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Accurate balance assessment is important in healthcare for identifying and
managing conditions affecting stability and coordination. It plays a key role in
preventing falls, understanding movement disorders, and designing appropriate
therapeutic interventions across various age groups and medical conditions.
However, traditional balance assessment methods often suffer from subjectivity,
lack of comprehensive balance assessments and remote assessment capabilities,
and reliance on specialized equipment and expert analysis. In response to these
challenges, our study introduces an innovative approach for estimating scores
on the Modified Clinical Test of Sensory Interaction on Balance (m-CTSIB).
Utilizing wearable sensors and advanced machine learning algorithms, we offer
an objective, accessible, and efficient method for balance assessment. We
collected comprehensive movement data from 34 participants under four
different sensory conditions using an array of inertial measurement unit (IMU)
sensors coupled with a specialized system to evaluate ground truth m-CTSIB
balance scores for our analysis. This data was then preprocessed, and an
extensive array of features was extracted for analysis. To estimate the m-CTSIB
scores, we applied Multiple Linear Regression (MLR), Support Vector Regression
(SVR), and XGBOOST algorithms. Our subject-wise Leave-One-Out and 5-Fold
cross-validation analysis demonstrated high accuracy and a strong correlation
with ground truth balance scores, validating the effectiveness and reliability of
our approach. Key insights were gained regarding the significance of specific
movements, feature selection, and sensor placement in balance estimation.
Notably, the XGBOOST model, utilizing the lumbar sensor data, achieved
outstanding results in both methods, with Leave-One-Out cross-validation
showing a correlation of 0.96 and a Mean Absolute Error (MAE) of 0.23 and 5-
fold cross-validation showing comparable results with a correlation of 0.92 and
an MAE of 0.23, confirming the model's consistent performance. This finding
underlines the potential of our method to revolutionize balance assessment
practices, particularly in settings where traditional methods are impractical
or inaccessible.
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1 Introduction

Balance is frequently used among healthcare professionals in various clinical settings,
often associated with stability and postural regulation (1). Maintaining balance is critical in
an individual’s functional status and safety. Balance may be impacted by various factors,
including diseases, acute and chronic neurogenic injuries, and the natural aging process
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(2, 3). Assessing motor performance, which includes gait and
stability, offers a valuable clinical approach for predicting a range
of health implications. These include the risk of falls, risk of
hospitalization, the onset of neurological disorders such as
Parkinson’s disease, cognitive decline, and even mortality (4, 5).
Recent research has shown that balance and gait disorders are
prevalent among individuals with different forms of dementia,
including Alzheimer’s disease (AD) and even in its early stages,
such as mild cognitive impairment (MCI) (6). These disorders
can considerably affect cognitive and functional abilities (7),
leading to challenges in daily activities for adults with dementia,
such as self-care, home maintenance, walking, and driving
(8-10). These findings underscore the crucial need to assess and
measure balance among adults.

There are various methods and tools used to measure balance.
Several clinical assessments rely on visual examination by
healthcare professionals, such as the Romberg test and Berg
Balance Scale (BBS), or self-administered questionnaires like the
Activities-specific Balance Confidence Scale (11-13). The Romberg
test assesses balance by having the individual stand with feet
together and arms at their side or crossed in front, first with eyes
open and then closed. However, this test only evaluates balance on
a stable surface and may not reflect the challenges encountered in
BBS, which
activities, provides a broader assessment but necessitates more

dynamic environments. includes 14 functional
extended periods and specialized expertise for administration. The
Timed Up and Go (TUG) test is another test that measures
mobility and requires a clear path of three meters, limiting its
applicability in space-constrained environments. Moreover, it
primarily focuses on the duration to complete the task rather than
the quality of movement and balance during the performance
(14). Self-administered questionnaires like the Activities-specific
Balance Confidence Scale offer subjective self-assessment, which
can be influenced by an individual’s perception and may not
accurately represent actual balance abilities.

The Modified Clinical Test for Sensory Interaction and Balance
(m-CTSIB) is a dynamic assessment tool that evaluates how
individuals utilize their sensory systems to maintain balance.
Distinct from the Romberg test, BBS, and TUG, the m-CTSIB
adds complexity by including conditions that test balance with
both eyes open and closed and on solid and compliant surfaces.
Furthermore, the m-CTSIB can be completed quickly, typically
less than a minute. Its rapid execution, coupled with its
comprehensive nature, enhances its practical utility in various
clinical settings. The m-CTSIB’s design to challenge multiple
sensory inputs is not only more reflective of real-world scenarios
where individuals must maintain balance with varying sensory
feedback but
impairments and the facilitation of targeted rehabilitation plans.

also allows for early detection of balance
For example, in older adults with Alzheimer’s disease, condition
four of the m-CTSIB, which assesses balance with visual input
removed and standing on a compliant surface, has significantly
impacted functional capacity, highlighting its utility in this
population (15, 16). Similarly, for individuals with idiopathic
Parkinson’s disease, there has been evidence of the test’s validity,
with accelerometer data from the m-CTSIB showing consistency
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with force plate measurements, reinforcing its application for these
patients (17-19). Similar to the Romberg test, BBS, and TUG,
clinicians evaluate m-CTSIB visually as the duration of the tests.

A significant limitation of these methods is their dependence
on the clinician’s expertise, which can lead to variability in
results. Moreover, these tests often only consider the duration of
the test as the final measure, potentially overlooking crucial
aspects of balance and stability. This limitation can result in
inconsistent construct and criterion validity, varying based on the
patient population and the method of administration, thus
highlighting the need for more objective and comprehensive
assessment tools in balance evaluation.

Employing recording instruments, such as Falltrak II (MedTrak
VNG, Inc.), for assessing m-CTSIB introduces a systematic balance
quantification, examining the integration of somatosensory, visual,
and vestibular inputs. Falltrak II measures deviations of the center
of pressure (COP) from the center of mass (COM), thereby offering
a comprehensive and objective analysis of an individual’s postural
stability (20). This objective quantification enhances the precision
of m-CTSIB, rendering it a more exact tool for conducting
detailed assessments of balance (21, 22). However, their primary
limitation lies in the reliance on specialized, expensive
equipment, which may not be readily accessible in all clinical
settings. Additionally, these instruments often lack the flexibility
for remote assessments, limiting their application in home or
community-based healthcare scenarios where such evaluations
are increasingly necessary.

