 436-449.

E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,
in Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems, Ser.
ASPLOS. ACM, 2013, p. 305-316.

P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins, and
R. Bodik, “Chlorophyll: Synthesis-aided compiler for low-power spatial
architectures,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI. ACM,
2014, pp. 396—407.

J. McClurg, H. Hojjat, and P. Cerny, “Synchronization synthesis for
network programs,” in Computer Aided Verification. ~Springer, 2017,
pp. 301-321.

S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL.
ACM, 2011, p. 317-330.

R. Singh, “Blinkfill: Semi-supervised programming by example for
syntactic string transformations,” Proceedings of the VLDB Endowment,
vol. 9, no. 10, p. 816-827, Jun. 2016.

V. Le and S. Gulwani, “Flashextract: A framework for data extraction by
examples,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI. ACM,
2014, pp. 542—-553.

L. Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with
quantiative objectives,” in 27th International Conference on Computer
Aided Verification, ser. CAV, July 2016.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE. IEEE
Press, 2013, p. 772-781.

R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI. ACM, 2013, p. 15-26.

>

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt,
L. Cary, A. Solar-Lezama, and J. Tenenbaum, “Dreamcoder: Bootstrap-
ping inductive program synthesis with wake-sleep library learning,” in
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, ser. PLDI 2021.
ACM, 2021, p. 835-850.

R. Ji, Y. Sun, Y. Xiong, and Z. Hu, “Guiding dynamic programing
via structural probability for accelerating programming by example,”
Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, Nov. 2020.

L. Laich, P. Bielik, and M. Vechev, “Guiding program synthesis
by learning to generate examples,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
/lopenreview.net/forum?id=BJ107ySKvS

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, vol. 30, 2017.

OpenAl, “Gpt-4 technical report,” 2023.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “Llama: Open and efficient foundation language
models,” 2023.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray,
N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,
P. Tillet, E. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes,
A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang,
1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,
S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language
models trained on code,” 2021.

“Github copilot,” https://copilot.github.com/, 2021.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, jan 2019. [Online].
Available: https://doi.org/10.1145/3290353

V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from "big code",” in Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’15. ACM, 2015, p. 111-124.

M. Allamanis, E. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. ACM, 2015, pp. 38-49. [Online]. Available:
https://doi.org/10.1145/2786805.2786849

J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure
transformations from input-output examples,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI *15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 229-239. [Online]. Available:
https://doi.org/10.1145/2737924.2737977

N. Polikarpova, 1. Kuraj, and A. Solar-Lezama, ‘“Program synthesis
from polymorphic refinement types,” in Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI *16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 522-538. [Online]. Available:
https://doi.org/10.1145/2908080.2908093

A. Miltner, A. T. Nufiez, A. Brendel, S. Chaudhuri, and I. Dillig,
“Bottom-up synthesis of recursive functional programs using angelic
execution,” Proc. ACM Program. Lang., vol. 6, no. POPL, jan 2022.
[Online]. Available: https://doi.org/10.1145/3498682

D. Cao, R. Kunkel, C. Nandi, M. Willsey, Z. Tatlock, and N. Polikarpova,
“Babble: Learning better abstractions with e-graphs and anti-unification,”
Proceedings of the ACM on Programming Languages, vol. 7, no. POPL,
2023. [Online]. Available: https://doi.org/10.1145/3571207

A. Pal, B. Saiki, R. Tjoa, C. Richey, A. Zhu, O. Flatt, M. Willsey,
Z. Tatlock, and C. Nandi, “Equality saturation theory exploration & la
carte,” Proceedings of the ACM on Programming Languages, vol. 7, no.
OOPSLA2, 2023. [Online]. Available: https://doi.org/10.1145/3622834
M. Bowers, T. X. Olausson, L. Wong, G. Grand, J. B. Tenenbaum,
K. Ellis, and A. Solar-Lezama, “Top-down synthesis for library learning,”

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

(541

Proc. ACM Program. Lang., vol. 7, no. POPL, jan 2023. [Online].
Available: https://doi.org/10.1145/3571234

A. Nazari, Y. Huang, R. Samanta, A. Radhakrishna, and M. Raghothaman,
“Explainable program synthesis by localizing specifications,” Proceedings
of the ACM on Programming Languages, vol. 7, no. OOPSLA2, oct
2023. [Online]. Available: https://doi.org/10.1145/3622874

L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is program-
ming: A query language for large language models,” vol. 7, no. PLDI,
2023.

M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin,
D. Bieber, D. Dohan, A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and
A. Odena, “Show your work: Scratchpads for intermediate computation
with language models,” 2021.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le, and
D. Zhou, “Chain of thought prompting elicits reasoning in large language
models,” CoRR, vol. abs/2201.11903, 2022.

