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Abstract: This paper presents a methodology to evaluate the direct and general equilibrium losses for a testbed community subjected to a
megathrust earthquake and tsunami hazard originating in the Cascadia Subduction Zone. The testbed community studied consists of
buildings for all residential and commercial sectors in the economy. A fragility analysis and functionality model are applied to estimate
the direct damage and losses of these buildings at the parcel level. The process relies on Monte Carlo simulations (MCS) that propagate
uncertainties from the hazards through to the damage and loss models. A computable general equilibrium (CGE) model is used to assess
aggregated general equilibrium losses to the community. As an important mitigation strategy, seismic retrofit reduces the direct loss to
building functionality and general equilibrium losses. Results show that the vulnerability of economic sectors depends on the hazard type,
hazard intensity, economic zone, and building type, and the risks vary with the recurrence interval. The highest risks are associated with
500-year and 1,000-year mean recurrence intervals for joint seismic–tsunami hazards, respectively. Results from assessing different design
alternatives show that whereas retrofitting all buildings to the highest code level considered results in the lowest losses, retrofitting only
commercial buildings can be an efficient retrofit option for enhancing community resilience when controlling for costs. Last, a sensitivity
analysis shows that losses and associated risks are sensitive to the definition of building functionality, which highlights the necessity for a
common definition of building functionality when performing vulnerability analyses. DOI: 10.1061/JITSE4.ISENG-2229. © 2023
American Society of Civil Engineers.
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Introduction

Natural hazards can threaten communities and negatively impact
the built and socioeconomic environments by creating direct damage
to buildings and direct capital stock losses and general equilibrium
losses, such as those occurring from business interruption and pro-
duction deficits, as well as employment and real household income
losses. Over the last 60 years, it has been estimated that natural
hazards have caused general equilibrium losses of $1.2 trillion in
the US (CEMHS 2020). Many studies have indicated that general

equilibrium losses can exceed direct losses, particularly for vul-
nerable communities with lower levels of resilience (PDNA 2010;
Bocchini et al. 2014). General equilibrium losses show an increas-
ing trend over recent years due to various factors such as climate
change, population growth, urban development, and the age of the
built infrastructure (Rappaport and Sachs 2003; Liu 2014; Lin and
Shullman 2017). Although general equilibrium losses constitute a
significant portion of the total losses, an accurate estimate can be
challenging due to several factors, including large-scale impacts,
complex systems, and the lack of data standards (NRC 1999;
Tirasirichai 2007; Gall et al. 2011; Rose and Lim 2002). None-
theless, an accurate estimate of the total losses and associated
risks can help policymakers evaluate the effectiveness of potential
mitigation and emergency response strategies and thus better in-
form community decisions (Meyer et al. 2013; Newman et al.
2017).

Several studies have focused on the assessment of direct damage
and losses due to natural hazards to physical infrastructures, includ-
ing buildings (e.g., Wang et al. 2018; Pilkington 2019), transpor-
tation systems (e.g., Sun et al. 2020; Burns et al. 2021), water
systems (e.g., Guidotti et al. 2016; Joshi and Mohagheghi 2021),
electric power systems (e.g., Ouyang and Duenas-Osorio 2014; Ma
et al. 2020), oil and gas networks (e.g., Ouyang and Wang 2015;
Ameri and van de Lindt 2019), and associated interdependencies
(e.g., Zhang et al. 2016; Attary et al. 2019; Kameshwar et al. 2019;
Sanderson et al. 2021b). Generally, the initial damage assessment is
achieved by using fragility curves to estimate the direct damage and
losses. At the same time, functionality and restoration models are
incorporated to characterize the community’s postdisaster recovery
level. In this regard, additional studies have contributed to develop-
ing quantitative methods for the resilience assessment of physical
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infrastructures considering single or multiple hazards with associated
uncertainties (e.g., Chang and Shinozuka 2004; Schultz and Smith
2016; Carey et al. 2019; Kameshwar et al. 2019; Sanderson et al.
2021a, 2022). However, general equilibrium losses due to natural
hazards have not been broadly addressed as a resilience metric,
particularly at the community level, because it requires modeling
the interactions among physical, social, and economic systems
(Bocchini et al. 2014; Masoomi et al. 2018; Roohi et al. 2021).
Consequently, this potential gap can result in inaccurate community
vulnerability assessments, particularly concerning social and eco-
nomic systems.

Ellingwood et al. (2016) developed a resilience assessment
methodology for the Centerville Virtual Community testbed, which
includes interactions among physical infrastructures, natural haz-
ards, and population demographics to identify the impact of natu-
ral hazards on the community resilience metrics. Furthermore,
Cutler et al. (2016) integrated infrastructure damage into comput-
able general equilibrium (CGE) models to evaluate the effect of
seismic hazards on the built environment and subsequent impacts
on the economy, such as losses to domestic supply and household
income. Rose et al. (2016) used CGE analysis to estimate the eco-
nomic impacts of port cargo disruptions due to a tsunami in
Southern California by modeling the economy as a series of in-
terconnected supply chains. They indicated that resilience strate-
gies can significantly reduce both direct and total economic losses
by 80%–85%. Chen et al. (2018) proposed a spatially integrated
engineering–economic model to assess the vulnerability of a
regional economic system to a hypothetical tsunami event. In this
study, fragility functions were applied to estimate the physical
damage to each economic sector at the parcel level. Then, damage
probabilities (serving as the input shocks) were used as inputs
to the CGE model to assess economic impacts at the county
level. Sensitivity analysis results indicated that a high-resolution
engineering–economic model at the parcel level significantly af-
fects the outputs and can potentially improve the assessment of
economic losses due to tsunami hazards at the regional level be-
cause the intensity of the hazard can significantly fluctuate over a
short distance. Attary et al. (2020) developed a dynamic CGE
model for the city of Joplin, Missouri, to evaluate the recovery
path from a tornado that severely impacted the community in
2011. They reported that delaying external financial assistance
such as insurance or governmental support can lead to adverse out-
comes for the community. Rosenheim et al. (2019) integrated the
engineering–social data by probabilistically coupling the household
characteristics to housing units to predict the household dislocation
due to a hypothetical earthquake scenario. The method was applied
to Seaside, Oregon, a coastal community near the Cascadia Sub-
duction Zone (CSZ) with a local population of over 6,000 people,
which is the same testbed used for this study. Wang et al. (2021)
proposed a methodology using the CGE model developed in Attary
et al. (2020) to investigate the effect of tornado infrastructure dam-
age on population dislocation and the local economy. They also
studied the effect of various tornado retrofit strategies on socioeco-
nomic metrics at the community level and found that more ad-
vanced retrofit methods result in lower economic losses and less
population dislocation. Recently, Wang et al. (2022) extended
the methodology to evaluate how various building retrofit levels
affect the selected community resilience goals impacted by the tor-
nado. They concluded that although the building retrofit reduces
economic losses, the minimum level of building retrofit strongly
depends on selected resilience goals and tornado hazard intensity.
For example, the household dislocation and employment metrics
control the retrofit level for tornados at the routine-level (EF2)
and design-level (EF3) hazard intensity, respectively. In terms

of the validity of CGE model results, Zhou and Chen (2021) found
that the output of the CGE model in disaster impact assessments is
sensitive to factors such as modeling mechanisms, type of model,
and data. They suggested that using a spatial CGE model helps to
improve the model by capturing both heterogeneous characteris-
tics of the natural hazard and the effects of interregional economic
activities. In addition, the authors argued that introducing eco-
nomic resilience into the model provides a more realistic assess-
ment of outcomes.

The previous literature review has identified several research
gaps, particularly in the assessment of general equilibrium losses
due to natural hazards within the community. First, to the authors’
best knowledge, there is no study investigating the effect of multi-
hazard earthquake and tsunamis on general equilibrium losses.
Second, most of the previous studies adopted a deterministic,
scenario-based approach for the hazard analysis, including histori-
cal or hypothetical scenarios. Although useful for understanding
some aspects, scenario-based approaches lack the ability to identify
the probabilistic nature of economic losses. Therefore, a risk-based
analysis including a reasonable range of hazard intensities associ-
ated with a recurrence interval should be employed to better under-
stand the effect of natural hazards on general equilibrium losses,
which is important for the informed decision-making process. Last,
there are other gaps, including the effect of casualty modeling
(fatality and injuries) and other sources of uncertainty of the CGE
model and associated economic losses. These other gaps are be-
yond the scope of this study.

This study aimed to evaluate the impact of multihazard on
the community resilience metrics in terms of direct and general
equilibrium losses and associated risks from a static perspective.
Although the method in this study is generalized for different
types of hazards, for an illustrative example, the CSZ and its haz-
ards are considered, namely seismic, tsunami, and joint seismic–
tsunami hazards. Although there are several seismic and tsunami
hazards, herein seismic ground shaking and tsunami inundation
hazards are considered. The effects of liquefaction, landslides,
and postearthquake and post-tsunami urban fires are not consid-
ered here. The damage and associated losses to buildings are de-
termined at the parcel level using appropriate fragility functions
and functionality models available in the literature. The process
relies on Monte Carlo simulations (MCSs) to propagate uncer-
tainties in direct damage and loss assessments. Furthermore,
the CGE model is used to assess aggregated general equilibrium
losses to the community, such as changes in the total employ-
ment, domestic supply, and local tax revenue. The methodology
is implemented in the open-source Interdependent Networked
Community Resilience Modeling Environment (IN-CORE). Sea-
side, OR, is used as the testbed community with a description of
the built environment at the parcel level, full probabilistic hazard
analysis for the area, selected fragility functions, functionality
and capital stock shock modeling, description of the socioeco-
nomic environment, and economic model. Results are presented
in terms of risks associated with direct and general equilibrium
losses compared for two hazards across several recurrence inter-
vals. As an important mitigation strategy, these baseline results
are then used to evaluate the effectiveness of different seismic
retrofit options. Although resilience is generally defined as the
ability to withstand, absorb, and recover from a disruptive event,
this study does not consider community recovery after the dis-
ruption (static resilience). A sensitivity analysis is conducted to
understand the effect of building functionality modeling on direct
and general equilibrium losses. Finally, discussions and conclu-
sions are presented.
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Methodology

The methodology (Fig. 1) consists of four main modules: (1) policy
alternatives, (2) initial community description, (3) infrastructure
functionality analysis, and (4) CGE model. The first module, Policy
Alternatives, proposes several decision criteria based on different
seismic retrofit options as an important mitigation strategy. The
second module, Initial Community Description, consists of essen-
tial information about the built environment, such as buildings and
associated economic sectors at the parcel level. The third module,
Infrastructure Functionality Analysis, comprises four components:
hazard model, fragility functions, functionality model, and direct
losses. The hazard model consists of the seismic, tsunami, and joint
seismic–tsunami hazards for several recurrence intervals. The sec-
ond component, fragility functions, is used to determine direct
damage to buildings. The functionality model is defined based on
the level of physical damage to each building. As a result, the fail-
ure probability for each building, that is, the probability that a
building is not functional, is obtained using a Monte-Carlo simu-
lation with 10,000 iterations. The capital stock loss is calculated for
each individual building by multiplying the failure probability by
the value of the building. The fourth module includes the CGE
model, which describes a set of interactions among households,
firms, government, and the rest of the world. Fig. 2 shows the struc-
ture of the CGE model as relationships in a circular flow diagram.
The households supply labor and capital, receiving wages, profits,
and other returns on investments in exchange. They subsequently
use this income in conjunction with government transfer payments
to consume, save, and pay taxes. Firms produce and sell goods and
services using labor and capital purchased from households, as well
as intermediate inputs purchased from other firms. Governments
tax both households and firms, using the revenue to provide a variety
of goods and services. The CGE model considers both supply-side
and demand-side changes. Supply-side changes are stimulated by

wages, input prices, technology, and taxes, whereas demand-side ef-
fects can stem from changes in local household spending, business
investment, government expenditure, and regional exports. Founded
in microeconomic theory, CGE models evaluate not only direct eco-
nomic consequences, such as labor force reductions and property

Fig. 1. Proposed methodology for multihazard direct and general equilibrium loss analysis.

