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Abstract—The Unified Parkinson’s Disease Rating Scale (UP-
DRS) is used to recognize patients with Parkinson’s disease (PD)
and rate its severity in clinical settings. Machine learning and
wearables can reduce the need for clinical examinations and
provide a reliable estimation of the severity of PD at home. This
work introduces a multi-channel convolutional neural network
to estimate UPDRS part III from motion data recorded by two
wearable sensors, considering the gyroscope signals and their
spectrogram representations. A novel shared-task self-supervised
learning is then employed to leverage the knowledge extracted
from the signal to improve the estimation during patients’ free-
body movements. We utilize 24 PD subjects’ data performing
daily activities. The estimated UPDRS-III showed an improved
correlation with the clinical examinations from 0.67 to 0.81,
reducing the mean absolute error from 7.75 to 6.96. Our investi-
gation demonstrates the potential of our approach in providing
a reliable estimation of PD severity scores during subjects’ daily
routines. It can also provide comprehensive information to help
physicians manage the disease and adjust the dose and interval
of PD medications.

Index Terms—Parkinson’s disease, deep learning, self-
supervised learning, wearable health monitoring

I. INTRODUCTION

PARKINSON’S disease (PD) is a debilitating neurode-
generative condition characterized by pronounced motor

symptoms such as tremors and gait difficulties [1]. Routine
clinical assessment of PD involves the Unified Parkinson’s
Disease Rating Scale (UPDRS), a tool neurologists employ
to diagnose and gauge disease severity. The UPDRS score
compromises four subscales, with Part I and II addressing
non-motor symptoms and motor experiences of daily living,
respectively. Part III focuses on the severity of motor com-
plications, assessed through clinical examinations, while Part
IV measures motor fluctuation and dyskinesias, encompassing
jerky, involuntary movements [2]. However, the traditional
UPDRS assessment relies on the clinical expertise of the
health care professional, introducing subjectivity and making it
challenging to monitor disease progression accurately. Besides,
clinical examination may not capture the entirety of motor
impairments experienced by a PD patient in daily life [3].
Therefore, there is a need for methods capable of providing
reliable and objective UPDRS-III scores to evaluate the spec-
trum of motor impairment experienced by individuals over a
typical day and throughout the progression of the disease.
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Machine learning and sensor technologies have paved the
way for monitoring diseased populations, with several pro-
posed approaches specialized in detecting and estimating
UPDRS-III scores in PD individuals [4]–[7]. The study by
Sotirakis et al. [5] employed a random forest algorithm and
feature extraction from six wearable sensor data related to
walking and postural sway to estimate the UPDRS-III scores.
In another work by Rehman et al. [6], deep learning techniques
were utilized alongside a waist-mounted sensor to predict the
severity of the disease scores for individuals with PD during
walking activities. The study presented in [7] introduced an
approach for estimating the mobile PD score, which evaluates
PD severity by assessing subjects while performing five tasks:
gait, balance, finger tapping, reaction time, and voice. To
achieve satisfactory performance, previous methods for sensor-
based detection of UPDRS-III scores typically involve subjects
actively engaging in specific tasks to elicit PD symptoms.
Additionally, the practicality of the sensor’s number and
placement may pose challenges in real-world scenarios.

This paper presents an innovative algorithm combining self-
supervised principles enhanced by shared-task learning with
wearable sensor technology to estimate UPDRS-III scores.
The algorithm utilizes data from wrist and ankle wearable
sensors, capturing movements during subjects’ daily activities.
This approach seeks to deliver a more accurate and objective
assessment of motor impairments associated with PD that
clinicians can utilize to adjust the individuals’ medication.

II. DATASET

A. Data Collection

A study protocol was employed to record motion data
from 24 individuals (Table I) diagnosed with PD as they
engaged in activities of daily living (ADL) [8], [9]. The study
received approval from the institutional review board, and
written informed consent was obtained from patients. Two
sensors from Great Lakes NeuroTechnologies Inc., Cleveland,
OH, each equipped with a triaxial accelerometer and gyro-
scope attached to each participant’s most affected wrist and
ankle, were used to collect motion data at a sampling rate
of 64 Hz. The participants refrained from taking their PD
medication on the night before and started the experiments
in their medication OFF states when there were no benefits
from the medication. Fifteen subjects performed seven ADLs
(resting, drinking, walking, dressing, cutting food, unpacking
groceries, and brushing hair). The remaining nine subjects20
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TABLE I
THE PARTICIPANTS DEMOGRAPHICS

Characteristic Number Range Mean ± STD
Subjects 24 - -
Sex (M, F) 14, 10 - -
Age (years) - [42− 77] 58.8± 9.5

Disease duration (years) - [3.5− 17] 9.9± 3.8

OFF UPDRS-III - [12− 60] 30.3± 11.6

ON UPDRS-III - [4− 38] 16.4± 8.4

cycled through multiple stations (laundry room, entertainment
station, snack, and desk work) in a homelike setting, engaging
in unconstrained activities. Afterward, the participants took
their regular PD medications. Once the medication took effect,
confirmed by a neurologist, subjects repeated the same activ-
ities or cycled through the stations again in their medication
ON states. A neurologist conducted clinical examinations to
measure and document the participants’ UPDRS-III scores.
Fifteen participants underwent four rounds of UPDRS-III
assessment, one every hour. The remaining nine participants
underwent one round at medication ON and one at OFF states,
resulting in 91 rounds.

