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Abstract—This study marks the first endeavor to utilize wear-
able technology combined with machine learning to objectively
assess the Modified Clinical Test of Sensory Interaction on
Balance (m-CTSIB). We focus on developing an affordable, easily
accessible method for balance assessment, critical for adults at
risk of falls and cognitive decline. Our novel approach uses
a single inertial measurement unit sensor (APDM, INC.) to
gather lumbar accelerometer and gyroscope data. This data is
accompanied by ground truth scores obtained from m-CTSIB
tests on a force plate (Falltrak II, MedTrak VNG, Inc.) from
34 participants aged 21 to 88. Using XGBOOST, we achieve a
remarkable 0.94 correlation using accelerometer data and 0.90
with gyroscope data in the test dataset, demonstrating a strong
correlation with actual scores in a subject-wise leave-one-out
cross-validation. Offering objectivity, affordability, and potential
for remote monitoring, our innovative approach holds promise for
enhancing the diagnosis and management of balance disorders in
adults, thereby improving their quality of life and independence.

Index Terms—Balance Assessment, Wearable Sensors, Ma-
chine Learning, m-CTSIB (Modified Clinical Test of Sensory
Interaction on Balance)

I. INTRODUCTION

The term “balance” is frequently employed in the healthcare
field across diverse clinical specialties. It is often used in
conjunction with terms like stability and control of posture
[1]. Around 33% to 50% of individuals aged 65 and older
encounter challenges related to balance or walking [2]. Eval-
uating motor performance, including walking and stability,
among older individuals can serve as a valuable clinical
approach to anticipate various clinical consequences. These
outcomes encompass the risk of falls, neurological conditions
like Parkinson’s disease, cognitive decline, and even mortality
(31, [4].

Modified Clinical Test of Sensory Interaction on Balance
(m-CTSIB) is among the commonly employed balance as-
sessment methods, alongside others such as the Berg Balance
Scale (BBS) and Timed Up and Go (TUG) test [S]-[7].
The conventional methods typically involve clinicians using
stopwatches to measure the duration of independent standing
under various sensory conditions [8]. However, this approach
introduces variability and subjectivity in the obtained results.
These limitations underscore the need for more objective and
comprehensive assessment tools in balance evaluation.

This study was supported by the National Science Foundation (IIS 1942669)
and Ed and Ethel Moore Alzheimer’s Disease Research Program at the Florida
Department of Health (AWD-001693).

On the other hand, force plate technology has emerged as a
valuable means of objectively assessing balance and mobility.
Utilizing distinct quantification systems, technologies like the
NeuroCom Balance Master (NeuroCom™ International Inc.)
[9] and Falltrak II (MedTrak VNG, Inc.) have been employed
to measure m-CTSIB test scores. The NeuroCom Balance
Master, for instance, evaluates sway velocity (measured in
degrees per second) under each sensory condition, while
the Falltrak II assesses deviations of the center of pressure
(COP) from the center of mass (COM). However, the primary
limitation of force plate technology lies in its dependence
on expensive, specialized equipment, often rendering it inac-
cessible in various clinical settings. Additionally, it lacks the
flexibility for remote assessments, limiting its application in
broader contexts. These challenges highlight the imperative
for developing accessible, objective, and affordable balance
assessment methods, such as the one proposed in this study.

This study introduces a novel approach using wearable
sensors and machine learning to estimate m-CTSIB scores.
We utilize a single APDM wearable sensor to capture lumbar
accelerometer and gyroscope data and apply the XGBOOST
algorithm to estimate m-CTSIB scores. Notably, we utilize
ground truth scores obtained concurrently with m-CTSIB
assessments. This innovative approach holds the potential
to provide an objective, accessible, and remote means of
assessing balance, addressing the limitations associated with
traditional methods and specialized equipment. This innova-
tion can potentially enhance the diagnosis and management of
balance disorders and consequential complications, improving
their quality of life and independence.

