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Abstract
Maintaining the functionality of wastewater networks is critical to individual well-
being, business continuity, public health, and safety. However, seismic damage and
loss assessments of wastewater networks traditionally use fragility functions based
on median repair rates without considering relevant sources of uncertainty and cor-
relations of damage when estimating potential damage states and pipe repairs. This
study presents a probabilistic methodology to incorporate modeling uncertainty (e.g.
model parameter and model class uncertainty) and spatial correlations (e.g. spatial
auto- and cross-correlation) of pipe repairs. The methodology was applied to a case
study backbone system of a wastewater network in Portland, OR, using the expected
hazard intensity maps for multiple deterministic earthquake scenarios, including a
moment magnitude M6.8 Portland Hills Fault and M8.1, M8.4, M8.7, and M9.0
Cascadia Subduction Zone (CSZ) events. As spatial-correlation models of pipeline
damage were non-existent in the literature and local information on costs to repair
the pipes was limited at the time of this study, correlation methods and repair costs
were proposed to estimate lower and upper bounds of pipe damage and loss. The
results show how the consideration of different levels of uncertainty and spatial cor-
relation for pipe repair rate could lead to different probabilistic estimates of damage
and loss at the system level of the wastewater network, even though the point esti-
mates, such as the mean and median, remain essentially unaltered.
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Introduction

Maintaining the functionality of wastewater networks after earthquakes is critical to busi-
ness continuity, public health, safety, and individual comfort. However, wastewater sys-
tems have experienced significant damage during past earthquakes, disrupting emergency
response and delaying recovery efforts (Eidinger and Schiff, 1998; Nagata et al., 2011; Zare
et al., 2011). Despite the direct and indirect consequences of losing the functionality of
wastewater services, methods for the comprehensive probabilistic seismic damage and loss
assessment of wastewater systems often do not consider all the relevant sources of uncer-
tainty and correlation, even though well-established performance-based earthquake engi-
neering methodologies (Federal Emergency Management Agency (FEMA), 2012; Moehle
and Deierlein, 2004) incorporate uncertainty and correlation for other infrastructure and
lifelines, such as for buildings and bridges.

Damage to wastewater networks has affected post-earthquake recovery in Japan and
New Zealand. Wastewater treatment plants, lift stations, and pipelines were heavily dam-
aged during the 1995 Kobe, Japan earthquake. The largest treatment plant was rebuilt
over three years. Along the 3799-km long wastewater and stormwater pipelines, 1414
repairs were made to pipes damaged due to uplift or settlement of manholes, damage to
road surfaces, or inflow and accumulation of soil in the pipes (Eidinger and Schiff, 1998).
Following the 2004 Niigata earthquake in Japan, 9000 instances of pipe damage were
observed along the 2672-km wastewater network, with over 1300 reported cases of man-
hole settlement or uplift (Scawthorn et al., 2006). After the 2010–2011 Canterbury, New
Zealand earthquake sequence (CES), the Christchurch wastewater network was consid-
ered near failure. Wastewater treatment plants operated at 30% capacity, and the system
leaked 40 million liters of wastewater per day into backyards and watercourses (Eidinger
and Tang, 2011). As a result of the widespread liquefaction and lateral spreading during
this event, observed damage to wastewater systems included pipe breakage in the form of
loss of grade in gravity pipes causing partial or complete silt blockages, groundwater infil-
tration reducing the capacity of the pipes to carry wastewater, and differential settlement
at manholes and pump stations. In addition, some pipe damage due to collocated asset
failures was observed (Zorn and Shamseldin, 2017). Temporary facilities such as chemical
and portable toilets were used for several months to relieve strain on the wastewater sys-
tem (Kongar et al., 2017).

Despite the damage observed after past earthquakes, little effort has been made to col-
lect the data necessary to develop empirical-based fragility models for wastewater pipelines
(e.g. Baris et al., 2021; Liu et al., 2015; Nagata et al., 2011; Shoji et al., 2011). Moreover,
little to no effort has been made to collect data to inform pipe damage correlation models
for wastewater pipes (e.g. level of hazard and type of pipe with associated damage). In part,
data collection has not been as rigorous for wastewater pipelines as for water pipelines,
because, historically, there has been limited interest in the performance assessment of was-
tewater systems, and the majority of the damage in wastewater systems, especially minor
leakage, has not been reported in the literature. Thus, empirical fragility functions have

1436 Earthquake Spectra 39(3)



mostly focused on major damage to wastewater pipes (e.g. near complete blockage, loss of
flow, or floatation). Knowledge of damage after an earthquake can also be limited based
on what is known about the pipes before an event; for example, if a rigorous inspection
program is not in place, it can be difficult to distinguish present or exacerbated damage
from new damage due to the seismic event. In addition, several older localities do not have
complete information about their infrastructure systems. As the inspection of large systems
can take years, sometimes the damage is not easily ‘‘observable’’ for days to months.

Compared to the large body of literature related to the seismic assessment of other life-
line network systems, only a few of studies have assessed the seismic performance of waste-
water systems; e.g., in contrast to potable water distribution systems (Cimellaro et al.,
2016; Farahmandfar et al., 2017; Farahmandfar and Piratla, 2018; Fragiadakis and
Christodoulou, 2014; Mazumder et al., 2020). Generally, existing studies on wastewater
systems can be classified as: (1) reconnaissance studies reporting damage sustained to was-
tewater systems and the associated factors contributing to the vulnerability of the pipelines
(Eidinger and Schiff, 1998; Eidinger and Tang, 2011; Giovinazzi et al., 2015; Scawthorn
et al., 2006; Sherson et al., 2015; Zare et al., 2011), (2) empirical studies developing fragility
functions for wastewater pipes based on reconnaissance observations (Baris et al., 2021;
Liu et al., 2015; Nagata et al., 2011; Shoji et al., 2011), and (3) analytical studies evaluating
the seismic performance of wastewater systems (Makhoul et al., 2020; Sigfúsdóttir, 2020;
Sousa et al., 2012). Findings have included: (1) the predominant mode of failure is floata-
tion of the pipes or manholes, due to differential settlements caused by liquefaction, (2)
pipe failure decreases with increasing diameter and burial depth, and (3) some pipe materi-
als, such as asbestos cement (AC), unreinforced concrete (CONC), cast iron (CI), earthen-
ware (EW), and reinforced concrete with rubber rings (RCRRs), are inherently more
vulnerable than other pipe materials, such as polyethylene (PE), polyvinylchloride (PVC),
or high-density polyethylene (HDPE) (Giovinazzi et al., 2015).

Although these studies have highlighted the potential vulnerability of wastewater net-
works to seismic damage, fragility functions for wastewater pipelines are only available for
a limited number of pipe types and material categories. Thus, common practice uses fragi-
lity functions developed for potable water pipes to estimate the vulnerability of wastewater
pipes (e.g. American Lifelines Alliance (ALA), 2001; FEMA, 2010; Makhoul et al., 2020;
SYNER-G, 2013). Similar practices have also been used to assess the vulnerability of other
lifeline network systems, for example, natural gas systems (e.g. Jahangiri and Shakib,
2018; Kwong et al., 2022; Tsinidis et al., 2019). However, such practices can underestimate
the physical damage to wastewater gravity pipelines, as observed after past earthquakes
(Liu et al., 2015), due to: (1) differences in modeling the fluid flow in the different pipe sys-
tems (e.g. pressurized flow in water and natural gas systems vs predominantly gravity flow
in wastewater systems) and (2) use of unique materials in wastewater systems, such as vitri-
fied clay pipe (VCP), terra cotta pipe (TCP), and corrugated metal pipe (CMP). More
recently, fragility functions have been developed in terms of damage ratios per unit length,
such as the number of faults per km, to account for materials unique to wastewater sys-
tems (e.g. for Hume, VU, VP, PVC, and tile pipes (Shoji et al., 2011) and AC, CI, CONC,
EW, RCRR, PVC, and PE pipes (Liu et al., 2015; Nagata et al., 2011)), functional disrup-
tion length per km (Shoji et al., 2011), and repair rate, defined as the number of repairs
per km, with respect to peak ground velocity (PGV) or liquefaction potential index (LPI)
(Baris et al., 2021).

Furthermore, although ALA (2001) fragility functions, which are considered the indus-
try standard for assessing the seismic vulnerability of pipelines, provide variability of pipe

Alam et al. 1437



fragility in terms of lognormal standard deviations, fragility functions based on median
repair rates are widely used for the seismic assessment of pipelines in practice, by industry
and research communities alike (Makhoul et al., 2020; Sigfúsdóttir, 2020). However, the
use of median repair rate fragility functions does not account for the variability in damage
to wastewater pipelines observed after seismic events. The variability in pipe vulnerability
suggested in ALA (2001) assumes uniform seismic performance for all pipes irrespective of
material, geometry, and physical condition. In contrast, Sousa et al. (2012) noted the
importance of considering variability in the vulnerability of buried pipes based on their
physical condition, which can vary significantly within a network, and proposed a method
to characterize variabilities in pipe repair rates as a function of the structural condition of
the pipes, ranging from very poor to excellent.

Using median fragility functions may neglect important sources of variability in esti-
mates of wastewater pipe damage and repair, especially since several sources of uncertainty
are known to be important for reliable seismic risk and loss assessment of other infrastruc-
ture systems, including model parameter uncertainty (Dolsek, 2009; Gokkaya et al., 2016;
Liel et al., 2009) and model class uncertainty (Alam, 2019; Alam and Barbosa, 2018;
Barbosa, 2011; Muto and Beck, 2008; Romano et al., 2021). Model parameter uncertainty
relates to the definition of the idealized parameters used in the model to simulate actual
behavior, which can increase dispersion in the simulated response and, if neglected, can
result in unconservative estimates (Liel et al., 2009). Model class uncertainty relates to the
selection of one or multiple models from an appropriate class of models to describe a phys-
ical phenomenon. Estimates of median seismic demands using different model classes can
differ significantly (Alam and Barbosa, 2018). Although the use of multiple models is com-
mon practice for probabilistic seismic hazard analysis (PSHA), its application to the seis-
mic damage and loss assessment of lifeline and civil infrastructure is relatively new. To
date, seismic damage and resilience assessments of wastewater networks have relied on fra-
gility functions based on median repair rates (Makhoul et al., 2020; Sigfúsdóttir, 2020)
without considering uncertainty in the fragility function due to model parameter or model
class uncertainty.

