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ABSTRACT: Frequency and intensity of hydrological hazards have increased. Consequently,
riverine bridges are suffering damage due to flooding. Fragility functions are used to estimate
such damage conditioned on hazard intensity. However, flood fragility functions are limited for
riverine bridges, and generally lack for masonry bridges. This paper presents a methodology to
derive flood fragility functions for masonry arch bridges accounting for component failure modes.
Demand and capacity of bridge components are derived from existing analytical expressions, and
account for aleatory uncertainties via Monte Carlo simulations. The methodology is illustrated
using a UK masonry bridge, which collapsed due to winter flood-induced scour. The investigated
bridge is divided into its components (e.g., arches, pier) and a scour fragility function is derived
for the arch, based on a lognormal cumulative distribution fitting to the derived failure probability
data. Future research will develop scour fragility functions for other bridge components.

1 INTRODUCTION

In recent years various bridges have collapsed because of increasing precipitations, floods, and
lack of maintenance (Schaap and Caner, 2021). In the United Kingdom (UK), recent collapses
have highlighted the vulnerability of masonry arch bridges to flooding (Solan et al., 2020). For
instance, eight masonry bridges collapsed in the Cumbria region alone (Northwest of England)
during the 2009 and 2015 floods, resulting in £10.49 million of reconstruction costs (Li et al.,
2021). Flood-induced bridge damage can result from scour, hydrostatic or hydrodynamic
actions (HE, 2020a). The literature indicates that scour is the leading cause of bridge damage
(Sasidharan et al., 2021), including natural, general, contraction, and local scour (HE, 2020a).

Quantifying the flood risk of bridge portfolios is becoming crucial to reduce economical and
human losses (Swiss Re, 2021). Risk is typically obtained as the product of hazard, exposure, and
vulnerability (Ang and Tang, 1975). Vulnerability represents the likelihood of losses as a function of
hazard intensity measure(s) (Galasso et al., 2021), where expected losses are given as the product of
the expected level of damage and bridge restoration costs for the various levels of damage (Gidaris
et al., 2017). The expected level of damage conditioned on hazard intensity measure(s) is referred as
“fragility” and estimated via fragility functions (Wen and Ellingwood, 2005). For applying fragility
functions in vulnerability assessments, structures within a portfolio are grouped in vulnerability clas-
ses (Burns et al., 2021; Mangalathu et al., 2017), i.e. groups of structures which do not have statistic-
ally significant different responses (e.g. reinforced concrete multi-column bent bridges).

Bridge flood vulnerability classes that explicitly account for bridge structural performance and
their possible failure modes are currently scarce in the literature (Gidaris et al., 2017; Degan Di
Dieco et al., 2022). When considering masonry arch bridges, Lamb et al. (2019) derived scour fragil-
ity functions by fitting lognormal fragility functions to probability data of historical failures, and
flood return period as intensity measure. Eidsvig et al. (2021) and Mendoza Cabanzo et al. (2022)
derived scour fragility functions via limit state analyses of load carrying capacity and flow discharge
as intensity measure. George and Menon (2021) proposed scour fragility functions derived via
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kinematic chain limit analyses with scour-induced pier rotation as intensity measure. Maroni et al.
(2020) developed a Bayesian scour fragility function using a qualitative risk classification, scour
depth data from monitoring, and relative scour depth as intensity measure. The reviewed studies
show that their fragility functions do not consider failure modes of components. Subdividing
a bridge into key structural components affects damage estimates of bridge portfolios (Minnucci
et al., 2022; Nielson and DesRoches, 2007) and consequently their risk. As a result, the first step to
build robust estimates for flood-induced damage and risk is the investigation of significant failure
modes of bridge components and their interdependencies (Argyroudis and Mitoulis, 2021; Ren
et al., 2019).

