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Deep Regression Modeling for Imbalanced and
Incomplete Time-Series Data
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Abstract—During the collection of time-series data, many rea-
sons lead to imbalanced and incomplete datasets. Consequently, it
becomes challenging to develop deep convolutional models without
suffering from overfitting. Our objective in this paper was to in-
vestigate an emerging but rather underutilized framework of Con-
ditional Generative Adversarial Networks (cGANs) for improving
deep regression models for time-series data with an imbalanced
and incomplete distribution. First, we investigated the potential
of using a vanilla cGAN as a data imputation to improve the
generalizability of the developed models to unseen data in such
datasets. Next, we proposed a modified cGAN architecture with
improved extrapolation and generalizability of the regression mod-
els. Our investigations used an imbalanced synthetic non-stationary
dataset, a real-world dataset in Parkinson’s disease (PD) applica-
tion domain, and one publicly-available dataset for Negative Affect
(NA) estimation. We found that vanilla cGAN failed to generate
realistic time-series data due to severe mode collapse, limiting its
application as a data imputation for imbalanced and incomplete
data. Importantly, the proposed cGAN framework significantly
improved extrapolation and generalizability for the prediction of
regression scores with an average improvement of 56%, 34%,
and 18%, respectively, in mean absolute error for the synthetic,
PD, and NA datasets when compared with traditional Convo-
lutional Neural Networks. The codes are publicly available on
Github.

Index Terms—Deep regression modeling, time-series data, gene-
rative adversarial networks, imbalanced and incomplete data,
extrapolation.

I. INTRODUCTION

IMBALANCED datasets commonly exist in real-world ap-
plications. This paper addresses challenges with such im-

balanced datasets, specifically in the biomedical domain when
estimating disease severity scores (i.e., regression scores). The
data is usually collected from a small group of patients, resulting
in a data representation with a geometric distribution [1], [2],
[3], [4]. This distribution means long-tailed normal distribu-
tion with some scores or classes representing the distribution
head and other rare ones representing the tail. Hence, the data
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collection leads to imbalanced and, in most cases, incomplete
datasets as the recruited patients may not represent the entire
range of the disease severity score. Deep-learning models suf-
fer overfitting when trained on these constrained datasets that
violate the parsimony principle [5]. Overfitted models have
poor generalizability to testing samples with underrepresented
or unseen regression scores [6]. Multiple approaches are de-
veloped to handle overfitting in classification problems with
cross-sectional data such as images [7]. One approach is based
on Generative Adversarial Networks (GANs) that have emerged
in numerous applications [8], [9]. For instance, GANs have been
used to learn and generate new samples as a data augmentation
method. The generated samples were then used in the training
process in addition to the real samples. Unlike cross-sectional
data, the overfitting challenges of deep regression problems in
imbalanced time-series signal data have been overlooked. This
is while a practical solution to this problem is essential in health
monitoring applications such as over-time monitoring of human
health or disease severity [10].

Our primary focus in this paper is to improve deep learning
performance when used for regression in applications with
limited imbalanced datasets. Recursive partitioning with en-
semble learning [6] and oversampling using data augmen-
tation [11], [12] have been commonly considered for time-
series modeling. However, these methods are challenged by the
overfitting issue in time-series regression as their design does
not consider challenges caused by imbalanced and incomplete
datasets. In our preliminary work [13], we investigated a prelim-
inary version of a Conditional Generative Adversarial Network
(cGAN) as a regressor. The cGAN was evaluated only on a
single dataset without investigating GAN mode collapse in time
series.

In this work, we significantly expand the analysis and the
applications of our preliminary work [13] in several aspects and
establish the advantage of our proposed approach addressing
the overfitting issue of deep regression models in imbalanced
and incomplete time-series data. Our main contributions are
threefold as follow:
� We investigate the mode collapse of cGAN caused by

imbalanced regression data.
� We propose a novel formulation of cGAN to improve deep

regression models’ generalizability using time-series data.
� We evaluate the proposed cGAN for improving generaliz-

ability in a synthetic dataset and two real-world time-series
datasets, compare its performance with a traditional Con-
volutional Neural Networks (CNN) and Long short-term
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memory (LSTM) model, and make the code publicly avail-
able.