In addition, spatial correlations of pipe damage are often neglected when assessing was-
tewater networks, even though wastewater pipes are spatially distributed over large areas.
Excitation due to infrequent but strong seismic events can simultaneously excite spatially
distributed infrastructure in a region (such as buildings, roads and bridges, and water and
wastewater pipelines). As a result, there is an increased likelihood of simultaneous
response of distributed infrastructure during strong ground shaking. Spatial correlation
can be due to correlations in the ground motion intensity measure (IM) (e.g. Du and
Wang, 2013; Goda and Atkinson, 2010; Goda and Hong, 2008b; Jayaram and Baker,
2009; Loth and Baker, 2013; Sokolov et al., 2010) or correlations in response and damage
(e.g. DeBock et al., 2014; Goda and Hong, 2008a). The spatial correlation of infrastruc-
ture response is partly due to the spatial correlation of ground motion IMs arising from
similarities in wave propagation path (path effects) and local site effects (similar terrain or
soil conditions) and partly due to similarities in design and quality of construction of the
infrastructure in a particular region, among many other factors (Shome et al., 2012).
Generally, this spatial correlation decreases with increasing distance between two sites and
can significantly vary depending on the earthquake record (Jayaram and Baker, 2009).
Existing spatial-correlation models have considered the correlation between seismic dam-
age and loss of distributed infrastructure in terms of different ground motion parameters,
including peak ground acceleration (PGA), PGV, spectral acceleration (Sa(T)), cumulative

1438 Earthquake Spectra 39(3)



absolute velocity (CAV), and Arias intensity (Ia) (Du and Wang, 2013; Goda and
Atkinson, 2010; Goda and Hong, 2008b; Jayaram and Baker, 2009; Loth and Baker,
2013; Sokolov et al., 2010).

Incorporating spatial correlation in the assessment of wastewater systems is additionally
hampered by the lack of spatial-correlation models for permanent ground deformation
(PGD), which is widely used to model the fragility of pipelines under liquefaction and
landslide-induced lateral spreading and ground settlement. Neglecting potential spatial
correlation between damage of two different infrastructure components can overestimate
or underestimate loss for frequent and rare earthquakes, respectively (Bazzurro et al.,
2008; Goda and Hong, 2008a; Weatherill et al., 2015). For example, correlations were
found to be significant between building engineering demand parameters (EDPs) for a
portfolio of buildings in Los Angeles with similar fundamental periods located at closely
spaced sites (DeBock et al., 2014). In the analysis of a portfolio of 41,400 buildings near
San Francisco, more frequent lower-level losses considering spatial correlations were 200%
greater than those neglecting spatial correlations and less frequent, large losses considering
spatial correlations were 60% smaller than those neglecting spatial correlations (Bazzurro
et al., 2008). The aforementioned studies defined correlations based on either individual
buildings or portfolios of buildings for risk and loss assessments, not wastewater networks.

To date, spatial correlations for the response of distributed network systems, such as
those for water systems, has only been considered in a single study by Mazumder et al.
(2020) using the ground motion IM correlation model from Jayaram and Baker (2009) for
PGV-based hazards, but not considering PGD-based hazards. Other studies (e.g. Kwong
et al., 2022) have also recognized the importance of including spatial correlation in the
seismic assessment of natural gas systems, although considering correlation was consid-
ered outside the scope of that study due to the limited availability of hazard data over the
entire study region. Uncertainties and correlations have also been considered for distribu-
ted lifeline systems, such as bridge networks (e.g. Ghosh et al., 2014; Rokneddin et al.,
2014). However, to the authors’ knowledge, both uncertainty and spatial correlation in
assessing pipe damage and loss have not been considered in the damage and loss assess-
ments of wastewater pipeline networks. Concerted efforts are needed by the lifeline engi-
neering community, involving sewer and stormwater providers and researchers alike, to
implement rigorous pipe inspection programs and to collect the necessary wastewater pipe
damage data to develop fragility functions and pipe damage spatial-correlation models of
wastewater systems.

Considering the above knowledge gaps and limitations, the main objective of this study
is to present a probabilistic methodology that incorporates modeling uncertainty and cor-
relation in the seismic damage and loss assessment of wastewater networks. To this end, a
probabilistic methodology for the seismic damage and loss assessment of wastewater net-
works was developed to address: (1) model parameter uncertainty and model class uncer-
tainty and (2) spatial auto- and cross-correlations of pipe repair rates. The methodology
was applied to a case study backbone system, that is, a network of critical assets within a
service system, for the wastewater network in Portland, OR, USA, using expected hazard
intensity maps of multiple deterministic earthquake scenarios, including moment magni-
tude M6.8 Portland Hills Fault and M8.1, M8.4, M8.7, and M9.0 Cascadia Subduction
Zone (CSZ) events. Given the non-existence of correlation models for the spatial correla-
tions of pipeline damage in the literature, in addition to the limited availability of informa-
tion on local repair costs for the case study wastewater network, assumptions were made
with respect to the spatial-correlation structure of pipe damage and repair costs, which
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includes estimates of lower- and upper-bound pipe repairs and loss based on the spatial-
correlation structure developed by DeBock et al. (2014) for spatially distributed building
response. As the methodology can incorporate different forms of spatial-correlation infor-
mation, other correlation structures could also be implemented in future studies.

Probabilistic methodology for the damage and loss assessment
of a wastewater network

The probabilistic methodology developed in this study focuses on wastewater backbone
service mains and incorporates model parameter and model class uncertainty, along with
spatial auto- and cross-correlations of pipe damage, to assess component- and system-level
damage and loss of a wastewater pipeline system. Herein, pipe damage was assessed in
terms of the number of repairs per pipe length using fragility functions. Model parameter
uncertainty was accounted for through the dispersion parameter of the fragility model.
The effects of model class uncertainty were assessed in a sensitivity study employing two
different fragility models for pipe repairs, namely, the ALA (2001) and Bureau of
Environmental Services (BES, 2018a) fragility function models.

It is worth noting that both the ALA (2001) and BES (2018a) fragility models do not
include damage due to floatation-related issues, which, therefore, were not considered in
this study, even though floatation has been a predominant mode of failure in wastewater
systems observed after past earthquakes. In addition, besides the service mains, other com-
ponents like manholes, lift stations, sewage treatment plants, and service laterals are also
an integral part of a wastewater system, and their performance is critical to overall system
performance, as observed after past seismic events, such as the 1995 Kobe, Japan
(Eidinger and Schiff, 1998), 2004 Niigata, Japan (Scawthorn et al., 2006), and 2010–2011
Canterbury, New Zealand earthquake sequence (Eidinger and Tang, 2011; Zorn and
Shamseldin, 2017). This study does not consider these assets due to a lack of detailed
information on some (e.g. manholes, lift stations, treatment plants), private ownership of
others (e.g. service laterals), and a general lack of detailed and validated fragility models
for such assets. Instead, the focus is placed on assessment of the backbone pipelines of a
wastewater system, as described for the case study network in section ‘‘Case study.’’

Repair rate fragility functions for wastewater pipelines

Numerous fragility functions have been developed for water pipelines (e.g. Eidinger, 1998;
FEMA, 2010; Honegger and Eguchi, 1992; O’Rourke and Ayala, 1993; O’Rourke and
Deyoe, 2004; O’Rourke and Jeon, 1999). The majority of these documents provide rela-
tions between the pipe repair rate, RR, defined as the number of pipe repairs per unit pipe
length, and IM is expressed as a power law (ALA, 2001):

RR= aIMb ð1Þ

where the parameters a and b are defined based on regression analysis of empirical pipe
repair data. Other terminologies have also been used in the literature to describe the num-
ber of pipe repairs per unit pipe length, such as damage function, damage rate, damage
ratio, or failure rate (Piccinelli and Krausmann, 2013).

The empirical fragility functions by the American Lifelines Alliance (ALA, 2001) have
been extensively used by researchers and are considered the industry standard. Factors
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that directly affect pipeline performance during earthquakes include ground shaking, land-
slides, liquefaction, lateral spreading, settlement, and fault crossings. The ALA (2001) fra-
gility functions are expressed by a repair rate, RR (i.e. number of repairs per km of pipe)
as a function of PGV or PGD:

RRPGV = k1 � 0:002415 � PGV ð2aÞ

RRPGD = k2 � 2:5758 � PGD0:319 ð2bÞ

where PGV is the peak ground velocity (cm/s); PGD is the permanent ground deformation
(cm); and k1 and k2 are the modification factors that are applied to the backbone fragility
functions to represent attributes that tend to affect failure likelihood, such as pipe mate-
rial, pipeline configuration (e.g. segmented and continuous), soil type, pipe diameter, bur-
ied depth, or corrosion. Note, in the ALA (2001) documentation, Equation 2 is expressed
in terms of pipe repairs per 1000 ft.

Since the ALA (2001) fragility model was developed for water pipelines, coefficients
were assumed to account for pipe materials unique to wastewater systems, such as con-
crete segmented pipes (CONC, CSP), brick pipes (BRICK, BRIKSTN), VCPs, and TCP
(discussed in detail in section ‘‘Correlation’’). Applying fragility models for water pipelines
to assess wastewater pipeline performance has limitations that could result in over- or
under-estimates of performance depending on the composition of pipe materials, level of
design and detailing, pipe size, and burial depth compared to a water systems under simi-
lar seismic hazards. For example, wastewater pipes made of ungasketed and rigid, brittle
materials are likely to sustain more damage compared to water system pipes under a simi-
lar hazard intensity. In contrast, the opposite case may be observed for well-designed and
detailed large-diameter wastewater pipes buried deeper under the ground surface com-
pared to water pipes. Any small amount of damage in a water system will likely result in a
loss of functionality in a pressurized system, whereas sewer gravity pipes can have cracks,
fractures, or even portions of pipe missing, and still maintain flow, although this type of
damage can also cause contamination issues which may be observed until much later if
not addressed.

Despite these limitations, applying ALA (2001) fragility models for water pipelines to
wastewater pipelines can still provide valuable information on the relative system-level
performance of wastewater systems, especially since fragility models are limited for waste-
water systems. Future work will then be needed to further refine the methods of perfor-
mance assessment presented herein.

Model parameter uncertainty. The use of ALA (2001) median fragility functions in Equation
2 is a common practice by both the industry and research communities. However, signifi-
cant scatter can be observed in the underlying empirical data, which is not represented by
Equation 2 (see Figure 1). To improve estimates of the variability in pipe repair rate data,
model parameter uncertainty was considered using regression coefficients f1 and f2 in
Equation 2 that were fit to the ALA (2001) data.

The PGV-based fragility functions were developed based on a set of 81 data points in
ALA (2001) from 12 historical earthquakes, with the majority of the data points gathered
after the 1995 Kobe, 1994; Loma Prieta, and 1971; Northridge, 1989 San Fernando earth-
quakes. These data points correspond to pipe materials consisting of CI (47%), steel
(16%), AC (13%), ductile iron (DI) (12%), concrete (CONC) (3%), or other (16%).
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Based on these data, the variability in PGV-based repair rates in Figure 1a was modeled
using a lognormal fragility function with parameters lf1 = 0:002415 and zf1 = 1:15, where
lf1 and zf1 represent the mean of ln f1 and lognormal standard deviation of f1, respectively.

The PGD-based fragility functions were developed based on 42 data points in ALA
(2001) gathered after four earthquakes, namely, the 1906 Nihonkai-Chubu, the 1989 San
Fernando, the 1983 San Francisco, and 1971 Loma Prieta earthquakes. These data points
correspond to pipe materials consisting of AC (48%), CI (40%), or mixed CI and steel
(12%). To account for the variability in PGD-based repair rate, a lognormal fragility func-
tion was fit to the data of repair rate versus PGD in Figure 1b with parameters lf2 = 2:5758
and zf2 = 0:74.

