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Abstract—Smartwatches play an increasingly vital role in
health monitoring, offering practical solutions for patients to
manage their conditions in daily life. This is particularly signifi-
cant for Parkinson’s Disease (PD) patients, as tremors, a notable
symptom, significantly impact their quality of life. Our research
addresses unanswered questions about the optimal configurations
for these devices, considering factors such as the placement
of the smartwatch, the type of sensor used (accelerometer vs.
gyroscope), and the sampling frequency. Employing a gradient
tree-boosting approach, we analyze data from the wrist and ankle
sensors of 24 PD subjects engaged in daily living activities. The
findings highlight a cost-effective, practical, and resource-friendly
configuration: utilizing accelerometer wrist data sampled at 32
Hz demonstrates a robust correlation between the estimations
of total tremors (0.82) and rest tremors (0.84) compared to
their clinical ground-truth values. This underlines the significant
potential of employing smartwatches in a natural environment
for clinicians to monitor their patients efficiently, minimizing the
necessity for costly, inconvenient in-clinic assessments.

Index Terms—Parkinson’s Disease Tremor Monitoring, Wear-
able Sensor Configurations, Gradient Tree-Boosting Analysis,
Machine Learning in Healthcare

I. INTRODUCTION

Smartwatches are increasingly recognized for their signif-
icant role in health monitoring, offering practical, day-to-
day solutions for managing health conditions. This is partic-
ularly relevant for individuals with Parkinson’s Disease (PD),
a debilitating neurodegenerative condition marked by motor
symptoms like tremors and gait difficulties [1]. Tremors are
divided into resting, postural, and kinetic. The resting tremor
is a tremor that occurs while an individual with PD relaxes
their muscles. Postural and kinetic tremors occur when a
patient holds a position against gravity and during a patient’s
voluntary movement, respectively. As these tremor types in-
clude voluntary movement, postural and kinetic tremors can
be generalized as action tremors. The tremors considerably
affect the quality of life of PD patients. However, the current
clinical practice of assessing these tremors, primarily through
the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-
III) in clinical settings and during routine-predefined activities
[2], provides only a momentary glimpse into the patient’s
condition, failing to capture the full scope of daily tremor
variability [3].
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Our study aims to address this gap by investigating the po-
tential of smartwatches and wearable sensors in continuously
monitoring tremors, thus providing a more comprehensive
understanding of the condition outside the clinical environ-
ment. Earlier studies have explored wearable sensors and
machine learning techniques to estimate tremors in individuals
with PD [4]–[6]. These methodologies typically provide their
estimations during specific tasks outlined in the UPDRS-III,
and some involve multiple sensor placements. However, such
approaches may not be practical for daily living situations. Re-
cent studies have highlighted the effectiveness of smartwatches
in monitoring tremors and motor difficulties in individuals with
PD [7], [8]. Apple smartwatches have shown notable promise,
utilizing inertial sensor data to monitor PD motor difficulties in
real-time [9]. Additionally, software applications like Monipar
have been developed to collect movement data from smart
devices, assisting in continuously monitoring motor difficulties
caused by PD [10]. However, several unanswered questions
exist about the optimal configurations for smartwatches and
wearable sensors.

To address these questions, this study investigates the op-
timization of wearable sensor configurations for monitoring
tremors in PD patients, focusing on identifying the most
effective, cost-efficient, and convenient setup. Central to our
research is examining various factors influencing sensor per-
formance, including the placement of the smartwatch (on the
wrist or ankle), the type of sensor data used (accelerometer vs.
gyroscope), and the sampling frequency. We have explored a
range of sensor set combinations, utilizing either an accelerom-
eter, a gyroscope, or both, in different positions, to monitor
both resting and total (resting, postural, and kinetic) tremors.
Our investigation also expands to the selection of sampling
frequencies at 32 and 64 Hz and their effect on accurate
tremor estimation. Data was collected from 24 PD patients
as they engaged in various activities of daily living (ADL).
This comprehensive approach aims to provide a practical and
reliable method for assessing tremor severity in a typical day,
offering significant potential for improving patient care by
enabling physicians to adjust medication based on continuous,
real-life tremor data more accurately.

