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ABSTRACT

In computer vision, human pose estimation (HPE) through convolutional neural networks (CNNs)
has emerged as a promising avenue with broad applicability. This study bridges a novel applica-
tion of HPE, targeting the early detection of Alzheimer’s disease (AD), a condition expected to
affect roughly 13.4 million Americans by 2026. Traditionally, AD diagnostic methodologies like
brain imaging, Electroencephalography, and blood/neuropsychological tests are not only expensive
and protracted but also require specialized medical expertise. Addressing these constraints, we
introduce a cost-efficient and universally accessible system to detect AD, harnessing conventional
cameras and employing pose estimation, signal processing, and machine learning. Data was sourced
from videos capturing a 10-meter curve walk of 73 cognitively healthy older adults (HC) and 34
AD patients. The recording apparatus was a camera offering a resolution of 1920x1080 pixels at
30 frames/second, stationed laterally to the walking path. Using OpenPose, a state-of-the-art,
bottom-up multi-person HPE method based on CNNs, we derived 25 distinctive body joint coor-
dinates from the footage. Subsequently, 48 gait parameters were extracted from these joints and
subjected to statistical scrutiny. A noticeable difference was observed in 39 out of the 48 gait
parameters between the HC and AD groups. Leveraging a Support Vector Machine (SVM) to
classify the data, the distinctiveness of these gait markers was further affirmed. The system accom-
plished a commendable accuracy rate of 90.01% and an F-score of 86.20% for AD identification.
In essence, our findings advocate that the amalgamation of everyday cameras, sophisticated HPE
techniques, signal processing, and machine learning can pave the way for practical AD detection in
non-specialized settings, including home environments.

Keywords: Human pose estimation (HPE), Alzheimer’s disease (AD) detection, Convolutional
neural networks (CNN), OpenPose, Gait analysis

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized initially by
memory issues, escalating into significant functional impairments in daily activities such as language,
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mobility, and driving, ultimately increasing the risk of death in older adults.’* As the fifth-leading
cause of death for Americans aged 65 and older, an estimated 6.7 million individuals within this
age group currently live with AD, a figure projected to double by 2060.* Early detection of AD can
significantly slow the disease’s progression through timely medical intervention and aid in managing
the challenges faced by affected individuals and their caregivers through rehabilitation programs
and lifestyle adjustments.®

Traditional diagnostic methodologies, encompassing a variety of neuropsychological screenings
such as the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE),
alongside blood tests and brain imaging, are conducted by a multidisciplinary team of specialists.®
However, these methods are not without limitations, including accessibility, high costs, and a sig-
nificant rate of misdiagnosis, particularly in primary care settings where dementia types can be
overlooked or mistaken for normal aging processes.”

To address these challenges, recent research has explored novel biomarkers and diagnostic tools
that can offer more accessible, cost-effective, and accurate early AD detection. Gait and balance
have been explored as indicators of cognitive and motor function decline associated with AD.
Studies have demonstrated the potential of gait analysis, traditionally relying on electronic walkways
and infrared cameras, as an unobtrusive diagnostic tool that correlates specific gait patterns with
cognitive decline.®'2 Wearable sensors and depth cameras have also been recently proposed as
alternative technologies for gait tracking in both clinical and home settings, offering detailed insights
into the motor functions of older adults.'®'* Depth cameras, such as the Kinect cameras developed
by Microsoft Corporation, have shown particular promise. They offer several advantages over
previous technologies, including capturing more comprehensive data from multiple body joints at
a lower cost and with easier setup. Moreover, these cameras address privacy concerns by utilizing
only the skeletal data they generate, making them an attractive option for unobtrusive gait analysis.

Building on these advancements, our study introduces a cutting-edge approach to gait analysis
that leverages a single regular camera combined with the OpenPose algorithm, a deep learning-
based computer vision technique for human pose estimation (HPE). This novel method simplifies
data collection while ensuring privacy and reducing costs, and notably, it does not require the
placement of markers on the body, unlike previous methods. By extracting a wide array of macro
and micro gait features directly from video data, our approach significantly expands the potential for
detailed analysis without the obtrusive steps of attaching sensors or markers. Integrating descriptive
statistical analysis and machine learning, we aim to identify specific gait patterns indicative of
AD, thus facilitating a more objective and accurate assessment of cognitive status compared to
traditional methods.

