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Abstract

The advance in large multimodal models (LMMs) gives rise to au-
tonomous bots that perform complex tasks using human-like rea-
soning on their own. The ability of large models to understand
spatial relations and perform spatial operations, however, is known
to be limited. This gap hinders the development of autonomous
GIS analysts, travel planning assistants, and other possibilities of
spatial bots. In this paper, we explore the impact of modality on
the performance of LMMs in spatial planning tasks - specifically,
retrieving a target brick by first removing all other bricks on top
of it. Experiments demonstrate that what matters is not only the
modality of the prompts (text or image), but also how informative
the spatial descriptions are for the LMMs to complete the task. We
propose novel concepts of task-implicit and task-explicit spatial de-
scriptions to qualitatively quantify the task-specific informativity
of prompts. Furthermore, we develop simple techniques to increase
the spatial task-explicity of image prompts, and the accuracy of
spatial planning increases from 26% to 100% accordingly.
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1 Introduction

The GIS community has long been speculating about an autonomous
GIS analyst (a GeoMachina) that can perform simple spatial data
science tasks entirely by itself [10]. This goal becomes increasingly
tangible given the rapid advance in foundation models, especially
large multimodal models [12], since spatial data can be expressed
in multiple modality (e.g., natural language description vs an im-
age depiction of a route). Instead of training task-specific models
from scratch, LMMs allow researchers to build intelligent bots by
prompting and decomposing complex tasks into steps via Chain-
of-Thought (CoT) reasoning [16].

Conventionally, prompts for spatial reasoning tasks consist of im-
ages that describe the spatial environments and texts that describe
the goal of the reasoning [1]. For example, one may present a photo
of a living room to an LMM and ask it to plan a route to get a bottle
of water in the corner. Whereas this setting of prompt modality
seems most intuitive, researchers find that text-only prompts also
work well in certain tasks [9, 11]. It is yet unclear to what extent the
modality of prompts affects the performance of spatial reasoning,
and one step further, which modality suits which spatial reasoning
task best. This paper will make some explorations.

We focus on a specific spatial reasoning task: planning the order
of removal of bricks in a brick world, where a brick can be removed
only after all other bricks that are placed on top of it have been
removed first [9]. This is a simple case of the conceptual abstraction
of many real-world applications, where an Al system needs to find
a sequence of locations in space (i.e., bricks) given a set of rules (i.e.,
the criteria for blocking, which in our case is "there exists a block
on top"). We generate prompts for both 1D (i.e., one column) and
2D (i.e., multiple columns) brick arrangements in both textual and
image modalities and use them to evaluate the planning accuracy
of several Al systems (e.g., GPT-40).

One issue we noticed in our preliminary experiments is that
2D image-based prompts often show a horizontal shift in their
solutions where the Al system falsely recognizes bricks from an ad-
jacent column as being on top of the target brick; see Figure 1. This
phenomenon reduces the planning accuracy of image prompts to be
anti-intuitively lower than text prompts. We hypothesize that this is
because the text prompts, which use relational expressions such as
on top of and to the left of, are spatial descriptions explicitly related
to the solution of the planning task, whereas for image prompts
the Al models need to implicitly infer the touching relations from
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Figure 1: Chatgpt-4o0 prediction of which bricks need to be
removed (outlined in red) to reach brick Z. To reach any
brick, all bricks on top of it must be removed first. When the
input image has no spacing between columns (a), the system
predicts that brick T has to be removed which is incorrect.
When the spacing between columns is introduced (b), the
system correctly predicts that bricks R, F, J, and C need to be
removed to retrieve brick Z.

raw pixels. We propose a pair of concepts — task-implicit and task-
explicit — to qualitatively quantify how straightforward and clear
the spatial descriptions of prompts are for solving the task. For
simplicity, we say a prompt is spatially task-implicit/task-explicit if
its spatial description is task-implicit/task-explicit.

As the wording suggests, whether the a prompt is spatially task-
explicit depends on the properties of the task. For example, in our
block removal task, the most useful information is the vertical touch-
ing relations; thus the spatially task-explicit prompts are those who
represent vertical touching relations as clear as possible. To verify
the usefulness of our proposed concepts, we conduct two sets of
experiments: (1) we generate spatially task-implicit text prompts
by only describing the raw coordinates of bricks, and the planning
accuracy drops significantly as expected; (2) we generate spatially
task-explicit image prompts by adding horizontal spacing between
brick columns, i.e., giving hints to the LMMs that vertical relations
are more important, and the planning accuracy improves signifi-
cantly as expected. We further investigate how different spacing
strategies affect the planning accuracy. Experiments demonstrate
that the larger the horizontal spacing is than the vertical spacing,
the higher the planning accuracy, supporting our argument that
hints of focusing on vertical relations make image prompts more
spatially task-explicit, resulting in better performance.