Fig. 2. The computable general equilibrium model structure.
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damages, but also associated behavioral responses, leading to total
economic impacts, which relate to quantity and price interactions in
downstream and upstream markets (Chen et al. 2017). Given the
probabilistic hazard model, the economic risk is computed as the
expected loss multiplied by the probability of hazard occurrence,
which provides insight into events that result in both significant
losses and have a high probability of occurrence (Modarres et al.
2016). Due to the selected static perspective, community recovery
after the disruption is not considered in this study. More information
about each module and their interactions is presented in the following
sections.

The methodology developed here is implemented within the
Interdependent Networked Community Resilience Modeling Envi-
ronment. IN-CORE is a robust, open-source computational platform
developed by the Center for Risk-Based Community Resilience
Planning to integrate engineering and socioeconomic algorithms and
model the impact of natural hazards on communities as well as their
recovery, evaluate community resilience, and ultimately optimize
resilience strategies (Gardoni et al. 2018; van de Lindt et al. 2019,
2023). IN-CORE is freely available online, and a Python library
(pyIncore) is available for a variety of researchers from different
disciplines.

Multihazard Testbed: Seaside, OR

Seaside is located in Clatsop County, Oregon, in the vicinity of the
Cascadia Subduction Zone and vulnerable to both seismic and tsu-
nami hazards (Wood 2007; Goldfinger et al. 2012; OSSPAC 2013).
The CSZ is a 1,000-km-long fault stretching from North Vancouver
Island to Cape Mendocino in northern California. The CSZ sepa-
rates the Juan de Fuca and North American plates with varied width
along its length. Due to the long length of the fault, the CSZ can
cause a megathrust earthquake exceeding magnitude 9.0 (Heaton

and Hartzell 1987; Goldfinger et al. 2012). Previous studies showed
that Seaside has the highest vulnerability to tsunamis among
Oregon coastal communities (Wood 2007; Wood et al. 2010).
Although several studies were carried out to assess the physical
damage to the infrastructures and direct losses in Seaside due to
earthquake and tsunami hazards (e.g., Wiebe and Cox 2014; Park
et al. 2017b, 2019; Capozzo et al. 2019; Sanderson et al. 2021b),
general equilibrium losses have not been well addressed, particu-
larly for multihazard damage and risk assessments (Chen et al.
2018). The Seaside testbed used in this paper is publicly available
(Cox et al. 2022) and consists of four infrastructure systems: build-
ings, transportation network, electric power network, and water
supply network. In this study, only buildings and associated eco-
nomic sectors were considered to evaluate the direct and general
equilibrium losses.

Built Environment

The building characteristics such as construction material, design
level, year of construction, and number of stories were identified
primarily using tax lot data from Clatsop County (Oregon) with
additional spot-checking using Google Street View and a field sur-
vey of a limited number of buildings (Park et al. 2017b). For ex-
ample, Fig. 3 shows the layout of building types and building
seismic design levels at the parcel level in Seaside. As shown in
Fig. 3(a), a total of 4,679 buildings are identified, all of which
are classified as either light frame wood buildings with floor area
of less than 5,000 sq. ft. (W1: 2,446 parcels), any wood buildings
with floor area greater than 5,000 sq. ft. (W2: 731 parcels), low-rise
moment frame buildings (C1L: 1,039 parcels), or midrise concrete
moment frame buildings (C1M: 465 parcels). As shown in Fig. 3(b),
buildings are also categorized into four different seismic design
levels: precode, low-code, moderate-code, and high-code (Park
et al. 2017a).

Fig. 3. Layout of buildings at Seaside, Oregon: (a) building types (W1 is light framed wood buildings with a floor area less than 5,000 sq. ft; W2 is
commercial, industrial, or multifamily residential wood buildings with a floor area greater than 5,000 sq. ft; C1L is low-rise concrete moment frame
buildings; and C1M is mid-rise concrete moment frame buildings); and (b) building design levels. (Base map sources: Esri, DeLorme, HERE,
MapmyIndia.)
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Hazard Model

Probabilistic seismic and tsunami hazards are required to conduct
multihazard damage and loss assessments to the built environment.
In this study, the results of the Probabilistic Seismic and Tsunami
Hazard Analysis (PSTHA) performed in Park et al. (2017a) for Sea-
side were used. The PSTHA consisted of three main models, the
earthquake source model, which included the earthquake fault
models and their characteristics; earthquake simulation model,
which included the use of ground motion prediction models to sim-
ulate the ground shaking intensities; and tsunami model, which
included generation, propagation, and inundation modeling. The
intensity measures of the earthquake were obtained using the
tapered Gutenberg–Richer distribution (Rong et al. 2014) and a
ground motion prediction equation (Abrahamson et al. 2016).
Given the earthquake source modeling, fault slip distributions were
applied to the ComMIT/MOST tool to model tsunami generation
and propagation (Titov et al. 2011), whereas COULWAVE was
used for the inundation modeling (Lynett et al. 2002). Site-specific
annual exceedance probabilities of earthquake and tsunami inten-
sity measures, such as peak ground acceleration (PGA), spectral
displacements at various periods of interest, the maximum inunda-
tion depth, and the tsunami momentum flux, were computed. This
analysis resulted in seismic and tsunami hazard maps associated
with seven recurrence intervals, 100, 250, 500, 1,000, 2,500,
5,000, and 10,000 years. However, in this study, focus is placed
on the 100-year, 250-year, 500-year, and 1,000-year return periods
because larger return period hazards yield such large levels of dam-
age across the community that may render emergency management
plans and postdisaster reconstruction and rehabilitation projects
unfeasible. In other words, considering such extreme events may
not be worthwhile.

Fragility Functions

Direct damage to the built environment due to different hazards can
be determined using fragility curves representing the probability of
exceeding different damage states for a given hazard intensity. In
this study, HAZUS seismic and tsunami lognormal fragility models
were used for buildings with associated economic sectors (FEMA
2013, 2015). HAZUS classifies damage states into five categories:
none, slight, moderate, extensive, and complete; however, IN-CORE
is used for the damage analysis here and is limited to four damage
states: none/insignificant (DS0), moderate (DS1), extensive (DS2),
and complete (DS3). In other words, in the fragility curve paramet-
rization developed in IN-CORE, the two damage states None and
Slight are combined into one damage state, None/Insignificant.

Fig. 4 shows examples of the structural fragility functions for the
high-code light-frame wood buildings (W1) used in this work. As
shown in Fig. 4, the spectral displacement (Sd) and momentum
flux (F) were selected as intensity measures to characterize the seis-
mic and tsunami hazards, respectively. According to the tsunami
manual (FEMA 2013), there is no slight damage for the tsunami haz-
ards because it is challenging to distinguish slight damage from no
damage. There can, however, be moderate and extensive damage
states for some structure types. For W1 (shown in Fig. 4), there are
only two possible damage states (none/insignificant and complete).
On the other hand, C1M, for example, has moderate, extensive, and
complete.

The combined probabilities of damage to the structure due to
earthquake and tsunami hazards were calculated based on the
HAZUS tsunami manual, assuming that the damage states are stat-
istically independent (Kircher and Bouabid 2014; Park et al. 2019).
The combined damage state of buildings (DSEQ∪Tsu) is evaluated
based on the Boolean logic rules outlined in the HAZUS Tsunami
Manual

DSEQ∪Tsu ¼ maxðDSTsu;DSEQÞ ð1Þ

DSEQ∪Tsu ¼ Extensive;

if∶ fDSTsu ¼ moderate andDSEQ ¼ moderateg ð2Þ

DSEQ∪Tsu ¼ Complete;

if∶ fDSTsu ¼ extensive andDSEQ ¼ extensiveg ð3Þ
where DSEQ and DSTsu = damage states of the building due to
earthquake and tsunami only, respectively. Given the functionality
model defined in the next section, these probabilities (seismic, tsu-
nami, and joint seismic–tsunami) were sampled from a Monte
Carlo simulation consisting of 10,000 iterations to determine the
probability of failure for each building.

Functionality and Capital Shock Modeling

To obtain the probability of failure for each building, it is necessary
to define the functionality for both residential and commercial
buildings. Although recent studies have made efforts to link the
functionality model to the full network (e.g., electric and water sys-
tem), in this study, the functionality model was defined based on
building damage states in line with recent publications for other
hazards (Roohi et al. 2021; Wang et al. 2022). As mentioned earlier,
four damage states, none/insignificant, moderate, extensive, and
complete, were considered to determine the direct damage to the

Fig. 4. Examples of fragility functions used in this study for W1 high-code seismic design level: (a) earthquake hazard; and (b) tsunami hazard.
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buildings. Therefore, two different scenarios were considered: (1) a
building is assumed to be nonfunctional if the damage state exceeds
DS0 (that is, the damage state is sampled as DS1, DS2, or DS3), and
(2) a building is assumed to be nonfunctional if the damage state
exceeds DS1 (that is, the damage state is sampled as DS2 and DS3).
Given the fragility function and functionality model, the failure
probability of buildings (probability of being nonfunctional) was
computed by means of the Monte Carlo simulation through count-
ing a Bernoulli process of functional and nonfunctional samples.
Although the failure probability could be obtained directly from
damage state probabilities, the Monte Carlo simulation was used
to provide the basis for future studies to link the functionality model
to the full network. Then, the capital shock losses were computed
by multiplying the nonfunctional probabilities by the value of the
building. The capital shock losses served as the input for the CGE
model to estimate the immediate losses of capital stock and the gen-
eral equilibrium losses at the community level.