2. MATERIALS AND METHODS
2.1 Study Population

Participants underwent comprehensive checkups for assessment and diagnosis of cognitive impair-
ments due to AD using brain imaging, blood tests, and MoCA neuropsychological test, as well as the
Geriatric Depression Scale (GDS) for depression measurements. In total, 73 older adults without
any cognitive impairment as the healthy control (HC) group and 34 AD patients who could perform
the physical tests independently and did not have gait deficits because of surgery like knee surgery
and medicine affecting their gait were chosen and completed the gait tests. These participants were
either clients of Iran’s Dementia and Alzheimer’s Association or volunteers who responded to public

Proc. of SPIE Vol. 13036 130360L-2



recruitment efforts. Comprehensive study information was provided to all participants beforehand,
ensuring informed consent was obtained. Participants were also informed of their freedom to with-
draw from the study at any point. The ethical conduct of this study was reviewed and approved
by the Ethics Committee of the Semnan University of Medical Sciences in Iran.

2.2 Image-Based Gait Analysis

To assess gait for AD detection, participants walked a 10-meter curved path, validated and widely
used in clinical settings. Participants initially undertook a single trial as a practice session before
completing three main trials for detailed analysis. Between each trial, individuals were allowed rest
periods ranging from 1 to 3 minutes to ensure optimal performance during the tests. The selection
of the 10-meter distance was based on previous studies that have established this measure as a
standard clinical tool for functional assessment.!®

Data capturing of the gait tests was achieved using a high-definition single camera, set to a
resolution of 1920 x 1080 pixels and operating at a frame rate of 30 frames per second. The camera
was securely mounted on a tripod to maintain a stable lateral view of the participants’ walking path.
The data acquisition setup was managed using an ASUS FX503 laptop equipped with an Intel Core
i7-7700HQ CPU operating at 2.80 GHz and 8.00 GB of RAM, ensuring efficient processing and
storage of the collected gait data. The equipment arrangement and methodology for recording
the 10-meter curved path walking tests are depicted in Fig. 1, illustrating the setup utilized for
capturing the gait data of participants.

2.3 Innovations in Image Processing for AD Detection

After collecting RGB data from participants during their curved path walks, we performed a series
of processing steps to facilitate AD detection from the recorded data. This approach involved
several key phases: detecting body joints within the RGB images, preprocessing the signals from
these detected joints, extracting relevant features, conducting descriptive statistical analysis for
feature selection, and employing machine learning models to identify AD in older adults. Fig. 2
delineates these primary phases of our algorithm.

2.3.1 Automated body joint detection

The automated detection of body joints from RGB images was achieved through the OpenPose
algorithm; a real-time 2-D HPE technique characterized by its bottom-up approach. Utilizing
an advanced multi-stage convolutional neural networks (CNNs), OpenPose identifies the locations
of body joints and connects them, creating a skeletal structure through Part Affinity Fields.®
This method’s ability to provide real-time pose estimations offers significant advantages, especially
in scenarios involving multiple individuals, setting it apart from traditional top-down estimation
techniques.'® In our research, the Python implementation of OpenPose was used for HPE to identify
25 critical body joints within the captured images, covering key anatomical landmarks such as the
feet, elbows, and hands. Fig. 3 provides a visual representation of the joints identified and the
skeletal framework constructed from RGB images obtained during the 10-meter curved path walking
tests, highlighting the effectiveness of OpenPose in our study.

Proc. of SPIE Vol. 13036 130360L-3



/k//:—r\\)

. 2 meters

k( _________ :é’__}_/;)

Start

Height = 1 meter

Figure 1. Setting up a 10-meter curved path walking and recording tools.
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Figure 2. Flowchart illustrating the algorithmic process for AD detection, from capturing and processing
RGB data during the 10-meter curved path walking test to the final classification and diagnosis as HC or
AD.