The research contributions of this paper are as follows:

o We extend the existing study of spatial reasoning of LLM
from [9] to include image-based prompts;

e We find that 2D spatial planning is very different from 1D
in both text and image modalities, and identify the issue of
column shift in the brick removal sequence;

o Propose novel theoretical concepts of task-implicit and task-
explicit spatial descriptions to explain this phenomenon;

e For the vertical brick removal task, we demonstrate in our
ablation studies that the key is to let the model focus on the
vertical touching relations.
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2 Related Works

Spatial reasoning and task planning have long been studied in
GIScience and Al, with various approaches developed to enable au-
tonomous spatial decision-making. Early studies explored symbolic
reasoning and logic-based methods to automate spatial analysis,
focusing on rules and relationships between spatial entities [5, 6].
With advancements in deep learning and computer vision, the inte-
gration of multimodal data, such as images and texts, has gained
traction for complex spatial tasks, including object recognition,
navigation, and path planning [2, 8]. Recent research highlights
the potential of LMMs to enhance spatial reasoning capabilities,
leveraging textual and visual prompts to guide Al behavior [13, 15].

The emergence of large multimodal models (LMMs) and their
application in spatial reasoning tasks have gained significant atten-
tion recently. A key study by Hu et al. (2024) introduced Chain-of-
Symbol Prompting, which simplifies user interactions with LLMs
by transitioning from chain-of-thought to chain-of-symbol reason-
ing. This approach reduces token usage and improves performance
in spatial reasoning tasks, particularly in textual prompts that uti-
lize topological descriptions of spatial relations [9]. While their
work explored various spatial reasoning tasks, our study extends
their approach by incorporating metrical descriptions (using coor-
dinates) and image-based prompts, specifically within the context
of brick-world examples in 1D and 2D setups.

Gao et al. [7] further explored the potential of LLMs in represent-
ing textual descriptions of geometries and spatial relations using
Well-Known Text (WKT) formats to assess how models interpret
and reason about spatial objects from textual inputs. However, their
focus was limited to earlier models like GPT-3, whereas our study
not only includes GPT-3.5 but also examines the performance of
newer models like GPT-4. This broader evaluation provides deeper
insights into how different modalities and model versions affect
spatial reasoning accuracy by extending the evaluation to include
both metrical and image-based prompts.

Cohen’s recent foundational contributions to spatial reasoning,
particularly involving RCC8 spatial relations, underscore the grow-
ing interest in integrating spatial resoning with LLMs [3]. Although
our study does not directly address RCC8 relations, Cohen’s work
highlights critical considerations in spatial reasoning, such as the
ability of models to understand and manipulate spatial relationships,
which are crucial for spatial planning tasks like those addressed in
our research.

Recent studies by [18] on spatial foundation models and spa-
tial embeddings represents a significant advancement in creating
domain-specific representations that enhance LLM performance
in spatial contexts. Their research focuses on pre-training and
fine-tuning LLMs with spatial data to improve spatial reasoning
capabilities. In contrast, our approach evaluates general-purpose
LMMs without specific spatial adaptations, providing a baseline
for understanding how these models perform spatial tasks without
specialized training.

Additionally, from a computer vision perspective, spatial reason-
ing has been a key focus, especially in robotics and autonomous
systems. For example, Zhangyu et al. (2024) [17] explored how
computer vision models integrate spatial reasoning in robotics, us-
ing visual data to navigate and manipulate environments. Their
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work demonstrated that image-based prompts, such as those used
in our study, can effectively guide spatial tasks, such as object re-
trieval or navigation. This research is particularly relevant to our
investigation of how visual input impacts LLM performance in
spatial planning tasks, reinforcing the importance of evaluating
multimodal approaches.

These studies collectively form a foundation for understanding
the evolving landscape of spatial reasoning with LLMs and com-
puter vision techniques, highlighting the need for comprehensive
evaluations across multiple input modalities and models to better
understand their applicability and limitations in complex spatial
tasks.