II. METHODOLOGY

A. Parkinson’s Disease Dataset

Motion data was captured from 24 PD patients [11], [12].
Table I details the subjects’ demographics. The data collection20
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TABLE I
PARKINSON’S’ DISEASE DATA PATIENTS DEMOGRAPHICS

Characteristic Number Range Mean ± STD
Participants 24 − −
Sex (M, F) 14, 10 − −
Age (years) − [42− 77] 58.8± 9.5

Disease duration (years) − [3.5− 17] 9.9± 3.8

Tremor sub-score − [0− 16] 1.8± 3.3

used protocols approved by the Institutional Review Board
(IRB) at Rochester Medical Center, and following the Helsinki
Declaration, the subjects signed an informed consent. One
tri-axial inertial motion sensor recording accelerometer and
gyroscope data was mounted on the most affected wrist, and
another was on the most affected ankle of the patient’s most
affected side at a sampling frequency of 64 Hz. Each patient
would then be requested to perform various ADLs (walking,
resting, cutting food, drinking, dressing, unpacking groceries,
and hygiene). Three to four rounds of ADL were conducted
by 15 of the patients [11]. The first round was character-
ized by performing ADL while the patients were off their
medication, confirmed by a neurologist. The second, third,
and fourth rounds were conducted when the patients were on
medication. The other nine individuals had their movement
recorded continuously for two hours [12]. Similar to the other
15, the patients were requested to perform ADL tasks with and
without their medication. A specialized neurologist assessed
the severity of tremors at each round, assigning scores on
a scale ranging from 0, indicating the absence of tremor, to
16, reflecting severe tremor manifestations. The resulting total
number of rounds was 91.

B. Data Processing and Features Extraction

The collected rounds of data were segmented into non-
overlapping 5s windows for all subjects. The tremor score as-
signed to each round was correlated with the regression score
of the corresponding 5s data samples. These scores are the
ground-truth values utilized in training the machine learning
model. The data from each round underwent filtration using a
band-pass finite impulse response (FIR) filter featuring a 3 dB
cutoff frequency between 0.5 Hz and 15 Hz to eliminate low
and high-frequency noises. Afterward, 78 features capturing
tremor characteristics were extracted from the accelerometer
and gyroscope data within each segmented 5s window. The
specifics of these features are detailed in [13].

C. eXtreme Gradient Boosting Algorithm

2. The eXtreme Gradient Boosting (XGBoost) is a machine
learning implementation of the gradient-boosted decision trees
algorithm designed for computational efficiency and perfor-
mance [14]. The algorithm is a leading tool in the machine
learning field used for identifying and classifying PD symp-
toms [15]. Therefore, the XGBoost methodology was utilized

in this study for assigning tremor sub-scores, yn, to their
respective features vector:

Fn = [
−→
f vn1 ,

−→
f vn2 , ...,

−→
f vnw], (1)

where
−→
f vnw; |

−→
f vnw| = 78 is the feature vector for one

segmented window, w is the number of segmented windows
in one round n;n ∈ [1, 91]. The method estimates the output
ŷnt using ensemble of t weak regressions trees fi as following:

ŷnt =
t∑

i=1

fi(
−→
f vnt ) (2)

The loss function calculates the difference between the es-
timated tremor score, ŷnt , and the tremor score, yn. The
loss statistics of the first and second gradients are included
within the objective function. The architecture of the proposed
XGBoost algorithm can be seen in Fig. 1.