2.3.2 Signal preprocessing and conversion

As participants navigated the curved path, the movement of their body joints produced signals
in both horizontal (x) and vertical (y) directions over time, which are critical for extracting key
gait features such as average velocity and step length. To ensure the accuracy of these signals, we
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A. Trackable joints using OpenPose B. Sample frames of recorded data and detected body joints

0- Nose 14 - Left ankle
1-Neck 15 - Right eye
2 - Right Shoulder 16 - Left eye
3 - Right elbow 17 - Right ear
4 - Right wrist 18- Left ear
5 - Left Shoulder R
19 - Left big-toe

6 - Left elbow

N 20 - Left small-toe
7 - Left wrist
8- Mid hip 21 - Left heel
9 - Right hip 22 - Right big-toe
10 - Right knee 23 - Right small-toe
11 - Right ankle 24 - Right heel
12 - Left hip
13 - Left knee

Figure 3. Body joint detection using the human pose estimation algorithm of OpenPose for curved path
walking test. A) Detectable joints of the body via OpenPose; B) Sample of recorded RGB data and detected
body joints for a participant during the gait test.

applied a six-order Butterworth Filter with a cut-off frequency of 3 Hz, using MATLAB 2019,'7 to
remove any extraneous noise. We converted these dimensions into real-world measurements after
the initial detection of body joint positions by OpenPose and their representation in pixel-based
measurements. This conversion to real dimensions was performed using the methodology outlined
by Stenum et al. (2021)'® and facilitated subsequent analysis of the data.

2.3.3 Extraction and selection of gait features

From the signals derived from detected body joints during gait assessments, we extracted a total of
48 gait features. These were categorized into 6 macro features (like walking duration, average veloc-
ity, and step and stride counts), 24 micro temporal features (such as stance and swing durations),
12 micro spatial features (including step length and its variability), and 6 micro spatiotemporal
features (for example, step and stride velocity). Macro features calculation involved methods such
as dividing the total displacement of the ankle joint by the test duration for average velocity. For
micro features, identifying gait cycles and their phases was essential, accomplished by analyzing
distance signals from ankles and using their peaks to segment gait into stance, swing, single support,
and double support phases. Statistical analysis of these features then provided metrics of mean,
median, and variability, the latter expressed as the standard deviation’s percentage of the mean.

A systematic feature selection process was implemented to refine the feature set for AD detection,
beginning with a descriptive statistical analysis to consider potential confounding demographic and
clinical factors. Tests such as Shapiro-Wilk, unpaired t-tests or Mann-Whitney U tests, and Chi-
square tests were applied to ensure that comparisons between the AD and HC groups accounted
for variable distribution and category differences. Significant gait features that were distinguished
between the groups were then adjusted for confounders like age, weight, and education level using
Analysis of Covariance (ANCOVA), and these adjusted features were then compared to pinpoint
those with statistically significant differences. This selection was further refined through correlation
analysis, where among correlated features (r > 0.9), the one with the most significance (lowest p-
value) was chosen as the prime indicator for distinguishing between AD and HC groups, streamlining
the analysis to the most discriminative features.
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2.3.4 Machine learning-based AD classification

For the classification of AD from our study’s gait analysis data, we utilized a Support Vector Ma-
chine (SVM) classifier. SVM was selected due to its proven effectiveness in accurately categorizing
distinct groups, an advantage especially relevant for analyses with limited data sizes. Its princi-
pal strength lies in transforming data into a higher dimension where linear separation is possible,
facilitating the distinction between participants diagnosed with AD and those categorized as HC.

We ensured the reliability and generalizability of our classification model by adopting a 5-fold
cross-validation strategy. This method divides the dataset into five parts, using four for training
and the remaining one for testing, iteratively. For each training phase, we further segmented the
data, allocating 80% for model training and 20% for validation. This approach helped fine-tune
the model’s performance, optimizing it for higher accuracy in subsequent testing phases. Key to
the success of the SVM classifier is the careful selection of kernels and hyperparameters, tasks
we accomplished using grid search techniques. This systematic search allowed us to identify the
optimal settings for our SVM model, ensuring the best possible performance in classifying AD and
HC participants based on their gait features. To uphold the integrity of our testing process and
avoid the potential bias of feature selection leakage, the selected gait features for each classification
task were determined solely from the training data. This precaution ensured that the validation
and testing of our model were conducted on entirely unseen data, thus providing a more accurate
and trustworthy assessment of its capability to classify AD from gait features.