II. STUDY DESIGN
A. Dataset

We conducted this study with a cohort of 34 participants,
ranging in age from 21 to 88 years, consisting of 12 males and
23 females. The study adhered to ethical guidelines, obtained
IRB approval, and followed the principles of the Helsinki Dec-
laration. All participants provided informed consent through
written consent forms. All subjects underwent the m-CTSIB
clinical test, which assesses the balance performance of adults
when one or more sensory systems (i.e., vision, somatosensory,
and vestibular) are compromised. We employed the Falltrak
IT computerized balance testing system for this purpose. The
m-CTSIB test was conducted with participants standing on
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Fig. 1. The variations in path length (PL) and average velocity (AV) across
four different conditions of one of our subjects. The horizontal and vertical
axes represent the displacement of the subject along the x-axis and y-axis,
respectively. The green lines represent the real-time tracing of the subject’s
center of pressure (COP) during the test, and the pink circles indicate the
standard deviation of the subject’s COP.

the Falltrak II plate, each trial lasting approximately 10 sec-
onds. This test comprised four distinct conditions to assess
balance under varying sensory inputs comprehensively. The
first condition was Eyes Open, standing on a Stable Surface
(EOSS), which served as a baseline measurement. The sec-
ond condition, Eyes Closed, standing on a Stable Surface
(ECSS), evaluated balance without visual cues. The third, Eyes
Open, standing on a Foam Surface (EOFS), challenged the
participants’ balance on an unstable surface while retaining
visual input. Finally, the most challenging condition was
Eyes Closed, standing on a Foam Surface (ECFS), where
participants had to maintain balance without visual cues and
on an unstable surface.

The Falltrak II system measured the participants’ balance
using the path length (PL) and average velocity (AV). Stability
measures how much the COP deviates from the COM during
the test. PL is a measure of how much the COP moves
during the test. A shorter path length indicates a better balance
performance. AV is a measure of how fast the COP moves
during the test. A lower average velocity indicates a better
balance performance. Fig. 1 shows the Falltrak II report of
a participant and how PL and AV vary through different
conditions, with ECFS being the most challenging with the
highest PL and AV scores.

Before initiating the m-CTSIB clinical test, we affixed an
APDM wearable sensor to the lumbar region with the Z-
axis oriented downward (see Fig. 2). This sensor recorded

TABLE I
SUMMARY OF MEASUREMENTS FROM DIFFERENT CONDITIONS

PL (in) AV (in/s) Sensor Data Duration (s)
EOSS 3.3 + 1.53 0.32 + 0.15 12.00 + 3.88
ECSS 6.34 £+ 3.08 0.63 4+ 0.31 11.62 £+ 1.34
EOFS 7.05 £ 3.44 0.70 4+ 0.34 11.51 4+ 1.35
ECFS | 19.84 + 10.47 | 1.99 + 1.05 11.74 + 1.61

Measurements are in inches (in) for path length (PL) and average velocity
(AV) and in seconds (s) for sensor data duration

accelerometer and gyroscope data in three dimensions (X, Y,
and Z) at a sampling frequency of 128 Hz. Each participant
generated four data files corresponding to the four test con-
ditions. Initially, the sensor data was stored locally, and upon
completing the data collection session, we utilized a Docking
Station provided by APDM Wearable Technologies to transfer
the data to a computer via USB cable.

We selected the lumbar region for sensor placement due to
its proximity to the body’s center of gravity, a critical factor
in balance control. This location enables capturing the center
of gravity movements to estimate the balance performance,
as mentioned in previous studies [10], [11]. It also offers
comfort and minimal interference with test conditions. Table
I summarizes collected data, including average PL and AV
scores and the duration of recorded wearable data.

B. Feature Extraction

As a preprocessing step, a 0.5 second interval was omitted
from the beginning and end of the wearable sensor data before
feature extraction. This adjustment was made to mitigate the
potential influence of artifacts or disturbances when subjects
transitioned between four conditions.