In response, recent research has focused on integrating
wearable sensor technology and machine learning algorithms to
improve the accuracy and accessibility of balance assessments.
Wearable sensors also offer a practical and cost-effective solution
for capturing detailed movement data, essential for balance
analysis. Positioned on areas like the lower back and lower limbs,
these sensors provide insights into three-dimensional movement
dynamics, essential for applications such as fall risk assessment
in diverse populations. Coupled with the evolution of machine
learning, these sensor-derived datasets transform into objective,
quantifiable balance metrics, utilizing an array of machine
learning techniques. For example, research by Bhargava et al.
showcased the potential of using wearable coupled with machine
learning to discern individuals with balance impairments from
those without (23). Similarly, LeMoyne et al.’s work with support
vector machines (SVM) and neural networks offered new
with
Friedreich’s ataxia compared to healthy controls (24). Howcroft

insights into the gait characteristics of individuals
et al. employed wearable sensors to classify fall risk in older
adults, with SVM and neural networks emerging as the most
effective intelligent modeling techniques for this purpose (25).
Other examples include the objective assessment of TUG (26)
and the approximation of BBS scores (27) using wearable sensors
and machine learning. Please refer to (28, 29) for a detailed
review of recent advancements in wearable sensor technology
and machine learning for balance assessment.

Despite these advancements, a significant gap remains in the
objective assessment of m-CTSIB scores without relying on

specialized equipment like the Falltrak II. This dependency
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restricts access and complicates implementation in remote or
underserved areas. Our study addresses this gap by introducing a
novel approach using wearable sensors and machine learning to
estimate m-CTSIB scores. By replacing the specialized force plate
equipment, our approach significantly contributes to balance
assessment by making it more accessible, cost-effective, and
capable of remote administration. Such innovation would extend
the benefits of comprehensive balance evaluation to a broader
range of clinical and everyday settings.

Our methodology involved collecting motion data from 34
participants under four different sensory conditions of m-CTSIB
using an array of inertial measurement unit (IMU) sensors
complemented by a specialized system (Falltrak II) for precise
m-CTSIB score evaluation. The wearable sensor data served as
the the
corresponding m-CTSIB scores from Falltrak II acted as

input for our machine-learning models, and
the ground truth labels for model training and validation.
Multiple machine-learning models were then developed to
estimate m-CTSIB scores from the wearable sensor data.
Additionally, we explored the most effective sensor placements to
optimize balance analysis. This novel approach represents a
significant advance in objective balance assessment, especially
valuable for remote monitoring in home-based or nursing care
settings, potentially transforming balance disorder management.
Our study addresses a crucial gap in balance assessment and sets
a new benchmark in the application of wearable technology and

machine learning in healthcare.

2 Materials and methods

In this section, we detail our comprehensive approach
encompassing data collection, signal processing techniques, and
the application of machine learning methodologies. Figure 1
illustrates the key steps involved in our data processing and
machine learning approach. Our system utilizes data from
wearable sensors and Falltrak II scores as input and ground truth
scores, respectively. The following sections provide a detailed
description of each step in the process.

10.3389/fdgth.2024.1366176

2.1 Subjects

The study recruited 34 participants, 12 males and 23 females,
aged 21-88 years (see Table 1). The study adhered to the
principles of the Helsinki Declaration and was approved by the
Institutional Review Board (IRB). Informed consent was obtained
from each participant through signed consent forms.

2.1.1 Participant selection criteria and population
comparability analysis

The participant cohort for our study was selected to align with
the demographic that commonly undergoes the m-CTSIB. Focused
on community-dwelling adults and older adults, our inclusion
criteria spanned those without cognitive deficits to those with MCI
and early-stage AD, deliberately excluding individuals with more
advanced AD. This choice was informed by evidence pointing to
the m-CTSIB’s reliability in populations with mild cognitive
variations and its capacity to offer significant insights into balance
and mobility (30). The demographic inclusivity ensures our
findings apply to the broader clinical and research contexts where
the m-CTSIB is an established tool for balance assessment.

2.2 Recording tools

The Falltrak II system by MedTrak VNG, Inc., along with a
series of IMU sensors, constituted the primary recording tools in
this study. The Falltrak II system featured a pressure-sensitive
platform that measured shifts in COP, both anterior-posterior
(AP) and medial-lateral (ML). It provided a measure of the path
length (PL) and average velocity (AV) of the COP. The units for
PL are inches, representing the distance traveled by the COP,
while AV is measured in inches per second, representing the
average velocity of the COP movement. In addition to the Falltrak
II system, IMU sensors, which included two Shimmer sensors and
six APDM sensors, were utilized to capture comprehensive
data. The
specifications closely match, ensuring data consistency for our

accelerometer and gyroscope sensors’  technical

Wearable | MU Signals Feature
Sensors Extraction
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FIGURE 1

The diagram illustrates the proposed approach for estimating the m-CTSIB scores from wearable sensor data. m-CTSIB scores obtained in parallel
through the Falltrak Il system serve as the reference for training and testing our machine learning algorithms.
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TABLE 1 Participant demographics.

Total participants 34 Right-handed 31
Gender (male, female) 12, 22 Hight (inches) 65.31 + 3.72
Age range (year) 58.78 + 18.06 | Weight (pound) 169.34 + 45.88

Values are presented as numbers, mean 4 SD, and/or [range].

study. Table 2 compares the APDM and Shimmer sensors directly,
both operating at 128 Hz with a range of +16 g across three axes,
Section S2 in the
Supplementary Material provides more details about APDM and

facilitating robust comparative analysis.

Shimmer sensors. A microphone attached to the participants’
chest was also used for audio cues, essential for data segmentation
across different experiments as elaborated in Section 2.6.
Section S3 in the Supplementary Material provides more details

on the measurement framework provided by the FallTrak II system.

2.3 Wearable sensor placements

IMU sensors were placed on the participants to gather
accelerometer and gyroscope data (see Figure 2A). The Shimmer
sensors were placed on the upper arms, positioned just outside
and below the deltoid muscle-the primary muscle shaping the
contour of the shoulder. This specific placement was chosen to
ensure central alignment and effective capture of upper body
movements, facilitating detailed analysis of arm and shoulder
dynamics crucial for understanding overall body sway. The APDM
sensors were placed at several key points on the body for
comprehensive motion analysis. One sensor was placed on each
ankle, centered to track lower limb movements. This location is
important for assessing leg stability and the role of the lower
extremities in balance maintenance. Another sensor was secured
on the lumbar region, specifically centered at the L3 vertebra. This
placement is key for monitoring core body movements, offering
valuable data on how the body’s midsection, an area pivotal for
balance, responds to different postural demands. The sternum
sensor was affixed to the flat surface of the chest, positioned just
below the meeting point of the collar bones, ensuring it was
centered for optimal data capture of the torso’s movements,
contributing to our comprehension of how central body motion
impacts balance. Lastly, sensors were placed on the wrists, akin to
wearing a watch, to monitor wrist and hand movements,
providing insights into the fine motor adjustments made by the
participants to maintain balance. The careful positioning of these
sensors ensured accurate and reliable data collection in our study.