B. Data Preprocessing

We utilized the gyroscope data from the wrist and ankle
sensors, as it enhances UPDRS-III estimation compared to
using accelerometer data [10]. The signals were filtered using
a bandpass finite impulse response (FIR) filter with a cutoff
frequency from [0.5 − 15] Hz to eliminate low- and high-
frequency noises. Later, the signals were segmented into 5s
non-overlapping windows to capture the disease’s symptom
characteristics [11]. Given the spectral features of multiple
PD symptoms, such as tremors in the [4 − 6] Hz range and
bradykinesia in lower frequencies, a model can effectively
learn features from the time-frequency representations of the
signals [12]. Therefore, we generated corresponding spectro-
grams by applying a short-time Fourier transform to the 5s
segmented windows, employing a 1s Kaiser window with 0.9
overlaps.

III. METHODS

A. Multi-channel Convolutional Neural Network

A multi-channel convolutional neural network (CNN) is
a variant of the traditional CNN architecture that expands
the network by integrating multiple parallel CNN branches.
Each branch processes input data independently with different
kernel sizes. This design allows the network to learn and
extract features from multi-input data, improving its ability to
capture complex patterns within the input [13]. We introduce
a multi-channel CNN to estimate UPDRS-III scores in PD
patients that comprises two channels. The first channel pro-
cesses raw input gyroscope sensor data, denoted as xr, using
1D convolutional kernels. The second channel extracts features
from the spectrograms, xs, generated from the corresponding
gyroscope signals using 2D convolutional kernels.

B. Proposed Shared-task Self-supervised Learning

Self-supervised learning (SSL) aims to enhance the per-
formance of neural networks by learning meaningful data
representations without the need for human annotation [14].
It achieves that through a two-stage learning process: pretext
and downstream tasks. The network is exposed to various
signal transformation recognition tasks in the pretext task,
enabling it to learn robust features from unlabeled data. The
pre-trained network from the pretext task is then employed
in the downstream task, where the network is trained for the
target task through transfer learning and fine-tuning.

We introduce an innovative shared-task SSL methodology
(Fig. 1) built on the previously proposed multi-task SSL [14].
The approach involves pre-training a multi-channel CNN in
the pretext task, utilizing raw gyroscope data and spectrogram
signals. The outputs of the multi-channel CNN’s branches are
passed to the respective transformation recognition task layers.
The network incorporates a shared layer for each recognition
task between the branches of the CNN to align with the fact
that spectrograms and raw signals correspond to the same data
segment. We hypothesize that this strategy enables the network
to learn and extract better meaningful features from the data,
thereby enhancing its ability to capture more diverse patterns.

Let (xt, yt) represent the inputs and pseudo labels for the
pretext task, where xt corresponds to the tth transformed
signal, the raw xr

t and its spectrogram xs
t , yt represents the

generated pseudo label associated with the tth transformation,
and t ∈ [0, |T |] donates the number of signal transformations,
|T |. The network is trained to produce a probability pt of the
signal being a transformed version of the original. The objec-
tive is to learn the network parameters, θ, by minimizing the
total loss, L, composed of the weighted average of individual
losses, Lt, for each signal transformation. The loss is defined
as:

L =

|T |∑
t=0

αt [yt log(pt) + (1 + yt) log(1− pt)] , (1)

where αt is the loss-weight coefficient of the tth transfor-
mation task. We generated three signal transformations xt,
where t ∈ [0, |T = 3|] for the recognition tasks as pretext
tasks. These transformations are Rotation, Permutation, Time-
Warping, and the Original signal. After the pretext stage,
we transferred θ to the downstream network. The pre-trained
convolutional blocks from the pretext task underwent fine-
tuning in the downstream task utilizing annotated data to
estimate UPDRS-III scores. The objective is to learn the net-
work’s parameters θ

′
by minimizing the network’s Huber loss

function L
′
, which quantifies the error between the predicted

ŷ and the corresponding clinical UPDRS-III scores y as:

L
′
=

{
1
2 (y − ŷ)2, for |y − ŷ| ≤ δ,

δ · (|y − ŷ| − 1
2δ), for |y − ŷ| > δ.

(2)

where δ = 1 is the point at which the loss function changes
between quadratic and linear.
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Fig. 1. The developed shared-task self-supervised learning method employing a multi-channel convolutional neural network to estimate the UPDRS-III scores
of individuals with Parkinson’s disease. GMP: Global max pooling layer. GAP: Global average pooling layer.