3. RESULTS

Table 1 shows study participants’ demographic and clinical information. A comparison of this
information using descriptive statistical analysis showed significant differences between AD and
HC participants in terms of age, weight, and years of education, with no significant differences in
gender, height, and GDS variables between the two study groups. Also, the comparison of the
cognitive assessment using neuropsychological test scores of MMSE and MoCA revealed that older
adults with AD had significantly lower cognitive scores than HC participants (See Table 1)

Table 1. Demographic and clinical information of study participants

Characteristic HC (N=73) | AD (N=34) | p-value
Age (years) 64.67 + 5.73 | 76.06 £ 7.24 | < 0.001*
Female, N (%) 38 (53) 19 (56) 0.715
Height (cm) 168.09 + 6.25 | 165.17 £ 6.45 | 0.057
Weight (kg) 69.32 £ 9.44 | 66.09 = 8.69 | 0.038*
Education (years) | 13.43 4+ 2.38 | 10.88 + 4.11 | 0.001*
MMSE 28.96 + 0.91 | 22.56 = 3.86 | <0.001*
MoCA 28.03 £ 0.05 20.76 + 2.49 <0.001*
GDS 2.04 £1.24 3.29 £ 1.85 0.389

Mean + Standard deviation was shown. N = Number of participants; HC = Healthy Cognitive
Control Group;AD = Alzheimer’s Disease; MMSE = Mini-Mental State Examination (maximum
score, 30); MoCA = Montreal Cognitive Assessment (maximum score, 30); GDS = Geriatric De-
pression Scale (maximum score, 15), * shows the significant difference for the level of p < 0.05.
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3.1 OpenPose’s Performance in Body Joint Detection for Gait Analysis

Our evaluation of OpenPose’s capability in body joint detection during curved path walking sessions
revealed it to be highly effective in recognizing and tracking essential body joints throughout the
motion sequences. These reliable and accurate body joint detection results via OpenPose confirmed
the superiority of CNNs for HPE in comparison to traditional computer vision, which involved de-
signing handcrafted features and models to detect and locate body joints.!'” OpenPose accurately
pinpointed critical bodily segments, including the legs, arms, and torso. This accuracy provides
valuable insights into the dynamics of human locomotion and extracts a comprehensive collection
of gait features for AD detection. Despite its overall promising performance, our detailed exami-
nation across various frames highlighted that OpenPose’s effectiveness varied depending on specific
conditions. Challenges in detecting and tracking body joints and segments were encountered in
certain scenarios.

Fig. 4 illustrates OpenPose’s performance across different situations within our dataset. In
a majority of the frames, OpenPose effectively identified and tracked body joints and segments
without any occlusion by external objects or self-occlusion, except for minor cases where partial
occlusion of segments, such as the knees, occurred (as depicted in Fig. 4.A). However, instances
of full occlusion due to overlapping body parts significantly impacted OpenPose’s ability to detect
and track certain joints, particularly in the upper body—wrist, elbow, and shoulder joints—and
the segments connecting these joints faced detection issues in frames where one side was entirely
obscured (illustrated in Fig. 4.B). This variability in detection underscores the importance of ac-
knowledging OpenPose’s limitations under specific conditions, particularly when analyzing gait data
for movement assessment depending on the application in hand.

A. All body joints and segments are detected successfully

Figure 4. A) OpenPose performance with clear visibility, accurately tracking body joints and segments
during unobstructed walking sequences; B) Challenges in OpenPose detection due to full occlusion of body
parts, illustrating missed joints and segments in obscured walking frames.
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3.2 Significant and Selected Features for AD Detection

Following the adjustment of gait features for age, weight, and education levels, the descriptive
statistical analysis described in Sec. 2.3.3 identified significant gait markers between HC and AD.

Our statistical examination revealed that out of 48 gait features analyzed from the 10-meter
curved walking test, 39 exhibited significant differences between the AD and HC groups. These
included various features: 6 macro, 16 micro temporal, 12 micro spatial, and 5 spatio-temporal gait
features (See Fig. 5.A). Subsequent correlation analysis among these significant features pinpointed
a subset with high correlation (r > 0.9), leading to a refined selection based on their diagnostic
power as shown in Fig 5.B. Notably, mean step time emerged as a key indicator due to its profound
significance in distinguishing between AD and HC subjects (with the lowest p-value = 1.21 * 10722),
reducing the number of significant gait features to 18 unique markers. These markers comprise a
comprehensive profile of gait dynamics, including macro, micro temporal, micro spatial, and micro
spatiotemporal features, which collectively enhance the accuracy of AD detection.