Our contributions are novel as we propose the first single-
stage regression model to tackle limited data while improving
extrapolation to unseen ranges of scores. By a single stage, we
mean using the generator as the regressor and not as a data
generator for data imputation. The organization of the paper is as
follows. Section III describes our proposed cGAN framework. In
Section IV, we explain the implementation of the CNN-based for
comparison purposes and our proposed cGAN regression model.
We generated a synthetic dataset of non-stationary time-series
signals with an imbalanced and incomplete representation for
evaluation purposes as described in Section V. Section V also
provides the details of the two real-world datasets used for our
evaluation purposes. The results and conclusions are discussed
in Sections VI and VII, respectively.

II. LITERATURE REVIEW

There are multiple approaches for learning from imbalanced
data in classification problems, such as synthetic samples, data
resampling, and cost-sensitive learning [14]. However, these
solutions do not work directly for regression problems [15],
[16], [17], [18]. The continuous scores in imbalanced regression
problems imply both interpolation and extrapolation of the target
scores, which is not the case in a set of categorical labels in
classification problems. Zhu et al. propose a modification to
the Synthetic Minority oversampling technique that maintains
the ordinality in regression problems but does not deal with
missing ranges of scores [15]. Similarly, Branco et al. adapt
random oversampling and the addition of Gaussian noise to
regression problems and propose a combination strategy of
oversampling and undersampling based on target scores distri-
bution [16]. Steininger et al. propose modifying the classification
cost-sensitive methods by approximating the distribution of the
imbalanced target scores and using it to weigh the loss during
model training [17].

Instead of preprocessing the training data, Yang et al. propose
Feature Distribution Smoothing (FDS) as a calibration layer that
can be directly integrated with deep models [18]. They show a
consistent improvement when adding FDS to the vanilla model.
The previously mentioned approaches perform data resampling
or optimize the extracted features. In this work, we propose a
new cGAN framework that can be integrated with other methods
to deal with limited regression data.

The oversampling strategy based on GANs has been beneficial
in classification problems with cross-sectional and time-series
data [12], [19], [20]. Its application has also shown some advan-
tages in regression problems with cross-sectional data [21], [22].
cGAN as a variation of GAN [23] is used as an oversampling
approach for imbalanced cross-sectional data in classification
problems [12], [24]. This model takes class labels or regression
scores as additional domain information to condition the genera-
tion process. This feature of cGAN makes it possible to generate
data samples for minority classes or underrepresented regression
scores [23]. However, vanilla cGAN suffers from mode collapse

when the model is trained on limited data [25] and when the
number of conditioning classes increases [26]. As a result, the
application of cGAN in regression applications is expected to
suffer significantly from mode collapse since there are unlimited
classes in a regression problem. Also, the overfitting problem is
worse for limited and imbalanced datasets, where the model
overfits the majority classes only in the training data and has
low sensitivity to the minority classes [7]. Therefore, the mode
collapse issue is predicted to be even more problematic when
the training data is imbalanced and incomplete. Hence, the
cGAN-generated samples are predicted to have high similarities
to each other due to severe mode collapse and, thus, not helpful
in oversampling the data.

Recently, Aggarwal et al. proposed a new application of
cGAN in cross-sectional data. Their proposed architecture did
not use cGAN to produce simulated samples for data augmen-
tation. Instead, they used the trained cGAN as the regression
model [27]. Their method was robust when applied to noisy
data and outperformed boosted-tree models. This architecture
inspired our work to investigate an improved design of cGAN
to address the underlying challenges specific to imbalanced
time-series signals in regression problems.

III. PROPOSED METHODOLOGY

Our design consisted of a new cGAN framework to im-
prove the estimation of regression scores from imbalanced and
incomplete time-series signals. Two multi-layer models con-
struct the cGAN, which are the generator (G) and discriminator
(D) [23]. These models compete as adversaries, consisting of
convolutional and dense layers. As seen from the vanilla cGAN
architecture in Fig. 1(a), the generator is conditioned according
to the class labels or regression scores in our case, so generator
G learns to generate the closest fake signals to the real ones. The
novel aspect of our framework is twofold. First, we condition
the generator G on the real signals to generate the closest fake
scores to the real ones (Fig. 1(b)). Next, we embed a CNN in
the generator G to predict the regression scores from the signals
(Fig. 1(c)).