We independently extracted 42 features from the accelerom-
eter and gyroscope data, considering each subject’s perfor-
mance in the X, Y, and Z dimensions. Consequently, there
were 168 features available for each subject, separately for

Fig. 2. The coordinate direction of APDM sensors and its location on the
lumbar.
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accelerometer and gyroscope data. The extracted features
encompass a wide range of characteristics, including statis-
tical measures (such as standard deviation, skewness, kur-
tosis, and sparsity), entropy-related metrics (including Shan-
non entropy, sample entropy, and frequency-domain entropy),
frequency-domain attributes (main frequency, secondary fre-
quency, power of the main frequency, and power of the
secondary frequency), as well as time-domain features (such
as difference sum, average jerk, and correlation between
dimensions). These features collectively capture the nuances of
the sensor signals and offer insights into the subjects’ balance
performance. These extracted features are comprehensively
described in [12].

Notably, we opted not to perform feature selection in this
study. The rationale behind this decision lies in utilizing
the XGBOOST algorithm, a powerful and efficient machine-
learning technique capable of handling high-dimensional and
noisy data. XGBOOST can automatically discern the most
pertinent features for the prediction task through its tree-based
structure and regularization term. This approach is particularly
advantageous for regression tasks, where traditional criteria
for feature ranking might not be as straightforward. As a
result, we retained all the extracted features as input for the
XGBOOST model, allowing it to autonomously determine the
most relevant features to predict m-CTSIB scores, enhancing
the model’s adaptability and performance.

C. Regression Model

This study employs the XGBOOST algorithm to estimate
balance scores based on the lumbar sensor data. We utilized
the XGBOOST package in Python to implement this regres-
sion model. We adopted a subject-wise One-Leave-Out cross-
validation approach to ensure robustness and reliable model
evaluation to partition the data into training and testing sets.
Within the training set, we further divided the data into an
80% portion for model training and a 20% segment for model
validation. Afterward, the data were normalized with the mean
and standard deviation calculated from the training data. The
grid search technique was applied to identify the optimal
hyperparameters, specifically the number of trees, the depth of
the decision tree, and the feature sampling rate. These three
parameters are more important because beyond a certain point
may lead to overfitting or longer training times. The correlation
(r) and mean absolute error (MAE) were utilized to evaluate
and assess the model’s accuracy.

III. RESULTS AND DISCUSSION

The XGBOOST algorithm was independently applied to
the extracted features obtained from the accelerometer and
gyroscope to estimate AV and PL scores, resulting in four
distinct models. The optimal models were determined based
on minimizing MAE and maximizing r. Following cross-
validation as described in section II-C, the selected XGBOOST
model hyperparameters are reported in Table II.

Table III presents the outcomes, displaying the best results
for PL and AV scores. Table III shows slight variations in

TABLE II
THE HYPERPARAMETERS OF THE SELECTED XGBOOST MODELS
Balance Score Hyperparameters
No. Trees | Max Depth | FS Rate
Accel AV 150 5 0.4
PL 130 3 0.4
Gyro AV 90 8 0.3
PL 70 12 0.2

Accel: Accelerometer Gyro: Gyroscope No: Number of Max: Maximum
FS: Feature Subsampling

the r values for PL score and AV score models in both the
accelerometer and gyroscope. All r values for the training data
are equal to one, and for the validation, it is approximately
0.97. In the case of the test data, the accelerometer-based
models achieve the highest correlation coefficients, with values
of 0.93 for AV and 0.94 for PL, respectively. Regarding MAE,
models incorporating gyroscope data generally outperform
those utilizing accelerometer data. Specifically, for the test
data related to AV and PL scores, the MAE values are
lower for gyroscope-based models, measuring at 0.26 and 2.4,
respectively, compared to the accelerometer-based models with
MAE values of 0.28 and 2.9.

Fig. 3 visually represents the Mean Absolute Percentage Er-
ror (MAPE) observed between the actual and predicted values
across the EOSS, ECSS, EOFS, and ECFS test scenarios for
the four models. MAPE is chosen as the evaluation metric
instead of MAE due to the varying ranges of balance scores
among these four conditions, allowing for more effective result
comparisons, as detailed in Table I. ECFS, EOFS, and ECSS
conditions exhibit notably low MAPE values, with ECFS
achieving the lowest MAPE in the range of 0.17 to 0.19.
This indicates that the models perform exceptionally well in
predicting balance scores under these challenging conditions,
reflecting their proficiency in scenarios where maintaining
balance is considerably more difficult.