Sensor placement was conducted by trained research personnel
adhering to a standardized protocol, utilizing specific anatomical

TABLE 2 Specifications of APDM and shimmer sensors used in the study.

L wow) Smmer ()

Axes 3 axes 3 axes
Noise 120 pg/+/Hz 125 pg/vHz
Sample rate 128 Hz 128 Hz
Range +16 +16
Resolution 17.5 bits 16 bits
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landmarks to ensure consistent participant positioning. We used
detailed visual and written guidelines and preparatory practice
sessions for the team to minimize variability in sensor attachment.
Anatomical reference points, such as the deltoid muscle for the
upper arms and the L3 vertebra for the lumbar region, were
crucial for achieving uniformity. Furthermore, the team regularly
reviewed and calibrated their techniques based on feedback,
ensuring the accuracy and reliability of data collection were
maintained throughout the study. This rigorous methodology was
pivotal in addressing potential placement variability between
subjects, thereby enhancing the study’s overall data integrity.

The consistent coordinate direction was established for all sensors
to analyze and compare the recorded signals (see Figure 2B). The
APDM sensors’ Y-axis was oriented away from the skin, and
the X-axis followed the right-hand rule. The Z-axis, defined by the
buttons on the sensor sides, faced the ground. For the Shimmer
sensors, the port side of each sensor was oriented away from the
ground, with the Y-axis facing outward from the skin. The X-axis
was aligned according to the right-hand rule. All sensors, except
those placed on the arms, recorded data from the accelerometer
and gyroscope in three dimensions (X, Y, and Z), with the X-axis
representing ML displacement, the Y-axis indicating AP
displacement, and the Z-axis aligning with VT (vertical) motion.
Due to the standing position, the orientation was adjusted for the
X-axis

sensors placed on the arms. The represented AP

displacement, and the Y-axis indicated ML displacement.

2.4 Data synchronization

To ensure the accuracy and consistency of data across all
sensors, all sensors were set to a uniform sampling frequency of
128Hz and were synchronized. The APDM sensors were
synchronized during their calibration phase. Section S4 in the
Supplementary Material explains our technique to synchronize
the Shimmer sensors with the already synchronized APDM
sensors. By initializing all sensors through their respective
systems and connecting them to a single PC, we aligned their
internal clocks with the PC’s clock, minimizing the clock drift
risk. Considering the brief duration of our data collection
sessions, typically under one minute, the potential for significant
clock drift was substantially reduced. Both the Falltrak II system
and the IMU sensors were calibrated before each session.

2.5 Study design

Participants underwent a series of methodically structured
steps as part of the study design.

o Placements of wearables: IMU sensors were placed on the
participants’ bodies as described in Section 2.3

o Positioning on Falltrak: Participants stood barefoot on the
Falltrak II platform, with specific instructions for initial
positioning to ensure accuracy in balance measurement.
Participants were instructed to adopt a standardized stance

frontiersin.org
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FIGURE 2

Sensor placement and orientation. (A) Shows the placement of APDM (in blue) and Shimmer (in orange) sensors, along with a microphone, on the
human body. (B) Provides a detailed view of the sensors’ orientation, indicating the axes’ alignment for accurate data capture.

APDM sensor

Shimmer sensor

Microphone

throughout the testing: feet shoulder-width apart, arms hanging
at the sides, and eyes directed forward with no repositioning
between conditions to maintain the continuity and efficiency
of the test procedure. The procedure was immediately halted
if any deviation from the prescribed posture was observed,
such as unauthorized movement of the arms or opening of
the eyes during conditions requiring them to be closed.
Additionally, immediate support was provided to participants
who showed signs of instability or were at risk of losing
balance, thereby preserving the consistency of the test
conditions and safeguarding participant well-being.

Order of measurements: Tests conducted in a fixed sequence
listed below. This order was designed to increase the challenge
to participants’ balance systems progressively. In addition,
these tests assess balance performance when one or more
sensory systems are compromised.

- Eyes open, stable surface (EOSS): Subjects stood on the
hard surface of the platform with their eyes open.
Participants stand on a stable surface with their eyes open
in this condition. Here, all three primary sensory systems
for balance (visual, somatosensory, and vestibular) are
available for maintaining posture and equilibrium. The
EOSS condition does not intentionally compromise any
sensory system; instead, it serves as a baseline to evaluate
balance under normal conditions where the visual and
somatosensory inputs are intact and unaltered.

- Eyes closed, stable surface (ECSS): Participants stood
on the hard surface but with their eyes closed,
increasing reliance on somatosensory and vestibular
inputs for balance.

Frontiers in Digital Health

- Eyes open, foam surface (EOFS): This condition involved
standing on a foam pad placed on the platform with eyes

open. This setup is designed to challenge the
somatosensory system by introducing an unstable surface
under the feet, compromising the reliability of

somatosensory feedback used for balance. The visual and
vestibular remain engaged and unaltered,
providing the primary sources of sensory input for

balance maintenance in this condition. The foam surface

systems

effectively simulates a compromised somatosensory
condition, testing the participant’s ability to maintain
balance with reduced somatosensory input.
closed, foam surface (ECFS):

challenging condition, subjects stood on the foam pad

- Eyes In the most
with their eyes closed, significantly reducing visual and
somatosensory feedback.

Duration of each test and no breaks: Each test condition lasted

for approximately 11s, following the 10s guideline from the

Falltrak II system to ensure compatibility with the equipment’s

data collection parameters while still obtaining meaningful

balance performance metrics (17). The tests were conducted
without breaks between tests to simulate continuous balance
challenges and streamline the assessment process.

2.6 Pre-processing considerations

Following data collection, we obtained one accelerometer and

one gyroscope recording from each wearable sensor for all the

experimental

conditions: EOSS, ECSS, EOFS, and ECFS.
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Associated with each condition, we also derived the AV and PL
scores from the Falltrak II system, representing the m-CTSIB
scores. We used the chest-mounted microphone’s recorded vocal
cues to determine the start and stop of each condition and
segment each participant’s wearable sensor data into four distinct
files, each corresponding to a different experimental condition.
To account for potential transitions on or off the board, which
could skew our analysis, we omitted a 0.5s interval from the
beginning and the end of each wearable sensor data segment.
This pre-processing resulted in wearable data, with an average
duration of 11s (+1.6s standard deviation) per condition.
Accompanying each wearable sensor recording were their
corresponding m-CTSIB AV and PL scores from the Falltrak II
system. These data were then organized and stored in .csv format
for further analysis.