Socioeconomic Environment

According to the 2020 US Census Bureau (2020), the total popu-
lation of Seaside is estimated at 7,115 people corresponding to 2,898
households. The tourism industry is the mainstay of the economy,
and the median household income is $46,505 (in 2019 dollars).
Table 1 shows the household and labor classifications based on
the income value, which are applied to the CGE model. Wage trans-
fers to households correspondingly, which allows us to evaluate the
impact of hazards on income distribution. The losses in capital stock
directly impact household income because income sources for each

household group consist of labor income, capital returns, and trans-
fers. The decomposition of household and labor allows us to de-
scribe how such losses are distributed across income groups.
Table 2 shows the different economic sectors and associated capital
stock, number of employments, and number of parcels based on the
building type. There are 10main economic sectors—a total of 20 sec-
tors across three zones in Seaside, in which most parcels fall into
three categories, housing, service, and retail sectors. Most buildings
are in the housing and service sectors, with 2,881 and 450 buildings,
respectively.

Fig. 5 shows the layout of the economic environment in Seaside.
As shown in Fig. 5(a), the economic sectors are geographically di-
vided into three zones based on Necanicum river and Neawanna
creek, Zone 1 (oceanfront), Zone 2 (central), and Zone 3 (inland).
For instance, Fig. 5(b) shows the spatial distribution of the housing
sector (HS) considering different economic zones. For context,
Zone 1 consists mainly of construction, retail, service, health, accom-
modation, and restaurant sectors; Zone 2 consists of agriculture, con-
struction, manufacturing, retail, service, health, accommodation, and
restaurant sectors; and Zone 3 includes agriculture, utilities, con-
struction, retail, service, and health sectors. The capital stock losses
can be deaggregated based on these geographical zones, which can
provide better insight, particularly for the tsunami hazards because
the hazard intensity reduces considerably as one moves away from
the shore but varies spatially within the city of Seaside based on
proximity to the rivers.

CGE Model

A computable general equilibrium model represents a framework
for analyzing the behavioral responses of individuals, businesses,
and markets to natural hazard or changes in economic policy, sub-
ject to economic account balances and natural resource constraints
(e.g., Shoven and Whalley 1992; Dixon and Rimmer 2002; Rose
2004; Rose and Liao 2005; Cutler et al. 2016). The CGE model is
based on (1) utility-maximizing households that supply labor (in
the local or “rest of world” economy) and capital, using the pro-
ceeds to pay for goods and services (both locally produced and im-
ported) and taxes as price-takers in markets; (2) profit-maximizing
firms that are perfectly competitive and produce goods and services
for both domestic consumption and export by using intermediate
inputs, capital stock, land, and labor services; (3) the government
sector that collects sales and property taxes used to finance the pro-
vision of public services; and (4) the rest of the world, which allows
investment flows and trade.

Table 1. Household classification based on income values

Classifications Income values

Household groups
HH1 Less than $15,000
HH2 $15,000–$35,000
HH3 $35,000–$75,000
HH4 $75,000–$100,000
HH5 More than $100,000

Labor groups
L1 Less than $15,000
L2 $15,000–$35,000
L3 $35,000–$75,000
L4 $75,000–$100,000
L5 More than $100,000

Table 2. Different economic sectors and corresponding information in Seaside

Economic
sector

Number
of jobsa

Capital
stock ($M)b

Total number
of buildings

Number of concrete buildings Number of wood buildings

P-code L-code M-code H-code P-code L-code M-code H-code

Housing — 317.30 2,881 7 — — — 1,837 564 266 207
Service 907 94.37 450 29 13 9 5 44 341 8 1
Retail 739 61.88 65 20 8 22 2 7 3 3 —
Restaurant 312 52.58 46 25 12 2 5 1 1 — —
Accommodation 140 23.18 34 8 7 3 1 12 3 — —
Healthcare 574 41.23 24 9 2 2 — 5 4 2 —
Construction 312 4.72 23 1 — 2 3 7 4 4 2
Manufacturing 602 0.84 7 1 1 1 — 3 — 1 —
Agriculture 71 0.31 2 — — — — 1 — — 1
Utility 45 0.08 1 — — — — 1 — — —

Note: P-code = pre-code; L-code = low-code; M-code = moderate-code; and H-code = high-code.
aQuarterly Census of Employment and Wages (QCEW 2017) data.
bClatsop County Assessment and Taxation Data (2017).
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In the CGE model, operationalizing the interactions between
actors requires that all transaction flows occurring between these
sectors be described in the social accounting matrix (SAM)
(Attary et al. 2020). The SAM provides an integrated accounting
system that relates production, consumption, the public sector, and
investment in a consistent form from both microeconomic and
macroeconomic perspectives (Cardenete et al. 2012). To construct
a detailed SAM for Seaside, we started with the US Census
Bureau’s Public Use Microdata Sample (PUMS 2017), which pro-
vides sample data with information on the characteristics of each
household unit and the people in it, such as distribution of em-
ployed workers and wage payments to labor groups assigned to
their respective household group. In Seaside, households and work-
ers were distilled into five different wage groups (Table 1). Grouping
households and labor this way enabled an investigation of the eco-
nomic impacts of natural hazards on income distribution. Then we
estimated household consumption of that household group by
weighting the PUMS data with American Community Survey (ACS)
data on consumer expenditure patterns and adjusted by population.
In order to identify sectoral employments (Table 2), we used the
Quarterly Census of Employment and Wages (QCEW 2017) data,
which is a report from Bureau of Labor and Statistics. The QCEW
data provided the address of each firm, the number of workers, the
total wage bill, and the North American Industrial Classification
System (NAICS) code. Workers in the Seaside CGE model were
aggregated into 20 sectors across three zones based on the NAICS
employment categories.

We next established the aggregated sectors’ demand for capital
and land in the production sectors. Capital stock values were col-
lected from the Clatsop County Assessor’s data, which indicates the
use of each parcel of land in the county, including the address, acre-
age, assessed value, and the value of any structures. These proper-
ties were assigned to Seaside spatially using latitude and longitude
coordinates. Households demand housing services from these prop-
erties; thus, we identified residential properties to derive housing
sectors in three zones, HS1, HS2, and HS3. To organize commer-
cial properties, we augmented the County Assessor’s data with the

QCEW data. We matched the QCEW data with the Assessor’s data
to obtain data for firms in Seaside, with data for land used, assessed
value of the building, value of the structure, and associated NAICS
code. These data were aggregated into the 20 commercial sectors
across three zones in Seaside.

The City of Seaside organizes government revenue and expendi-
ture data in a document that is referred to as the Comprehensive
Annual Financial Report (CAFR 2017). We used Seaside’s CAFR
to identify sales, property, and other taxes collected from firms,
households, and tourists. In addition, the CAFR reports city expend-
itures on public services such as police, fire, and administrative serv-
ices, which represent the local government expenditure in the SAM.
We also used Bureau of Economic Analysis data to estimate input–
output coefficients of intermediate inputs and the relationship
between capital and investment. The allocation of resources is de-
termined by changes in relative prices for goods, services, labor,
capital, and land. In summary, we constructed a spatial SAM and
CGE model that allowed for modeling of the disparate impacts of
the natural hazards on the Seaside economy. We confirmed that the
destructive nature of the earthquake and tsunami had uneven im-
pacts on the capital stock across the 20 commercial sectors as well
as the three housing sectors.

Results

This section presents the results of analyses in terms of direct and
general equilibrium losses. The direct damage and loss consist of
building failure probabilities and capital stock losses at the parcel
and community levels, respectively. Scenario 2, mentioned earlier,
is selected as the functionality model in this section (i.e., a building
is nonfunctional if the damage state exceeds DS1). The capital stock
losses were deaggregated by the hazard and the economic zone to
provide a better understanding of the impact of the hazards to the
economic system. As mentioned earlier, capital stock losses were
supplied as an input to the CGE model. As a result, general equi-
librium losses were estimated in terms of changes in the total

Fig. 5. The layout of economic environment in Seaside: (a) economic zones (Zone 1: oceanfront, Zone 2: central, and Zone 3: inland); and (b) housing
economic sectors (HS) located in different zones (HS1 to HS3). (Base map sources: Esri, DeLorme, HERE, MapmyIndia.)
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employment, domestic supply, real household income, and taxes
(sales, property, and accommodation taxes). As mentioned earlier,
the economic risk is calculated as the expected loss multiplied by
the probability of hazard occurrence (inverse of the recurrence in-
terval), which provides an understanding of both significant loss
and a high probability of occurrence. The CGE results provide
long-run equilibrium with no external injections, such as recovery
assistance. In other words, these results describe how the economy
would look in the long term if there were no government expendi-
ture for repair or reconstruction. For the 100-year recurrence inter-
val, direct and general equilibrium losses are not presented because
the resulting impacts were insignificant. Therefore, the results for
250-year, 500-year, and 1,000-year recurrence intervals are dis-
cussed. Finally, sensitivity analysis was conducted to investigate
the effect of building functionality models on both direct and gen-
eral equilibrium losses.

Direct Losses and Risks

Fig. 6 shows the probability of building failure at the parcel level
for the 500-year recurrence interval considering different hazards:
seismic, tsunami, and joint seismic–tsunami. The probabilities of
failure, defined as the probability of the parcel being nonfunctional,
were obtained from Monte Carlo simulation consisting of 10,000
realizations. As shown in Fig. 6(a), the probability of failure for the
seismic hazard was quite uniform, with a maximum observed at
57%. This uniformity is somewhat expected because the seismic
intensity mostly depends on the source-to-site distance and soil
type, neither of which vary much across the region (Park et al.
2017a). In contrast to the seismic hazard, as shown in Fig. 6(b),
only buildings located on the oceanside experienced a high prob-
ability of being nonfunctional due to the tsunami hazard. The dark
red means a 100% probability of being nonfunctional, and dark
green means a 100% probability of being functional. The probabil-
ity of failure resulting from joint seismic–tsunami hazards is shown

in Fig. 6(c). As was expected, the joint probability of failure in-
creased only for buildings located on the oceanside of the region.

Table 3 indicates the capital stock losses for different economic
sectors due to different hazards and three recurrence intervals, 250,
500, and 1,000 years. Regarding seismic hazards, capital stock
losses were significant for all economic sectors. For example, re-
gardless of the recurrence interval, two economic sectors, ACCOM
and HC, had the highest capital stock losses (bold underlined
values). The maximum capital stock loss was observed in the ac-
commodation sector as 48.15% occurring due to the 1,000-year
earthquake recurrence interval. Concerning tsunami hazard, all
capital stock losses were negligible for two recurrence intervals,
250 and 500 years, due to the low level of inundation occurring
in all economic zones. However, by increasing the tsunami recur-
rence interval to 1,000 years, the housing sector, which is the most
significant sector, with 2,881 buildings in Seaside, experienced the
highest capital stock loss of 52.13%. Concerning joint seismic–
tsunami hazards, the ACCOM and HC sectors had the highest
capital stock losses compared to other sectors.

Fig. 7 allows for a comparison of capital stock losses and related
risks for the HS sector aggregated by the economic zone. As shown
in Fig. 7(a), the highest capital stock losses were observed, at about
24%, 52%, and 63%, associated with 1,000-year seismic, tsunami,
and joint seismic–tsunami recurrence intervals, respectively.
Conversely, as shown in Fig. 7(b), the highest economic risk oc-
curred for the 500-year and 1,000-year joint seismic–tsunami. In
addition, as the recurrence interval increased, capital stock losses
due to the tsunami hazard began to be underlined, particularly for
the 1,000-year tsunami hazard.