The training and testing of the XGBoost model were con-
ducted through subject-based leave-one-out cross-validation to
prevent any data leakage from the training to the testing set. A
validation set constituting 20% of the training data was utilized
in each fold for hyperparameter optimization. A grid search
was conducted to optimize the model’s hyperparameters, in-
cluding the number of estimators, maximum depth, percentage
of features per tree, and gamma values. Thereon, the model
with the minimum validation mean absolute error (MAE)
was selected for testing. The performance during testing was
assessed by applying the trained model to the test folds and
comparing the predicted scores with the clinical regression
scores in the dataset.

III. RESULTS AND DISCUSSION

The algorithm was implemented using the XGBoost Python
library. A learning rate of 0.1 was employed, and the algorithm
consisted of 170 regression trees. The tree depth varied from
7 to 14 with a step size of 2. The gamma parameter of
the algorithm was set to 0.20. Input data for the algorithm
comprised combinations of gyroscope and accelerometer vec-
tor data for predicting rest and total tremors (both rest and
action tremors). The first 34 features, representing wrist data,
were segregated and fed into the algorithm to consider wrist
sensor data exclusively. The algorithm was trained using 64
Hz and down-sampled 32 Hz versions of the data. Notably,
for estimating rest tremors, consideration was restricted to the
most affected wrist of the patient by utilizing the wrist sensor
data. On the other hand, estimating the total tremors involved
utilizing data from both wrist and ankle sensors.

Table II reveals the outcomes of the model’s predictions
for the rest and total tremor sub-scores in patients with PD.
The model demonstrated robust performance across various
setup scenarios, yielding a strong average correlation of r =
0.86±0.05 between the estimated and clinically observed total
tremor scores and r = 0.86± 0.01 for the estimations of rest
tremors compared to their documented clinical scores. The
model maintained a strong performance when relying solely
on the wrist sensor for total tremor estimation, exhibiting a r =
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Fig. 1. The sensors are placed on the wrist of the Parkinson’s disease patient. The X, Y, and Z vectors are then segmented into 5s non-overlapping windows.
A set of 34 features is extracted from each window for the wrist; if ankle placements are included, then 78 total features are extracted. These features are
inputted into an optimized XGBoost algorithm to estimate the UPDRS-II Tremor sub-scores.

0.81 ± 0.02 correlation. Optimal performance in total tremor
estimation was achieved when incorporating gyroscope and
accelerometer data from both wrist and ankle sensors, sampled
at 64 Hz, resulting in a correlation of r = 0.92 with clinically
recorded sub-scores. Downsizing the data to 32 Hz resulted
in a slight performance reduction, yielding a correlation of
r = 0.91.

To conduct an in-depth investigation of the impact of
sensor placement on the model’s performance, we conducted
a comparative analysis of the MAE in total tremor estima-
tions across different sensor types and sampling frequencies,
as illustrated in Fig. 2. Noticeable enhancements in MAE
(0.11 ± 0.08) were observed when utilizing both wrist and
ankle placements compared to the sole use of wrist placement
at 32 Hz. The difference in MAE is minimal with individual
deployment of accelerometer and gyroscope sensors (0.06) but
becomes more pronounced when using both sensors concur-
rently (0.22). At 64 Hz, the MAE exhibits a more substantial
variation (0.21 ± 0.03), with the most significant difference
observed when employing the gyroscope alone (0.23). These
observations indicate that employing a less resource-intensive
sampling frequency delivers more consistent results.

Remarkably, the sensor placement on the wrist consis-
tently delivers reliable outcomes across various sensor types
and sampling frequency scenarios, exhibiting an MAE of
1.41 ± 0.06. This effect is evident in the marginal difference
in MAE of 0.09± 0.02 observed when using the wrist sensor
alone across three sensor types and sampling frequencies, in
contrast to the more significant difference of 0.18±0.06 when
both wrist and ankle sensors are employed. Among the sensor
types, estimations utilizing accelerometer data displayed the
lowest standard deviation across sampling frequencies and
sensor placements (0.10), followed by gyroscope data (0.11)
and combined data from both sensors (0.12). These findings
suggest that accelerometer data for tremor prediction consis-
tently yields reliable results under diverse scenarios.