However, existing studies predominantly focus on simple en-
vironments or specific applications, with limited exploration into
the comparative performance of different prompt modalities. Addi-
tionally, previous works often overlook the nuanced interactions
between task-implicit and task-specific information in spatial rea-
soning, an aspect that becomes crucial when scaling from controlled,
single-dimensional tasks to more complex, multi-dimensional envi-
ronments [4, 14]. This gap underscores the need for a systematic
examination of how LMMs process spatial prompts and how prompt
design can impact task accuracy, particularly in scenarios where
precise spatial relationships are critical.

3 Methodology

To test the effect of the input modality on the correctness of spatial
reasoning of LMMs, we propose a methodology that is based on the
brick world examples from [9], but extends further. This section
presents the details of the brick removal task, the data generation
process, the prompt types and strategies used, and the evaluation
metrics. All code and data relating to our methodology and results
are available on GitHub!.

3.1 Task definition

The task is to retrieve a specified brick from a defined arrangement
of bricks. Bricks can be arranged in 1D where they are stacked on
top of each other, or in 2D where they are stacked both vertically,
i.e,, on top of each other, and horizontally, i.e., next to each other.
In this study, we keep the 2D examples limited to three columns
of bricks for simplicity. One brick is specified as a brick that needs
to be retrieved. However, to retrieve the desired brick, one must
first remove all the bricks on top of it, one brick at a time. The
arrangement of bricks can be presented both as a text or an image.

3.2 Data generation

The data for this task, i.e., the 1D and 2D brick arrangements, are
generated programmatically, where the position, label, and col-
ors of each brick are selected randomly. The basis for our brick
generation script is the code published by [9]. In both 1D and 2D
cases, we first generate the coordinates of each brick. We call a
textual description that describes the brick arrangement through
their coordinates a task-implicit textual description. Then, we also
generate a task-explicit textual description using the spatial relation
terms to describe the relations between the bricks. In the 1D cases,
the spatial relation term that is used is “on top of” - e.g., brick A

Uhttps://github.com/ivan-majic/llm_modality_reasoning.git
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is on top of brick B. In 2D cases, there are two additional spatial
relation terms used - to the left of and to the right of- Each brick
is mentioned exactly once in a description, giving its name and
relation to one other brick or its name and color only if all other
bricks have already been mentioned.

In addition to textual descriptions, we also generate image repre-
sentations of each brick arrangement. Bricks are depicted as squares
that are stacked on top of each other and have one column (or stack)
in 1D cases, or three columns in 2D cases. Each square is labeled
with the name of the corresponding brick, represented by any ran-
domly selected uppercase letter from A to Z, ensuring that each
letter is unique. The images are created in both color and black
and white (bw) versions to test if the color influences the success
of the task solving. For 2D cases, we also generate images where
spacing is introduced between columns to test if this highlights
their topological properties and alleviates the issue of the model
removing bricks from adjacent columns. We call these kinds of
images task-explicit, while we call images without spacing between
bricks task-implicit. Table 1 shows examples of 1D and 2D brick ar-
rangements with the corresponding task-implicit and task-implicit
textual and image descriptions.

3.3 Prompting

We employ different prompts to instruct LMMs in solving the speci-
fied brick retrieval task, tailored to the input modality (text or image)
and the representation of the brick arrangement (task-implicit or
task-explicit). All prompts in this study are zeroshot, meaning that
the model has only one attempt at answering. We also did not
perform any fine-tuning or pre-training on the models. Text-based
task-implicit prompts remain mostly unchanged from the ones used
by [9], while the other prompts are newly generated.

Text-based prompts are first presented with a message that in-
structs the model to work on the problem step by step, thereby
triggering CoT reasoning:

Let’s think step by step, and provide the answer in the format of a
sequence of bricks by a comma in the last sentence.

This is followed by a question template that specifies the task to
the LLM. Each task instance has a different brick arrangement and
target brick, so these elements are filled in for each task instance:

Question: There is a set of bricks. [brick arrangement description]
Now we have to get a specific brick. The bricks must now be grabbed
from top to bottom, and if the lower brick is to be grabbed, the upper
brick must be removed first. How to get brick [target brick]?

This prompt remains the same for 1D and 2D cases because the
same rules apply, and the only difference is in the spatial relation
terms they use in the textual description of the brick arrangements.
The [brick arrangement description] can be either task-implicit or
task-specific (see Table 1).

Image-based prompts use images instead of text to describe the
brick arrangements. Again, there is no differentiation in the image
prompt between different types of images used. Image prompts
are also presented with the chain of thought instruction, and then
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Table 1: 1D (top) and 2D (bottom) brick arrangements with
corresponding textual descriptions and images.