Fig. 8 compares the SERV sector’s capital stock losses and as-
sociated economic risks. The results indicate that the SERV sector
experienced lower capital stock losses than the HS sector due to the
tsunami hazard. Therefore, the economic risks were significantly
lower, and its maximum value occurred for the 250-year joint
seismic–tsunami. With regard to the tsunami hazard, the capital

Fig. 6. Probability of parcel failure (i.e., probability of being nonfunctional) for the 500-year recurrence interval: (a) seismic; (b) tsunami; and (c) joint
seismic–tsunami. (Base map sources: Esri, DeLorme, HERE, MapmyIndia.)
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stock losses for the SERV sector were negligible. Results indicate a
low level of damage because most buildings associated with the
SERV sector are located in Zones 2 and 3, that is, the central and
inland zones, where the tsunami intensity is not significant even for
the 1,000-year recurrence interval. Correspondingly, as shown in
Fig. 8(b), the risks associated with the tsunami hazard were almost
zero for 250-year and 500-year recurrence intervals for the SERV
sector.

Capital stock losses can be compared among different economic
sectors deaggregated by hazards and economic zones. A detailed
example (Table 8) and corresponding descriptions are provided
in Appendix. The results show that capital losses were dependent
on the building type, hazard type, and economic zones. For exam-
ple, capital stock losses of the HS sector for the seismic hazard were
almost identical across different economic zones (Zones 1, 2,
and 3). However, for the tsunami hazard, the maximum value of

Table 3. Percentage of capital stock losses for different economic sectors and recurrence intervals for earthquake, tsunami, and earthquake and tsunami
hazards

Sectors

Earthquake Tsunami Earthquake + tsunami

250-year 500-year 1,000-year 250-year 500-year 1,000-year 250-year 500-year 1,000-year

HS 11.00 18.77 23.76 0.80 16.42 52.13 11.74 31.86 63.19
SERV 15.58 27.90 33.74 0.01 0.97 11.91 15.88 28.46 44.77
REST 18.65 33.53 41.69 0.00 0.36 23.39 18.89 34.27 56.70
RETAIL 13.16 25.17 31.74 0.00 0.70 6.10 13.52 25.69 36.79
ACCOM 10.52 36.70 48.15 0.01 0.81 20.57 10.83 38.35 65.90
HC 19.56 32.62 39.33 0.00 0.09 1.37 19.63 32.86 41.95
UTIL 16.50 25.30 32.40 0.00 0.50 4.40 17.30 26.50 35.90
CONST 8.62 17.27 22.97 0.01 0.42 7.10 8.83 17.42 28.03
MANUF 14.94 25.88 31.48 0.00 0.02 17.47 15.25 25.97 43.13
AG 12.63 18.95 28.60 0.00 0.26 3.58 12.93 20.44 29.44

Note: HS = housing sector; SERV = service sector; REST = restaurant sector; RETAIL = retail sector; ACCOM = accommodation sector; HC = health sector;
UTIL = utility sector; CONST = construction sector; MANUF = manufacturing sector; and AG = agriculture sector. The bold values correspond to the highest
capital stock loss for each recurrence interval.

Fig. 7. Capital stock loss for housing sector (HS): (a) percentage loss; and (b) economic risk.

Fig. 8. Capital stock loss for service sector (SERV): (a) percentage loss; and (b) economic risk.
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capital stock loss occurred in the oceanfront zone (Zone 1). A sim-
ilar comparison can be given for other economic sectors that are not
presented here for brevity. These outputs can offer a better under-
standing of potential direct losses to different economic sectors,
which can help to identify and prioritize the vulnerable economic
sectors in the community.

General Equilibrium Losses and Risks

Table 4 shows an example of CGE results for different hazards for
the 500-year recurrence interval. For example, the total employ-
ment was reduced by about 6.3%, 1.4%, and 7.5% due to the seis-
mic, tsunami, and joint seismic–tsunami hazards, respectively. The
domestic supply experienced losses of 13.9%, 2.2%, and 15.8% for
different hazards, respectively. Regarding the real household in-
come, for the seismic hazard, increasing the household classifica-
tion from HH1 to HH5 resulted in higher losses in income because
households with higher incomes typically own higher percentages
of the physical capital, which is likely to experience damage and a
subsequent reduction in capital returns. Given the tsunami hazard,

HH1 households were mostly impacted because economic sectors,
such as SERV1, REST1, and RETAIL1, located in the oceanfront
zone (Zone 1) significantly contributed to the corresponding labor
income. For joint seismic–tsunami hazards, HH5 households expe-
rienced a maximum income loss of $17.9 million or 6.3%. Total
losses for real household income due to seismic, tsunami, and joint
seismic–tsunami hazards were about 4.9%, 0.8%, and 5.7%, re-
spectively. Finally, the city general fund sustained the maximum
reduction, in which losses for seismic and tsunami hazards were
$2.1 million (32.3%) and $0.31 million (4.9%), respectively. For
the tsunami hazard, whereas the city general fund experienced
the highest loss, the reduction in accommodation tax was higher
than other tax-related losses, such as sales and property taxes, be-
cause hotels and recreational properties are frequently located near
the coast, where they are more vulnerable to the tsunami hazard.
Total losses for the local tax revenue due to seismic, tsunami, and
joint seismic–tsunami hazards were about 11.4%, 1.8%, and
13.1%, respectively. Similar results can be obtained for other recur-
rence intervals, in which losses for the 100-year recurrence interval
were more considerable. Similarly, the CGE results can be compared

Fig. 9. Total employment loss for different hazards: (a) percentage loss; and (b) economic risk.

Table 4. Example of CGE results for hazards with the 500-year recurrence interval

Resilience metrics Category

Earthquake Tsunami Earthquake + tsunami

500-year 500-year 500-year

Amount
of loss

Percentage
loss

Amount
of loss

Percentage
loss

Amount
of loss

Percentage
loss

Total employment (person) — 248 6.3 57 1.4 299 7.5

Domestic supply ($M) — 204.27 13.9 31.68 2.2 232.7 15.8

Real household incomea ($M) HH1 0.04 1.7 0.03 1.4 0.08 3.3
HH2 1.01 3.7 0.00 0.0 1.05 3.8
HH3 5.62 4.3 0.58 0.4 6.31 4.8
HH4 3.89 4.8 0.55 0.7 4.46 5.5
HH5 15.38 5.4 2.98 1.1 17.99 6.3
Total 25.94 4.9 4.08 0.8 29.81 5.7

Local tax revenue ($M) STPIT 0.72 5.1 0.12 0.9 0.84 5.9
Sales 0.07 5.0 0.01 0.8 0.08 5.8

Property 0.11 3.2 0.02 0.6 0.13 3.7
Accommodation 0.05 6.6 0.02 2.7 0.06 9.3

CYGF 2.10 32.3 0.31 4.9 2.31 37.1
Total 2.96 11.4 0.48 1.8 3.42 13.1

Note: STPIT = state personal income tax; and CYGF = city general fund.
aThe real household income is presented based on the different household groups (Table 1).
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across different economic zones. Table 9 in Appendix illustrates
the spatially deaggregated CGE results, including losses in total
employment and domestic supply.

Fig. 9 shows the effect of different hazards on the total employ-
ment loss in terms of percentage and associated risks. By increasing
the recurrence interval, the total employment loss increased, in
which its maximum belonged to the 1,000-year joint seismic–
tsunami hazards. Similarly, the highest risk was associated with
1,000-year joint seismic–tsunami hazards. As shown in Fig. 9(b),
for the tsunami hazard, the risks were insignificant for 250 and
500 years compared to the seismic hazard. Fig. 10 shows a similar
type of results for the domestic supply change. As shown in
Fig. 10(b), for the seismic hazard, increasing the recurrence interval
from 250 to 1,000 years led to a considerable increase in the eco-
nomic risk (almost by a factor of 1.5). Regarding the tsunami hazard,
the economic risk remained almost zero for the 250-year recurrence
interval and then slightly increased by varying the recurrence
interval.

Fig. 11 compares the effect of different hazards on the house-
hold income loss and associated risk deaggregated by the income
classification. Regardless of the income classification, the maxi-
mum reduction in the household income of the HH5 occurred
due to joint seismic–tsunami hazards. For the tsunami hazard,
the income loss was negligible for the 250-year and 500-year re-
currence intervals, and it significantly increased for the 1,000-year
recurrence interval. For example, for 1,000-year joint seismic–
tsunami hazards, the HH5 experienced about a 16% reduction in
income ($45.7 million), resulting in the highest economic risk of
$0.045 million per year. Regarding the seismic hazard, although

income losses were identical by varying recurrence intervals, the
annualized risk decreased for the 1,000-year recurrence interval.

Retrofitting Analysis

The methodology was applied to evaluate how different seismic
retrofit strategies can reduce direct and general equilibrium losses
and associated risks. We assumed three seismic retrofit strategies:
(1) design level of only residential buildings increased to the high
code, (2) design level of only commercial buildings increased to the
high code, and (3) design level of all buildings increased to the high
code. The comparisons for different hazards and recurrence inter-
vals are presented. The cost of the seismic retrofit strategy and its
impact on the decision-making process were not considered for this
analysis.

Tables 5–7 show the results of different seismic retrofit strate-
gies for 500-year recurrence intervals. The results indicate that
retrofitting only residential buildings (Retrofit 1) did not consider-
ably reduce direct and general equilibrium losses. For example, for
the seismic hazard (Table 5), the average capital stock loss was
slightly reduced from 23.8% to 21%. Similar results were also ob-
served for general equilibrium losses. However, the decrease was
more notable for the tsunami hazard (Table 6) because the retrofit of
wood-frame buildings seems to be more effective against the tsu-
nami hazard compared to the seismic hazard. For the second retrofit
strategy (Retrofit 2), as expected, retrofitting only commercial
buildings resulted in a significant decrease in losses, particularly
general equilibrium losses. For example, for the seismic hazard,
the total employment loss was reduced by about 44%, from 247

Fig. 10. Domestic supply loss for different hazards: (a) percentage loss; and (b) economic risk.

Fig. 11. The HH5 income loss for different hazards: (a) percentage loss; and (b) economic risk.
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to 139 persons. In addition, the loss in the local tax revenue was
reduced by about 48%, from $2.9 to $1.52 million. The same levels
of reductions in tax losses were observed for tsunami and joint seis-
mic–tsunami hazards. Finally, although retrofitting all buildings
(Retrofit 3) resulted in the lowest losses, given the high expected
retrofit cost, it may not be the most efficient option for the

community. Fig. 12 compares the results of Retrofits 2 and 3
for the seismic hazard associated with the 500-year recurrence
interval. The comparison shows that retrofitting only commercial
buildings could reduce losses, particularly general equilibrium
losses such as local tax, as much as retrofitting all buildings in the
community.