Moreover, our study highlights a weaker gait performance in older adults with AD than HC
during the 10-meter curved path walking test. AD participants exhibited notably lower average
velocity and cadence, requiring more time to complete the assessment. Specifically, the average
velocity and cadence for the AD group were 35.29 + 19.42 cmn/s and 75.90 4+ 19.33 steps/minute,
respectively, versus 51.15 &+ 16.67 cm/s and 88.76 + 12.36 steps/minute for the HCs, with a statis-
tically significant difference (p-value < 0.001, see Fig. 5.C).

This trend extends to micro-gait features. AD individuals demonstrated longer durations in
various subphases of gait cycles and reduced step and stride lengths and velocities, significantly im-
pacting their mobility and balance. Notably, the duration for stance and single support phases was
significantly higher in the AD group, with durations of 0.78 + 0.39 s and 0.55 + 0.23 s, respectively,
compared to 0.40 + 0.19 s and 0.37 £ 0.15 s in HCs (p-value < 0.001; See Fig. 5.C). Additionally,
mean step and stride lengths in AD participants were significantly shorter, at 23.89 4+ 5.55 cm
and 47.98 4+ 11.20 cm, respectively, compared to 30.68 + 4.81 cm and 61.79 £+ 9.30 cm in HCs.
A similar reduction was observed in step and stride velocity, with micro spatiotemporal features
decreased to 34.31 + 11.92 cm/s and 32.82 &+ 12.02 cm for AD in comparison to 50.99 £ 10.91 cm/s
and 49.90 £ 9.86 cm/s for ADs (see Fig. 5.C). These findings highlight the profound impact of AD
on gait dynamics, with marked differences in velocity, cadence, and gait cycle subphases serving as
potential indicators of AD progression.

3.3 Classification of Participants into AD and HC Groups

We employed the Support Vector Machine (SVM) algorithm to classify participants into AD or HC
groups based on the selected gait features. The classification process included training, validation,
and testing phases, with the outcomes presented in Table 2, where various evaluation metrics such
as accuracy, sensitivity, precision, and F-score were used to assess performance. The SVM achieved
an impressive accuracy rate of 90.01%, along with a sensitivity of 87.00%, precision of 85.63%, and
an F-score of 86.20% on the test dataset.

4. DISCUSSION

In advancing AD detection, our research emphasizes the application of imaging techniques, specifi-
cally through gait analysis on a 10-meter curved path, integrated with machine learning for precise
diagnostics. Our methodology diverges from conventional strategies requiring complex and intrusive
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Figure 5. Comparative analysis of gait performance between AD and HC, showcasing A) the distribution
of extracted, significant, and selected gait features; B) a correlation heatmap for identifying unique selected
gait features; and C) a comparison of macro and micro gait features between the two groups.

Table 2. Classification results utilizing gait features with SVM to differentiate between AD and HC.

Evaluation metrics (%)
Dataset
Acc Sen Pre Spec F- score
Training 99.55 99.10 100.00 100.00 99.54
Validation 92.09 88.37 97.22 98.82 92.91
Test 90.01 87.00 85.63 93.02 86.20

Acc = Accuracy; Sen = Sensitivity; Pre = Precision; Spec = Specificity.

setups, such as wearable sensors, infrared cameras with reflective markers, or extensive electronic
walkways. Instead, we employ a simplified yet effective system utilizing a single camera and the
human pose estimation OpenPose algorithm for accurate pose estimation. This approach not only
achieves cost-efficiency and ensures privacy protection but also capitalizes on the diagnostic poten-
tial of curved path walking. Previous research has indicated that this walking pattern may uncover
more nuanced insights into AD than traditional straight-line gait analysis!?2%:2! due to its closer
resemblance to everyday walking behaviors. By focusing on such naturalistic movement patterns,
our method stands to improve the applicability and accuracy of AD detection across a diverse el-
derly population, accommodating various education levels and promoting wider adoption in both
clinical and research settings.