Thus, the ALA (2001) fragility functions were modified to account for repair rate varia-
bility by:

RRPGV = k1 � f1 � PGV ð3aÞ

RRPGD = k2 � f2 � PGD0:319 ð3bÞ

where f1;LN(lf1 = 0:002415, zf1 = 1:15) and f2;LN(lf2 = 2:5758, zf2 = 0:74) are regression
coefficients following lognormal distributions; lf =mln f is the mean of ln f1 or ln f2, and
zf =sln f is the standard deviation of ln f1 or ln f2 (Haukaas, 2003). Note, the use of the
modification factors, k1 and k2, in Equation 3 accounts for different pipe attributes (e.g.
material, diameter, configuration, soil type, buried depth) and, hence, shifts the median
estimate lf of pipe repair rates for different pipe classes. However, the standard deviations,
zf , of pipe repair rates were defined irrespective of pipe class based on the entirety of the
ALA (2001) data, which may result in a larger uncertainty for repair estimates compared
to pipe class-specific zf values. To address this limitation in the future, different standard

Figure 1. Repair rate relationships based on ALA (2001) and BES (2018a) fragility functions with
respect to: (a) ground shaking, PGV, and (b) ground deformation, PGD. As an example, pipe diameters of
61 cm and depths of 2.1 m were used in the BES (2018a) liquefaction and landslide fragility functions,
respectively.
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deviation values could alternatively be used for different pipe classes as additional damage
data becomes accessible.

Model class uncertainty. To account for the effects of model class uncertainty, recently devel-
oped pipe repair rate fragility functions by the City of Portland Bureau of Environmental
Service (BES, 2018a) were compared to ALA (2001) in a sensitivity study. Ideally, model
class uncertainty would incorporate multiple independently developed models; for exam-
ple, using a weighted average or logic tree approach (Alam and Barbosa, 2018; Barbosa,
2011; Muto and Beck, 2008; Romano et al., 2021). However, due to the limited models
available for wastewater networks, generic (i.e. ALA, 2001) and local, site-specific (i.e.
BES, 2018a) models were used to characterize the sensitivity to model class uncertainty,
herein.

In BES (2018a), formulations are developed for PGV- and PGD-related repair rates
and divided into liquefaction-induced lateral spreading and ground settlement (LQ) and
landslide-induced ground deformation (LS):

RRPGV = k1 � 0:002415 � PGV ð4aÞ

RRPGD,LQ = k2 �
2:6611

1+ 7:408e�0:6886D
� PGD0:319 ð4bÞ

RRPGD,LS = k2 �
3:5962

1+ e�0:94621+ 0:10201h
� PGD0:319 ð4cÞ

where D is the pipe diameter (cm) and h is the pipe depth (m). Although herein referred to
as the BES (2018a) formulation, Equation 4 was only explored by BES for comparison
purposes and final results and mapping in BES (2018a) were still based on ALA (2001).

Unlike the ALA (2001) formulations in Equation 2, the PGD-related repair rates in
BES (2018a) explicitly account for pipe diameter and pipe depth, since larger-diameter
pipes are typically located at greater depths in wastewater systems compared to potable
water systems. From inspection of Equation 4c, the BES (2018a) function indicates that
the probability of pipe repairs per unit length decreases with increasing pipe depth for
landslide-based hazards. In Equation 4b, sensitivity to pipe diameter for liquefaction-based
hazards is mainly associated with relatively small pipe diameters and the dependence of
repair rate per unit length on pipe diameter plateaus for larger-diameter pipes. However,
note that lower damage rates for large-diameter water pipes have been observed after past
earthquakes (Eidinger, 1998; Giovinazzi et al., 2015; Nagata et al., 2011; O’Rourke and
Jeon, 1999). To some extent, lower damage with increasing diameter can be attributed to
the higher quality of construction, lower corrosion effect, fewer bends and tees, larger wall
thickness, and so on commonly found for larger-diameter pipes compared to smaller dia-
meter pipes. The flow conditions in water and wastewater system are fundamentally differ-
ent, as there is pressurized flow for the former and more open channel flow for the latter;
however, dependence on diameter could also be arguably based on the anecdotal evidence
of the better performance of large-diameter water pipelines after past seismic events, and
this effect is not considered in Equation 4b. The k1 and k2 coefficients from ALA (2001)
were also modified for the BES (2018a) functions based on local knowledge of the soil con-
ditions and pipe materials (e.g. use of VCP and TCP) (see Table 1).
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BES (2018a) provides only median fragility functions for repair rate, without providing
information on repair rate uncertainty. In the absence of such information, lognormal
standard deviations of 1.15 and 0.74 were assumed for the f1 and f2 regression coefficients,
respectively, based on the ALA (2001) data. The final functional forms of the adjusted
BES (2018a) fragility functions are:

RRPGV = k1 � f1 � PGV ð5aÞ

RRPGD,LQ = k2 �
f2,LQ

1+ 7:408e�0:6886D
� PGD0:319 ð5bÞ

RRPGD,LS = k2 �
f2,LS

1+ e�0:94621+ 0:10201h
� PGD0:319 ð5cÞ

where f1;LN(lf1 = 0:002415, zf1 = 1:15), f2, LQ;LN(lf2,LQ = 2:6611, zf2,LQ = 0:74), and

f2, LS;LN(lf2,LS = 3:5962, zf2, LS = 0:74) are the regression coefficients following lognormal

distributions. The PGV-based fragility functions for the BES (2018a) and ALA (2001) fra-
gility functions are the same when similar k1 coefficients are considered; some k1 and k2
values differ between the BES (2018a) and ALA (2001) models, as shown in Table 1. In
contrast, the PGD-based fragility functions for BES (2018a) differ from ALA (2001)
depending on pipe diameter and depth in addition to k2; note, Figure 1 is only shown for
the sample D and h values specified in the caption for BES (2018a).

Table 1. Fragility modification factors k1 and k2 for different model classes

Pipe material ALA (2001) BES (2018a)

k1 k2 k1 k2

High-density polyethylene (HDPE)—fused joints 0.15* 0.15* 0.15 0.15
Ductile iron (DI)—unrestrained 0.5 0.5 0.5 0.43
Steel—welded joints—large diameter (STEEL) 0.15 0.15 0.15 0.62
Steel—gasketed B&B joints (STEEL) 0.5* 0.5* 0.5 0.5
Reinforced concrete sewer pipe (RCP, RCSP)—gasketed B&B joints 0.8* 0.8* 0.8 0.75
Cast-in-place pipe and monolithic concrete (CIPP, MONO) 0.8* 0.8* 0.8 0.75
Concrete sewer pipe (CSP, CONC) 0.8* 0.8* 0.8 0.8
Polyvinyl chloride (PVC) 0.5 0.8 0.6 0.9
Corrugated metal pipe (CMP)—uncorroded 0.3* 0.3* 0.3 0.83
Asbestos concrete and fiber-reinforced concrete (ASBEST, FRP)
with rubber gasket

0.5 0.8 0.6 0.9

Asbestos concrete and fiber-reinforced concrete (ASBEST, FRP)
with cement joint

1.0* 1.0* 1.0 1.0

Cast iron pipe (CIP)—leaded or mortared joints 1.0 1.0 1.0 0.88
Non-reinforced concrete (NCP) 1.3* 1.3* 1.3 0.92
Wood 0.7* 0.7* 0.7 0.92
Vitrified clay and terra cotta pipe (VSP, TCP) with rubber gasket 0.7* 0.7* 0.7 0.94
Vitrified clay and terra cotta pipe (VSP, TCP) with cemented joints 1.3* 1.3* 1.3 1.3
Brick, brick and stone (BRICK, BRKSTN) 0.7* 1.3* 0.7 0.95

Source: BES (2018a) for wastewater pipelines.
*Not originally suggested in ALA (2001). These values were assumed in the application of ALA (2001) for wastewater

pipelines based on the values provided in BES (2018a).
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Correlation

In this study, model parameter uncertainty in each of the fragility model classes for pipe
repair rate was accounted for by simulating the respective f1 and f2 coefficients using
Monte Carlo simulations (MCSs) with distinct seed values; that is, f1 and f2 were consid-
ered random variables (RVs) with lognormal distributions using the aforementioned log-
normal distribution parameters in Equations 3 or 5.

To account for the spatial correlation of pipe damage in seismic events, spatial auto-
and cross-correlations of pipe repairs were also considered when simulating the f1 and f2
coefficients. Spatial auto-correlation (Bennett, 1979) considers correlations of f1 or f2
between similar pipes; that is, pipes of the same material but located at different sites.
Spatial cross-correlation considers correlations of f1 or f2 between different pipe materials
located at different sites.

Correlated RV generation. The eigenvalue analysis method for generating correlated RVs in
Nowak and Collins (2012) was utilized to transform uncorrelated coefficients, f̂1 and f̂2, to
correlated coefficients, f1 and f2, for different pipes (see Appendix I). The process starts by
defining a matrix, Z, with each row containing trial vectors f1 and f2 representing the
regression coefficients for different pipes in the network from the PGV- and PGD-based
fragility functions, respectively. The initial vectors, f1 and f2, are generated independently
for each pipe through RV sampling of the aforementioned lognormal distributions using
MCS with distinct seed values.

As this method is valid for normal distributions and approximate for other distribu-
tions, a new matrix of correlated RVs, X= lnZ, is obtained from the natural logarithm of
the initial sample matrix Z, where X now follows a normal distribution with rows ln f1 or
ln f2. The correlated samples for RVs in X with rows ln f1 or ln f2 can then be obtained
from uncorrelated samples in Y with rows ln f̂1 or ln f̂2 by:

X=TY ð6Þ

where T is the transformation matrix described in Appendix I. The correlated normal
matrix X with rows ln f1 and ln f2 can then be transformed into a correlated lognormal
matrix with rows f1 and f2 by taking the exponential of X. This process was implemented
in Python using the SciPy (2022) library.

Spatial auto-correlation. At the time of this study, limited ground motion correlation models
exist for PGV and are non-existent for PGD, which are the IMs used in the pipeline repair
fragility models in Equations 3 and 5. Moreover, no spatial-correlation models for pipe
damage currently exist in the literature.

In the absence of spatial-correlation models for ground motion IMs relevant to pipeline
seismic response and for pipe repair, herein, the spatial-correlation model presented in
DeBock et al. (2014) was adopted to model the spatial correlation of pipe repairs for a
wastewater system. As DeBock et al. (2014) studied building story drift ratio response
under seismic excitation, building response is being used in this study as a proxy for pipe
repair rate. Future studies can better represent the spatial correlation of pipe repairs as
additional damage information is collected and specific efforts are made to assess the spa-
tial correlations of pipe repair rates (i.e. spatial similarity in pipe damage) in addition to
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the correlations associated with the IMs (e.g. from the wave propagation and uniformity
of adjacent soil).