Table 5. Results of the seismic retrofit for the 500-year recurrence interval seismic hazard

Resilience metrics Category

Earthquake

500-year Status quo 500-year Retrofit 1 500-year Retrofit 2 500-year Retrofit 3

Average capital stock loss (%) — 23.8 21 13.8 10.6
Total employment (person) — 247 (6.4%) 220 (5.5%) 139 (3.5%) 110 (2.8%)
Domestic supply ($M) — 203.79 (13.8%) 188.86 (12.8%) 108.09 (7.3%) 93.05 (6.3%)
Real household income ($M) Total 25.83 (4.9%) 23.84 (4.5%) 13.54 (2.6%) 11.42 (2.17%)
Local tax revenue ($M) Total 2.94 (11.3%) 2.73 (10.5%) 1.52 (5.8%) 1.29 (4.9%)

Table 6. Results of the seismic retrofit for the 500-year recurrence interval tsunami hazard

Resilience metrics Category

Tsunami

500-year Status quo 500-year Retrofit 1 500-year Retrofit 2 500-year Retrofit 3

Average capital stock loss (%) — 4.4 2.6 1.1 1.1
Total employment (person) — 58 (1.5%) 32 (0.8%) 42 (1.1%) 16 (0.4%)
Domestic supply ($M) — 33.28 (2.3%) 22.71 (1.5%) 17.67 (1.2%) 7.31 (0.5%)
Real household income ($M) Total 4.21 (0.8%) 2.74 (0.5%) 2.52 (0.5%) 1.06 (0.2%)
Local tax revenue ($M) Total 0.5 (1.9%) 0.34 (1.3%) 0.27 (1.1%) 0.12 (0.5%)

Table 7. Results of the seismic retrofit for the 500-year recurrence interval joint seismic–tsunami hazards

Resilience metrics Category

Earthquake + tsunami

500-year Status quo 500-year Retrofit 1 500-year Retrofit 2 500-year Retrofit 3

Average capital stock loss (%) — 27.3 22.4 16.7 11.7
Total employment (person) — 299 (7.6%) 242 (6.1%) 183 (4.6%) 127 (3.2%)
Domestic supply ($M) — 232.38 (15.8%) 205.16 (13.9%) 127.52 (8.7%) 100.86 (6.8%)
Real household income ($M) Total 29.79 (5.7%) 25.84 (4.9%) 16.45 (3.1%) 12.61 (2.4%)
Local tax revenue ($M) Total 3.42 (13.1%) 2.97 (11.4%) 1.86 (7.1%) 1.42 (5.4%)

Fig. 12. Comparison of status quo and retrofit cases (Retrofit 2: design level of only commercial buildings increases to the high code; Retrofit 3:
design level of all buildings increases to the high code) for the 500-year recurrence interval seismic hazard.
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Sensitivity Analysis

This section incorporates a sensitivity analysis to assess how differ-
ent definitions of building functionality affect direct and general
equilibrium losses. As mentioned earlier, two different scenarios
were considered to define the functionality of buildings, Scenario 1,
where a building is nonfunctional if the damage state exceeds DS0,
and Scenario 2, where a building is nonfunctional if the damage
state exceeds DS1. Fig. 13 shows the effect of building functionality
on capital stock losses to the housing sector deaggregated by the
hazard type (columns) and economic zone (rows). The results were
compared for 100-year, 250-year, and 500-year recurrence inter-
vals. Regardless of the economic zone, for the seismic hazard,
using different functionality models significantly affected capital
stock losses. For instance, considering the 500-year recurrence in-
terval for the seismic hazard, the capital stock loss decreased from
60% to 20% by varying the functionality model from Scenario 1 to
2. Similar results were observed for joint seismic–tsunami hazards.
However, the capital stock loss was independent of the function-
ality model for the tsunami hazard because the tsunami fragility
functions adopted for IN-CORE [see Fig. 4(b)] had fewer damage
states than seismic fragility functions, particularly for low-rise and
light-frame buildings, and therefore were not sensitive to the func-
tionality definitions for Scenarios 1 and 2.

As another example, Fig. 14 shows the effect of the building
functionality modeling on the domestic supply loss and associated
risks due to different hazards. The maximum domestic supply loss
and associated risk values occurred when Scenario 1 was selected
as the building functionality model. Furthermore, for the seismic
hazard and Scenario 1, although the maximum domestic supply loss

occurred for the 1,000-year recurrence interval, the highest risk be-
longed to the 500-year recurrence interval. A similar trend was ob-
served for joint seismic–tsunami hazards. However, for the tsunami
hazard, the results were less sensitive to the functionality modeling,
which was expected considering the tsunami fragility functions and
their limited number of damage states used in this study.

Discussion

This paper proposes a methodology to evaluate the impact of multi-
ple joint hazards on the economic resilience metrics, that is, direct
losses such as capital stock loss and general equilibrium losses
such as number of workers, domestic losses, and local tax revenue.
The methodology consisted of several modules: policy alternatives,
initial community description, infrastructure functionality analysis,
and CGE modeling. The city of Seaside, Oregon, was selected as
the testbed community. The methodology was applied to quantify
the effect of different seismic retrofit options as an important mit-
igation strategy on the resilience metrics. This section presents a
discussion and outlines some insights gained from results presented
in previous sections.

Results indicate that the vulnerability of economic sectors de-
pended on the building and hazard types and that it varied with the
recurrence interval. For example, economic sectors located in Zone
1 (ocean front) were more vulnerable to the tsunami hazard com-
pared to Zone 2 (central) and Zone 3 (inland). Furthermore, eco-
nomic risks were sensitive to the hazard type, in that the maximum
values were associated with 500-year and 1,000-year recurrence
intervals for seismic and tsunami hazards, respectively. Similar

Fig. 13. The effect of the building functionality model on capital stock losses to the housing sector (HS) located in different zones.
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outcomes were observed for general equilibrium losses. For the
seismic hazard, increasing the household classification from HH1
to HH5 resulted in higher losses in upper income groups; however,
for the tsunami hazard, HH1 households were mostly impacted be-
cause the economic sectors located in Zone 1 significantly contribute
to the corresponding labor income. Regarding the tax losses, the
city general fund experienced the maximum reduction. Given the
500-year recurrence interval, the local tax revenue was reduced
by about 11.4%, 1.8%, and 13.1% for seismic, tsunami, and joint
seismic–tsunami hazards, respectively. The losses were signifi-
cantly decreased by applying different seismic retrofit strategies
(Tables 5–7). The comparisons show that retrofitting only com-
mercial buildings to the high code is an efficient strategy to reduce
both direct and general equilibrium losses. The sensitivity analy-
sis indicated that different definitions of building functionality
result in distinct outcomes (Figs. 13 and 14). For example, given
the 500-year recurrence interval of the seismic hazard, the capital
stock loss decreased from 60% to 20% by varying the function-
ality model.

As potential highlights for future research, first, the CGE model
needs to be improved to include extreme events with a higher
recurrence interval in the analysis. Extreme events are likely to de-
stroy a large portion of the capital stock in the city, and the existing
CGE model cannot predict general equilibrium losses accurately

when capital stock shocks are too large. Given larger shocks, be-
cause the economy has limited substitutes between intermediate
inputs, the model cannot be converged to the optimal solution.
Second, the functionality model for buildings needs to be extended
to account for infrastructure systems, such as water and power net-
works and their independencies (e.g., Wang et al. 2022). For exam-
ple, a building can experience a low level of damage, but it is only
partially functional or nonfunctional without electricity, unless the
parcel has a generator. Third, a cost-benefit analysis needs to be
implemented for different seismic retrofit strategies in order to pro-
vide better insight for emergency planners and decision makers
(Wang et al. 2021). Last, the CGE model needs to be improved
to include changes in labor supply due to fatalities, injuries, and
outmigration. For example, results in Amini et al. (2022) indicated
that seismic retrofitting of buildings significantly reduces casu-
alties, which will also impact labor supply and the CGE model.
Thus, subsequent general equilibrium losses and reduction of the
tax base should be explored with improved CGE models.

Conclusion

This paper proposed a methodology to evaluate the impact of multi-
hazard on the economic resilience metrics in terms of direct damage

Fig. 14. Effect of building functionality modeling on the domestic supply loss and associated risks.
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and losses such as the building failure probability and the capital
stock loss and general equilibrium losses such as the number of
employments and domestic supply. The city of Seaside, Oregon,
vulnerable to both earthquake and tsunami due to its proximity to
the CSZ, was selected as a case study to illustrate the application of
the methodology. Although there are several seismic and tsunami
hazards, herein only seismic ground shaking and tsunami inunda-
tion hazards were considered. The direct damage and losses to
buildings and economic sectors were obtained at the parcel and
community level using appropriate fragility functions and function-
ality models. The process relied on Monte Carlo simulations to
propagate uncertainties in damage, functionality, and loss models.
Given the direct losses, the CGE model was used to assess aggre-
gated general equilibrium losses to the community. The economic
risks were also determined based on the probabilistic hazard. The
methodology was used to quantify how different seismic retrofit
options can affect the resilience metrics. Finally, a sensitivity analy-
sis was conducted to evaluate how different definitions of building
functionality affect the outcomes. The main conclusion from this
work are:
1. Results indicate that the vulnerability of economic sectors de-

pends on the hazard type, economic zone, and building type and
varies with the recurrence interval. For example, the accommo-
dation and housing sectors were the most vulnerable to seismic-
only and tsunami-only hazards. In addition, the housing sector
located in Zone 1 at the ocean front (HS1) was more vulnerable
than HS2 and HS3 located in other zones. Comparable results
were also observed for risks, in which the highest risks were
associated with the 500-year event for the seismic recurrence
interval and the 1,000-year for tsunami and joint seismic–
tsunami hazards, respectively.

2. The results of the CGE model show that general equilibrium
losses depended on the hazard type, hazard severity, and eco-
nomic zones. For example, the total employment was reduced

by 6.3%, 1.4%, and 7.5% due to the seismic, tsunami, and joint
seismic–tsunami hazards, respectively. Regarding the real
household income, HH5 and HH1 households suffered the
maximum income losses for seismic and tsunami hazards, re-
spectively. Similar trends were observed for tax-related losses.
For instance, whereas the city general fund experienced the
highest losses, for the tsunami hazard, the reduction in accom-
modation tax was higher than other tax losses because hotels
and recreational properties are frequently located near the
coast (Zone 1) and thus are more susceptible to the tsunami
hazard. Regarding the economic risk, for the tsunami hazard,
the risks were insignificant for the 250-year and 500-year
recurrence intervals compared to the seismic hazard. Finally,
the maximum risk belonged to the 1,000-year joint seismic–
tsunami hazards.

3. Direct and general equilibrium losses and associated risks were
significantly reduced by using seismic retrofit strategies. Results
show that retrofitting only residential buildings had a large im-
pact on reducing general equilibrium losses. Comparisons show
that although retrofitting all buildings to the high code (Retrofit
3) resulted in the lowest losses, given the high expected retrofit
cost, retrofitting only commercial buildings (Retrofit 2) may be
an efficient retrofit option for the community. For example,
given the 500-year joint seismic–tsunami hazards, the domestic
supply was reduced from 15.8% to 8.7% and 6.8% for Retrofits
2 and 3, respectively.