This design ensures that the embedded CNN in G learns the
temporal patterns within a time-series segment (w) associated
with different regression scores y without using the scores
directly to train G. Instead, y besidew is input to D to distinguish
fake scores from real scores, G(z|w) and y, respectively. G is
conditioned on real signals w to map noise z from the latent
space pz to like-real scores. As a result, G will learn the data
distribution instead of memorizing the regression scores; thus,
the model generalizes better to unseen data. The generator, G,
from the trained cGAN network, represents the regression model
to estimate the scores of new time-series segments. Our proposed
architecture will train G as the final regression model. This is
while the existing data imputation methods balance the training
data by generating synthetic samples using methods such as
GAN or cGAN and then training a separate CNN model [12].
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Fig. 1. (a) Design of vanilla cGAN. (b) The modified cGAN as proposed in this study. (c) The design of the generator G in our proposed cGAN. (d) The
architecture of the embedded CNN in the generator G.

IV. METHODS

Our comparative work investigated CNN to train a deep
regression model and a vanilla cGAN for signal generation.
In this section, first, we describe the CNN and vanilla cGAN
models, followed by our proposed modified cGAN framework
as a regression model.

A. Convolutional Neural Networks

A 1-dimensional (1D) CNN model was developed to estimate
the regression scores for the segmented time-series signal. The
CNN model consists of multiple convolutional blocks, as shown
in Fig. 1(d) followed by a global average pooling layer and a
block of two fully-connected layers. The depth of the network
increases as we go to blocks in higher levels. For instance, the
first block consists of two layers of 32 convolutional filters of
width 4, and the second one consists of two layers of 64. Each
convolutional layer is followed by a ReLU activation layer that
captures the non-linear patterns. Each block is followed by a
max-pooling layer. The last block has one convolutional layer
followed by the global average pooling layer that summarizes
the extracted features. There are 128 nodes in the first fully-
connected layer, followed by a 0.5-rate dropout layer. One node
was assigned in the output layer to output the estimated score.
Constructing wider CNN networks is performed by repeating
Conv Block-2 to increase the number of convolutional layers.

B. Vanilla cGAN

The ability of a vanilla cGAN to generate simulated time-
series signals was investigated. We specifically focused on the

performance and mode collapse when the training data was lim-
ited and imbalanced. The vanilla cGAN architecture is displayed
shown in Fig. 1(a). The generator is conditioned on real scores
and maps noise from a latent space to generated signals as the
discriminator distinguishes the fake vs. real signals given the
condition score. The generator architecture takes two inputs:
score as a condition and noise. The score input undergoes a dense
layer with 128 units, ReLU activation, and dropout, while the
noise input follows a similar dense layer configuration. The out-
puts from both paths are concatenated, and the resulting vector
passes through a dense layer and a reshape layer. Subsequently,
a series of convolutional transpose layers, each accompanied
by batch normalization and ReLU activation, upsample the data
by using a stride of 2. The final convolutional transpose layer
produces the generator’s output, which is linearly activated and
has the same window length of real signals.

We attempted to reduce mode collapse by implementing
the minibatch discriminator as in Salimans et al. [28]. Using
the similarity between the samples of a given batch, the dis-
criminator prevents mode collapse. The process is as follows.
A custom layer measures the similarity by multiplying the
extracted-feature vectors by a weight tensor. It then finds the
distance between the produced matrix’s rows as the similarity
vector and concatenates it with the extracted feature vector. The
fully connected layer uses this final vector to detect fake vs. real
samples.

Equation (1) describes a min-max game used to train the
cGAN model. With stable training, generator G learns a model
distribution pg by minimizing log(1−D(G(z|y))). This dis-
tribution approximates the real data distribution pdata and is
used to draw like-real signals. We maximize log(D(w|y)) and

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 27,2025 at 16:44:31 UTC from IEEE Xplore.  Restrictions apply. 