DeBock et al. (2014) studied the effects of spatial correlations in building response
under ground shaking for four different earthquakes, including two historical events, 1994
Northridge (M6.7) and 1999 Chi-Chi (M7.6), and two simulated events, Puente Hills fault
(M7.2) and ShakeOut (M7.8). The study used ground motion models (GMMs) and mod-
els of the spatial correlation of Sa(T1) to estimate the spatial correlation of building
response for spatially distributed modern ductile buildings and older non-ductile buildings
of different heights (2, 4, and 8 stories). Results indicated that the spatial correlation of
building response (story drift ratio, peak floor acceleration) is closely associated with both
the earthquake and building characteristics, which were represented in terms of fundamen-
tal period, T1. Figure 2 shows the spatial auto-correlations from DeBock et al. (2014). For
larger magnitude events (ShakeOut and Chi-Chi), the spatial auto-correlation decreases at
a slower rate with distance compared to comparatively lower magnitude events
(Northridge and Puente Hills), because larger magnitude events have larger isoseismic
zones compared to smaller magnitude events.

In this study, the lower and upper bounds of the correlation coefficients for story drifts
presented in DeBock et al. (2014) were assumed to bound the potential spatial auto-
correlation of a given wastewater pipeline system (see gray block in Figure 2); herein, lin-
ear regression was used to fit the building response correlation data from the ShakeOut
and Puente Hills faults to determine lower- and upper-bound spatial auto-correlations, rd ,
resulting in rd-to-distance relations with slopes of 20.011 and 20.033, respectively. The
regression fits were forced to have a y-intercept of 1.0 at zero (0) intersite distance and a
minimum permissible rd of 0 is assumed for the distance ranges of interest for a local was-
tewater network, as shown by the solid black and red lines in Figure 2.

To generate spatial auto-correlations, the intersite distance was computed based on the
Euclidean distance between the geospatial midpoint locations of pipes i and j of the same
material K. The spatial correlation, rdi, j, between two pipes of the same material was then
interpolated from the lower- and upper-bound regression models in Figure 2. Pipes of the
same material were grouped together, resulting in block matrices of spatial auto-
correlations for each material:

Figure 2. Assumed bounds represented by gray block for the spatial auto-correlation of pipe repairs
with increasing distance adapted from DeBock et al. (2014); i, ii, iii, and iv point to spatial cross-
correlation bounds used in case study.
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rdK,K
=

rd1, 1 rd1, 2
rd2, 1 rd2, 2

� � � rd1, i � � � rd1, j
rd2, i � � � rd2, j

..

. . .
. ..

.

rdi, 1 rdi, 2

..

. ..
.

rdj, 1 rdj, 2

� � �
rd i, i � � � rd i, j

..

. . .
. ..

.

rd j, i � � � rd j, j

2
666666664

3
777777775

ð7Þ

where j is the number of pipes with a given pipe material, K, in the wastewater network.
Note, as pipe segment definitions are oftentimes arbitrary, using the midpoint of the pipe
to calculate intersite distance may underestimate the spatial correlation of pipes with
widely different pipe lengths. Midpoints were used herein as a measure of intersite dis-
tances between pipes to demonstrate the method of computing the spatial correlation of
pipes in the case study wastewater system presented in section ‘‘Case study.’’ Since the
majority of the pipe segments of the case study network are of uniform length between
two nodes (about 80% of the pipes are less than 100 m long), using midpoints to calculate
the spatial correlations was considered reasonable. More refined estimates for the spatial
correlation of pipe damage could be achieved in future studies using: (1) more uniform dis-
cretization of pipe lengths, for example, standardized pipe lengths; (2) pipe segments
between manholes that better preserve important pipe attributes (e.g. bends and tees, soil
type); or (3) geometric means calculated from the pipe endpoints or multiple points along
the reference pipe length.

The spatial auto-correlation matrix, rac, of the wastewater pipeline system is then
assembled with rdK,K

, which results in a block diagonal matrix:

rac =

rdCSP,CSP
0

0 rdPVC,PVC

. . . 0

. . . 0

..

. ..
.

0 0

. .
. ..

.

. . . rdK,K

2
6664

3
7775 ð8Þ

where the diagonal block matrices, rdK,K
, represent spatial auto-correlations calculated

based on the distance from a given pipe midpoint to another pipe midpoint of the same
material K, as shown in Equation 7; for example, for CSPs and polyvinyl chloride (PVC)
pipe. Correlated RVs for f1 and f2 were then generated using the method described in sec-
tion ‘‘Correlated RVs generation’’ for each unique pipe material. The standard deviation
values for f1 and f2 were assumed irrespective of pipe classes due to the absence of enough
damage data to robustly estimate pipe class-specific damage dispersion zf (described in
more detail in section ‘‘Model parameter uncertainty’’). Since the dispersions of f1 and f2
were estimated from data that include all pipe materials, realizations of auto-correlated f1
and f2 contain mixed attributes for material, geometry, age, construction quality, and
current condition of different pipe classes, and the effort to produce specialized auto-
correlations is diluted by this generalized dispersion. This limitation can be eliminated in
the future by developing pipe class-specific damage dispersion values as more damage data
become available for different water and wastewater pipe classes.

Spatial cross-correlation. Compared to the spatial auto-correlations, which define correla-
tions of pipe damage for similar pipe materials located at different distances, spatial cross-
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correlations define correlation of pipe damage for different pipe materials located at differ-
ent distances. Naturally, the magnitude of cross-correlation is not as strong as that of
auto-correlation for similar intersite distances. In DeBock et al. (2014), cross-correlations
between story drifts for different buildings at the same site resulted in lower y-axis inter-
cepts with similar diminishing trends with increasing distance compared to the spatial
auto-correlations. Based on this observation, herein, the effects of spatial cross-correlation
on the damage of pipes with different materials located at different sites assume that the
spatial cross-correlation is the product of a material correlation, rm, representing material
effects, and the distance correlation, rd , described previously, or rm � rdi, j (see reductions
labeled i–iv using rm = 0.3 and 0.9 in Figure 2). The material correlation, rm, assumes
that pipes of different materials are still spatially correlated but not as correlated as pipes
of the same material, whereby pipes of the same material are assumed to have rm = 1 and
pipes of different materials adopt values of rm \ 1.

In contrast to the spatial auto-correlation, rac, which generated rd only for pipes of the
same material, spatial auto- and cross-correlations were initially generated for all pipes in
the network based on the lower- and upper-bound rd gray block in Figure 2. The spatial
cross-correlation for pipes of different materials was then modified by rm to produce the
following spatial-correlation matrix, rsc, for f1 and f2, which combines spatial auto-
correlations on the mega diagonal and cross-correlations elsewhere:

rsc =

1 � rdCSP,CSP

rm � r
dPVC,CSP

rm � r
dCSP,PVC

1 � r
dPVC,PVC

..

.

rm � r
dL,CSP

..

.

rm � r
dK,CSP

rm � r
dL,PVC

..

.

rm � r
dK,PVC

. . .
. .
.

. . .

rm � r
dCSP, L

rm � r
dPVC, L

. . .

. . .

rm � r
dCSP,K

rm � r
dCSP,K

..

.

1 � r
dL, L

..

.

rm � r
dK,L

. . .
. .
.

. . .

rm � r
dL,K

..

.

1 � r
dK,K

2
6666666664

3
7777777775

ð9Þ

where the main diagonal block matrices, rdK,K
, are identical to those in Equation 7, and

the off-diagonal block matrices, rdK, L
, are reduced by the material correlation, rm, to repre-

sent cross-correlations between pipes i and j of different pipe materials, K and L. Equation
9 assumes constant rm for all pipes of different materials. Extensions could specify differ-
ent rm between pipes of different materials based on how much or how little damage is
expected to differ for those pipe materials. Correlated RVs for f1 and f2 were then gener-
ated using the method described in section ‘‘Correlated RVs generation’’ for all the pipe
materials in the network.

Although not considered in this study, another form of correlation exists, that is, the
correlation between f1 and f2, as these coefficients are used to model the fragility of the
same pipes for two different phenomena, namely, PGV- and PGD-induced effects. If a
given pipe in the network experiences poor/good performance for the nth realization of f1,
similar poor/good performance would be expected to be observed for the nth realization
of f2. To develop more refined spatial-correlation models of pipe damage, future studies
can extend the spatial-correlation model presented herein to consider possible correlations
between f1 and f2.
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Component- and system-level pipe repairs

Two levels of pipe repairs were considered in this study: component- and system-level
repairs. Component-level repairs represent the number of repairs over a pipe length.
System-level repairs sum the fraction of repairs in each pipe for the entire pipeline net-
work. In these calculations, the RVs, f1 and f2, were sampled from their distributions using
an MCS and correlated via the spatial auto- and cross-correlation matrices described
previously.

At the component level, the number of repairs, or pipe repairs (PR), for each pipe in
the network for each realization, n, is based on the aforementioned PGV- and PGD-based
repair rate functions in Equations 3 and 5 and given by:

PR
nð Þ
PGVi

= Li
XV
v= 1

GvRR
n, vð Þ
PGV, i ð10aÞ

PR
nð Þ
PGDi

= Li
XW
w= 1

GwRR
n,wð Þ
PGD, i ð10bÞ

where PR
nð Þ
PGV, i and PR

nð Þ
PGD, i are the number of repairs of the ith pipe for the nth realiza-

tion of f1 and f2; superscript (n) = (1, 2, . . . ,Nr) is an indicator representing a realization of
the MCS for the total number of realizations Nr considered; RR

n, vð Þ
PGV, i and RR

n,wð Þ
PGD, i are the

repair rate values for the PGV- and PGD-based vth and wth model classes selected for the
ith pipe and nth realization; and Li is the length of the ith pipe in km.

To incorporate model class uncertainty, the pipe repairs can be weighted and summed
for different model classes in Equation 10, where the subscripts (v) = (1, . . . ,V ) and
(w) = (1, . . . ,W ) are natural numbers corresponding to the vth and wth model classes
selected to estimate the PGV- and PGD-based repair rates, respectively, and V and W are
the total number of selected model classes; for example, using Equation 3 (ALA, 2001)
and Equation 5 (BES, 2018a); Gv and Gw are the model class weights for the vth and wth
model class. Note,

PV
v= 1 Gv = 1 and

PW
w= 1 Gw = 1, and the values of Gv and Gw can be

selected for the analysis based on expert judgment or through a consensus-based process,
as is done, for example, by United States Geological Survey (USGS) in the selection of
weights for the US seismic hazard maps.

To compute the system-level repairs, or total number of system-level repairs (TSR), the
component-level pipe repairs are aggregated for each realization:

TSR
nð Þ
PGV =

XNp

i= 1

PR
nð Þ
PGV, i ð11aÞ

TSR
nð Þ
PGD =

XNp

i= 1

PR
nð Þ
PGD, i ð11bÞ

TSR nð Þ =max TSR
nð Þ
PGV,TSR

nð Þ
PGD

n o
ð11cÞ
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where TSR nð Þ represents the total number of repairs in the wastewater system for the nth
realization. The subscript i= f1, 2, . . . ,Npg is an indicator representing a specific pipe in
the network, with Np as the total number of pipes.