IV. RESULTS AND DISCUSSION

We employed leave-one-out subject-wise testing, where one
subject was held out for testing while the remaining were
used for training. This process was repeated for all subjects
to ensure that each subject acted as a test subject. A 20%
random split of the training data was designated as a validation
set to optimize the model’s hyperparameters. The unlabeled
pretext data was generated from the training set using the
data transformation generation procedure described previously.
The shared-task SSL model was pre-trained on the unlabeled
generated data, fine-tuned on the annotated training data, and
later tested on the testing data, x. We also trained a multi-
channel CNN with an architecture identical to the shared-
task SSL model in the downstream task in a fully supervised
setting to act as a baseline model. This multi-channel CNN
was trained on the labeled training data and deployed on the
testing data. The mean of the estimated scores of the models
was calculated for each UPDRS-III round and then compared
to the clinical scores of the respective round. Additionally,
we present the performance results of fully supervised single-
channel CNNs trained on gyroscope raw and spectrogram data.

Each convolutional branch in Fig. 1 comprises two blocks.
For the 1D convolutional branch, block A has 64 kernels of
size 32, and B has 128 kernels of size 8. The pooling size is 16
with strides of 4, and dropout rates of 0.1 and 0.2 are applied
for blocks A and B, respectively. In the 2D convolutional
branch, block A contains 64 kernels of size 5× 5, and B has
128 kernels of size 3×3. The pooling size is 2 with strides of
2, and a dropout rate of 0.1 is applied. The shared task layers’
size is 128, and the fully connected layer in the downstream
task is 256. The networks are trained for 35 epochs with a

batch size of 32, utilizing the Adam optimizer with a 1e−4

learning rate.
The evaluation of the developed methodology employed

calculating the correlation coefficient r and mean absolute
error (MAE). Table II presents the average testing results
values for all 24 subjects. Our proposed shared-task SSL
methodology demonstrated the strongest correlation, r =
0.81(p ≤ 1e−4), which marks a considerable improvement
from the r = 0.67(p ≤ 1e−4) achieved by the multi-channel
CNN. Additionally, the MAE exhibited a reduction from 8.32
to 6.96. A notable observation is that the multi-channel CNN
outperformed CNNs utilizing single input data, which further
discloses multi-channel CNN’s ability to capture complex data
patterns effectively. Fig. 2 shows the correlation between the
clinically documented and the estimated UPDRS-III scores for
the proposed method and the multi-channel CNN. The figure
showcases a narrower 95% confidence region and 95% pre-
diction band for the proposed method compared to the multi-
channel CNN. This observation demonstrates the proposed
model’s accurate estimations and enhanced performance.

Compared to prior work, which often achieved good results
during only single activities (r = 0.82) [6], a couple of
activities (RMSE = 10.02) [5], or specific PD-related activities
(r = 0.88) [7], our method demonstrates robust performance
with a significant correlation of (r = 0.81) between estimated
and clinically assessed UPDRS-III across variety of ADL.

We also investigated the performance of our methodology
when patients refrained from taking their PD medication (OFF
state) and after the medication took effect (ON state), as
illustrated in Fig 3. Clinically documented scores exhibited a
significant difference before and after medication, confirmed
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TABLE II
AVERAGE TESTING RESULTS OF 24 SUBJECTS

Method Input data MAE r

1D CNN Raw 8.15 0.66

2D CNN Spectrogram 8.32 0.67

Multi-channel CNN Raw + Spectrogram 7.75 0.67

Shared-task SSL Raw + Spectrogram 6.96 0.81
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Fig. 2. The clinically documented vs. estimated UPDRS-III scores for each
round for the proposed shared-task SSL and the multi-channel CNN.
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Fig. 3. The total UPDRS-III scores from the clinically assessed, the proposed
shared-task SSL, and the multi-channel CNN estimations before (OFF state)
and after (ON state) the PD medications.

through a t-test (p-value ≤ 1e−4). The estimated scores from
both models also displayed a significant distinction (p-value ≤
1e−4), indicating the models’ capacity to distinguish between
the two states. The MAE for the estimated scores in OFF and
ON states was calculated. The figure shows that the proposed
methodology outperformed the fully supervised multi-channel
CNN in both scenarios. This outcome suggests the model’s
effectiveness in capturing variations in PD severity under
different medication states.

V. CONCLUSION

This study presented an innovative algorithm for the ob-
jective and passive estimation of the UPDRS-III scores, uti-
lizing motion data captured from two wearable sensors. We
proposed a shared-task SSL algorithm employing a multi-
channel CNN that processes gyroscope signals and their spec-
trogram representations. The performance of our method was
evaluated against a fully supervised multi-channel CNN with
an identical architecture, utilizing data from 24 PD subjects.
Our analysis demonstrated the improved performance of the

proposed method, showcasing an outstanding (r = 0.81)
correlation between the estimated and clinically assessed
UPDRS-III scores. This approach holds potential for clinical
applications, delivering a means to estimate UPDRS-III scores
in individuals with PD within their natural environment. These
estimations can also benefit treating physicians in adjusting
medications and tracking disease progression. For future work,
we will explore network architectures to capture more detailed
disease characteristics to enhance UPDRS-III estimation.
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