In our study, among the participants, 31 were right-sided and 3
were left-sided. Recognizing the significant influence of limb
dominance on postural stability and control, as highlighted in
prior research by Promsri et al. and Yoshida et al, we
categorized the sensor data to reflect each individual’s dominant
and non-dominant sides (33, 34). This approach ensures a more
accurate representation of balance performance, taking into
account the variability introduced by side dominance.

Our decision to focus on estimating AV scores through our
machine learning models is rooted in the clinical significance of
AV in balance assessments for evaluating balance and stability,
where higher scores indicate increased instability (35, 36). This
emphasis on AV is further supported by our analysis, which
revealed a strong Pearson correlation coefficient between AV and
PL scores across all test conditions—0.94 for EOSS, and 1.00 for
ECSS, EOFS, and ECFS. This high correlation demonstrates that
variations in AV correspond closely with changes in PL,
highlighting their interconnectedness in assessing balance.

We also decided to develop a single machine learning model
for all EOSS, ECSS, EOFS, and ECFS experimental conditions.
This approach improves the diversity of the dataset and the
model’s ability to generalize, reflecting varied sensory and
environmental challenges. Our analysis showed consistent sensor
data patterns across conditions, supporting the effectiveness of
one model to accurately estimate AV scores in diverse
experimental conditions, enhancing both accuracy and versatility
for balance assessment and rehabilitation applications.

2.7 Feature extraction

For each wearable sensor data, we extracted features
independently from the X, Y, and Z axes. This process yielded a
total of 42 features for each IMU data. Features were extracted
from the full, unsegmented signal to maintain data integrity
within each m-CTSIB test condition, as we chose not to
implement signal segmentation due to the short duration of our
data segments (approximately 11s each). The extracted features
(listed in Table 3) encompassed a wide range of data
characteristics for their potential to reveal the subjects’ balance

performance. These features are described in (37) and include:
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TABLE 3 The extracted features for each wearable sensor recording.

ST Sonals e

Statistical | 1 - Standard deviation X, Y, Z
2 - Skewness X, Y, Z 3
3 - Kurtosis XY, Z 3
4 - Sparsity X, Y, Z 3
Entropy 5 — Shannon entropy X, Y, Z 3
6 — Sample entropy X, Y, Z 3
7 - Frequency-domain entropy X, Y, Z 3
Frequency | 8 - Power of the main frequency X, Y, Z 3
9 — Power of the secondary frequency | X,Y,Z 3
10 - Main frequency X, Y, Z 3
11 - Secondary frequency X, Y, Z 3
Time 12 - Difference sum X, Y, Z 3
13 - Average jerk X, Y, Z 3
14 - Cross correlation XY X, Y 1
15 - Cross correlation XZ X, Z 1
16 - Cross correlation YZ Y, Z 1
Total number of features 42

« Statistical features: These features, such as standard deviation
(SD), skewness, kurtosis, and sparsity, provide insights into
the distribution and variability of the sensor signals and the
stability and consistency of the subjects’ balance.

o Time-domain features: Features like difference sum, average jerk,
and cross-correlation (XY, YZ, XZ) capture movement dynamics
over time, reflecting how balance is maintained or adjusted.

o Entropy measures: Shannon entropy, sample entropy, and
frequency-domain entropy offer an understanding of the
complexity and predictability of the sensor signal patterns,
which are indicative of balance control mechanisms.

o Frequency-domain features: These features, including the
power of the main and secondary frequencies and their
respective frequency values, reveal the dominant patterns of
movement and rhythmic stability.

2.8 Machine learning models and feature
selection

Predicting AV scores from wearable-derived features was formulated
as a regression problem: AV = f ( features), where ’features’ are derived
from the wearable sensor data. In selecting the appropriate machine
learning models for our study, we considered various factors, such as
the nature of our data, the complexity of the regression problem, and
the need for both interpretability and predictive accuracy. Multiple
Linear Regression (MLR) was chosen for its simplicity and ease of
interpretation, providing a clear understanding of how each feature
influences the AV scores linearly. MLR models the relationship
between a dependent variable Y (AV scores) and independent

variables X, X5, ..., X,, (wearable-derived features):

Y=B+BXi+BXo+ - +B,Xnte€

Here, B, is the intercept, B8, B,, ...,
and € is the error term (38).

B, are the coefficients,
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Support Vector Regression (SVR) was selected due to its

effectiveness in handling non-linear relationships and its
robustness to outliers, common in sensor data. SVR is a SVM
variant used for regression problems (39). The SVR model can

be represented as:

Y = (w, $(X)) + b

where Y is the AV score, X is the feature vector, ¢(X) is the feature
vector transformed by the kernel function, w is the weight vector,
and b is the bias. The kernel function transforms the original data
into a higher dimensional space where a linear regression can be fit.

Finally, eXtreme Gradient Boosting (XGBOOST) was included
for its advanced capabilities in handling complex, high-
dimensional data and its inherent feature selection mechanism,
making it adept at capturing intricate patterns in the data (40).
The of XGBOOST
constructing an ensemble of decision trees, where each tree is

core principle involves  sequentially
built to correct the residuals or prediction errors made by the

preceding trees. This additive model is represented as:

K

y=YhX), fEF

k=1

where Y is the AV score for the feature set, X, K represents the
number of boosting rounds (trees), and F is the space of all
regression trees.

2.9 Training and testing setup

We applied both Subject-wise One-Leave-Out and 5-fold cross-
validation methods for splitting the dataset into training and
testing sets. For each iteration, one subject’s data was set aside
for testing in the One-Leave-Out method, and for the 5-Fold
method, data was divided into five parts, with one part used as
the test set in each fold. To ensure the reliability and
generalizability of our models, the training data was shuffled
before being divided into training and validation sets, with 80%
of the data used for training and the remaining 20% for
validation. This validation set was used as an interim test to fine-
tune model hyperparameters and avoid overfitting.

Hyperparameters for our models were optimized through a
grid search strategy, focusing on the key parameters of each
model. For SVR, we focused on optimizing the regularization
parameter C between 0.1 and 10, epsilon & from 0.01 to 0.2, and
Linear and Radial Basis Function (RBF) kernel functions. In the
case of XGBOOST, the feature subsampling rate range was set as
(0.1, 0.5). For maximum depth, we explored values from 3 to
10 in steps of 2 (ie., 3 < maximum depth < 10, step=2), and for
number of trees, the range was from 10 to 200 in increments of
20 (ie., 10 < number of trees < 200, step=20).