To summarize, the total system-level repairs, TSR, which is an RV itself, is the sum of
the RVs representing component-level repairs, PRi, as presented in Equation 11. The var-
iance, Var( � ), of TSR depends on both the variance of the underlying RVs PRi and their
correlation r(PRi, PRj). In addition, the expected value of TSR, E(TSR), is a function of
the difference between the mean of squared TSR and variance of TSR (Wackerly et al.,
2008). As a result, the variance of TSR increases when the underlying RVs PRi have
greater positive correlation (or covariance). Similarly, the expected value of TSR decreases
with higher variance of TSR and, in turn, with greater positive correlation r(PRi, PRj).

The repair data can be used to estimate the cost of repairing the damaged pipes in the
wastewater network. The component-level loss Loss

nð Þ
i of the ith pipe for nth realization is:

Loss
nð Þ
i =PR

nð Þ
i CPLiSLi fal fai fecn fdaf ð12Þ

where PR(n)
i is the number of repairs for the ith pipe and nth realization; CPLi is the repair

cost per unit length of the ith pipe calculated by pipe diameter; SLi is the manufactured
standard length of the ith pipe; and fal, fai, fecn, and fdaf , represent, respectively, adjust-
ments for additional excavation beyond pipe repair length for good access to damaged
pipe (fal), inflation (fai), emergency contingencies during post-disaster response due to
material shortages, supply chain issues, limited number of available contractors (fecn), and
design and administrative fees (fdaf ).

The component-level repair loss, Loss(n)i , can be aggregated over all the damaged pipes
in the network to estimate the system-level loss, Loss(n), for the nth realization:

Loss nð Þ =
XNp

i= 1

Loss
nð Þ
i ð13Þ

Note, Equation 12 assumes that pipe damage can be spot repaired by digging down and
inserting a new pipe. Loss does not include costs associated with: (1) physical losses from
emergency stabilization (e.g. traffic control and placing plate barricade over the sinkhole
to ensure public safety and initiating bypass pumping to provide continuity of service),
complicating factors of removing and replacing pipe in dense urban versus rural environ-
ments, grade correction and flowline restoration, changing the gravity system to a pressur-
ized system (Liu et al., 2013), de-silting and inspection, relocating utilities, removal of
liquefiable soils (Giovinazzi et al., 2015), interdependencies with critical assets of other util-
ities (e.g. utility crossing or parallel water line relocation), excess excavation and shoring
required for pipe access, removal, and installation, or mitigation of failure due to buoy-
ancy (BES, 2018b); (2) environmental losses from sewage spills from pipe leakage/breaks
and over-dumping from non-functional sewer components into water sources, such as the
waterway, ground surface, and fresh water (Liu, 2016); and (3) social losses that compro-
mise general well-being due to the loss of sanitary services, households suffering from
odorous issues, and flow blowbacks, which may force residents to temporarily move from
their properties (Liu, 2016). In addition, some cost savings were neglected, such as those
obtained by repairing pipes in close proximity to remediate multiple damage points.
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Overview of methodology

Figure 3 shows the flowchart for computing component- and system-level repair and loss
for a wastewater pipeline network based on the discussed sources of uncertainty and dam-
age correlations. The following lists each step in the flowchart briefly, as detailed informa-
tion for each step was described in the previous sections:

1. Network information, such as pipe geospatial locations (e.g. start and finish nodes),
average depth relative to the ground, and other attributes, including length, mate-
rial, diameter, and connectivity, are collected for each pipe.

2. The hazard intensity maps geo-spatially define the IM, typically in terms of PGV or
PGDmaps and in the form of a GIS raster files. Through interpolation of the raster
files, PGVi or PGDi are estimated at the reference location for each pipe i, herein at
the pipe midpoint.

3. Model parameter uncertainty is incorporated and propagated using MCS to
account for uncertainty in the repair rates used in the fragility function models for
the pipes. For each realization in the MCS, spatial auto- and cross-correlated sam-
ple variables for pipe repair rates are generated from uncorrelated sample variables
based on intersite distances between pipe midpoints and differences in pipe
materials:

(a) For each pipe i, initial f̂
nð Þ

1, i or f̂
nð Þ

2, i are generated through RV sampling of log-
normal distribution and stored in a matrix of uncorrelated variables.

(b) For all pipes, the spatial auto- and cross-correlation rdi, j is estimated based
on distances between pipes i and j and the linear relations in Figure 2. If pipes
i and j have identical materials, spatial auto-correlations between those pipes

Figure 3. Flowchart for implementing the probabilistic methodology, including model parameter
uncertainty, model class uncertainty, and pipe repair correlations.
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are estimated using the auto-correlation bounds presented by solid black and
red lines in Figure 2. If pipes i and j have different materials, the cross-
correlation terms between those pipes are estimated using the dashed and
dotted lines in Figure 2, depending on the assumed rm. All correlations are
stored in the spatial-correlation matrix rsc in Equation 9.

(c) Correlated RVs f
nð Þ

1, i or f
nð Þ

2, i are generated using rsc and the methods described
in section ‘‘Correlated RVs generation,’’ resulting in a matrix of correlated
variables.

4. The number of repairs is calculated for each pipe using Equation 10 and summed
to calculate the number of repairs for the pipeline system for each realization using
Equation 11.

5. The loss is computed based on the estimated number of repairs for each pipe using
Equation 12 and summed to estimate the loss of the pipeline system for each reali-
zation using Equation 13.

6. Statistical distributions are fitted to the pipe repair and loss realizations. These dis-
tributions can be used to compute the relevant statistics, including the mean, med-
ian, standard deviation, percentiles, or confidence interval (CI).

7. As needed, this process can be repeated for other models to incorporate model class
uncertainty using Equation 10. Results of each MCS can then be combined using a
weighted average or logic tree approach (Alam and Barbosa, 2018; Muto and Beck,
2008; Romano et al., 2021).

Other hazard intensity maps can also be included, repeating steps 1–7. The methodol-
ogy can be further extended to obtain risk-based repair and loss estimates by weighing the
results from various scenarios with mean annual rate of occurrence for each scenario.

Case study

To demonstrate the probabilistic methodology, the wastewater backbone system for the
City of Portland, OR, USA was used as application case study. Wastewater networks are
considered critical infrastructure per Presidential Policy Directive PPD-21 (American
Water Works Association (AWWA), 2021; PPD-21, 2013); thus, network information and
component-level repairs are presented in terms of four zones in the Portland area, as shown
in Figure 4b, without explicitly showing the network. These zones were identified based on
the expected IM maps of earthquake scenarios presented in section ‘‘Earthquake scenar-
ios,’’ namely, (1) Zone-1: region near the Columbia River and other tributaries or creeks
with extremely high liquefaction zones prone to PGD of 100 cm and higher; (2) Zone-2:
region near the Willamette River with high-to-extremely high liquefaction zones prone to
PGD of 50 cm and higher; (3) Zone-3: region near the Portland Hills with extremely high
landslide zones prone to PGD of 100 cm and above; and (4) Zone-4: downtown flat topo-
graphy zone with low-to-moderate PGD levels of 50 cm and lower.

Wastewater backbone system

Although not shown herein, two major pipelines run parallel to the Columbia River along
the NE Marine Drive and NE Lombard Street, and another two backbone tunnel lines
run somewhat parallel to each side of the Willamette River. The backbone system was
comprised of 440 km sewer pipes of different materials, sizes, and depth, with Np = 4578
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pipes in the network. Of the 26 pipe materials present in the network, CSPs (48%), rein-
forced concrete (RCP) pipes (16%), monolithic concrete (MONO) pipes (12%), PVC pipes
(3%), cast in place concrete (CIPP) pipes (3%), brick (BRICK) pipes (3%), and brick and
stone (BRKSTN) pipes (3%) constitute 88% of the network. Pipe depths in the network
vary between 0.9 and 41 m, with median depth h of 4.2 m. Pipe sizes vary between 10 and
670 cm in diameter (D), with median size D of 92 cm.

Overall, 6.7%, 64.1%, 1.6%, and 27.6% of pipes fall into Zone-1, Zone-2, Zone-3, and
Zone-4, respectively. Figure 5 shows network analytics of pipe materials, size, and depth in
the different pipe Zones 1–4. Similar to the breakdown associated with the whole network,
CSP is the major pipe material in all the zones (see Figure 5a). Notably, ductile iron pipes
(DIPs) constitute 10% of Zone-1 materials, while VCP and HDPE pipes both constitute
6% of Zone-3 materials. Proportions of these pipe materials (i.e. VCP, HDPE) are consid-
erably lower compared to the more prevalent concrete-based pipes in the network. As
shown in Figure 5b, median pipe sizes for different zones are 0.76, 1.06, 1.06, and 0.92 m
for Zones 1–4, respectively. Pipe sizes vary most in Zone-2 due to the existence of very
large-diameter mains and tunnels. Median pipe depths (see Figure 5c) are similar across
Zone-1 to -3 (of about 3.9 m), whereas median pipe depths are larger for Zone-2 and -4
(medians of 4.2 and 4.6 m, respectively). Like the pipe sizes, pipe depth varies most in
Zone-2, between h = 0.9 and 41.0 m.

Earthquake scenarios

The wastewater backbone system in the City of Portland is vulnerable to regional and
local earthquakes (see Figure 4a). In this study, repairs for the wastewater network were
assessed for deterministic earthquake scenarios originating at the CSZ, a 970-km (600-
mile) long fault running in the Pacific coast from north of California, USA to British
Columbia, Canada, and the Portland Hills fault, a local crustal fault located at the foot of
the Tualatin mountains.

Figure 4. Case study: (a) nearby faults to the wastewater network and (b) breakdown of wastewater
network by different hazard exposure zones.
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Four plausible CSZ expected IM maps were considered: M8.1, M8.4, M8.7, and M9.0.
Of these, the M9.0 map was developed in Medina and Burns (2013) by the Oregon
Department of Geology and Mineral Industries (DOGAMI). The other CSZ maps (for
the M8.1, M8.4, and M8.7) were later developed by Sharifi Mood (2017) following the
methods presented in Medina and Burns (2013). Past earthquakes along the CSZ fault
have occurred at intervals varying from decades to centuries, ranging widely in magnitude
and rupture location (Goldfinger et al., 2012; Oregon Seismic Safety Policy Advisory
Commission (OSSPAC), 2013; Park et al., 2017). At least 40 large-magnitude earthquakes
have occurred along the CSZ fault in the past 10,000 years, including (1) 19–20 full-
margin or nearly full-margin ruptures, (2) 3–4 ruptures along 50%–70% of the southern
Oregon margins, (3) 10–12 southern ruptures from central Oregon southward, and (4) 7–8
central Oregon/northern California ruptures (Goldfinger et al., 2012). The M8.1 map was

Figure 5. Wastewater network analytics by zone: (a) breakdown of major pipe materials, (b)
distribution of pipe size, D, and (c) pipe depth, h, for different hazard zones.
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based on simulating partial ruptures in southern Oregon and northern California, affect-
ing the southern Oregon coast with shaking intensities of PGA = 0.5–0.55 g, resulting in
little effect in the Portland region (shaking intensities with PGA\ 0.05 g). In contrast,
the M8.7 and M9.0 maps were estimated based on the CSZ full rupture, with the M8.7
producing higher shaking intensities near Coos Bay along the southern Oregon coast and
the M9.0 producing shaking over a larger geographical area from the coast to the Cascade
Range (Madin and Burns, 2013).