3770 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 6, DECEMBER 2024

log(1−D(G(z|y))) to train the discriminator D to learn to
detect the fake signals. The game between D and G converges
to an equilibrium at a saddle point.

min
G

max
D

V (D,G) =

Ew∼pdata(w) [logD(w|y)] + Ez∼pz(z) [log (1−D (G (z|y)))]
(1)

C. Proposed Modified cGAN

Fig. 1(b) illustrates the architecture of the proposed cGAN
for regression score estimation [23]. Like the vanilla cGAN, the
cGAN is trained using a min-max game shown in (2). However,
the major difference is that the cGAN is conditioned on the
signal w instead of the regression score. The generator G is
shown in Fig. 1(c). It minimizes log(1−D(G(z|w))) so that
the generator learns to generate a model distribution pg similar
to pdata, the real data distribution. It maximizes log(D(y|w))
and log(1−D(G(z|w))) so that the discriminator D learns to
detect the fake vs. real scores. This process is repeated until it
reaches a saddle point with an equilibrium between G and D. It
is worth mentioning that in our framework, G is conditioned on
real signals. This change prevents the generator from learning
the data distribution and improves generalizability. The real and
fake loss train G indirectly by their backpropagation through the
discriminator D. Such design is expected to attenuate overfitting
as it ensures that G does not see the real scores.

min
G

max
D

V (D,G) =

Ey∼pdata(y)[logD(y|w)] + Ez∼pz(z)[log(1−D(G(z|w)))]
(2)

The convolutional blocks in G follow the CNN architecture
with ReLU activation layers. Leaky ReLU layers are used in D
as the best practice in designing GANs. We followed five steps
to train the cGAN for k iterations:
� Select n time-series segments

{
w(1), ..., w(n)

}
with their

scores
{
y(1), ..., y(n)

}
from the data distribution pdata to

create a mini-batch.
� Use the mini-batch to update θd, the discriminator weights:

�θd

1

n

n∑
i=1

logD
(
y(i)|w(i)

)
(3)

� Construct a mini-batch of n noise vectors
{
z(1), ..., z(n)

}
}

sampled from a uniform distribution.
� Use the mini-batch of fake samples G(z|w) to update θd,

the discriminator weights:

�θd

1

n

n∑
i=1

log
(
1−D

(
G
(
z(i)|w(i)

)))
(4)

� Use the previously created mini-batch to update θg (the
generator weights) with fixed θd:

�θg

1

n

n∑
i=1

logD
(
G
(
z(i)|w(i)

))
(5)

Fig. 2. Geometric distribution of the regression score (i.e., the chirp’s final
frequency f1) in the synthetic training set is shown. We displayed three synthetic
samples with regression scores of 0.53, 4.33, and 9.98. The testing set distribution
(not shown here) was uniform between 0 and 20.

V. DATASETS

A. Synthetic Dataset

We generated a synthetic time-series signal dataset in our
investigation. The signals were non-stationary in time and fre-
quency. The distribution of the generated signals was selected to
be like-real geometric. We removed some ranges of the regres-
sion score to generate an incomplete distribution. The generated
non-stationary signals were chirp signals commonly seen in
different real-world applications. Estimating the parameters of
these chirp signals has been a major objective [29]. We generated
a quadratic-phase chirp signal according to (6).

x(t) = cos

(
2πt

(
f1 − f0

T
t+ f0

))
(6)

where f0 is the initial frequency with a final frequency f1 at
time T. Five-second chirps

(
w(i) ∈ R250×1

)
were generated

with fs = 50 Hz by randomly selecting f0 from a uniform
distribution between 0–20 Hz. f1 was selected between 0 and
20 Hz from a geometric or uniform distribution depending
on whether the data was used as the training or testing set,
respectively.

The chirp signals were considered inputs to the deep models,
with f1 frequency being the ground-truth regression score. One
training and one testing set were generated, each with 1000
samples. For the training set, the regression score f1 was selected
from a geometric distribution shown in Fig. 2. The regression
scores of the testing set had a uniform distribution, as shown in
Fig. 8(a). We intentionally enforced a missing range between
5 Hz and 8 Hz in the regression score distribution of the
training set. In contrast, the testing set represented the entire
range equally. Such training and testing sets were deliberately
selected to investigate the generalizability of the trained models
to unseen or minority samples. The codes for the synthetic
dataset generations are publicly available on GitHub [30].

B. Parkinson’s Disease Dataset

Most PD patients experience abnormal involuntary, dyski-
netic movements at some point during the disease. These dysk-
inesias are troublesome and must be managed by adjusting the
dose and/or frequency of PD medication(s). However, effective
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Fig. 3. Real segments of data from the PD (a) and WESAD (b) datasets that show the three axes of the accelerometer.