4.1 Main Findings

Our exploration into gait analysis via a 10-meter curved path, employing a single camera alongside
OpenPose for body joint detection in older adults, has illustrated that tracking body movements
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during gait assessments can be conducted with notable accuracy. Despite encountering some chal-
lenges with full occlusion, particularly in the upper body parts obscured by other segments (See
Fig. 4), the overall precision in capturing body joint movements was sufficient for effective gait
feature extraction for AD detection. This outcome is in harmony with existing literature that
underscores the reliability of such data for gait analysis purposes.'® 22

Further analysis revealed clear performance differences between older adults diagnosed with
AD and HCs. Specifically, AD individuals exhibited reduced velocities and increased durations in
several gait cycle subphases during the curved path walking test as depicted in Fig. 5. These findings
corroborate existing clinical research that points to compromised gait performance in complex
walking tasks among AD patients, thus confirming the utility of our approach in identifying key
gait alterations associated with AD.!!23,24

Moreover, the study extended to assess the effectiveness of machine learning by applying SVM
to the extracted gait features. This analysis objectively classified participants into AD or HC
categories based on their gait characteristics. The results, bolstered by a 5-fold validation process,
demonstrated the SVM’s robust ability to differentiate between AD and HC groups, achieving an
accuracy and F-score of 90.01% and 86.20%, respectively, supporting the potential of integrating
imaging and machine learning for enhancing the precision of AD detection in clinical settings (See
Tab. 2).

4.2 Comparison with Previous Studies

The exploration of sensor technology and machine learning for detecting cognitive decline through
gait analysis in AD or other types of dementia is an emerging field with relatively few studies.
Previous investigations, such as the one by Ghoraani et al. (2021), utilized an electronic walkway
to analyze single and dual-task straight walking patterns for classifying HC against individuals
with mild cognitive impairment or AD, achieving an accuracy and F-score of 83.00% and 90.00%,
respectively.'? Zhang et al. (2021) leveraged Kinect v.2 camera to capture body joint positions.
They applied convolutional neural networks for differentiating HCs from older adults with demen-
tia, reaching a sensitivity of 74.10% in detecting dementia.?® Furthermore, Jeon et al. (2023)
employed wearable sensors during straight walking tasks to identify MCI in older adults, securing
a 73.0% accuracy with an ensemble algorithm.?! Contrastingly, our study extends this work by
utilizing a straightforward yet effective approach—employing a single regular camera in conjunction
with OpenPose for gait analysis coupled with machine learning techniques—to distinguish between
34 older adults diagnosed with AD and 73 HCs. Our method demonstrated a higher accuracy,
sensitivity, and F-score, at 90.01%, 87%, and 86.20%, respectively. Such outcomes highlight the
feasibility and effectiveness of using minimalistic imaging setups combined with advanced compu-
tational techniques for gait analysis in the context of cognitive decline detection. By streamlining
the technology involved, our approach simplifies the logistical and financial barriers typically as-
sociated with more complex sensor-based systems and opens the door for broader, more accessible
applications in clinical and potentially home-based settings. The promising results of our study,
particularly in terms of accuracy and sensitivity, highlight the potential of this method to serve
as a reliable tool in the early detection and monitoring of AD and other cognitive impairments.
This could significantly enhance the current strategies for managing these conditions, offering an
unobtrusive, efficient, and cost-effective alternative to traditional diagnostic methods.
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4.3 Clinical Implications, Study Limitations, and Future Directions

Our developed screening tool for AD demonstrates significant advantages, including its non-invasiveness,
ease of setup, cost-effectiveness, and minimal intrusiveness, compared to traditional diagnostic
methods and earlier technological approaches. By employing just a regular camera, such as those
found in smartphones, to record curved-path walking, our method sidesteps the need for large
spaces or complex cognitive tasks that might challenge older adults, especially those with limited
educational backgrounds. The method’s capability to extensively extract and analyze gait features,
identifying those uniquely indicative of AD, simplifies and enhances the accuracy and speed of
clinical diagnoses.