K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. L. Morales, L. Hewitt,
L. Cary, A. Solar-Lezama, and J. Tenenbaum, “Dreamcoder software
and data,” 2021. [Online]. Available: https://doi.org/10.1145/3410302
M. A. Jaro, “Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 414—420, 1989. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.
10478785

W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string
metrics for matching names and records,” in Kdd workshop on data
cleaning and object consolidation, vol. 3, 2003, pp. 73-78.

D. G. Feitelson, A. Mizrahi, N. Noy, A. B. Shabat, O. Eliyahu,
and R. Sheffer, “How developers choose names,” IEEE Trans.
Software Eng., vol. 48, no. 2, pp. 37-52, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2020.2976920

A. Swidan, A. Serebrenik, and F. Hermans, “How do scratch programmers
name variables and procedures?” in 17th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2017,
Shanghai, China, September 17-18, 2017. 1EEE Computer Society, 2017,
pp. 51-60. [Online]. Available: https://doi.org/10.1109/SCAM.2017.12
F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Software
Quality Journal, vol. 14, pp. 261-282, 2006.

G. Beniamini, S. Gingichashvili, A. K. Orbach, and D. G. Feitelson,
“Meaningful identifier names: The case of single-letter variables,”
in Proceedings of the 25th International Conference on Program
Comprehension, ser. ICPC *17. IEEE Press, 2017, p. 45-54. [Online].
Available: https://doi.org/10.1109/ICPC.2017.18

E. Avidan and D. G. Feitelson, “Effects of variable names on compre-
hension: An empirical study,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), 2017, pp. 55-65.

C. Wong, K. M. Ellis, J. Tenenbaum, and J. Andreas, “Leveraging
language to learn program abstractions and search heuristics,” in
Proceedings of the 38th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18-24 Jul 2021, pp. 11 193-11204. [Online].
Available: https://proceedings.mlr.press/v139/wong21a.html

S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of modu-
larization and comments on program comprehension,” in Proceedings
of the 5th International Conference on Software Engineering, ser. ICSE
’81. IEEE Press, 1981, p. 215-223.

A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source
code comprehension,” in Proceedings of the 26th Conference on
Program Comprehension, ser. ICPC *18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 31-40. [Online].
Available: https://doi.org/10.1145/3196321.3196332

L. Jiang, H. Liu, and H. Jiang, “Machine learning based recommendation
of method names: How far are we,” in 34th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE, 2019, pp.
602-614.

M.-A. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in 13th International Workshop on Program
Comprehension (IWPC’05), 2005, pp. 181-191.

R. Caballero, A. Riesco, and J. Silva, “A survey of algorithmic debugging,”
ACM Computing Surveys, vol. 50, pp. 1-35, 08 2017.

A. Zeller, “Yesterday, my program worked. Today, it does not. Why?”
in Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium on

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Foundations of Software Engineering, ser. ESEC/FSE. Springer, 1999,
pp. 253-267.

M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE. IEEE Press, 1981, pp.
439-449.

A. Ko and B. Myers, “Designing the Whyline: A debugging interface
for asking questions about program behavior,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser. CHIL.
ACM, 2004, pp. 151-158.

Y. Zhu and M. Pan, “Automatic code summarization: A systematic
literature review,” 2019.

T. Zhang, Z. Chen, Y. Zhu, P. Vaithilingam, X. Wang, and E. Glassman,
“Interpretable program synthesis,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. ACM, 2021.
N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-
mani, and R. Sharma, “Jigsaw: Large language models meet program
synthesis,” in Proceedings of the 44th International Conference on
Software Engineering, ser. ICSE. ACM, 2022, pp. 1219-1231.

K. Rahmani, M. Raza, S. Gulwani, V. Le, D. Morris, A. Radhakrishna,
G. Soares, and A. Tiwari, “Multi-modal program inference: A marriage
of pre-trained language models and component-based synthesis,” Pro-
ceedings of the ACM on Programming Languages, vol. 5, no. OOPSLA,
oct 2021.

B. Ozturkler, N. Malkin, Z. Wang, and N. Jojic, “Thinksum: Probabilistic
reasoning over sets using large language models,” 2023.

N. G. de Bruijn, “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem,” Indagationes Mathematicae, vol. 75, no. 5, pp. 381-392,
1972.

M. Shulman, “You could have invented de Bruijn indices,” https://golem.
ph.utexas.edu/category/2021/08/you_could_have_invented_de_bru.html,
2021.