Text task-implicit:

“Brick J is at position (0, 0). Brick E is at position (0, 1). Brick F is at
position (0, 2). Brick N is at position (0, 3). Brick V is at position (0, 4).
Brick S is at position (0, 5). Brick H is at position (0, 6). Brick I is at
position (0, 7). Brick M is at position (0, 8). Brick R is at position (0,
9).”

Text task-explicit:

“The brick V is on top of the brick N. The brick S is on top of the brick
V. The brick F is on top of the brick E. For the brick J, the color is blue.
The brick H is on top of the brick S. The brick R is on top of the brick
M. The brick M is on top of the brick I. The brick I is on top of the
brick H. The brick N is on top of the brick F. The brick E is on top of
the brick 7.”
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Text task-implicit:

“Brick R is at position (0, 0). Brick D is at position (0, 1). Brick X is at
position (0, 2). Brick H is at position (0, 3). Brick F is at position (1, 0).
Brick G is at position (1, 1). Brick I is at position (1, 2). Brick N is at
position (2, 0). Brick ¥ is at position (2, 1).”

Text task-explicit:

“There is a set of bricks. The brick H is on top of the brick X. The brick
Fis on top of the brick N. The brick N is to the right of the brick F. The
brick G is on top of the brick F. The brick X is on top of the brick D.
The brick I is to the right of the brick X. The brick D is on top of the
brick R. For the brick R, the color is yellow. The brick F is to the right
of the brick R.”

followed by a specific textual prompt that explains the task and
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Figure 2: Example of no spacing (a), and 0.5 spacing between
bricks in the horizontal (b), vertical (c), and both (d) dimen-
sions.

specifies the target brick for that specific task instance:

Let’s think step by step, and provide the answer in the format of a
sequence of bricks by a comma in the last sentence.

The image shows a set of bricks that can be placed on top of each
other. Now we have to get a specific brick. The bricks must now be
grabbed from top to bottom, and if the lower brick is to be grabbed,
the upper brick must be removed first. How to get brick [target brick]?

3.4 Ablation study of brick spacing

To test the effect of task-implicit versus task-explicit representation
of the brick world in image prompts, we carried out an ablation
study. We fine-tune the images in our prompts by introducing and
increasing spacing between bricks to make the model focus more
on the relative positions of objects rather than their adjacency in
the image (pixel) space. In the first instance, we gradually increased
the spacing between bricks in an image horizontally, then vertically,
and then in both directions (Figure 2). We consider only 2D image
prompts in this ablation study and increase the spacing from 0
to 1 in increments of 0.1 units. Since the bricks in our images are
depicted as squares with a width of 1, the maximum spacing is the
same as the width of a brick.

In the second instance, we tested an asymmetrical spacing be-
tween bricks that is larger in the horizontal dimension than the
vertical. By doing so, we are effectively directing the reasoning of
the Al system towards the vertical direction, which is the direc-
tions that is relevant for our task. Here, we express the horizontal
spacing (hs) as a function of vertical spacing (vs). We define three
such functions in this ablation study: hs = vs + 0.3, hs = vs * 2, and
hs = uvs * 4 (Figure 3).

3.5 Evaluation

The answers are first parsed to extract the part that represents the
brick removal sequence provided by the LMM. These sequences
are then evaluated against the ground truth using three evaluation
metrics: accuracy, precision, and recall. Following [9], accuracy



Spatial Task-Explicity Matters in Prompting Large Multimodal Models for Spatial Planning

K o] ] K o J
B F R B F R
(a) hs =o0s+0.3 (b) hs = vs * 2
K 0 J
B F R
(c) hs =vs x4

Figure 3: Example of asymmetrical spacing between bricks,
where horizontal spacing (hs) is a function of vertical spacing
(vs). In this example, vs=0.2.

is defined as the success rate in achieving the final goal, i.e., the
ratio of predicted sequences that exactly match the ground truth
sequences. The precision and recall are calculated using the Longest
Common Sequence (LCS) between the predicted and ground truth
sequences to measure their similarity. Thus, precision is defined as
the ratio of the LCS and the length of the predicted sequence. Recall
is defined as the ratio of the LCS and the ground truth sequence.

4 Results

Here we present the results of our prompting experiments, based on
different prompt characteristics. For this study, we generated 50 1D
and 50 2D brick arrangements. First, we analyze the performance of
all prompt dimensions, modalities, descriptions, and colors. Then
we analyze the effects of brick spacing on the accuracy of 2D image
based prompts in an ablation study.