Despite these strengths, our study acknowledges certain limitations. Primarily, the reliance on a
single-task model—curved path walking—for AD detection may not fully encapsulate the complex
nature of gait changes associated with the disease. Expanding the analysis to include multiple tasks
could uncover deeper, more subtle gait abnormalities. Moreover, validating our findings across a
broader participant base would strengthen the generalizability and reliability of our diagnostic
approach. Future studies aim to include a wider population, focusing on individuals with mild
cognitive impairment and more participants. We plan to incorporate various cognitive dual tasks
and additional functional gait and balance assessments, like the Timed Up and Go (TUG) test, to
provide a more comprehensive evaluation. This expansion would not only reinforce the reliability of
our method but also provide a more comprehensive understanding of its applicability across diverse
populations and stages of cognitive decline.

5. CONCLUSION

This paper has effectively showcased the potential of image analysis, particularly HPE employing
CNNs, in proactively identifying AD. Utilizing standard camera technology in conjunction with the
OpenPose algorithm, we have formulated an economical and accessible modality for AD diagnosis,
analyzing gait dynamics during a 10-meter curved walking examination. Demonstrating substan-
tial efficacy, our methodology differentiates HC from those with AD with an accuracy of 90.0%
and an F-score of 86.20%. The innovative use of a singular conventional camera and OpenPose’s
intricate image analysis capabilities facilitated the derivation of 25 unique body joint coordinates.
We extracted 48 gait features by analyzing these, uncovering marked differences in 39 gait features
between the HC and AD cohorts. These outcomes support the utility of gait analysis as a potent
biomarker in AD diagnostics. This research underlines the feasibility of leveraging accessible imag-
ing technology, HPE techniques, signal processing, and machine learning to devise a practicable
solution for AD detection. This approach broadens the scope for further studies on home-based
and remote monitoring of individuals potentially affected by AD.

ACKNOWLEDGMENTS

We thank the Iran Dementia and Alzheimer’s Association for their valuable support in data collec-
tion. The data analytics aspect of this study was supported by National Science Foundation with
grant numbers 1942669 (Dr. Behnaz Ghoraani, PT) and NSF REU CNS-1950400.

Proc. of SPIE Vol. 13036 130360L-11



[1]

REFERENCES

Jan, M. T., Moshfeghi, S., Conniff, J. W., Jang, J., Yang, K., Zhai, J., Rosselli, M., Newman,
D., Tappen, R., and Furht, B., “Methods and tools for monitoring driver’s behavior,” in [2022
International Conference on Computational Science and Computational Intelligence (CSCI)],
1269-1273, IEEE (2022).

Moshfeghi, S., Jan, M. T., Conniff, J., Ghoreishi, S. G. A., Jang, J., Furht, B., Yang, K.,
Rosselli, M., Newman, D., Tappen, R., et al., “In-vehicle sensing and data analysis for older
drivers with mild cognitive impairment,” in [2023 IEEE 20th International Conference on
Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)], 140~
145, IEEE (2023).

Ceyhan, B., LaMar, J., Nategh, P., Neghabi, M., Konjalwar, S., Rodriguez, P., Hahn, M. K.,
Blakely, R. D., and Ranji, M., “Optical imaging reveals liver metabolic perturbations in mblacl
knockout mice,” in [2023 45th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC)], 1-4, IEEE (2023).

Dementia, A. ., “2023 alzheimer’s disease facts and figures,” Alzheimer’s Dement 19, 1598-1695
(2023).

Rasmussen, J. and Langerman, H., “Alzheimer’s disease—why we need early diagnosis,” De-
generative neurological and neuromuscular disease , 123-130 (2019).

Reiss, A. B., de Levante Raphael, D., Chin, N. A., and Sinha, V., “The physician’s alzheimer’s
disease management guide: Early detection and diagnosis of cognitive impairment, alzheimer’s
disease and related dementia,” AIMS Public Health 9(4), 661 (2022).

Leifer, B. P., “Early diagnosis of alzheimer’s disease: clinical and economic benefits,” Journal
of the American Geriatrics Society 51(5s2), S281-S288 (2003).

de Melo Coelho, F. G., Stella, F., de Andrade, L. P., Barbieri, F. A., Santos-Galduréz, R. F.,
Gobbi, S., Costa, J. L. R., and Gobbi, L. T. B., “Gait and risk of falls associated with frontal
cognitive functions at different stages of alzheimer’s disease,” Aging, Neuropsychology, and
Cognition 19(5), 644-656 (2012).