The performance of our machine learning models was
evaluated based on minimizing the Mean Absolute Error (MAE)
between the predicted AV scores from the wearable sensor data
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and their ground truth AV scores from Falltrak II. We also
provided the Pearson Correlation coefficient (r) as another
objective evaluation metric.

2.9.1 Feature selection strategy

During each iteration of the MLR and SVR subject-wise One-
Leave-Out or 5-fold cross-validation, we calculated Pearson
correlation coefficients between each IMU-derived feature and
the AV scores from the training subset. Only features with a
correlation coefficient above 0.7 were chosen for model inputs.
This approach prevented leakage between the training and testing
datasets and ensured the inclusion of features with a significant
linear relationship with the AV scores. No separate feature
selection was necessary for XGBOOST, which integrates its
feature selection within the learning algorithm.

3 Results

This section presents a detailed analysis of the results obtained
from our study. This includes FalltrakIl measurement reports, a
thorough analysis of features, an evaluation of the optimal sensor
estimating m-CTSIB AV
comprehensive assessment of the performance of our three

placement for scores, and a

machine learning methodologies.

3.1 Falltrak Il measurements for participants

Falltrak II traces participants’ real-time COP during the
m-CTSIB test. Figure 3 shows the Falltrak II report for a
participant and how PL and AV vary through different conditions,
with ECFS being the most challenging with the highest PL and
AV scores. Table 4 lists the mean and SD values of PL and AV
for the study participants. PL is a measure of how much the COP
moves during the test. A shorter path length indicates a better
balance performance. AV is a measure of how fast the COP
moves during the test. A lower average velocity indicates a better
balance performance. We conducted a correlation analysis to
evaluate the relationship between AV scores across EOSS, ECFS,
EOFS, and ECES conditions. Figure 4A illustrate a substantial
correlation between the eyes-open conditions, EOSS and ECES,
with coefficients reaching 0.73. Conversely, the least challenging
condition (EOSS) demonstrates the lowest correlation with the
most demanding condition (ECFS), yielding coefficients of 0.47.
Additionally, Figure 4B presents a histogram analysis comparing
these conditions, revealing variations in the distribution of AV
scores across them. This observation suggests that each condition
poses a unique challenge for balance assessment, offering novel
insights into the assessment of balance.

3.2 Feature analysis of wearable sensors

We extracted features from the accelerometer signals collected
during each m-CTSIB condition as explained in Section 2.7. Our
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FIGURE 3
The variations in path length (PL) and average velocity (AV) across four m-CTSIB conditions of one of our subjects. The horizontal and vertical axes
represent the displacement of the subject along the x-axis and y-axis, respectively. The green lines represent the real-time tracing of the subject’s
center of pressure (COP) during the test, and the pink circles indicate the standard deviation of the subject’'s COP.

TABLE 4 Summary of average velocity (AV) and path length (PL) for test
conditions.

\ \ EOSS \ ECSS \ EOFS \ ECFS

AV (inches/second) | 0.33 £+ 0.16 | 0.63 + 0.32 | 0.70 + 0.36 | 1.94 + 1.00
PL (inches) 332+ 158 | 6.36 £3.16 | 7.05 £ 3.58 | 19.47 £ 9.99

Values are presented as mean + SD. AV and PL stand for average velocity and path
length from the COP, respectively. AV, average velocity; PL, path length; EOSS, eyes
open, stable surface; ECSS, eyes closed, stable surface; EOFS, eyes open, foam
surface; ECFS, eyes closed, foam surface.

feature analysis was conducted to determine the relevance of these
sensor-derived features in predicting m-CTSIB AV scores. To
ensure uniform contribution across all features in our model,
each was normalized using its mean and standard deviation. This
normalization process prevented any feature from dominating
due to scale variance. We then computed correlation coefficients

between the normalized features and the AV scores to assess the
relevance of each feature to balance. Figure 5 displays a series of
radar plots for different sensor locations: the ankle, lumbar,
sternum, wrist, and arm. These plots illustrate the correlation
coefficients of each feature from 0 to 1, with higher radial
distances indicating stronger correlations. The features arranged
counterclockwise as per Table 3, include cross-correlation
features (XY, XZ, and YZ) as the 14th feature on respective axes.
The analysis revealed that features related to ML movements
showed the highest correlation values, followed by those related
to AP movements, highlighting the significance of ML and AP
movements in balance control. Among the sensors, the ankle
showed the highest correlation values for balance-related features,
followed by lumbar, sternum, wrist, and arm sensors in that order.

We considered features with a correlation coefficient greater than
0.7 with the balance score as significant features. Figure 6 showcases

A

1
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EOSS ECFS EOFS ECFS
FIGURE 4

four distinct m-CTSIB conditions.
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Falltrak Il AV score analysis. (A) Depicts the correlation analysis of AV scores across four distinct m-CTSIB conditions. (B) Illustrates the histogram across
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Lumbar

Sternum @

FIGURE 5
Radar plots of feature correlations across sensors. Radar plots illustrate the correlation of accelerometer-derived features from the medial-lateral (ML),

anterior-posterior (AP), and vertical (VT) axes with average velocity (AV) balance scores. Features are represented on spokes with correlation
coefficients ranging from O to 1. The red radar indicates a correlation of 0.7, and features with correlations exceeding this threshold are
considered significant.
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This figure illustrates the significant features of each sensor along three axes: medial-lateral (ML), anterior-posterior (AP), and vertical (VT), identified by
a correlation coefficient exceeding 0.7. The colors represent different sensor placements.
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these significant features for each sensor location. This figure reveals a
notable presence of features related to variability metrics, such as
STD and difference sum, as well as entropy-based features. Their
dominance implies that sensor-captured movement variations are
critical in indicating balance stability or instability, with higher
STD values, for example, potentially reflecting greater instability.
Figure 7 offers an insight into the distribution of these significant
features across sensor locations and feature types. It shows that the
ankle and lumbar sensors have the most substantial number of
significant features, with 7 and 6 features, respectively. These
locations represent 32% and 27% of all significant features
identified, highlighting their importance in accurately estimating m-
CTSIB AV scores. The graph also emphasizes the prevalence of
statistical and time-domain features as key predictors of balance
while noting the absence of significant frequency-domain features
in any sensor placements. This distribution underscores the
relevance of specific feature types and sensor locations in balance
assessment and aids in optimizing the balance evaluation process.
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3.3 m-CTSIB score estimation

Our Python packages:
sklearn.linear_model for implementing MLR, sklearn.svm for
SVR, and the xgboost package for implementing the XGBOOST
algorithm. We followed the training and testing setup described

experiments employed specific

in Section 2.9 and reported the optimal hyperparameters for the
SVR and XGBOOST models of each sensor placement in
Table 5. We observed variability in hyperparameter values across
different cross-validation folds, stemming from each fold
featuring a distinct training and validation data combination.
This diversity necessitates adjustments in model parameters to
best fit each specific data distribution. Moreover, the range of
optimized hyperparameters varied between the One-Leave-Out
The One-Leave-Out

approach, with its detailed analysis per fold, permits a wider

and 5-Fold cross-validation methods.

exploration of hyperparameter settings. In contrast, the 5-fold
method consolidates findings across multiple folds, requiring a
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more cautious hyperparameter selection to maintain model
generalizability while avoiding overcomplexity.