Our results underscore the superior performance of our
approach, especially in terms of the correlation coefficient,
signifying its efficiency and reliability in balance measurement
compared to previous studies. In contrast to prior research that
frequently relies on the duration of tests or costly specialized
force plate systems like the Falltrak II, our method, utilizing
a single wearable APDM sensor placed on the lumbar region,
delivers a more dependable measurement within approxi-

TABLE III
ESTIMATION RESULTS FOR M-CTSIB SCORES USING XGBOOST
Train Validation Test
Balance Score
r | MAE r MAE r MAE
Accel AV 1 0.02 0.97 0.23 0.93 0.28
PL 1 0.11 0.97 2.2 0.94 2.9
Gyro AV 1 0.02 0.98 0.19 0.90 | 0.26
PL 1 0.18 0.97 2.1 0.89 2.4

Accel: Accelerometer Gyro: Gyroscope
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Fig. 3. Comparative analysis of minimum absolute error percentage (MAPE)
between actual and predicted AV and PL scores in different m-CTSIB sensory
assessments of EOSS, ECSS, EOFS, and ECFS.

mately 10 seconds per test under four different conditions.
Our results indicate that XGBOOST models, using either
accelerometer or gyroscope features from APDM wearable
sensors on the lumbar region, accurately estimate m-CTSIB
scores. With lower power consumption and greater afford-
ability and availability than gyroscopes, accelerometer sensors
emerge as a more practical choice. This enhances the overall
feasibility of utilizing accelerometer sensors for m-CTSIB
score estimation.

As our work is the first to estimate m-CTSIB scores,
direct comparisons are challenging. Nevertheless, our evalu-
ation metrics, including MAE, exhibited similarities to those
reported by Choi et al. in predicting TUG scores [13]. Re-
markably, our correlation coefficient (r = 0.94) outperformed
the correlation coefficient reported by Tang et al. (r = 0.37)
for predicting BBS scores, despite assessing a different type
of balance score [14]. These findings underscore the effec-
tiveness and potential of our approach in the field of balance
assessment.

Our subject size of 34 participants aligns with previous
studies using sensor technology and machine learning to
measure balance. For instance, Tang et al. collected data from
30 older adults to predict BBS scores, while Choi et al.
gathered data from 37 older adults to predict TUG scores. This
subject size provides reliable and valid results for estimating
m-CTSIB scores using wearable sensors and the XGBOOST
algorithm. However, we recognize that a larger and more
diverse subject population would enhance the generalizability
and robustness of our approach. Consequently, our future work
will involve recruiting a broader range of participants with
varying characteristics and conditions.

IV. CONCLUSIONS

In this paper, we introduced a novel approach to estimating
m-CTSIB balance test scores using wearable sensors and
machine learning. Our dataset consisted of 34 participants who
performed the m-CTSIB test under four sensory conditions
using the Falltrak II system, with a single APDM sensor
attached to their lumbar region. We extracted features from the
accelerometer and gyroscope signals and trained XGBOOST
models to predict AV and PL scores for each condition. Our
results demonstrated high accuracy and correlation with actual

scores, with correlation coefficients (r) ranging from 0.89 to
0.94. Our approach offers significant advantages over existing
methods for measuring balance performance. It provides an
objective and reliable measurement that eliminates the need
for human observation or judgment. Moreover, it utilizes a
single wearable sensor, ensuring ease of use and reducing
system complexity and cost. Additionally, the test is quick
and straightforward, taking less than a minute to complete
and minimizing participant inconvenience and fatigue. Based
on our findings, we recommend using the accelerometer due
to its comparable performance to the gyroscope and lower
power consumption, making it a more power-efficient choice.
Our proposed approach could enhance the assessment and
management of balance performance and consequential com-
plications, particularly for older adults and at-risk individuals.
Its objectivity, simplicity, and efficiency make it a valuable
contribution to the field of balance evaluation, paving the way
for improved clinical applications and research in this domain.
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