Cedervall, Y., Halvorsen, K., and Aberg, A. C., “A longitudinal study of gait function and char-
acteristics of gait disturbance in individuals with alzheimer’s disease,” Gait & posture 39(4),
1022-1027 (2014).

Rucco, R., Agosti, V., Jacini, F., Sorrentino, P., Varriale, P., De Stefano, M., Milan, G.,
Montella, P., and Sorrentino, G., “Spatio-temporal and kinematic gait analysis in patients
with frontotemporal dementia and alzheimer’s disease through 3d motion capture,” Gait &
posture 52, 312-317 (2017).

Oh, C., Morris, R. J., LaPointe, L. L., and Stierwalt, J. A., “Spatial-temporal parameters of
gait associated with alzheimer disease: A longitudinal analysis,” Journal of Geriatric Psychi-
atry and Neurology 34(1), 46-59 (2021).

Ghoraani, B., Boettcher, L. N., Hssayeni, M. D., Rosenfeld, A., Tolea, M. 1., and Galvin,
J. E., “Detection of mild cognitive impairment and alzheimer’s disease using dual-task gait
assessments and machine learning,” Biomedical signal processing and control 64, 102249 (2021).
Wang, W.-H., Hsu, Y.-L., Chung, P.-C., and Pai, M.-C., “Predictive models for evaluating cog-
nitive ability in dementia diagnosis applications based on inertia-and gait-related parameters,”
IEEFE Sensors Journal 18(8), 3338-3350 (2018).

Proc. of SPIE Vol. 13036 130360L-12



[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

Seifallahi, M., Mehraban, A. H., Galvin, J. E., and Ghoraani, B., “Alzheimer’s disease detection
using comprehensive analysis of timed up and go test via kinect v. 2 camera and machine
learning,” IEEE Transactions on Neural Systems and Rehabilitation Engineering 30, 1589—
1600 (2022).

Chan, W. L. and Pin, T. W., “Reliability, validity and minimal detectable change of 2-minute
walk test, 6-minute walk test and 10-meter walk test in frail older adults with dementia,”
Ezperimental gerontology 115, 9-18 (2019).

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh, Y., “Openpose: Realtime multi-
person 2d pose estimation using part affinity fields,” IEEE Transactions on Pattern Analysis
and Machine Intelligence 43(1), 172-186 (2021).

Ma, M., Proffitt, R., and Skubic, M., “Validation of a kinect v2 based rehabilitation game,”
PloS one 13(8), 0202338 (2018).

Stenum, J., Rossi, C., and Roemmich, R. T., “Two-dimensional video-based analysis of human
gait using pose estimation,” PLoS computational biology 17(4), €1008935 (2021).

Samkari, E., Arif, M., Alghamdi, M., and Al Ghamdi, M. A., “Human pose estimation using
deep learning: A systematic literature review,” Machine Learning and Knowledge Extrac-
tion 5(4), 1612-1659 (2023).

Zhang, Z., Jiang, Y., Cao, X., Yang, X., Zhu, C., Li, Y., and Liu, Y., “Deep learning based
gait analysis for contactless dementia detection system from video camera,” in [2021 IEEE
International Symposium on Circuits and Systems (ISCAS)], 1-5, IEEE (2021).

Jeon, Y., Kang, J., Kim, B. C., Lee, K. H., Song, J.-I., and Gwak, J., “Early alzheimer’s
disease diagnosis using wearable sensors and multilevel gait assessment: A machine learning
ensemble approach,” IEEE Sensors Journal (2023).

Yamamoto, M., Shimatani, K., Hasegawa, M., Kurita, Y., Ishige, Y., and Takemura, H.,
“Accuracy of temporo-spatial and lower limb joint kinematics parameters using openpose for
various gait patterns with orthosis,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering 29, 26662675 (2021).

Oh, C., “Single-task or dual-task? gait assessment as a potential diagnostic tool for alzheimer’s
dementia,” Journal of Alzheimer’s Disease 84(3), 1183-1192 (2021).

Gras, L. Z., Kanaan, S. F., McDowd, J. M., Colgrove, Y. M., Burns, J., and Pohl, P. S.,
“Balance and gait of adults with very mild alzheimer disease,” Journal of geriatric physical
therapy 38(1), 1-7 (2015).

Proc. of SPIE Vol. 13036 130360L-13