An expected IM map for the M6.8 Portland Hills fault was determined in Bauer et al.
(2018). Although the CSZ maps affect larger geographical regions, the Portland Hills fault
map is more impactful to the case study network given the proximity of the fault relative
to the site. Note, the likelihood of a Portland Hills fault earthquake is considerably lower
than a CSZ earthquakes (Bauer et al. 2018), with evidence suggesting two ruptures in the
past 15,000 years (Liberty et al., 2003).

In the development of expected IM maps, Sharifi Mood (2017) and Bauer et al. (2018)
utilized the Boore and Atkinson (2008) GMM to estimate PGV and the HAZUS-MH
(FEMA, 2010) ground deformation models to estimate PGD. For the PGD hazard maps,
Bauer et al. (2018) considered ‘‘dry’’ and ‘‘wet’’ conditions to reflect soil moisture content
due to landslide and liquefaction. As the more severe scenario, the ‘‘wet’’ condition PGD
hazard maps for the Portland Hills fault event were considered in this study. Note, the
Boore and Atkinson (2008) GMM model accounts for relevant sources of uncertainty in
the IM arising from source, propagation, and site effects, using earthquake-to-earthquake
(inter-event) and site-to-site (intra-event) variability components in the model. However,
spatial correlation of IMs was not considered in determining the site-to-site IM variability.
However, the HAZUS-MH ground deformation models estimate PGD values accounting
for liquefaction-induced lateral spreading and landslide-induced ground failure, along with
a probability of their occurrence. The CSZ scenario maps, which were intended for state-
wide seismic risk applications, such as the ones developed in Burns et al. (2021), were devel-
oped at 30 m resolutions, whereas much finer resolutions were used for Portland Hills fault
scenario for its potential application in the three counties surrounding Portland, OR (9 m
for PGV and 3 m for PGD).

Figure 6 shows the expected PGV and PGD values for the M6.8 Portland Hills fault
and CSZ M9.0 scenarios. As evident in these figures, the local crustal event (M6.8
Portland Hills) results in more severe and varied IMs compared to distant subduction
zone events (CSZ M9.0). Using these hazard maps, PGV and PGD at the pipe midpoint
locations were extracted from the respective scenario raster files using a Python script
developed with the Rasterio (2022) library. Note, as wastewater pipelines are mainly grav-
ity systems, the pipe depth likely varies with length and may not be well represented by
the pipe midpoint. Multiple points along the pipe length could alternatively be utilized.
Approximately 72.6% of the backbone system (6.7% in Zone-1, 64.1% in Zone-2, and
1.6% in Zone-3) lies in high-to-extremely high PGD hazard zones exceeding PGD of
50 cm, either due to liquefaction or landslide-induced ground deformation for the CSZ
M9.0 event (Figure 6e and f). Concentrations of service laterals may also be higher in
downtown flat topography, even though this study focuses on service mains.

Repair and loss calculations

In a scenario-based assessment, the probabilistic methodology was used to study compo-
nent- and system-level repairs and loss of the case study wastewater pipeline network.
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Uncorrelated variables were generated for each pipe using the lognormal distributions for
f1 and f2 in Equations 3 and 5. Spatial auto- and cross-correlated samples of f1 and f2 were
then generated using the method described in section ‘‘Correlation.’’ Upper and lower
bounds of spatial correlations for rd were defined per Figure 2. As limited information
was available for correlations between pipes of different materials, two levels of rm = 0.3

Figure 6. Considered expected IM maps: (a) PGV, (b) landslide-induced PGD, and (c) liquefaction-
induced PGD maps for Portland hills fault M6.8 scenario; (d) PGV, (e) landslide-induced PGD, and (f)
liquefaction-induced PGD for CSZ M9.0 scenario.
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and 0.9 were considered, representing low and high cross-correlations between different
materials, respectively. Altogether, Nr = 10, 000 Monte Carlo realizations of f1 and f2 were
used in this study. Pipe repairs were tabulated and summed to calculate the component-
and system-level repairs using Equations 10 and 11, respectively, with the simulated f1 and
f2 values. Only one model class was considered at a time, that is, V =W = 1.

After a seismic event, loss would likely be associated with: (1) physical loss, (2) environ-
mental loss, and (3) social loss (Liu, 2016). Limited cost data were available for the case
study wastewater network. Thus, loss was characterized only by the physical loss due to
damaged pipes, with the component- and system-level losses estimated using Equations 12
and 13, respectively.

Since it was expected that damaged pipes could eventually be replaced with more mod-
ern pipe designs and materials, estimates of loss were based on hypothetical approaches
explored by wastewater professionals at the Bureau of Environmental Science (BES), City
of Portland, OR, USA. Based on their guidance, pipe repairs/replacements were categor-
ized as: (1) replacement of damaged pipes of diameter D\ 90 cm (36 inch) and depth
h\ 6m (20 ft) with PVC pipes with bell and joint harnesses and (2) replacement of dam-
aged pipes of diameter D . 90 cm (36 inch) with RCP pipes or using tunnel liner plates.
Based on these replacement categories, the per unit length repair costs, CPL, in Equation
12 were obtained from a Technical Memorandum of 2007 capital improvement project for
the City of Bend, OR, USA (2007) based on replacement pipe diameter and depth; costs
are expected to be similar for Portland, OR, USA but were unavailable for this study.

Per unit costs from this memorandum included cost estimates associated with pipe
materials, installation, and surface restoration for pipes of different materials and installa-
tion depths. To account for the additional excavation needed for adequate access to the
damaged pipes, per unit length repair costs were adjusted with a pipe access length factor,
fal = 33 (BES, 2018b). To account for 15-year (2007–2022) inflation, per unit length repair
costs were adjusted with fai = 1:65 based on an average producer price index (PPI) of 1.58
for the concrete pipe manufacturing industry (US Bureau of Labor Statistics, 2022a) and
1.72 for the plastic material and resins industry (US Bureau of Labor Statistics, 2022b).
The PPI measures average change over time of the selling price received by domestic pro-
ducers for their products. To account for emergency contingencies during post-disaster
recovery, per unit length repair costs were also adjusted using fecn = 2:1, which assumes
mark-up costs for emergency conditions based on a premium multiplier of 1.4 to account
for emergency work and a shortage multiplier of 1.5 to account for uncertainty in resource
availability and construction pricing following a major earthquake potentially involving
major cities (BES, 2018b). In addition, a design and administrative fee adjustment factor
of fdaf = 2:4 was used to update the per unit length repair cost (BES, 2018b).

Results and discussion

Results are presented and discussed in terms of: (1) model parameter uncertainty, (2) sensi-
tivity to model class, (3) correlation (spatial auto- and cross-correlation), (4) deterministic
earthquake scenarios, and (5) loss. For brevity, most results are presented in terms of the
total system-level pipe repairs (TSR) using the ALA (2001) fragility functions for the M9.0
CSZ scenario. Results from the BES (2018a) model class and the other scenarios (M6.8
Portland Hills Fault, M8.1, M8.4, and M8.7 CSZ events) are shown where comparisons
are needed. In particular, results are presented in terms of their relevant statistics, such as
the mean, median, standard deviation, CI of the mean, and most likely spread, measured
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in terms of 16th and 84th percentile bounds of the TSR. The CIs of the mean of the log-
normally fitted TSR values were computed using the Cox method (Olsson, 2005).

Effects of model parameter uncertainty

Figures 7 and 8 show the effects of including model parameter uncertainty on the system-
and component-level pipe repairs, respectively, for the CSZ M9.0 scenario using the ALA
(2001) fragility functions. In these figures, uncorrelated f̂1 and f̂2 realizations are used to
illustrate the effects of model parameter uncertainty alone. Note, empirical fragility formu-
lations for pipe damage, such as those used in this study, do not directly distinguish
between the possible types of pipe damage (e.g. leaks vs breaks). For water pipes, the
HAZUS-MH earthquake technical manual (FEMA, 2010) suggests that PGV-induced
pipe damage is split between 80% leaks and 20% breaks, while PGD-induced damage is
split between 20% leaks and 80% breaks. These default percentages are left to the users’
discretion. For the case study wastewater network, no distinction was made between leaks
and breaks, and it was assumed that all pipe damage requires immediate spot repair. This
assumption is considered reasonable, because 72.6% of the case study backbone system is
in high-to-extremely high PGD hazard zones with PGD . 50 cm.

System-level pipe repairs (TSR). Figure 7a and b shows the probability density functions
(PDFs) for the total system-level repairs (TSR) for the M9.0 CSZ event using the ALA
(2001) PGV- and PGD-based fragility functions, respectively. The uncertainty in TSR, as
observed in Figure 7, cannot be represented by the median alone, as is traditionally used
in damage assessments of pipeline networks.

Median and mean estimates are shown by vertical dashed and dotted lines, respectively.
For PGV-related repairs, the median TSR and log standard deviation were 37.5 and 0.58,
respectively. In contrast, for PGD-related repairs, median TSR and log standard deviation
were 2190 and 0.34, respectively. The most likely spread of repairs using the 16th and 84th
percentile values of TSR were (21.5, 65) and (1560, 3060) for PGV- and PGD-based
hazards, respectively.

To gain insight, PGV was relatively small for the case study network (about 10–30 cm
in Figure 6d), since the M9.0 is relatively far from Portland. Thus, PGV resulted in smaller
estimated damage (mean of 44 TSR, 95% CI of the mean of (43.5, 45.7)). In contrast,

Figure 7. Effects of model parameter uncertainty on the total system-level repairs (TSR) for the M9.0
CSZ event using ALA (2001): (a) PGV- and (b) PGD-based fragility functions.
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damage estimates were larger and more varied for the PGD hazard (mean of 2320 TSR,
95% CI of the mean of (2303, 2336)) due to a combination of: (1) high PGD levels due to
large magnitude and significant duration effects and (2) higher exposure of pipes, since
about 72.6% of the backbone system is located in high-to-extremely high liquefaction and
landslide prone areas with PGD . 50 cm (6.7% in Zone-1, 64.1% in Zone-2, and 1.6% in
Zone-3 in Figure 6e and f). Note, however, the probability of observing large values of
TSR at the tail end of the distribution is extremely low for both ground shaking and
ground deformation hazards.