The validation and test results, including r and MAE, are
detailed in Table 6. Specifically, with One-Leave-Out cross-
validation, lumbar sensor results showed r of 0.92 and MAE of
0.23 using MLR. The same sensor achieved r values of 0.90 and
0.96, and MAE values of 0.24 and 0.23 with SVR and
XGBOOST, respectively. In 5-fold cross-validation, the lumbar
sensor’s performance included r values of 0.55 to 0.92 and MAE
from 0.50 to 0.23 across MLR, SVR, and XGBOOST.

Similarly, the ankle sensor demonstrated strong performance.
During One-Leave-Out cross-validation, it reached r of 0.91 and
MAE of 0.25 with MLR, and for SVR and XGBOOST, it
recorded r values of 0.88 and 0.94, and MAE values of 0.27 and
0.26, respectively. The 5-fold cross-validation for the ankle sensor
showed r ranging from 0.58 to 0.89 and MAE from 0.51 to 0.27
across the three machine learning models.

In refining our models, we addressed feature redundancy by
excluding highly correlated features with a correlation of >0.9

with each other. This adjustment aimed to streamline the feature
set for MLR and SVR algorithms. Our observations suggested a
negligible effect on model efficacy, with a slight performance
decrease in certain cases. This outcome implied that given the
modest size of the initial significant feature set (up to seven
features), even redundant features could be instrumental in our
while
redundancy is a standard practice to avert model bias, our
analysis showed that preserving these features could be beneficial
for maintaining the predictive strength of the models.

model’s prediction capacity. Therefore, minimizing

Moreover, we explored the potential of incorporating
gyroscope data instead of accelerometer data, given that our IMU
sensors capture both types of measurements. Section S5 in
the Supplementary Material provides a detailed analysis. The
affirmed the of
accelerometer data in terms of correlation with actual balance

analysis, however, superior performance
scores and lower MAE, leading us to prioritize accelerometer
data in our primary analysis. The preference for accelerometer

data is further supported by advantages such as lower power

TABLE 5 Optimized hyperparameters for best models across various sensor locations.

Sensors XGBOOST
Kernel Number of trees Maximum depth Feature subsampling rate
One-Leave-Out Ankle Linear [0.1-10] [0.01-0.2] [30-190] [3-9] [0.1-0.4]
Lumbar Linear [0.1-10] [0.01-0.2] [30-190] [3-9] [0.1-0.4]
Sternum Linear [0.1-10] [0.01-0.2] [30-190] [3-9] [0.1-0.4]
Wrist RBF [0.1-10] [0.01-0.2] [50-190] [3-9] [0.1-0.4]
Arm Linear [0.1-10] [0.01-0.2] [30-190] [3-9] [0.2-0.4]
5-Fold Ankle Linear [0.1-1] [0.01-0.2] [30-170] [3-9] [0.1-0.4]
Lumbar Linear [0.1-1] [0.1-0.2] [30-150] [5-6] [0.3-0.4]
Sternum Linear [0.1-1] [0.1-0.2] [30-190] [3-9] [0.2-0.4]
Wrist RBF [1-10] [0.01-0.1] [70-110] [3-9] [0.1-0.4]
Arm Linear [1-10] [0.01-0.1] [30-130] [3-9] [0.3-0.4]

Values are presented as [range].

Frontiers in Digital Health

1

frontiersin.org


https://doi.org/10.3389/fdgth.2024.1366176
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

Nassajpour et al. 10.3389/fdgth.2024.1366176

TABLE 6 Subject-wise One-Leave-Out and 5-fold cross-validation performance using various sensor placements and machine learning models.

Methods Sensors One-Leave-Out
Validation Test Validation
MAE + SD MAE + SD MAE + SD

MLR Ankle 0.27 + 0.05 0.90 0.25 + 021 091 0.29 + 0.13 0.90 0.51 + 0.07 0.58
Lumbar 0.23 + 0.06 0.94 0.23 + 0.15 0.92 0.28 + 0.13 0.94 0.50 + 0.06 0.55
Sternum 0.28 + 0.06 0.91 0.29 + 0.20 0.88 0.30 + 0.07 0.94 0.51 + 0.07 0.56
Wrist 0.43 + 0.12 0.77 0.40 + 0.33 0.71 0.54 + 0.13 0.78 0.49 + 0.08 0.54
Arm 0.42 + 0.15 0.78 0.38 + 0.36 0.75 0.36 + 0.18 0.76 0.52 + 0.07 0.55

SVR Ankle 0.21 + 0.07 0.91 0.27 + 022 0.88 0.40 + 0.07 0.93 0.34 + 0.05 0.84
Lumbar 0.25 + 0.06 0.93 0.24 + 0.18 0.90 0.45 + 0.12 0.89 0.31 + 0.03 0.85
Sternum 0.29 + 0.07 0.88 0.30 + 0.20 0.87 0.33 + 0.02 0.85 0.39 + 0.10 0.86
Wrist 0.38 + 0.19 0.81 0.31 + 0.20 0.84 0.36 + 0.06 0.80 0.47 + 0.12 0.68
Arm 0.33 + 0.09 0.78 0.34 + 0.29 0.77 0.44 + 0.08 0.62 0.47 + 0.10 0.63

XGBOOST Ankle 0.18 + 0.02 0.91 0.26 + 0.15 0.94 0.19 + 0.02 0.91 0.27 + 0.04 0.89
Lumbar 0.15 + 0.02 0.95 0.23 + 0.15 0.96 0.13 + 0.01 0.97 0.23 + 0.03 0.92
Sternum 0.20 + 0.02 0.90 0.30 + 0.15 0.88 0.20 + 0.02 0.85 0.29 + 0.06 0.89
Wrist 0.20 + 0.03 0.92 0.32 + 0.20 0.90 0.19 + 0.05 0.92 0.33 + 0.09 0.81
Arm 0.20 + 0.03 0.93 0.30 + 0.24 0.88 0.19 + 0.02 0.95 0.35 + 0.12 0.71

The bold values represent the optimal outcomes achieved by machine learning algorithms, as determined through both One-leave-out and 5-fold cross validation.

consumption, cost-effectiveness, and broader accessibility, making
them a preferable option for continuous health monitoring.