4. The results of the sensitivity analysis show that losses and as-
sociated risks are sensitive to the definition of building function-
ality, particularly for the seismic hazard. For example, given
the seismic hazard, the highest domestic supply risk associated
with the 250-year recurrence interval decreased from $1.5 to
$0.4 million/year for Scenarios 1 and 2, respectively. Similar
results were observed for joint seismic–tsunami hazards. This
high level of sensitivity highlights the necessity for a common

Table 8. Percentage of capital stock losses for different economic sectors deaggregated by associated economic zones

Sectors

Earthquake Tsunami Earthquakeþ tsunami

250-year 500-year 1,000-year 250-year 500-year 1,000-year 250-year 500-year 1,000-year

HS1 11.98 19.93 24.84 2.09 36.68 90.89 13.84 48.67 92.7
HS2 10.98 19.72 24.78 0.44 0.54 32.39 11.26 20.2 49.04
HS3 10.79 18.64 24.69 0 0 0.01 10.81 18.76 24.75
SERV1 12.47 24.96 31.74 0.02 8.06 64.35 12.41 31.51 79.43
SERV2 11.01 20.02 25.08 0.4 0.41 29.6 11.27 20.37 47.33
SERV3 10.77 18.62 24.67 0 0 0 10.8 18.75 24.72
REST1 13.2 33.56 42.6 0 1.96 58.75 13.86 36.19 84.58
REST2 14.17 26.18 31.99 0 0 0.46 14.19 26.38 33.31
RETAIL1 13.48 28.89 36.93 0 9.52 74.73 13.38 36.78 89.77
RETAIL2 11.74 23.62 28.81 0 0 0.04 11.81 23.41 29.64
RETAIL3 5.2 10.45 16.6 0 0 0 6 11.35 16.1
ACCOM1 10.06 42.12 55.37 0 2.55 30.6 9.76 45.26 84.05
ACCOM2 13.07 24.65 32.27 2.65 24.18 42.54 15.84 43.13 63.11
HC1 12.43 20.95 26.14 0 0.96 4.44 10.98 21.05 31.57
HC2 21.52 33.76 41.43 0 0 2.21 21.34 35.24 44.62
HC3 20.59 35.03 41.96 0 0.01 0 20.22 34.78 42.64
UTIL 16.95 27.95 33.05 0 0.55 3.75 16.8 27.3 35.40
CONST1 13.88 21.27 25.28 0.03 6.4 97.14 12.99 25.81 97.7
CONST2 12.7 21.22 26.83 0.07 0.25 16.77 12.82 21.27 39.98
CONST3 8.32 15.74 20.78 0 0.06 0.37 7.85 15.27 20.96
MANUF2 14.03 23.7 29.68 0 0.01 6.36 14.12 23.9 34.24
AG2 7.9 17.4 20.95 0 0 10.25 8.35 16.4 28.8
AG3 15.15 23.9 30.15 0 0.25 0.5 15.3 22.55 30.1

Note: The economic sectors are deaggregated by the hazard and economic zones: Zone 1: ocean front, Zone 2: central, and Zone 3: inland. For example, HS3
refers to the housing sector located in Zone 3. The bold values correspond to the highest capital stock loss for each recurrence interval. For a definition of
sectors, see footnote in Table 3. The number in front of the label for each sector indicates the corresponding economic zone.
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definition of building functionality in the vulnerability analysis
to aid decision makers in making informed decisions.
As broader applications, results in this paper can be used by the

community decision makers and policymakers to make informed
decisions for increasing community resilience of vulnerable com-
munities to natural hazards. In addition, the model can be used to
quantify the effect of different mitigation strategies, other than seis-
mic retrofit, to provide better insight for emergency planners and
decision makers. Although this paper considered the impact of the
CSZ on the city of Seaside, the methodology is generalizable to
other communities with different natural hazards, such as hurri-
canes and tornados.

Appendix. Spatial Losses Deaggregated by
Economic Zones

Tables 8 and 9 present spatial losses, including capital stock and
CGE results. Table 8 shows the capital stock losses for different
economic sectors deaggregated by the hazards and economic zones,
in which the sectors are ordered based on Table 3 to facilitate the
comparison. The highest capital stock loss for each type of hazard
and related recurrence interval is highlighted. As shown in Table 8,
the capital losses of economic sectors were strongly dependent on
the building type, hazard type, and economic zones. For example,
given the seismic hazard, the capital stock losses in the housing
sector (HS1, HS2, and HS3) were almost identical over different
economic zones because most buildings in this sector are wood-
frame structures. However, results indicate that buildings belonging
to one economic sector but located in diffident zones can also ex-
perience different levels of capital stock losses. For example, given
the 500-year seismic recurrence interval, ACCOM consists of two
subsectors, ACCOM1 and ACCOM2, located in Zone 1 and 2,
respectively. Although the aggregated capital stock loss of the
ACCOM sector was estimated as 36.7%, the ACCOM1 subsector
sustained nearly 17.5% loss higher than the ACCOM2 subsector
(42.1% versus 24.6%). This difference in the capital stock loss
was more substantial for the tsunami hazard. For instance, given
the 500-year tsunami recurrence interval, whereas the total capital
stock loss of the HS sector (housing sector) was about 16.5%, indi-
vidual losses for HS1, HS2, and HS3 were 36.7%, 0.5%, and 0.0%,
respectively.

Table 9 shows an example of CGE results disaggregated by the
hazards and economic zones. To help understand the hazard’s geo-
graphically heterogeneous economic impacts, this table illustrates
the spatial CGE results for employment and domestic supply. The
losses to employment and domestic supply resulted from business
interruptions, which were determined by the level of capital stock

damage. The CGE results provide that percentage losses for em-
ployment are similar across zones: the reason is that more workers
were allocated in Zone 2 (1,933) compared to Zones 1 (1,287) and
3 (482). Therefore, job losses in Zone 1 were fewer than in Zone 2,
even though Zone 1 was impacted more by the capital stock losses
than Zone 2. Regarding domestic supply, Zone 1 suffered a larger
decline in output. For instance, given the 500-year seismic recur-
rence interval, reductions in domestic supply in Zones 1, 2, and 3
were 17.6%, 9.8%, and 10.9%, respectively. The trends of results in
domestic supply were consistent with those obtained from capital
stock loss because damaged capital makes a lower amount of pro-
ductive capital stock, leading to decrease economic activity and
domestic supply.

Data Availability Statement

Data sets used in this study for the city of Seaside, Oregon, includ-
ing built, natural, and social systems, are available in DesignSafe:
https://www.designsafe-ci.org/data/browser/public/designsafe.storage
.published/PRJ-3390. Other data and codes, including the CGE
model, are available in the IN-CORE repository online, in accor-
dance with funder data retention policies.

Acknowledgments

The Center for Risk-Based Community Resilience Planning is a
NIST-funded Center of Excellence; the Center is funded through
a cooperative agreement between the US National Institute
of Standards and Technology and Colorado State University
(NIST Financial Assistance Award Nos. 70NANB15H044 and
70NANB20H008). The findings and views expressed are those
of the authors and may not represent the official position of the
National Institute of Standards and Technology or the US
Department of Commerce.

References

Abrahamson, N., N. Gregor, and K. Addo. 2016. “BC hydro ground motion
prediction equations for subduction earthquakes.” Earthquake Spectra
32 (1): 23–44. https://doi.org/10.1193/051712EQS188MR.

Ameri, M. R., and J. W. van de Lindt. 2019. “Seismic performance and
recovery modeling of natural gas networks at the community level using
building demand.” J. Perform. Constr. Facil. 33 (4): 04019043. https://
doi.org/10.1061/(ASCE)CF.1943-5509.0001315.

Amini, M., D. R. Sanderson, D. T. Cox, A. R. Barbosa, and N. Rosenheim.
2022. “Methodology to incorporate seismic damage and debris to
evaluate strategies to reduce life safety risk for multi-hazard

Table 9. Example of spatial CGE results for hazards with the 500-year recurrence interval

Resilience metrics Zone

Earthquake Tsunami Earthquake + tsunami

500-year 500-year 500-year

Amount of loss Percentage loss Amount of loss Percentage loss Amount of loss Percentage loss

Total employment (person) — 248 6.30 57 1.40 299 7.50
Zone 1 89 6.5 16 1.2 105 7.7
Zone 2 121 6.0 30 1.5 147 7.3
Zone 3 37 7.1 11 2.1 47 8.9

Domestic supply ($M) — 204.3 13.9 31.7 2.2 232.7 15.8
Zone 1 130.4 17.6 22.5 3.0 151.6 20.4
Zone 2 54.1 9.8 8.1 1.5 60.5 11.0
Zone 3 19.8 10.9 1.0 0.6 20.6 11.3

© ASCE 04023031-16 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2023, 29(4): 04023031 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

O
R

EG
O

N
 S

TA
TE

 U
N

IV
ER

SI
TY

 o
n 

03
/2

7/
25

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-3390
https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-3390
https://doi.org/10.1193/051712EQS188MR
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001315
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001315


earthquake and tsunami.” Nat. Hazard. 1–36. https://doi.org/10.21203
/rs.3.rs-1862973/v1.

Attary, N., H. Cutler, M. Shields, and J. W. van de Lindt. 2020. “The eco-
nomic effects of financial relief delays following a natural disaster.”
Econ. Syst. Res. 32 (3): 351–377. https://doi.org/10.1080/09535314
.2020.1713729.

Attary, N., J. W. van de Lindt, H. Mahmoud, and S. Smith. 2019.
“Hindcasting community-level damage to the interdependent build-
ings and electric power network after the 2011 Joplin, Missouri,
tornado.” Nat. Hazard. Rev. 20 (1): 04018027. https://doi.org/10
.1061/(ASCE)NH.1527-6996.0000317.

Bocchini, P., D. M. Frangopol, T. Ummenhofer, and T. Zinke. 2014.
“Resilience and sustainability of the civil infrastructure: Towards a uni-
fied approach.” J. Infrastruct. Syst. 20 (2): 04014004. https://doi.org/10
.1061/(ASCE)IS.1943-555X.0000177.

Burns, P. O., A. R. Barbosa, M. J. Olsen, and H. Wang. 2021. “Multi-
hazard damage and loss assessment of bridges in a highway network
subjected to earthquake and tsunami hazards.” Nat. Hazard. Rev.
22 (2): 05021002. https://doi.org/10.1061/(ASCE)NH.1527-6996
.0000429.

CAFR (Comprehensive Annual Financial Report). 2017. Comprehensive
annual financial report for the fiscal year 2017. Seaside, OR: City
of Seaside.

Capozzo, M., A. Rizzi, G. P. Cimellaro, M. Domaneschi, A. R. Barbosa,
and D. Cox. 2019. “Multi-hazard resilience assessment of a coastal
community due to offshore earthquake.” J. Earthquake Tsunami 13 (2):
1950008. https://doi.org/10.1142/S1793431119500088.

Cardenete, M. A., A. I. Guerra, and F. Sancho. 2012. Applied general
equilibrium. Berlin: Springer.