Component-level pipe repairs (PR
nð Þ
i ). Figure 8 shows snapshots of the component-level

repairs (PR
nð Þ
i ) for the 16th and 84th percentile realizations of the system-level repairs

(TSR) obtained for the PGD-based results shown in Figure 7b for the CSZ M9.0 event,
broken down by different pipe zones. Component-level repairs are presented in terms of
the number of repairs/100 m by grouping pipes into several pipe size and depth groups in
each zone. A 100-m reach was considered based on the assumption that manholes are typi-
cally located 100 m apart. Such component-level pipe repairs can help identify the most
vulnerable pipes in the network to develop multi-phase mitigation strategies to triage pipe
repairs; for example, by categorizing pipes by reach designation, such as hydraulic reach
(critical for sewage and stormwater routing), service reach (service to a critical facility), or
interdependency reach (impacting a critical asset of another utility) (BES, 2018a).

Figure 8. Component-level repairs by pipe zone for the M9.0 CSZ scenario using the ALA (2001)
PGD-based model: (a) and (c) 16th percentile and (b) and (d) 84th percentile realizations of the total
system-level repairs (TSR).
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In general, component-level repairs increase with the increasing TSR percentile levels,
irrespective of pipe size and depth. With respect to pipe size (see Figure 8a and b), the fol-
lowing can be observed: (1) number of repairs/100 m is the highest for Zone-2 compared
to the other zones, irrespective of pipe size and system-level TSR percentile levels and (2)
number of repairs/100 m decreases with pipe size for pipes greater than 100 cm in diameter
for pipes in Zone-2, although a general trend cannot be established for the other zones for
similar pipe sizes. Further investigation and data collection are needed after future events
to validate whether a correlation exists between pipe size and their vulnerability, especially
since very large-diameter pipes (greater than 250 cm diameter) are only located in Zone-2
and other factors (e.g. IM) may also play an important role.

With respect to pipe depth (see Figure 8c and d), the following can be observed: (1) pipe
vulnerability is the highest for pipes located in Zone-2 compared to other zones due to
higher levels of liquefaction-induced lateral spreading and (2) pipe vulnerability decreases
with increasing pipe depth for all pipe zones. Specifically, pipe vulnerability decreases sig-
nificantly for pipes located in soil deeper than 10 m, as those pipes are likely to have sig-
nificant overburden pressure and less likely to sustain lateral deformations even if located
near liquefaction zones, such as Zone-2, which is close to the Willamette River (see
Figure 6f).

Sensitivity to model class

Figure 9 shows the sensitivity of the TSR due to the selection of different fragility model
classes for the CSZ M9.0 event, specifically using the ALA (2001) and BES (2018a) PGD-
based formulations. To illustrate the effects of model class uncertainty, the results pre-
sented in this figure were obtained using uncorrelated f̂2 realizations generated using the
same seed values for ALA (2001) and BES (2018a). The BES (2018a) model provides sepa-
rate formulations for pipe repair rates due to liquefaction and landslide that are not
accounted for in the ALA (2001) model (see Equation 2 vs Equation 4).

The PDFs of the TSR for the ALA (2001)-PGD and BES (2018a)-liquefaction (LQ)
models are quite similar, as shown in Figure 9. The ALA (2001) mean and median esti-
mates of TSR were slightly larger with respect to the corresponding BES (2018a)-LQ mean
and median estimates of TSR. There is convincing evidence that the mean difference

Figure 9. Effects of model class uncertainty on the total system-level repairs (TSR) for the M9.0 CSZ
scenario using the ALA (2001) and BES (2018a) PGD-based models.
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between the TSR computed using ALA (2001) and the BES (2018a)-LQ is non-zero (two-
sided p-value\ 0.01 from a paired t-test). Larger mean and median TSR for the ALA
(2001) model are expected compared to the BES (2018a)-LQ model, as ALA (2001) lumps
liquefaction and landslide-induced repairs together. The BES (2018a) formulations reveal
that PGD-induced repairs are governed by liquefaction compared to landslides for the
case study, which is consistent with the comparatively larger and more widely spread
liquefaction hazard in Zone-1 and Zone-2 of the case study area in Figure 6 for the CSZ
M9.0 event.

Effects of correlation

Figure 10 shows the effects of considering spatial auto- and cross-correlation of pipe repair
rates on the TSR for the CSZ M9.0 event using ALA (2001).

Effects of spatial auto-correlation. Figure 10a shows the effects of considering spatial auto-
correlations, rac, on the cumulative distribution function (CDF) of the TSR using the
PGD-based model. As described previously, lower and upper bounds of rd were consid-
ered: (a) rd with slope 20.033 and (b) rd with slope 20.011 refer to the plots of rd dimin-
ishing with intersite distance in Figure 2. Generally, observations include (i) with
increasing rd, the mean and median decreases, (ii) with increasing rd , the log standard
deviation of the TSR increases, resulting in increased spread of the TSR, and (iii) with
decreasing rd, the total number of repairs TSR is the smallest at lower level of repairs (e.g.
at 16th percentile level) and largest at higher level of repairs (e.g. at 84th percentile level)
when comparisons are made for multiple correlation levels, particularly the uncorrelated
case. Observation (iii) is consistent with the loss estimate studies from Bazzurro et al.
(2008) for a building portfolio. These observations are also consistent with the method of
computing TSR that was summarized at the end of section ‘‘Component- and system-level
pipe repairs’’; that is, the variance (hence the spread) of the TSR increases when the

Figure 10. Effect of spatial correlation rsc on the CDF of total system-level repairs (TSR) for the M9.0
CSZ scenario using the ALA (2001) PGD-based model: (a) spatial auto-correlation of f2 and (b) spatial
cross-correlation of f2. Cross-correlation cases of rm and rd are shown in Figure 2.
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underlying PRi has greater positive correlation r(PRi,PRj), while the mean and median of
the TSR decrease with higher variance of TSR and greater positive correlation
r(PRi,PRj).

Effects of cross-correlation. Figure 10b shows the effects of considering cross-correlations on
the CDF of the TSR using the PGD-based model, considering rm = 0.3 and 0.9. To dis-
tinguish between the effects of including correlations for material and distance, four levels
of cross-correlation based on different combinations of frm, rdg were considered: (1) case
i: low-level rm = 0:3 and rd with slope 20.033, (2) case ii: low-level rm = 0:3 and high-level
rd with slope 20.011, (3) case iii: high-level rm = 0:9 and low-level rd with slope 20.033,
and (4) case iv: high-level rm = 0:9 and rd with slope 20.011. These combination cases of
rm and rd are shown in Figure 2.

The different spatial cross-correlation cases (cases i–iv) resulted in observations similar
to those of the spatial auto-correlations, but with greater effect on the CDF of the TSR;
that is, observations (i), (ii), and (iii) from section ‘‘Effects of spatial auto-correlation’’ still
hold but become more apparent. The following statistics were obtained for the four levels
of cross-correlation considered: (1) mean TSR of 2362, 2351, 2342, and 2296; (2) log stan-
dard deviation of the TSR of 0.46, 0.50, 0.60, and 0.67; (3) 95% CI of the mean TSR of
(2337, 2373), (2326, 2377), (2312, 2373), and (2262, 2331); (4) 16th and 84th percentile of
the TSR (1349, 3278), (1248, 3418), (1075, 3561), and (937, 3583), for cases (i–iv), respec-
tively. Comparison of these cross-correlation statistics with that of the auto-correlation
statistics revealed that (1) spatial cross-correlation has a more pronounced effect on the
mean, log standard deviation, and spread of the TSR compared to that of the spatial auto-
correlation; (2) irrespective of correlation type, the effects of changing the correlation were
the largest for the log standard deviation, followed by the spread and mean of the TSR.

Figure 11. Effects of earthquake scenario on the total system-level repairs (TSR) using ALA (2001)
PGD-based model, showing mean and spread of TSR considering different spatial cross-correlation levels
of pipe repair rates. Herein, colored bars represent the mean TSR estimates and black horizontal cap-
tipped lines represent the spread of the TSR (defined by the 16th and 84th percentile bounds). Cross-
correlation cases ‘‘i’’ and ‘‘iv’’ of frm, rdg are shown in Figure 2.
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Effects of earthquake scenarios

Calculations for the TSR were repeated for the other earthquake scenarios, including the
M6.8 Portland Hills Fault and M8.4, M8.7, and M9.0 CSZ events using ALA (2001). The
mean and spread of the TSR for each scenario is plotted in Figure 11 for the PGD-based
model for two extreme spatial cross-correlation levels: (1) case i: low-level rm = 0:3 and rd
with slope 20.033 and (2) case iv: high-level rm = 0:9 and rd with slope 20.011, which rep-
resent lower and upper bounds of repairs for a given earthquake scenario (see Figure 2).
Among the events considered, the M6.8 Portland Hills Fault earthquake is a local event
with the potential of generating larger PGD intensities in the network compared to the
CSZ events, which originate off the coast of Oregon (see Figure 6). Since a CSZM8.1 event
is forecast to produce very low levels of ground shaking with near-zero landslide and lique-
faction in the Portland Metropolitan area compared to other higher magnitude scenarios,
the M8.1 is not included Figure 11.

Figure 11 shows the effects of varying earthquake scenarios on the system-level repairs
(TSR), with the local M6.8 Portland Hills Fault event resulting in the most pipe repairs
for the wastewater system compared to the CSZ events (in terms of both mean and spread
of the TSR). For a given earthquake scenario, the mean decreases slightly and the spread
of the TSR increases with increasing correlation, consistent with the previously observed
effects of correlation on pipe repairs for the M9.0 scenario. Ultimately, the mean is less
affected by correlations compared to the variability in response, represented by the spread
of the TSR, with the spread of the TSR increasing with increasing correlation. Although
not shown in Figure 11, further investigation revealed that: (i) for a given earthquake sce-
nario, the log standard deviation of the TSR increases with increasing correlation and (ii)
for a given correlation level, the log standard deviation of the TSR is insensitive to the
earthquake scenario; that is, there is little change in the log standard deviation across the
scenarios. Note, observation (i) is consistent with the variance of lognormally distributed
TSR presented in section ‘‘Component- and system-level pipe repairs.’’ Observation (ii)
may be an artifact of using the expected hazard maps shown in Figure 6, where variability
in the IMs was not considered explicitly in the simulations. These effects could also be
studied using future extensions of the probabilistic methodology with PSHA rather than
scenario-based assessments, with the contributions of different earthquake scenarios to the
TSR explicitly ascertained. In such studies, the local M6.8 fault is highly likely to contrib-
ute less compared to CSZ M9.0 event, as the probability of occurrence for the M6.8
Portland Hills fault is much lower than the CSZ events.

Loss estimation

Figure 12 shows mean estimates of the system-level loss (Loss) along with the most likely
spread of the estimated loss (defined as the 16th and 84th percentile loss bound) using the
ALA (2001) PGD-based model, assuming low- and high-levels of cross-correlations of
pipe repair rates. Since a CSZ M8.1 event has small ground shaking values in the Portland
metropolitan area, the M8.1 is not included in this figure. The effects of spatial cross-
correlation on the mean and spread of the most likely loss are evident, irrespective of
earthquake scenario. In particular, the spread of the loss increases with increasing correla-
tion, while the mean loss was less affected by correlation.