We repeated our investigation using the lumbar and ankle
sensors for the One-Leave-Out method. However, combining
lumbar and ankle sensors did not enhance performance as
expected, resulting in a lower testing r of 0.62 and MAE of 0.43
for MLR, 0.62 and 0.42 for SVR, and 0.95 and 0.27 for
XGBOOST. This could be due to the increased complexity and
potential redundancy in the data when combining sensors, which
might not linearly translate to improved predictive accuracy.

Furthermore, we computed the MAE for each condition
individually from the lumbar sensor data. The findings indicate
that within eyes-open conditions (i.e., EOSS and EOFS), the MLR
model achieved the lowest MAE of 0.17 vs. an MAE of 0.20
obtained using XGBOOST. Conversely, during the eyes closed
conditions (i.e., ECSS and ECFS), the XGBOOST model exhibited
the minimum MAE of 0.26 vs. 0.29 using the MLR model. Such a
difference in performance could be attributed to the nature of the
data and the models’ strengths. MLR, being a linear model, may
perform better when the relationship between the input features
and the output is more linear, which might be the case in eyes-
open conditions. In contrast, XGBOOST, a more complex and

non-linear model, could better capture the subtler, more complex
patterns in the eyes-closed conditions, where maintaining balance
might depend on less obvious or non-linear relationships in the
data. The closed-eye conditions likely introduce more variability
and complexity in the balance data, which non-linear models like
XGBOOST are better equipped to handle.

Figure 8 presents the Mean Absolute Percentage Error (MAPE)
for the XGBOOST model in the One-Leave-Out method across
different conditions—EOSS, ECSS, EOFS, and ECFS—for sensor
locations including ankle, lumbar, sternum, wrist, and arm. MAPE
was chosen as the evaluation metric over MAE due to the varying
ranges of balance scores among these conditions, facilitating more
effective result comparisons, as detailed in Table 4. ECFS, EOFS,
and ECSS conditions show notably low MAPE values, with ECFS
achieving the lowest MAPE in the range of 0.18-0.26. This
suggests the models excel in predicting balance scores under these
challenging conditions, showcasing their proficiency in scenarios
where maintaining balance is considerably more difficult.

Figure 9 illustrates the correlation between ground truth and
predicted AV scores for EOSS, ECSS, EOFS, and ECFS from the
XGBOOST One-Leave-Out methods applied to lumbar and ankle
sensor data. The plot reveals a high concentration of predictions,

Ankle Lumbar

HEOSS mECSS

FIGURE 8

Sternum Wrist 15 Arm

Mean absolute percentage error (MAPE) of the XGBOOST model for m-CTSIB conditions—EOSS, eyes open on solid surface; ECSS, eyes closed on
solid surface; EOFS, eyes open on foam surface; ECFS, eyes closed on foam surface.
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FIGURE 9

Scatter plots comparing predicted AV scores of the XGBoost method from wearable sensor data to ground truth AV scores across multiple m-CTSIB
conditions. Each plot corresponds to a different condition, with data points color-coded for clarity. The dashed lines indicate the bounds of a 95%
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FIGURE 10
Distribution of actual vs. predicted m-CTSIB scores of the XGBOOST from One-Leave-Out cross validation.

marked by color-coded data points with distinct markers, aligning
closely with the r = 1 line, depicted as a purple dashed line. This
pattern suggests that the models demonstrate robust performance
in the AV score prediction. Notably, predictions from the lumbar
sensor placement are generally superior to those from the ankle,
as evidenced by the data points’ proximity to the 95% prediction
band (indicated by the black dashed lines), being more distant in
the case of the lumbar.

To visualize the distribution of both actual m-CTSIB scores
and predicted scores from our model, refer to Figure 10. This
figure presents histograms comparing the ground truth m-CTSIB
scores with the scores predicted by our XGBOOST model
using the One-Leave-Out method for the ankle and lumbar
sensors. The alignment between these two distribution sets
underscores the predictive accuracy of our model across
various conditions.

4 Discussion

Our study investigated wearable sensors for objective m-CTSIB
balance score estimation under various sensory conditions defined
by the test. This objective emerged from recognizing the need for
advanced tools to capture the nuanced effects of different sensory
inputs on balance. Traditional balance assessments often lack the
granularity to dissect these influences comprehensively, leading to a
gap in our understanding and management of balance impairments.
Moreover, wearables support remote monitoring, enabling healthcare
professionals to evaluate patients’ balance remotely, which is
particularly useful in diverse healthcare scenarios (41, 42).

4.1 Key findings and observations

Our main finding was that wearable sensors combined with
machine learning could effectively estimate AV scores during m-
CTSIB tests. The most notable performance was achieved using
data from the lumbar sensor with the XGBOOST method,
resulting in a low MAE of 0.23 using One-Leave-Out and 5-fold

Frontiers in Digital Health

cross-validation and a high correlation of 0.96 and 0.92 using
One-Leave-Out and 5-fold cross-validation, respectively (Table 6).
However, when considering specific scenarios, we found that MLR
was more suitable for eyes-open conditions, while XGBOOST was
better suited for eyes-closed conditions. This distinction suggests
the benefit of employing different models tailored to the specific
sensory conditions of the m-CTSIB test, optimizing the balance
assessment’s accuracy and reliability. Despite the promising results,
our study also acknowledged limitations, particularly the higher
MAPE observed in simpler tasks like the EOSS condition
(Figure 8). This was attributed to the low base values of m-CTSIB
scores in these tasks, where small predictive errors could
disproportionately inflate the error percentage. However, this
limitation does not detract from the utility of our models in more
complex conditions, which are of greater clinical interest for
identifying balance impairments related to cognitive decline or
neurological conditions.

Another main observation was that the lumbar and dominant
ankle sensors were the most effective in estimating m-CTSIB
balance scores. In contrast, dominant arm and wrist sensors were
the least effective (Table 6). This pattern reflects the biomechanical
realities of balance control. Lumbar and ankle regions are central
to maintaining postural stability, directly influencing the body’s
center of gravity and subtle balance adjustments, which aligns with
prior studies (43, 44). In contrast, the arm and wrist play a more
secondary role in overall balance, contributing less to core postural
stability. This highlights the importance of sensor placement in
areas most integral to balance for more accurate and reliable
assessments. Interestingly, combining data from the lumbar and
ankle Besides the
practicality concerns of requiring two sensors for assessment, this

sensors did not enhance performance.
outcome suggests that a single, well-placed sensor might be more
efficient for balance evaluation.