4.1 Prompting results
b

We executed our prompts on three Al models from OpenAl using
their API service?: gpt-40-2024-08-06, gpt-40-mini, gpt-3.5-turbo.
The “40” family of GPT models are the latest and most advanced
LMM models published to date by OpenAl, and support image and
text modalities as input for their prompts. The gpt-3.5-turbo is a
legacy LLM model that supports only text-based prompts. We test
prompts with both task-implicit and task-explicit brick representa-
tions, and for the image-based prompts, we test both the black and
white and color versions.

The results of the brick removal planning task are evaluated
in Table 2. As one can expect, it can be seen that all three mod-
els perform better when dealing with the simpler 1D cases versus
2D when corresponding categories are compared. Further, the re-
sults show that image-based prompts can achieve better accuracy
over text-based prompts, especially in 2D cases where text-based
prompts perform poorly for all models.

Zhttps://platform.openai.com
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Regarding the brick descriptions used in prompts, the results
show that task-explicit brick descriptions always outperform task-
implicit brick descriptions. The difference is largest in 2D image-
based prompts, where the accuracy has increased by 74% for gpt-
40-2024-08-06 and 46% for gpt-40-mini. Task-implicit text-based
prompts perform particularly badly with gpt-40-mini achieving the
highest accuracy of 22% across all models and dimensions.

The effect of color on image-based prompts is not consistent
across models. For gpt-40-2024-08-06 colored images show slightly
better performance in 1D and slightly worse performance in 2D
cases. For the gpt-40-mini model, there is a stronger effect visible
where black and white images achieve 18% higher accuracy in 1D,
and 14% in 2D cases.

4.2 Ablation study results

We performed an ablation study using the 2D image-based prompts
with black and white images, and the gpt-40-2024-08-06 model.
We start with the task-implicit brick description (i.e., no spacing
between bricks) and gradually increase the spacing. For this ex-
periment, 50 2D brick arrangements were used with 10 different
spacing sizes (i.e., 0.1 - 1) across three different spacing directions
(i.e., horizontal, vertical, both). This results in the total of 1500
images.

Results are shown in Figure 4a and indicate that horizontal spac-
ing has a very positive effect where the accuracy increases from
26% for no spacing to over 93% for images with horizontal spacing
of 0.3. Further increases in horizontal spacing show much lesser
effect on performance, but the largest spacing of 1 achieves the
perfect accuracy.

Spacing in vertical or both directions does not seem to provide a
meaningful increase in the performance. Vertical spacing actually
consistently lowers the accuracy, making it less than 5% with the
spacing of 0.5 or more. Spacing in both directions shows little effect
on accuracy, with accuracy increasing to 31% when the spacing is
0.4, but ultimately decreasing to 18% when the spacing is 1 in both
directions.

In the second ablation study, we tested the effect of asymmetrical
spacing between bricks on the performance, where the horizontal
spacing (hs) is always larger than the vertical spacing (vs). We test
three different functions for the hs, each with 10 different spacing
values and 50 different brick arrangements, which again results in
the total of 1500 image-based prompts.

Results of this study are shown in Figure 4b and demonstrate
mixed effect of asymmetrical spacing on the accuracy. In the case of
the fixed difference between hs and vs (hs = vs + 0.3) the accuracy
shows a large decline from 90% to 45% as soon as the vertical spacing
is introduced. Further increases in hs and vs using this equation do
not have a meaningful effect on accuracy. When hs is expressed as
a multiplication of the vs, we see an increase in accuracy. However,
this is increase is quite modest when hs = us * 2 is used, as the
maximum accuracy achieved is 52%. When a larger multiplication
is used in hs = vs * 4, the increase in accuracy is more pronounced
and achieves the maximum accuracy of 90% when vs = 0.7 and
hs = 2.8.
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Table 2: Overall task performance expressed as accuracy, precision, and recall by dimension, modality, color, and model.

gpt-40-2024-08-06 gpt-40-mini gpt-3.5-turbo
accuracy precision recall accuracy precision recall accuracy precision recall

modality description  color
text task-implicit - 12.0 85.5 24.8 22.0 67.6 43.8 2.0 82.6 17.5
D task-explicit - 92.0 99.6 98.3 38.0 86.6 63.8 54.0 82.0 71.0
image task-implicit bw 96.0 100.0 96.6 82.0 88.7 85.5 - - -
& P color 100.0 100.0  100.0 54.0 71.8 63.6 - - -
text task-implicit - 6.0 57.3 37.4 8.0 43.8 44.2 8.0 61.6 394
task-explicit - 38.0 75.0 78.0 22.0 65.6 68.4 14.0 37.7 46.8
bw 26.0 44.9 72.0 0.0 29.5 48.3 - - -