APPENDIX
A. Algorithmic Name Synthesis

We now describe our custom interpreter that can compute
subspecifications in the presence of higher-order functions.
First, our interpreter includes a mechanism to print (serialize)
closures. Thus, for example, the subspecification of g1 in the
following program:
def gl (h):

return h(3)

def f1(x):
return gl (lambda y: x + vy)

given the global input-output example f1(2) =5 is given by:
gl(lambda y: 2 + y)=5.

Notice that this constraint is satisfied by the original subroutine
gl, but is also satisfied by other implementations, including by
the constant-valued function g1’ = lambda y: 5. Furthermore,
it is safe to use any such new implementation g1’ instead of
the previous implementation g1.

Next, we consider the case when subroutines themselves
return closures. Consider, for example, the subroutine g2 in
the following program:
def g2(x):

def h(y): return x + vy

return h
def fa(x):

return g2 (x) (3)

With the global input-output example f»(2) = 5, the subrou-
tine g2 is invoked with the input x = 2. If we instrument
the return value of g2 as before, we would observe that
g2(2) = lambda y: 2 + y. Notice that, given an alternative
implementation g2’, it is conceptually difficult to compare
closures for equality.

We instead use the following procedure. Say we wish to
produce the subspec for a function g which itself produces
a closure as output. In this case, given the original argu-
ment xi, we wrap the closure g(x;) in a monitor object
m1 = ([x1],9(x1)). We incorporate successive arguments
to mq, say xg, x3, ..., xj, resulting in the monitor object
mg = ([x1,%2,--+,xk],9(x1)(x2) () (x)). When the clo-
sure finally reduces to a ground value, the monitor m = (I, v)
prints the sequence of function arguments [and the finally
produced ground value v, which are then included as part of
the subspecification E.

In the example above, recall that the global specification
was f2(2) = 5. Querying the subspecification for g2 initially
results in the monitor object my = ([2], lambda y: 2 + y).
Further evaluation using this monitor object produces the final
subspec g2(2)(3) = 5. We can show that:

Lemma A.1. Let E be a set of input-output examples, and
f & E be a conformant implementation. Let g be a subroutine in
f, with local input-output subspecification E,. Pick a function
g' such that g’ = Eq. Then f[g'/g] E E.

Choose a meaningful name for the function "Name and Type": The implementation satisfies the specification. Choose a

meaningful name for the function "Name and Type":
Code

Specification

Code

(@) (b)

Write a function named "Name and Type":

(©

Fig. 8: Prompt templates utilized in the generation of names and code using the LLMs. Figure 8a is utilized to generate names

for the baseline, while Figure 8b is employed to generate names for our algorithms. Additionally, Figure 8c is employed to
generate programs for our filtering technique.

(lambda
(map (lambda
(lambda
(lambda
(lambda
(car (filter $0 (lambda
(empty? (filter $1 (lambda
(gt? $0 $1))))))))
(filter $1 (lambda
(gt? $1 (length (filter $2 (lambda
(gt? $1 $0)))))))))
$1 (+ 1 $0)))

(range (length $0)))

Fig. 9: Sorting a list of numbers. The corresponding Python program is in Figure 13.

B. Prompt Templates
Figure 8 displays the prompt templates utilized in the generation of names and code using the LLMs.
C. Implementation Listings

We list the lambda-expressions emitted by DreamCoder in Figures 9-12 and our corresponding transliterated Python programs

for all examples and user study tasks in Figures 13-16. Note that the lambda-expressions use de Bruijn indices [62], [63],
thereby eliminating variable names.

(lambda (# (lambda (lambda ((lambda (gt? $0 0))

(# (lambda (lambda (length (# (lambda (lambda (# (lambda (lambda
(fold $1 empty

(lambda (lambda (fold ($2 $1 range) $0

(lambda (lambda (cons $3 $2))))))))
$1 (lambda (lambda (if ($2 $1) $3 empty)))))) $1

(lambda (eqg? $0 $1)))))) $0 $1))))
(+ (+ (+1 (+1 1)) 1) 1)
$0)

Fig. 10: Checking if a list has 5. The corresponding Python program is in Figure 14.

(lambda (cdr (

(lambda (lambda (map (lambda (index $0 $2)) (range $0))))
(map (lambda $0) $0) (+ 1 (+ 1 1)))))

Fig. 11: Getting second and third elements of a list. The corresponding Python program is in Figure 15.