For the CSZ M9.0 event, the 95% CI of the mean system-level loss was ($142.8, $145.5)
and ($140.4 M, $144.7M) for the low- and high-levels of cross-correlation, respectively.
The corresponding estimates of spread for the TSR were ($84.5M, $203.1M) and ($58.2M,
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$222.5) for the low- and high-levels of cross-correlation, respectively. Note, the system-
level loss was computed using Equation 13, which incorporates adjustments for additional
excavation beyond the pipe repair length to access the damaged pipes, repair cost inflation,
emergency contingencies during post-disaster response, and design and administrative fees.
For low-levels of cross-correlation, a 95% CI of the mean TSR of (2337, 2373) translates
to mean repair costs of about $62K for each instance of repair in the network. For high-
levels of correlation, a 95% CI of the mean TSR of (2262, 2331) also translates to about
$62K for each instance of repair, similar to the low-levels of spatial cross-correlation.

In contrast, for the local M6.8 Portland Hills scenario, the 95% CI of the mean system-
level loss was ($356.2M, $362.9M) and ($349.5M, $360.3M) for low- and high-levels of
cross-correlation, respectively. The corresponding estimates of spread for the TSR were
($211.8M, $503.7M) and ($145.1M, $551.7M) for low- and high-levels of cross-
correlation, respectively. The cost of each repair for the M6.8 Portland Hills shaking was
similar to that of CSZ M9.0 shaking, irrespective of spatial-correlation levels.

It is evident in Figure 12 that, for a given earthquake expected shaking map, system-
level loss varies considerably depending on the level of spatial cross-correlation, but the
mean loss remains essentially unaltered. These observations are consistent with the proper-
ties of the lognormal RVs discussed in section ‘‘Component- and system-level pipe
repairs,’’ where the mean of the sum of lognormal RVs decreases and variance increases
with higher correlation levels, respectively. While the mean loss remains essentially
unchanged for this case study network, the effects of including correlations may be larger
or smaller in future studies depending on the considered damage correlation model and
other sources of uncertainty, which could overshadow the effects of the correlations.

Note, pipe replacement over a few blocks can cost millions of dollars, and pipe replace-
ments downtown can cost multiples of millions of dollars under ideal conditions. As
described in section ‘‘Component- and system-level pipe repairs,’’ the projected loss

Figure 12. Estimates of seismic loss for different earthquake scenarios for PGD-induced damage using
ALA (2001) for different pipe repair rate correlation levels. Colored bars represent the mean loss
estimates, and black line bounds represent the spread of the estimated loss (defined by the 16th and
84th percentile loss bounds). Cross-correlation cases ‘‘i’’ and ‘‘iv’’ of frm, rdg are shown in Figure 2.
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calculated per Equation 13 provides only order-of-magnitude estimates. Estimates of
system-level loss would improve with more detailed cost data, refined repair definitions
for the fragility functions, and, ideally, the development of data-driven spatial-correlation
models of pipe network damage based on future seismic events.

Summary and conclusions

A probabilistic methodology for damage (defined by the number of pipe repairs) and loss
assessment of a wastewater pipeline network subjected to multiple deterministic earth-
quake scenarios was presented. The methodology incorporates multiple sources of uncer-
tainty (e.g. model parameter uncertainty and model class uncertainty) and pipe repair rate
correlations (e.g. spatial auto- and cross-correlation) to estimate the number of repairs of
a wastewater pipeline network and to characterize the loss associated with pipe replace-
ment costs, which traditionally have not been considered. The methodology was applied to
a case study wastewater network in Portland, OR, using expected hazard intensity maps of
multiple deterministic earthquake scenarios, including CSZ M8.1, M8.4, M8.7, and M9.0
and local crustal Portland Hills M6.8 events. The number of repairs and loss was evaluated
using model parameter uncertainty, and their sensitivity to model class uncertainty was
assessed using two fragility function model classes (ALA 2001; BES, 2018a) and multiple
levels of spatial and cross-correlations of pipe repair rates, representing assumed lower
and upper bounds of repair estimates. Summaries and key findings include the following:

� Incorporating modeling uncertainty in pipe fragility functions, which is typically
neglected, enables estimates of the dispersion of pipe repairs in addition to a single
mean and median estimate. For example, for the case study wastewater network,
using uncorrelated variables and ALA (2001) fragility functions, the most likely
spread (defined by the 16th and 84th percentile TSR bounds) of the total number
of repairs could vary between 21.5 and 65.0 TSR and 1564–3060 TSR for the CSZ
M9.0 event and PGV and PGD hazards, respectively.

� Sensitivity to model class uncertainty, which arises from the use of different fragility
models, contributed to uncertainties in the component- and system-level repairs.
The PDF of the system-level repairs estimated using the BES (2018a) fragility
model, including liquefaction, was comparable to the ALA (2001) PGD-based
model, with the slightly larger ALA (2001) estimates, because the ALA PGD-based
model combines liquefaction- and landslide-induced repairs. Use of BES (2018a)
revealed that liquefaction-induced repairs contributed more than landslide-induced
repairs for the case study. Although the two models are similarly formulated, there
was evidence that the mean difference between the two models is non-zero (p-value
\ 0.01 from a paired t-test). Larger variations could occur for other site locations
or hazards. Extensions to incorporate model class uncertainty could combine the
results of multiple models using a weighted average or logic tree approach (Alam
and Barbosa, 2018; Muto and Beck, 2008; Romano et al., 2021), as shown in
Equation 10.

� Component-level repairs, which were presented in terms of repairs/100 m deaggre-
gated by pipe size and pipe depth for several hazard zones, revealed that (1) the
number of repairs/100 m was estimated to be largest in Zone-2 compared to the
other zones, irrespective of pipe size and depth, due to liquefaction-induced lateral
spreading along the Willamette River, (2) pipe vulnerability decreases with increas-
ing pipe depth for all hazard zones, with lower vulnerability for pipes located at
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10 m or deeper depths, and (3) pipe vulnerability decreases with pips size for pipe
diameters greater than 100 cm for pipes in Zone-2, although a general trend cannot
be established for the other zones for similar pipe sizes.

� Multiple sources of correlation in pipe repair rates, including spatial auto- and
cross-correlations, were considered to illustrate their effects on estimates of system-
level pipe repairs and loss. As a spatial-correlation model for pipe network damage
did not exist in the literature at the time of this study, a lower- and upper-bound
correlation structure of pipe repair rates was inspired by the spatial-correlation
results presented in DeBock et al. (2014) for spatially distributed building response.
Irrespective of the correlation source, observations included: (i) the mean and med-
ian TSR decreases with increasing correlation, (ii) the log standard deviation and
spread of the TSR increases with increasing correlation, (iii) TSR is smaller for
lower percentiles of repairs (e.g. for the 16th percentile) and larger for higher
percentiles of repairs (e.g. for the 84th percentile) with decreasing correlation, and
(iv) irrespective of correlation type, the effect of changing the correlation on the
TSR statistics is the largest for the log standard deviation, followed by the spread
and mean of the TSR. In addition, spatial cross-correlations of pipe repair rates
had a more pronounced effect on the estimates of pipe repairs compared to the spa-
tial auto-correlations. Note, observations (i)–(ii) may be artifacts of the statistical
properties of the parameters used for the system-level pipe repair, which were mod-
eled as the linear function of lognormally distributed component-level pipe repairs
presented in section ‘‘Component- and system-level pipe repairs.’’

� System-level loss varied considerably depending on the earthquake magnitude,
assumed level of correlation, and level of detail in the repair cost data. Estimates of
the system-level loss would improve with more detailed cost information data,
refined repair and stabilization definitions for the fragility functions, and future
development of spatial-correlation models of pipe network damage. In addition, a
more refined assessment of the wastewater system, including modeling assets such
as inceptors, tunnels, service laterals, manholes, for example, as well as damage due
to uplift and floatation, would affect the loss values presented herein.

� The local crustal M6.8 Portland Hills fault scenario indicates comparably worse
consequences compared to the CSZ M9.0 scenario, as shown by the system-level
damage and loss results. However, the likelihood of occurrence for an M6.8 event
is considerably lower compared to the CSZ cases. Future studies should incorporate
PSHA instead of the scenario-based assessment performed herein to deaggregate
risk by scenario to aid utilities in developing appropriate risk-consistent mitigation
strategies.

Importantly, results of the case study revealed that different levels of spatial correlation
of pipe repair rates could lead to different probabilistic estimates of damage and loss at the
system level, although point estimates, such as the mean and median, remain essentially
unaltered. Including modeling uncertainty can then aid decision-makers in making more
informed decisions about possible lower and upper bounds of damage and loss for waste-
water networks.

The presented probabilistic methodology is the first step toward the performance-based
assessment of wastewater systems, where all relevant sources of uncertainty and correla-
tion in pipe repairs are explicitly considered. Component- and system-level repair and loss
assessments incorporating relevant sources of uncertainty, repair rate correlation, and
deaggregation of damage, in terms of pipe size and depth for different pipe zones and
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several scenarios, would inform decision-making for: (1) developing zone-specific and
phased capital investment and mitigation plans and (2) long-term worst case scenario
planning. To develop system risk curves, the probabilistic methodology can be extended
by incorporating additional probabilistic hazard definitions and sources of IM spatial cor-
relations due to certain features of the earthquake (e.g. spatial correlations caused by high
stress drop earthquakes) as an alternative to the expected IM maps used in this study.
With a more recent paradigm shift toward hazard-resistant intelligent piping technology
(Pacific Earthquake Engineering Research Center (PEER), 2019; Simpson et al., 2015;
Steinbauer, 2021; Zhang et al., 2019), using advanced sensing technologies instrumented
to collect spatially correlated data will also eventually lead to improved probabilistic
assessments of seismic damage and loss and better risk-informed decision-making.
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Appendix 1

Simulation of correlated RVs

The correlated values in matrix X have mean vector mX and covariance matrix CX defined
as:

mX = mX 1, mX 2, . . . , mX i, . . . , mX Np

n oT

ð14Þ

CX = DXRXDX ð15Þ

where DX and RX are the diagonal standard deviation matrix and correlation matrix of X,
respectively. The matrix DX is:

DX =

s1 0 . . . 0

0 s2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � sNp

2
6664

3
7775 ð16Þ

and RX is defined by the spatial auto-correlation matrix rd or spatial cross-correlation
matrix rcc in Equations 8 and 9. The covariance matrix, CX can be defined by a transfor-
mation of the diagonal uncorrelated covariance matrix, CY , by:

CX =TCYT
T ð17Þ

where the transformation matrix, T, contains the orthonormal eigenvectors of CX , and the
diagonal terms of CY are the eigenvalues of CX . In the transformed space, the mean values
of uncorrelated values in matrix Y are then mY =T

TmX , and the variance s2
Y is the diago-

nal of CY . The transformed values, mY and s2
Y , are then sufficient to start the generation

of RVs for the uncorrelated values in Y.
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