Fig. 4. (a) Accuracy and (b) dynamic time warping curves of the balanced and imbalanced synthetic datasets are displayed. Training on imbalanced data leads
to overfitting right after the first epoch when the accuracy of discriminator D in detecting real and fake samples crossed 90%.

medication adjustments require the treating clinician to receive
a detailed report on how the dyskinesia scores of a patient vary
during a typical day. To address this need, this paper developed
a deep regression model to estimate dyskinesia severity scores
from movement data collected using a wearable on the wrist
and one on the ankle of PD patients. Our study included 15 PD
patients (6 female, 9 male) with an average age of 58±10 years
and an average disease duration of 10±4 years. The full details
of the subjects are shown in Table I. The patients’ dyskinesia
was assessed using a modified Abnormal Involuntary Movement
Scale (mAIMS). A rating ranging from 0 to 4, indicating the
absence of dyskinesia to severe dyskinesia, is assigned by a
neurologist to each of the four limbs, head/neck, trunk, and the
overall body. The cumulative mAIMS score is derived by adding
up these individual sub-scores, yielding a total score that falls

within the range of 0 to 28. The mAIMS represents the regression
score in the PD dataset. The average mAIMS in the dataset was
to 8.6±3.7. The study protocol [31], [32] was approved by the
institutional review boards of the University of Rochester. All
participants in the study signed the informed consent form.

Two 3-axial inertial sensors from Great Lakes NeuroTech-
nologies Inc., Cleveland, OH, were placed on the participants,
one on the most affected wrist and one on the most affected ankle.
The sampling frequency of the sensors was fs = 64 Hz. The
participants were asked to perform a set of daily living actives
at every hour for 3-4 rounds and over a four-hour duration.
This setup resulted in a total of 58 rounds, with each round
being, on average 13.7±1.6 minutes in duration. At each round,
a movement disorder neurologist rated the participants’ dyski-
nesia severity using the mAIMS score. mAIMS ranges from 0
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Fig. 5. Some generated samples’ spectrograms are shown. Panel A is with cGAN from the balanced synthetic dataset, and Panel B is from the imbalanced one.
Panel B shows mode collapse when changing the latent vector or the condition f1. In B, the cGAN generates samples with unmatched final frequency to the
condition f1.

Fig. 6. (a) Vanilla cGAN accuracy curves when trained on the PD dataset. (b) The vanilla cGAN accuracy curves when trained on the WESAD dataset. The
discriminator D started overfitting real and fake samples quickly with a detection accuracy > 90% that caused cGAN training to fail.

for no dyskinesia and 28 for severe dyskinesia. The data were
segmented into windows with a 5-second duration and no over-
laps. This process resulted in 2,280 data samples with a duration
of 320 samples and a dimension of 6, indicating the number of
axes in two sensors (w(i) ∈ R320×6). Real segments from the
three axes of the accelerometer are shown in Fig. 3(a). Finally,
the mAIMS score of each round was used as the ground-truth
regression score of all the 5-second time-series data samples
segmented from that recording round.

C. WESAD Dataset

We used WESAD [33], a publicly available dataset with multi-
modal physiological data recorded during different affective

states. The data were recorded from the chest using a wear-
able sensor device to measure respiration, electrocardiogram,
electromyography, electrodermal activity, skin temperature, and
acceleration at 700 Hz sampling frequency. Fifteen participants
(3 female, 12 male) with an average age of (27.5±2.4 years)
participated in the data collection. The participants underwent
three conditions: baseline, stress, and amusement, followed by
guided mediation. The participants completed the self-report
Positive and Negative Affect Schedule (PANAS) after being
exposed to each condition [34].

The PANAS questionnaire was used to score positive affect
and negative affect (NA). NA scores represented a geometric
distribution (Fig. 10(a)), which makes it challenging to develop
regression models to estimate the NA score. Hence, we used the
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Fig. 7. Trained vanilla cGAN was used to generate X-axis data samples using the PD (a) and WESAD (b) datasets. The model suffered from mode collapse thus
failed to generate diverse samples mainly due to the discriminator’s overfitting and the imbalanced dataset during training.