Carey, T. J., H. B. Mason, A. R. Barbosa, andM. H. Scott. 2019. “Multihazard
earthquake and tsunami effects on soil–foundation–bridge systems.”
J. Bridge Eng. 24 (4): 04019004. https://doi.org/10.1061/(ASCE)BE
.1943-5592.0001353.

CEMHS (Center for Emergency Management and Homeland Security).
2020. Spatial hazard events and losses database for the United States.
Phoenix: CEMHS, Arizona State Univ.

Chang, S., and M. Shinozuka. 2004. “Measuring improvements in the dis-
aster resilience of communities.” Earthquake Spectra 20 (3): 739–755.
https://doi.org/10.1193/1.1775796.

Chen, Y., H. Park, Y. Chen, P. Corcoran, D. T. Cox, J. Reimer, and B.
Weber. 2018. “Integrated engineering–economic model for the assess-
ment of regional economic vulnerability to tsunamis.” Nat. Hazard. Rev.
19 (4): 04018018. https://doi.org/10.1061/(ASCE)NH.1527-6996
.0000307.

Chen, Z., A. Z. Rose, F. Prager, and S. Chatterjee. 2017. “Economic con-
sequences of aviation system disruptions: A reduced-form computable
general equilibrium analysis.” Transp. Res. Part A Policy Pract. 95 (Jan):
207–226. https://doi.org/10.1016/j.tra.2016.09.027.

Clatsop County Assessment and Taxation Data. 2017. Clatsop County
assessment and taxation data. Clatsop County, OR: Clatsop County
Assessment and Taxation Data.

Cox, D. T., A. R. Barbosa, M. Alam, M. Amini, S. Kameshwar, H. Park,
and D. Sanderson. 2022. Seaside testbed data inventory for infrastruc-
ture, population, and earthquake-tsunami hazard. Seattle, WA:
DesignSafe-CI. https://doi.org/10.17603/ds2-sp99-xv89.

Cutler, H., M. Shields, D. Tavani, and S. Zahran. 2016. “Integrating engi-
neering outputs from natural disaster models into a dynamic spatial
computable general equilibrium model of Centerville.” Sustainable
Resilient Infrastruct. 1 (3–4): 169–187. https://doi.org/10.1080
/23789689.2016.1254996.

Dixon, P., and M. T. Rimmer. 2002. Dynamic general and equilibrium
modelling for forecasting and policy: A practical guide and documen-
tation of MONASH. Bingley, UK: Emerald Group.

Ellingwood, B. R., H. Cutler, P. Gardoni, W. G. Peacock, J. W. van de
Lindt, and N. Wang. 2016. “The Centerville virtual community: A fully
integrated decision model of interacting physical and social infrastructure
systems.” Sustainable Resilient Infrastruct. 1 (3–4): 95–107. https://doi
.org/10.1080/23789689.2016.1255000.

FEMA. 2013. Tsunami methodology technical manual. Washington, DC:
FEMA.

FEMA. 2015. HAZUS–MH 2.1 technical manual. Washington, DC: FEMA.
Gall, M., K. A. Borden, C. T. Emrich, and S. L. Cutter. 2011. “The unsus-

tainable trend of natural hazard losses in the United States.” Sustainability
3 (11): 2157–2181. https://doi.org/10.3390/su3112157.

Gardoni, P., J. van de Lindt, B. Ellingwood, T. McAllister, J. S. Lee, H.
Cutler, W. Peacock, and D. Cox. 2018. “The interdependent networked
community resilience modeling environment (IN-CORE).” In Proc.,
16th European Conf. on Earthquake Engineering, 18–21. Istanbul,
Turkey: European Association for Earthquake Engineering.

Goldfinger, C., et al. 2012. Turbidite event history—Methods and implica-
tions for holocene paleoseismicity of the Cascadia subduction zone.
Reston, VA: USGS.

Guidotti, R., H. Chmielewski, V. Unnikrishnan, P. Gardoni, T. McAllister,
and J. W. van de Lindt. 2016. “Modeling the resilience of critical infra-
structure: The role of network dependencies.” Sustainable Resilient
Infrastruct. 1 (3–4): 153–168. https://doi.org/10.1080/23789689.2016
.1254999.

Heaton, T. H., and S. H. Hartzell. 1987. “Earthquake hazards on the Cascadia
subduction zone.” Science 236 (4798): 162–168. https://doi.org/10.1126
/science.236.4798.162.

Joshi, G., and S. Mohagheghi. 2021. “Optimal operation of combined energy
and water systems for community resilience against natural disasters.”
Energies 14 (19): 6132. https://doi.org/10.3390/en14196132.

Kameshwar, S., D. T. Cox, A. R. Barbosa, K. Farokhnia, H. Park, M. S.
Alam, and J. W. van de Lindt. 2019. “Probabilistic decision-support
framework for community resilience: Incorporating multi-hazards,
infrastructure interdependencies, and resilience goals in a Bayesian net-
work.” Reliab. Eng. Syst. Saf. 191 (Nov): 106568. https://doi.org/10
.1016/j.ress.2019.106568.

Kircher, C. A., and J. Bouabid. 2014. “New building damage functions for
tsunami.” In Proc., 10th National Conf. in Earthquake Engineering.
Anchorage, AK: Earthquake Engineering Research Institute.

Lin, N., and E. Shullman. 2017. “Dealing with hurricane surge flooding in a
changing environment. Part I: Risk assessment considering storm cli-
matology change, sea level rise, and coastal development.” Stochastic
Environ. Res. Risk Assess. 31 (9): 2379–2400. https://doi.org/10.1007
/s00477-016-1377-5.

Liu, F. 2014. “Projections of future US design wind speeds due to climate
change for estimating hurricane losses.” Ph.D. thesis, Dept. of Civil
Engineering, Clemson Univ.

Lynett, P., T. Wu, and P. Liu. 2002. “Modeling wave runup with depth-
integrated equations.” Coastal Eng. 46 (2): 89–107. https://doi.org/10
.1016/S0378-3839(02)00043-1.

Ma, L., P. Bocchini, and V. Christou. 2020. “Fragility models of electrical
conductors in power transmission networks subjected to hurricanes.”
Struct. Saf. 82 (Jan): 101890. https://doi.org/10.1016/j.strusafe.2019
.101890.

Masoomi, H., J. W. van de Lindt, and L. Peek. 2018. “Quantifying socio-
economic impact of a tornado by estimating population outmigration as
a resilience metric at the community level.” J. Struct. Eng. 144 (5):
04018034. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002019.

Meyer, V., et al. 2013. “Assessing the costs of natural hazards—State of
the art and knowledge gaps.” Nat. Hazards Earth Syst. Sci. 13 (5):
1351–1373. https://doi.org/10.5194/nhess-13-1351-2013.

Modarres, M., M. Kaminskiy, and V. Krivtsov. 2016. Reliability engineering
and risk analysis: A practical guide. Boca Raton, FL: CRC Press.

Newman, J. P., H. R. Maier, G. A. Riddell, A. C. Zecchin, J. E. Daniell,
A. M. Schaefer, H. van Delden, B. Khazai, M. J. O’Flaherty, and C. P.
Newland. 2017. “Review of literature on decision support systems for
natural hazard risk reduction: Current status and future research direc-
tions.” Environ. Modell. Software 96 (Oct): 378–409. https://doi.org/10
.1016/j.envsoft.2017.06.042.

NRC (National Research Council). 1999. The impacts of natural disasters:
A framework for loss estimation. Washington, DC: National Academy
Press.

OSSPAC (Oregon Seismic Safety Policy Advisory Commission). 2013.
The Oregon resilience plan: Reducing risk and improving recovery for
the next Cascadia earthquake and tsunami. Salem, OR: OSSPAC.

© ASCE 04023031-17 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2023, 29(4): 04023031 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

O
R

EG
O

N
 S

TA
TE

 U
N

IV
ER

SI
TY

 o
n 

03
/2

7/
25

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://doi.org/10.21203/rs.3.rs-1862973/v1
https://doi.org/10.21203/rs.3.rs-1862973/v1
https://doi.org/10.1080/09535314.2020.1713729
https://doi.org/10.1080/09535314.2020.1713729
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000317
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000317
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000177
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000177
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000429
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000429
https://doi.org/10.1142/S1793431119500088
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001353
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001353
https://doi.org/10.1193/1.1775796
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000307
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000307
https://doi.org/10.1016/j.tra.2016.09.027
https://doi.org/10.17603/ds2-sp99-xv89
https://doi.org/10.1080/23789689.2016.1254996
https://doi.org/10.1080/23789689.2016.1254996
https://doi.org/10.1080/23789689.2016.1255000
https://doi.org/10.1080/23789689.2016.1255000
https://doi.org/10.3390/su3112157
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1126/science.236.4798.162
https://doi.org/10.1126/science.236.4798.162
https://doi.org/10.3390/en14196132
https://doi.org/10.1016/j.ress.2019.106568
https://doi.org/10.1016/j.ress.2019.106568
https://doi.org/10.1007/s00477-016-1377-5
https://doi.org/10.1007/s00477-016-1377-5
https://doi.org/10.1016/S0378-3839(02)00043-1
https://doi.org/10.1016/S0378-3839(02)00043-1
https://doi.org/10.1016/j.strusafe.2019.101890
https://doi.org/10.1016/j.strusafe.2019.101890
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002019
https://doi.org/10.5194/nhess-13-1351-2013
https://doi.org/10.1016/j.envsoft.2017.06.042
https://doi.org/10.1016/j.envsoft.2017.06.042


Ouyang, M., and L. Duenas-Osorio. 2014. “Multi-dimensional hurricane
resilience assessment of electric power systems.” Struct. Saf. 48 (May):
15–24. https://doi.org/10.1016/j.strusafe.2014.01.001.

Ouyang, M., and Z. Wang. 2015. “Resilience assessment of interdependent
infrastructure systems: With a focus on joint restoration modeling and
analysis.” Reliab. Eng. Syst. Saf. 141 (Sep): 74–82. https://doi.org/10
.1016/j.ress.2015.03.011.

Park, H., M. Alam, D. T. Cox, A. R. Barbosa, and J. W. van de Lindt. 2019.
“Probabilistic seismic and tsunami damage analysis (PSTDA) of the
Cascadia subduction zone applied to Seaside, Oregon.” Int. J. Disaster
Risk Reduct. 35 (Apr): 101076. https://doi.org/10.1016/j.ijdrr.2019
.101076.

Park, H., D. T. Cox, M. Alam, and A. R. Barbosa. 2017a. “Probabilistic
seismic and tsunami hazard analysis conditioned on a megathrust rup-
ture of the Cascadia subduction zone.” Front. Built Environ. 3 (Jun): 32.
https://doi.org/10.3389/fbuil.2017.00032.

Park, H., D. T. Cox, and A. R. Barbosa. 2017b. “Comparison of inundation
depth and momentum flux-based fragilities for probabilistic tsunami
damage assessment and uncertainty analysis.” Coastal Eng. 122 (Apr):
10–26. https://doi.org/10.1016/j.coastaleng.2017.01.008.