(lambda (fold $0 (# (map (lambda (mod (+ $0 1) (+ 1 (+ 1 1))»))) empty)
(lambda (lambda (# (lambda (lambda (fold $1 (cons $0 empty)
(lambda (lambda (cons $1 $0)))))) $0 $1))))

Fig. 12: Reversing a list. The corresponding Python program is in Figure 16.

def a3(x3):
def a31(x31):
def a32(x32):
return x31 < x32

return len(list (filter (a32, x3)))==0

return list (filter (a31l, x3))[0]
def a2 (x2):
def a2l (x21):
def a22(x22):
def az23(x23):
return x22>x23
return x21>len(list (filter (a23, x2)))
return a3 (list (filter (a22, x2)))
return a2l
def al(x1l):

def all(x11):
return a2 (x1l) (x11+1)
return list (map(all, range(len(xl))))

Fig. 13: Sorting a list of numbers.

D. User Study Tasks
Figure III includes all names generated by all algorithms used in two user studies.

TABLE III: The generated names used in two user studies. In the first user study, we only used names generated by the baseline
and NOMNOM. In the second user study, we asked participants to rate the names generated by the baseline, PE, PE + SC,
(PE+SC) C, and NOMNOM. We omitted the names produced by Code2Vec because they were uniformly uninformative.

Function Code2Vec Baseline PE PE+SC (PE+SC)C NomNom
Tl.a3 a3 foldFuncComposer appendListFunc
Tla2 a2 addModuloThree getScaledX21Value modulo_plus_one modulo_plus_one addOneModThree
TlLal al reverseOrderList reverseList reverseMapping reverseList
T2.a3 a3 getLowestUnused Value getMaxElement getMaxElement getLargestElement
T2.a2 a2 getHighestValueInList getNthElementInList getOrderedElement
T2.al al findMaxElementIndex findMaxElementIndex sortList sortList
T3.a2 a2 transformList getFirstXElements getFirstNItems
T3.al al extractNextTwoElements getSecondAndThirdElements
T4.25 as filterFives filterAppendFunc filterFunc
T4.a4 a4 filterIntListByPredicate filterListByPredicate filterList filterListByPredicate
T4.a3 a3 summationFunc countOccurrences countElementsMatching Value countOccurrences
T4.a2 a2 filterPositiveNumbers hasElementsGreaterThan containsNumber containsNum hasAtLeastOneOccurrence
T4.al al isOddIntList isEqualSs checkForFivelnSequences hasFivelnList

import functools

def

def

def

def

def

def

def

ab (x5) :
def a51 (x51):
def ab52(x52, x53):
def ab54 (x54, x55):
return [x53]+x52

return functools.reduce (ab4, x51 (x53) (range) [::-1],

return functools.reduce(a52, x5[::-1], [])
return abl

ad (x4) :
def a4l (x41):
def ad2 (x42):
def ad43(x43):
1if x41(x42):
return x4
else:
return []
return a43
return ab(x4) (a4d2)
return a4l

a3 (x3):
def a31(x31):
def a32(x32):
return x32==x31
return len (a4 (x3) (a32))
return a3l

a2 (x2):
def a2l (x21):
def a22(x22):
return x22>0
return a22 (a3 (x2) (x21))
return a2zl

al(xl):
return a2 (x1) (((1+(1+1))+1)+1)

Fig. 14: Checking if a list has 5.

a2 (x2):
def a2l (x21):
def a22(x22):
return x2[x22]
return list (map(a22, range(x21)))
return a2l

al(x1l):
def all(x11l):
return x11
return a2 (all(xl)) (1+(1+1))[1:]

x52)

Fig. 15: Getting second and third elements of a list.

import functools

def a3 (x3):
def a31(x31):
def a32(x32, x33):
return [x33] + x32
return functools.reduce(a32, x3[::-1], [x31])
return a3l

def a2 (x2):
return (x2+1)% (1+(1+1))

def al(xl):
def all(x11l, x12):
return a3 (x11l) (x12)
return functools.reduce(all, x1[::-1], list(map (a2, []1)))

Fig. 16: Reversing a list.

def genNextGreaterValue (x):
def f£(i: int):
greater = []
for e in x:
if e > 1i:
greater.append (e)
return min (greater)
return f

Fig. 17: Generated code by LLM for the generated name genNextGreaterValue.

	Introduction
	Overview and Motivating Example
	The Baseline LLM
	Prompt Expansion Using Subspecifications
	Algorithmic Sanity Checks

	Algorithmic Name Synthesis
	Prompt Expansion Using Subspecifications
	Algorithmic Sanity Checks
	Optimizations

	Experimental Evaluation
	RQ1: Effectiveness of Explanations
	RQ2: Response Rate of Tools
	RQ3: Number of LLM Queries Used

	User Study
	Tasks and Study Structure
	RQ4: Understanding What Functions Do
	RQ5: Understanding How They Work
	RQ6: Distribution of User Preferences

	Limitations and Discussion
	Related Work
	Conclusion
	References
	Appendix
	Algorithmic Name Synthesis
	Prompt Templates
	Implementation Listings
	User Study Tasks