Fig. 8. Results from the imbalanced synthetic dataset: Distribution of the ground-truth vs. estimated score using (a) CNN and (b) proposed cGAN models.
(c) The correlation between the ground truth and estimated scores is shown using the proposed cGAN and CNN models. The distribution of the estimated scores
using the proposed cGAN was closer to uniform distribution and the ground-truth scores compared to the CNN-estimated scores.

WESAD dataset for our evaluation purposes in this study and
NA as the regression score. Within PANAS, 10 items specifically
gauge negative affects as distinct dimensions, including feelings
of distress, annoyance, guilt, and fear. Each of these items is
assigned a score ranging from 1 to 5. Consequently, The NA

score ranges between 10 for calmness and 50 for subjective
distress. In Hssayeni et al., for a single modality model, we
showed that a vanilla CNN model on the accelerometer data
resulted in the highest correlation for NA estimation [35]. Hence,
in this work, we will use the acceleration signals to estimate the
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TABLE I
DETAILS OF PARKINSON’S DISEASE SUBJECTS

NA scores as our test setup. Our prepossessing involved applying
a 0.1-64 Hz bandpass filter on the acceleration signals. The data
were downsampled by two and segmented into windows with a
duration of one minute (714 data samples) and a dimension of
3, indicating the number of axes (w(i) ∈ R21k×3). Real acceler-
ation segments are shown in Fig. 3(b).

VI. RESULTS AND DISCUSSION

We first investigated the signal generation ability of a vanilla
cGAN and any training issues. Next, we evaluated the perfor-
mance of our proposed cGAN and compared it with CNN. We
made the codes for training and testing our modified cGAN
architecture proposed available to the public on Github [30].

A. Vanilla cGAN for Data imputation

First, we trained a vanilla cGAN model on the balanced
synthetic dataset with uniformly distributed scores to ensure it
can generate expected signals. Second, we replaced the training
data with the imbalanced synthetic dataset with geometrically
distributed scores, PD dataset, and WESAD dataset to investi-
gate the performance of the vanilla cGAN for signal generation
and any issues with mode collapse.

The balanced and imbalanced synthetic datasets each had
1,000 data samples to ensure they only differed on the score
distribution. Using Dynamic Time Warping (DTW) metric, we
assessed the quality of the generated signals. The DTW metric
has commonly been used in the literature by the community to
evaluate the quality of the GAN-generated time series data [36],
[37]. DTW measures similarity between two time-series signals
with lower DTW scores indicating a higher similarity of the
generated signals to the real ones.

The average DTW scores of a batch of the generated and a
batch of real signal samples were calculated after every 1,000
training iterations. The accuracy and DTW curves for the syn-
thetic datasets were shown in Fig. 4(a) and (b), respectively.
One observation was that the vanilla cGAN did not overfit the
balanced data until 10,000 iterations, while it overfitted the
imbalanced data after 1,000 iterations with the discriminator
accuracy reaching above 90%. Another observation was that the

DTW score was consistently higher for the cGAN trained on the
imbalanced data, which means a worse similarity to the real data.
Fig. 4 also shows that the discriminator D of both balanced and
imbalanced data overfitted the training data because the training
data is limited.

The generator with the lowest DTW measure was saved.
The saved generator generated chirps with ending frequencies
(f1) between 1–20 Hz. The spectrograms of some generated
samples are displayed in Fig. 5(a) and (b) using the balanced and
imbalanced training dataset, respectively. The cGAN trained on
the balance data generated chirp signals with the expected ending
frequencies. The initial frequencies also covered a wide range,
indicating that the model learned the random pattern of the
starting frequency. However, the cGAN trained on the imbal-
anced data faced mode collapse as clearly shown in Fig. 5(b)
for set frequencies of f1 as 2–5 Hz. Moreover, the imbalanced
dataset’s generator could not capture the patterns of the final
frequency. Hence, we conclude that the imbalanced training data
was another reason for mode collapse besides limited data and
the increase in the number of classes.

We repeated this process by training the vanilla cGAN on the
two real-world datasets. Fig. 6 provides the training accuracy
curves. The discriminator started overfitting early, leading to
mode collapse, as seen from the sample-generated signals in
Fig. 7. These generated samples are not useful for data im-
putation and could even degrade the newly trained model’s
performance. Therefore, the vanilla cGAN fails to improve the
generalizability of regression models in incomplete time-series
data applications.