Our feature analysis emphasized that movement variability
significantly impacts balance performance. Specifically, a higher
standard deviation indicates increased instability, marking it as a
critical factor across all sensor placements (Figure 6). Moreover,
the temporal characteristics of movement, including transition
smoothness and body part coordination, play essential roles in
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balance control. While our analysis did not identify significant
frequency-domain features due to predominant stable and
consistent movement patterns within various frequency bands, it
is critical to acknowledge that dynamic balance assessment
involving activities like walking or stepping might necessitate
incorporating frequency-domain features for a thorough analysis
(45). We also found that the ML movements strongly correlated
with m-CTSIB AV scores. This aligns with existing research,
which suggests that balance adjustments primarily involve ML
movements (46). This finding underscores the importance of
these directional movements in maintaining and assessing
balance, providing critical insights into postural control dynamics.

4.2 Comparative literature review

Table 7 provides an overview of prior research endeavors using
wearable sensors and machine learning methodologies to estimate
balance test outcomes. As depicted in Table 7, variations exist in
sensor placement, machine learning models employed, participant
numbers, and the most noteworthy outcomes achieved in each
study. Despite its importance (21, 22), our study represents the first
to estimate m-CTSIB AV scores objectively using wearable sensors
and machine learning, distinguishing it from previous research that
primarily focused on the BBS and one instance on the TUG test.
Our participant number is comparable to other studies, reinforcing
the validity of our findings. Unique to our approach was the
exploration of five different sensor placements, with a detailed
report on the most effective single placement, unlike other studies
that did not conduct as extensive a placement analysis.

4.3 Clinical implications and biomechanical
insights

The clinical implications of our study are significant, offering a new,
objective approach to balance assessment using wearable sensors and
machine learning. By not depending on specialized equipment, such
technology promises enhanced practicality for a broad audience,
including older adults and those with mobility challenges.
Additionally, it enables healthcare professionals to evaluate remote
balance, opening new possibilities in various healthcare contexts. (41,42).

Our findings reveal a significant reliance on ankle strategies for
managing minor balance disturbances, a correlation that is

TABLE 7 Comparison of our study with previous studies.

10.3389/fdgth.2024.1366176

particularly strong at the ankle sensors. This observation is in
harmony with the work of Horak (49) and Nashner (50), who
have documented the preference for ankle strategies when
dealing with small shifts on a stable platform, utilizing the distal
further
discussions highlight the activation of hip strategies in response

muscles for effective postural control. Nashner’s
to larger balance disruptions, indicating a sophisticated balance
control system that adapts based on the scale of the challenge.
Additionally, the effectiveness of the ankle musculature in
maintaining balance with minimal energy and swift responsiveness
is especially relevant for those with balance disorders, such as
Parkinson’s disease (51, 52). This underscores the importance of
considering both the nature of the perturbation and the
individual’s physiological state when selecting balance strategies.
These insights are crucial for devising targeted balance assessments
and rehabilitation programs, affirming the value of our study in
the

impairments through tailored interventions.

enhancing understanding and treatment of balance

4.4 Study limitations and future work

While our study has successfully demonstrated the potential of
wearable sensors and machine learning in balance assessment, it
has also highlighted areas for future enhancement. The sample
size, though adequate for initial exploration, was limited, and a
gender and hand dominance imbalance was noted, which may
affect the representativeness of the results.

In addressing the complexities of upper limb movements within
our study, we implemented rigorous Falltrak II data collection
protocols to standardize participant posture and minimize
potential variations. Despite these measures, the unique challenges
posed by the degrees of freedom in arm movements remained.
Future investigations could benefit from a more diverse and larger
cohort to validate and extend our findings. Furthermore, to ensure
our models’ resilience against varied movement patterns, we plan
to test them rigorously with different types of motion distortions.
This will help refine the models to be more adaptable and reliable
across a wider spectrum of real-world scenarios.

We also acknowledge that the proprietary nature of normative
databases used in commercial systems restricts the direct
comparison between raw AV and PL scores and established
stability scores. rather than

Moving forward, relying on

‘ # Partncnpants Best sensor placement (#) ML model Best results

Simild et al. (47)

Shahzad et al. (48) BBS 23
Tang et al. (27) BBS 30
Choi et al. (26) TUG 37
Our study m-CTSIB 34

Lumbar (1) MAE=3.53

Lumbar (1) LLS MAE=1.44
Lasso r=0.90

Hip and foot (3) SVR MAE=6.07

Foot (2) RR MAE=0.87

Lumbar (1) MLR MAE=0.23
SVR r=0.96
XGBOOST

ML, machine learning; KNN, k-nearest-neighbors; BBS, Berg balance scale; TUG, timed up and go; m-CTSIB, modified clinical test for sensory interaction and balance; SVR,

support vector regression; LLS, linear least squar regression; RR, ridge regression.
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partnerships with external platforms or proprietary normative data,
we will focus on leveraging our models’ raw AV and PL data. This
approach will allow us to create a more precise and transparent
framework for balance assessment. Specifically, we aim to utilize
data for
developing predictive models tailored to various applications,

these predicted balance scores as foundational
such as early detection of cognitive impairments or Alzheimer’s
disease. Through this refined focus, our research is poised to
make a meaningful contribution to advancing the field, offering
novel insights and tools for the early identification and

intervention of balance-related health issues.

5 Conclusion

Our study introduced a new method for accurately estimating AV
scores during m-CTSIB balance tests, employing wearable sensors
and machine learning techniques. By gathering detailed motion
data from 34 participants under four distinct sensory conditions,
we applied MLR, SVR, and XGBOOST machine learning models
on a comprehensive subset of features derived from the wearable
data to estimate their corresponding ground truth m-CTSIB AV
scores. Our findings underscored our approach’s high accuracy and
truth AV balance
particularly highlighting the exceptional performance of the

strong correlation with ground scores,
XGBOOST model. Data from lumbar and dominant ankle sensors
demonstrated the highest performance in balance score estimation,
highlighting the importance of strategic sensor placement for
capturing relevant balance adjustments and movements. Our
findings pave the way for more precise and convenient balance
assessments. This approach has immense potential to enhance
balance performance assessment and management in various
settings, including clinical environments, rehabilitation, and remote
monitoring, offering a significant advancement in healthcare.
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