PDNA (Post-Disaster Needs Assessment). 2010. Haiti earthquake PDNA:
Assessment of damage, losses, general and sectoral needs. Washington,
DC: World Bank.

Pilkington, S. F. 2019. “Integration of graphical, physics-based, and ma-
chine learning methods for assessment of impact and recovery of the
built environment from wind hazards.” Ph.D. dissertation, Dept. of Civil
and Environment Engineering, Colorado State Univ.

PUMS (Public Use Microdata Sample). 2017. ACS public use microdata
sample (PUMS) overview. Washington, DC: US Census Bureau.

QCEW (Quarterly Census of Employment and Wages). 2017. Quarterly
census of employment and wages. Washington, DC: Bureau of Labor
Statistics.

Rappaport, J., and J. D. Sachs. 2003. “The United States as a coastal nation.”
J. Econ. Growth 8 (1): 5–46. https://doi.org/10.1023/A:1022870216673.

Rong, Y., D. D. Jackson, H. Magistrale, and C. Goldfinger. 2014. “Magnitude
limits of subduction zone earthquakes.” Bull. Seismol. Soc. Am. 104 (5):
2359–2377. https://doi.org/10.1785/0120130287.

Roohi, M., J. W. van de Lindt, N. Rosenheim, Y. Hu, and H. Cutler. 2021.
“Implication of building inventory accuracy on physical and socioeco-
nomic resilience metrics for informed decision-making in natural hazards.”
Struct. Infrastruct. Eng. 17 (4): 534–554. https://doi.org/10.1080
/15732479.2020.1845753.

Rose, A. 2004. “Defining and measuring economic resilience to disasters.”
Disaster Prev. Manage. 13 (4): 307–314. https://doi.org/10.1108/0965356
0410556528.

Rose, A., and S. Y. Liao. 2005. “Modeling regional economic resilience to
disasters: A computable general equilibrium analysis of water service
disruptions.” J. Reg. Sci. 45 (1): 75–112. https://doi.org/10.1111/j.0022
-4146.2005.00365.x.

Rose, A., and D. Lim. 2002. “Business interruption losses from natural
hazards: Conceptual and methodological issues in the case of the
Northridge earthquake.” Environ. Hazards 4 (1): 1–14. https://doi
.org/10.1080/23789689.2019.1681821.

Rose, A., I. S. Wing, D. Wei, and A. Wein. 2016. “Economic impacts of a
California tsunami.” Nat. Hazard. Rev. 17 (2): 04016002. https://doi
.org/10.1061/(ASCE)NH.1527-6996.0000212.

Rosenheim, N., R. Guidotti, P. Gardoni, and W. G. Peacock. 2019.
“Integration of detailed household and housing unit characteristic
data with critical infrastructure for post-hazard resilience modeling.”
Sustainable Resilient Infrastruct. 6 (6): 385–401. https://doi.org/10
.1080/23789689.2019.1681821.

Sanderson, D., D. T. Cox, A. R. Barbosa, and J. Bolte. 2022. “Modeling
regional and local resilience of infrastructure networks following dis-
ruptions from natural hazards.” J. Infrastruct. Syst. 28 (3): 04022021.
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000694.

Sanderson, D., D. T. Cox, and G. Naraharisetty. 2021a. “A spatially explicit
decision support framework for parcel- and community-level resilience

assessment using Bayesian networks.” Sustainable Resilient Infrastruct.
7 (5): 531–551. https://doi.org/10.1080/23789689.2021.1966164.

Sanderson, D., S. Kameshwar, N. Rosenheim, and D. T. Cox. 2021b.
“Deaggregation of multi-hazard damages, losses, risks, and connectivity:
An application to the joint seismic-tsunami hazard at Seaside, Oregon.”
Nat. Hazard. 109 (2): 1821–1847. https://doi.org/10.1007/s11069-021
-04900-9.

Schultz, M. T., and E. R. Smith. 2016. “Assessing the resilience of coastal
systems: A probabilistic approach.” J. Coastal Res. 321 (5): 1032–1050.
https://doi.org/10.2112/JCOASTRES-D-15-00170.1.

Shoven, J. B., and J. Whalley. 1992. Applying general equilibrium.
Cambridge, UK: Cambridge University Press.

Sun, W., P. Bocchini, and B. D. Davison. 2020. “Resilience metrics and
measurement methods for transportation infrastructure: The state of the
art.” Sustainable Resilient Infrastruct. 5 (3): 168–199. https://doi.org/10
.1080/23789689.2018.1448663.

Tirasirichai, C. 2007. “An indirect loss estimation methodology to account
for regional earthquake damage to highway bridges.” Ph.D. thesis,
Dept. of Engineering Management, Univ. of Missouri-Rolla.

Titov, V. V., C. W. Moore, D. J. M. Greenslade, C. Pattiaratchi, R. Badal,
C. E. Synolakis, and U. Kânoğlu. 2011. “A new tool for inundation
modeling: Community modeling interface for tsunamis (ComMIT).”
Pure Appl. Geophys. 168 (11): 2121–2131. https://doi.org/10.1007
/s00024-011-0292-4.

US Census Bureau. 2020. “Table P1 total population by race. 2020
Census redistricting data (public law 94-171).” Accessed July 13, 2022.
https://data.census.gov/cedsci/table?g=1600000US4165950&tid=
DECENNIALPL2010.P1.

van de Lindt, J. W., et al. 2023. “The interdependent networked community
resilience modeling environment (IN-CORE).” Resilient Cities Struct.
2 (2): 57–66. https://doi.org/10.1016/j.rcns.2023.07.004.

van de Lindt, J. W., B. R. Ellingwood, H. Cutler, P. Gardoni, J. S. Lee, D.
Cox, and W. G. Peacock. 2019. “The structure of the Interconnected
Networked Community Resilience Modeling Environment (IN-
CORE).” In Proc., 2nd Int. Conf. on Natural Hazards & Infrastructure,
23–26. Athens, Greece: National Technical Univ. of Athens.

Wang, W., J. W. van de Lindt, B. Hartman, H. Cutler, J. L. Kruse, T. P.
McAllister, and S. Hamideh. 2022. “Determination of individual building
performance targets to achieve community-level social and economic
resilience metrics.” J. Struct. Eng. 148 (5): 04022045. https://doi.org/10
.1061/(ASCE)ST.1943-541X.0003338.

Wang, W., J. W. van de Lindt, N. Rosenheim, H. Cutler, B. Hartman, J. S.
Lee, and D. Calderson. 2021. “Effect of residential building wind retro-
fits on social and economic community-level resilience metrics.” J. In-
frastruct. Syst. 27 (4): 04021034. https://doi.org/10.1061/(ASCE)IS
.1943-555X.0000642.

Wang, Y., N. Wang, P. Lin, B. Ellingwood, H. Mahmoud, and T. Maloney.
2018. “De-aggregation of community resilience goals to obtain minimum
performance objectives for buildings under tornado hazards.” Struct. Saf.
70 (1): 82–92. https://doi.org/10.1016/j.strusafe.2017.10.003.

Wiebe, D. M., and D. T. Cox. 2014. “Application of fragility curves to
estimate building damage and economic loss at a community scale:
A case study of Seaside, Oregon.” Nat. Hazard. 71 (3): 2043–2061.
https://doi.org/10.1007/s11069-013-0995-1.

Wood, N. J. 2007. Variations in city exposure and sensitivity to tsunami
hazards in Oregon. Scientific Investigations Rep. No. 2007-5283.
Washington, DC: USGS.

Wood, N. J., C. G. Burton, and S. L. Cutter. 2010. “Community variations
in social vulnerability to Cascadia-related tsunami in the US Pacific
Northwest.” Nat. Hazard. 52 (Feb): 369–389. https://doi.org/10.1007
/s11069-009-9376-1.

Zhang, Y., N. Yang, and U. Lall. 2016. “Modeling and simulation of the
vulnerability of interdependent power-water infrastructure networks to
cascading failures.” J. Syst. Sci. Syst. Eng. 25 (1): 102–118. https://doi
.org/10.1007/s11518-016-5295-3.

Zhou, L., and Z. Chen. 2021. “Are CGE models reliable for disaster impact
analyses?” Econ. Syst. Res. 33 (1): 20–46. https://doi.org/10.1080
/09535314.2020.1780566.

© ASCE 04023031-18 J. Infrastruct. Syst.

 J. Infrastruct. Syst., 2023, 29(4): 04023031 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

O
R

EG
O

N
 S

TA
TE

 U
N

IV
ER

SI
TY

 o
n 

03
/2

7/
25

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://doi.org/10.1016/j.strusafe.2014.01.001
https://doi.org/10.1016/j.ress.2015.03.011
https://doi.org/10.1016/j.ress.2015.03.011
https://doi.org/10.1016/j.ijdrr.2019.101076
https://doi.org/10.1016/j.ijdrr.2019.101076
https://doi.org/10.3389/fbuil.2017.00032
https://doi.org/10.1016/j.coastaleng.2017.01.008
https://doi.org/10.1023/A:1022870216673
https://doi.org/10.1785/0120130287
https://doi.org/10.1080/15732479.2020.1845753
https://doi.org/10.1080/15732479.2020.1845753
https://doi.org/10.1108/09653560410556528
https://doi.org/10.1108/09653560410556528
https://doi.org/10.1111/j.0022-4146.2005.00365.x
https://doi.org/10.1111/j.0022-4146.2005.00365.x
https://doi.org/10.1080/23789689.2019.1681821
https://doi.org/10.1080/23789689.2019.1681821
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000212
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000212
https://doi.org/10.1080/23789689.2019.1681821
https://doi.org/10.1080/23789689.2019.1681821
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000694
https://doi.org/10.1080/23789689.2021.1966164
https://doi.org/10.1007/s11069-021-04900-9
https://doi.org/10.1007/s11069-021-04900-9
https://doi.org/10.2112/JCOASTRES-D-15-00170.1
https://doi.org/10.1080/23789689.2018.1448663
https://doi.org/10.1080/23789689.2018.1448663
https://doi.org/10.1007/s00024-011-0292-4
https://doi.org/10.1007/s00024-011-0292-4
https://data.census.gov/cedsci/table?g=1600000US4165950%26tid=DECENNIALPL2010.P1
https://data.census.gov/cedsci/table?g=1600000US4165950%26tid=DECENNIALPL2010.P1
https://doi.org/10.1016/j.rcns.2023.07.004
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003338
https://doi.org/10.1061/(ASCE)ST.1943-541X.0003338
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000642
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000642
https://doi.org/10.1016/j.strusafe.2017.10.003
https://doi.org/10.1007/s11069-013-0995-1
https://doi.org/10.1007/s11069-009-9376-1
https://doi.org/10.1007/s11069-009-9376-1
https://doi.org/10.1007/s11518-016-5295-3
https://doi.org/10.1007/s11518-016-5295-3
https://doi.org/10.1080/09535314.2020.1780566
https://doi.org/10.1080/09535314.2020.1780566