A comparable trend is observable when the model is trained
to estimate rest tremor scores in patients. Fig. 3 illustrates
the MAE values of the model across various sensor types
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Fig. 2. The proposed model’s mean absolute error (MAE) values when
estimating the total tremor in Parkinson’s disease patients using wrist and
ankle wearables.
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Fig. 3. The model’s mean absolute error (MAE) when estimating Parkinson’s
disease patients’ rest tremor using a wrist sensor

and sampling frequency configurations. Despite the lower
MAE values when sampling the data at 64 Hz, the observed
difference remains negligible (0.03 ± 0.0) across the three
sensor types setup. The model’s MAE standard deviation was
0.01 across both frequencies when using accelerometer data.
This is lower than when utilizing a gyroscope sensor or both
sensors, for which the standard deviation was 0.02. These
outcomes align with the earlier findings related to total tremor
estimation.

The findings from this analysis indicate that the XGBoost
model’s most consistent performance in estimating total and
rest tremors in PD patients is achieved when utilizing data
collected and sampled at 32 Hz from a wrist accelerometer
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TABLE II
THE RESULTED CORRELATION FOR THE TOTAL AND THE REST TREMORS

Sensor Type Sampling Frequency (Hz) Sensor Placement Total Tremor Rest Tremor
Correlation p-value Correlation p-value

Accelerometer
32

Wrist 0.82 < 1× 10−4 0.84 < 1× 10−4

Wrist & Ankle 0.90 < 1× 10−4 - -

64
Wrist 0.83 < 1× 10−4 0.86 < 1× 10−4

Wrist & Ankle 0.91 < 1× 10−4 - -

Gyroscope
32

Wrist 0.79 < 1× 10−4 0.85 < 1× 10−4

Wrist & Ankle 0.87 < 1× 10−4 - -

64
Wrist 0.78 < 1× 10−4 0.87 < 1× 10−4

Wrist & Ankle 0.92 < 1× 10−4 - -

Accelerometer & Gyroscope
32

Wrist 0.84 < 1× 10−4 0.85 < 1× 10−4

Wrist & Ankle 0.91 < 1× 10−4 - -

64
Wrist 0.83 < 1× 10−4 0.87 < 1× 10−4

Wrist & Ankle 0.92 < 1× 10−4 - -

sensor. A 32 Hz sampling frequency choice is advantageous
due to its lower resource demands. Additionally, accelerometer
sensors are more cost-effective compared to gyroscopes. The
practicality and convenience of wearing a device around the
wrist further enhance the feasibility of this approach. Con-
sidering these qualities and the potential for further model
optimization, it holds significant promise for the reliable and
continuous monitoring of individuals with PD as they go about
their daily lives.

IV. CONCLUSION

The XGBoost machine learning algorithm was trained on
various sensor setup combinations to investigate the potential
of employing the widely used wearables and smartwatches
in monitoring and estimating UPDRS-III tremor sub-scores
in PD patients as they go about their daily living routines.
We utilized a segmentation method that segmented 5s non-
overlapping windows from gyroscope and accelerometer data.
A set of 78 features from wrist and ankle sensors were
extracted. The study revealed that a cost-effective, convenient,
and less resource-intensive sensor configuration utilizing wrist
accelerometer data sampled at 32 Hz could provide reliable
estimations of UPDRS-III rest and total tremor sub-scores
in PD individuals as they engage in unrestricted daily living
activities, demonstrating high consistency. The study revealed
that a cost-effective, convenient, and less resource-intensive
sensor configuration utilizing wrist accelerometer data sam-
pled at 32 Hz could provide reliable estimations of UPDRS-
III rest and total tremor sub-scores in PD individuals as they
engage in unrestricted daily living activities, demonstrating
high consistency. These results mark a significant step forward
in the practical application of commercial wearables for health
monitoring. They present a valuable tool for clinicians to gain
deeper insights into their patients’ conditions outside clinical
settings.
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