B. Proposed cGAN Model vs. CNN for Regression Score
Estimation

The investigation of a vanilla cGAN revealed its limitations
as a data imputation method when dealing with imbalanced and
incomplete training data. Here, we use our proposed modified
cGAN architecture for estimating regression scores without
performing any data imputation and compare its performance
with a CNN model. We applied each method to the imbalanced
synthetic and real-world datasets.

For the synthetic dataset, the models were trained using
the imbalanced synthetic training set and evaluated using the
balanced testing set. For the PD and WESAD datasets, the
models were trained and tested using leave-one-participant-out
cross-validation to ensure no data would leak from the training
to the testing set. This is important as the intra-window similarity
within each participant is high, and if we randomly shuffle the
windows to construct a held-out set for testing, we cannot assess
the models’ generalizability on unseen data. We used 20% of
the training data as our validation set to optimize the model’s
hyperparameters. We applied the trained model to the held-out
test data and compared the estimated regression scores from the
model to the ground-truth scores. Pearson correlation, r, and
mean absolute error, MAE, were used to measure performance.

Keras library with TensorFlow backend was used to imple-
ment the CNN, and cGAN models in Python [38]. We set cGAN
latent space to 100 and trained it using k = 35× 103 iterations
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TABLE II
TESTING PERFORMANCE OF THE PROPOSED CGAN MODEL AND CNN ON THREE IMBALANCED AND INCOMPLETE DATASETS

Fig. 9. Results from the PD dataset: Distribution of the ground-truth vs. estimated scores using (a) CNN and (b) proposed cGAN models. (c) The correlation
between the ground truth and estimated scores is shown using the proposed cGAN and CNN models. The estimated scores using the proposed cGAN showed a
geometric distribution similar to the ground-truth scores compared to the CNN-estimated scores, which had a much narrower range.

with mini-batches of size 32. A grid search was performed
to select the depth of the CNNs and cGAN with the highest
performance on the validation data. We increased the models’
depth by up to four times, repeating Conv Block-2. Next, we
applied the selected model to the held-out test data. During
testing, we applied G ten times on each data segment using a
different noise vector and used the average of the ten estimated
scores as the final score following the work of [27].

First, we evaluated the performance of the proposed cGAN
architecture and CNN model for estimating the regression score
on the imbalanced synthetic dataset as shown in Fig. 8. The
distribution of the estimated score from each model is shown
over the distribution of the ground-truth scores provided in
Fig. 8(a) and (b), respectively, for the CNN and proposed cGAN
models. The correlation performance of the models is illustrated
in Fig. 8(c). The following are our observations. The proposed
cGAN resulted in a correlation of 0.97 and 0.84 MAE, outper-
forming the CNN model with a 0.95 correlation and 1.93 MAE.
The CNN model was challenged to estimate unseen regression
scores and did not estimate any regression scores beyond 15 Hz,
with most of the samples being under 12 Hz. However, the
proposed cGAN had improved performance and could estimate
regression scores close to 20 Hz. CNN and the proposed cGAN
could interpolate the missing scores of 5–8 Hz. However, the
proposed cGAN outperformed CNN by extrapolating to unseen
regression scores > 15 Hz. The estimated regression scores’
distribution from our proposed cGAN was closest to the ground-
truth distribution (Fig. 8(b)).

Next, we applied the two models on the PD dataset to estimate
dyskinesia scores and the WESAD dataset to estimate NA

scores. Similarly, using each model, we showed the estimated
regression scores’ distribution over the ground truth distribution
in each dataset. Fig. 9 provides the results for the PD dataset,
and Fig. 10 for the NA estimation in the WESAD dataset.
Consistent with what we observed in the case of the synthetic
dataset, the proposed cGAN was able to estimate samples with
a distribution closer to the ground-truth distribution than the
CNN model. Interestingly, the CNN model could not correctly
estimate dyskinesia scores for scores greater than 8, while the
proposed cGAN estimated scores up to 17. The proposed cGAN
model on the PD datasets resulted in a correlation of 0.88 and
1.77 MAE with the ground-truth scores, better than the CNN
model with a 0.85 correlation and MAE of 2.68. Similarly, the
proposed cGAN outperformed CNN for NA estimation with
r = 0.73 and 2.71 MAE compared to r = 0.56 and 3.30 MAE.