2D task-implicit

e PR color 20.0 407 643 0.0 272 436 - - -
& task-explicit bw 100.0 100.0  100.0 46.0 62.5 67.5 - - -
P color 98.0 98.4 98.4 38.0 63.0 62.8 - - -

5 Discussion

Our experiments have tested the effect of both prompt modality
and spatial description on the performance of large multimodal
models (LMMs) in a spatial planning task. We first show that all
models perform significantly better in 1D versus 2D cases, especially
when the text modality and task-explicit image modality are used
(Table 2). This result aligns with our expectations, given that the
task requires removing all bricks positioned on top of the target
brick, implying a clear vertical hierarchy. In 1D cases, there is only
one column of bricks, and they only span in the vertical dimension,
eliminating potential confusion from neighboring columns, as seen
in the 2D cases.

As a solution to this column-shift problem in 2D cases, we as-
sumed that the relational nature of the brick removal task would
mean that emphasizing this information in the prompts, particu-
larly with the task-explicit spatial descriptions, would lead to a
significant increase in accuracy. While this is generally true across
both text-based and image-based prompts, the findings are not
entirely straightforward. As Table 2 illustrates, the results for 2D
image-based task-explicit prompts, where only horizontal spac-
ing is applied, show a substantial improvement over task-implicit
prompts (i.e., no spacing between bricks), with accuracy rising from
26% to 100%. However, our ablation studies tested the extent and
direction of spacing required for this effect, and the results offer a
more complex picture.

When we applied only horizontal spacing, even a modest spacing
of 0.3 resulted in a significant improvement in accuracy (Figure 4a).
Yet, when vertical spacing was introduced, this benefit was negated,
and in some cases, accuracy declined. Contrary to our expectations,
symmetrical spacing in both the horizontal and vertical dimensions
did not enhance accuracy at all. This means that generic conversion
of image prompts by introducing equal spacing in all directions
does not completely solve the column-shift issue that occurs in 2D
cases. This suggests that the improvement in accuracy from spacing
is highly task-specific: it works effectively only when the spacing
helps the models to focus on the spatial relations that matter for
completing the task. We do not know what the effect of spacing

would be in tasks that consider horizontal hierarchy or are isotropic
and this would be an interesting study in the future.

We can interpret the adjustments we made in our experiments
as a form of prompt fine-tuning, rather than model fine-tuning.
This let us assess the capability of generic Al systems to perform
a very specific spatial planning task with various levels of help or
hinting provided in the task definition itself. Future studies could
explore whether similar accuracy improvements could be achieved
by maintaining the task-implicit spatial descriptions in the prompts
(i.e., text prompts with coordinates and image prompts without
spacing), but fine-tuning the AI system itself specifically for this
task. Such a study could reveal whether fine-tuning the Al system
directly could match or even surpass the benefits we have observed
from optimizing the prompt design and compare the feasibility of
both approaches.

6 Conclusion and future work

This paper investigated the effect of modality on the ability of AI
systems to solve a spatial reasoning task. Specifically, we consid-
ered the modality of prompts (text versus image) and the spatial
descriptions of the environment. We adopted a brick removal task
from [9] and extended it by generating more complex 2D cases
and introducing image-based prompts, which were not considered
before. We also employed two types of spatial descriptions: task-
implicit and task-explicit. Our experiments were conducted using
several large multimodal models, and we tested the effectiveness of
these different modalities through various prompt designs.
Through our experiments, we show that aligning the spatial
description of the prompt with the properties of the task signifi-
cantly increases the accuracy of Al systems in spatial reasoning.
In text-based prompts, this is done by describing the environment
with spatial-relation terms (i.e., relative positions) instead of the
absolute positions of blocks. In images, spatial task-explicity is
achieved by introducing spacing between blocks whose relative
positions are not useful for LMMs to solve the task. Before intro-
ducing task-explicit spatial descriptions, the maximum achieved
accuracy for 2D text-based and image-based tasks was only 8% and
26%, respectively. After the task-explicit spatial descriptions were
introduced, the accuracy increased to 38% for text and 100% for
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