In all cases, the proposed cGAN offered a significant improve-
ment over CNN with a 56%, 34%, and 18% improvement in
MAE, respectively, for the synthetic, PD, and WESAD datasets
(see Table II). The average MAE of the estimated scores over
every five score intervals is illustrated in Fig. 11. As indicated
by the increasing gap between the MAE of the proposed cGAN
and CNN models for the higher scores (i.e., minority scores),
we can conclude that the improvement of our model vs. CNN
was even more evident in data ranges with minority scores.

For comparison purposes, it is interesting to mention that in a
prior work [39], a bidirectional LSTM was able to estimate dysk-
inesia scores of r = 0.87 correlation and MAE of 1.74, which
was comparable to the performance of the proposed cGAN;
however, similar to CNN, the bidirectional LSTM was not able
to extrapolate beyond dyskinesia score of 10. Fig. 12 shows the
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Fig. 10. Results from the WESAD dataset: Distribution of the ground-truth vs. estimated scores using (a) CNN and (b) proposed cGAN models. (c) The correlation
between the ground truth and estimated scores is shown using the proposed cGAN and CNN models. The distribution of estimated scores using both models had a
closer geometric distribution to the ground-truth scores, but the estimations using the proposed cGAN were more accurate, as seen in (c).

Fig. 11. At every five score interval, the MAE for the proposed cGAN (red) and CNN (green) models was calculated and displayed for estimation of the (a) f1
frequency in the synthetic dataset, (b) dyskinesia score in the PD dataset, and (c) NA scores in the WESAD dataset. Since the score distribution is geometric, the
slow decrease in the proposed cGAN’s performance compared to the CNN model’s performance for the higher score samples indicates its improved generalizability
to minority data.

Fig. 12. MAE for the proposed cGAN (red), CNN (green) models, and LSTM
(brown) for multiple ranges of scores.

significant increase in MAE when estimating higher dyskinesia
scores in comparison to CNN and cGAN. The performance of
the LSTM model was better than CNN but significantly lower
than cGAN. The LSTM was evaluated using the same PD dataset
used in our current work and the same test setting.

Our results demonstrate the improvement we gained using
the proposed cGAN framework in terms of generalizability to

unseen data samples. Our findings about the improved perfor-
mance of the modified cGAN architecture were consistent with
the observations on noisy cross-sectional data as reported in [27].
Below, we summarize our main observations:
� Vanilla cGAN may lead to early mode collapse when

trained using imbalance time-series data. As indicated by
visual inspections, the generated samples from the mi-
nority scores may not be consistent with the time-series
patterns related to the scores. As a result, vanilla cGNA-
generated samples may not improve generalizability over
unseen ranges and could hurt the regression models’
performance.

� The proposed cGAN architecture was able to train a regres-
sion model using incomplete and imbalanced time-series
data, as evidenced by the improved generalizability to
unseen data compared to CNN.

� The proposed method learned the real distribution of the
regression scores better than CNN could better interpolate
its estimation to the missing ranges during the training
process.

� There is still room for improvement. Our future work
involves extending the proposed framework by imposing
the range of the expected regression scores further to
enhance the extrapolation ability to the unseen regression
range.
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VII. CONCLUSION

This paper proposed a novel solution for addressing deep
regression models’ extrapolation and generalizability challenges
in imbalanced and incomplete time-series data. We demon-
strated that vanilla cGAN suffers from severe mode collapse
and cannot be used as a data imputation method in regression
applications with time-series data when the available data is
limited or imbalanced. Our next contribution was the develop-
ment of a new formulation of cGAN to address this limitation
and improve the generalizability of deep regression models.
Our framework conditioned the cGAN on the raw signals in-
stead of the regression scores and embedded a CNN model
in the generator to learn the data distribution and patterns as-
sociated with different regression scores. This method trained
the generator indirectly through the discriminator to attenuate
overfitting. The application of the proposed cGAN on three
imbalanced, incomplete datasets illustrated the ability of this
new approach to learn the distribution of different data types and
accurately estimate minority and unseen scores. The model was
compared to a CNN model, which in all the datasets, exhibited
lower extrapolation and generalizability abilities to unseen sam-
ples, further indicating the effectiveness of our proposed deep
regression model for imbalanced and incomplete time-series
data.
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