This paper proposes a methodology of fragility functions for masonry arch bridges which
accounts for failure modes of key structural components. Figure 1 illustrates the rational of the
proposed methodology for pier local scour inducing compressive rotational failure of a masonry
arch; however, the methodology is derived to accommodate further components and their failure
modes. In this methodology, existing analytical expressions are used to estimate bridge compo-
nent capacities, while structural analysis schemes are used to estimate demands on bridge compo-
nents. As a proof-of-concept, the proposed methodology is applied to a two-span masonry arch
bridge which was spanning over River Calder in Halifax (West Yorkshire, North of England) and
that collapsed in winter 2015 because of flood-induced scour (Tubaldi et al., 2018). This paper is
divided into five sections. Section 2 details the methodology for developing fragility functions, the
approach to account for scour effects on estimates of masonry arch capacity and demand, and
the case study bridge. Section 3 shows the derived fragility function. Section 4 discusses underpin-
ning assumptions and suggests future work. Section 5 summarizes the key findings.

Figure 1. The proposed methodology for deriving flood fragility functions for masonry arch bridges.

2 METHODS

2.1  Fragility function derivation

Fragility functions can be derived empirically or analytically (Shinozuka et al., 2000). While
empirical fragility functions are derived from observed damage data, analytical fragility func-
tions are defined upon failure probability data, i.e. the ratio of the number of cases that
exceed the failure state to the total number of simulations, for each investigated intensity
measure (Mendoza Cabanzo et al., 2022). Based on structural reliability theory, the limit state
function M(x) (Mendoza Cabanzo et al., 2022) is given by:

M(x) = R(x) - E(x) (1)

where M(x) measures the difference between resistance effects R(x) (i.e. capacity) and load
effects E(x) (i.e. demand), and x is a vector of a particular sample point. From Equation 1, it
follows that failure is defined when M(x) < 0. Failure data can be generated via simple
Monte Carlo (MC) simulations (Schmidt et al., 2019) and fitted with a cumulative distribution
function, such as the lognormal fragility function (Baker, 2015). This study focuses on the
limit state function for ultimate compressive strength only.

1508



The compressive resistance of masonry elements R (i.e. capacity) is given by Equation 4.7.1
of CD 376 (HE, 2020b):

R(R)=0.6-F, [R.-b-(t—2e)] )

where b (mm) is the element width, R, (N/mm?)is the basic random variable defining the
masonry compressive strength, ¢ (mm) is the overall element thickness, e (mm) is the eccentricity
of the centre of compression in the element, 0.6 is a deterministic coefficient, and F, is the condi-
tion factor and function of cracking in the arch (see Equation 6). Note that the 0.6 coefficient
derives from Equation 4.7.1 in CD 376 (HE, 2020b), where 0.6 = 0.4 y,,, and y,, = 1.5 is a par-
tial safety factor. The masonry compressive strength R, is assumed normally distributed with
mean value 7. and coefficient of variation CoV.,. For the normal random variable R., the mean
value 7. is obtained from the characteristic value f; as follow (Melchers and Beck, 2018):

Te :fk/(l — ko.o5 - Co VC) (3)

where kg o5 is the value of the standard normal variable for a probability of 0.05, f; is given by
Equation 3.1 of BS EN 1996-1-1:2005 (BSI, 2013):

Je = KI5 (4)

where a, 8, and K are constants, function of mortar and unit type, and listed at paragraph
3.6.1.2 of BS EN 1996-1-1:2005 (BSI, 2013), f,, is the mean compressive mortar strength, and
f» 1s the normalised mean compressive unit strength (i.e. brick), in the direction of the applied
action effect, and all these variables have been considered deterministic. Annex 2 of Morton
(2012) provides the equation for f;:

with both CF conditioning factor and J shape factor related to brick tests given by Annex
A of BS EN 772-1:2011 (BSI, 2015), f,, is the mean compressive strength of the unit, and all
these variables have been considered deterministic. The condition factor F,., given by
Equations 7.5.1a,b of CS 454 (HE, 2020c), is used to consider the material degradation defects
in arch conditions:

F. = FcMFj = FcM(FdeFmo) (6)

where F¢,, is the arch barrel condition factor, F; is the joint factor for arch diagonal cracks,
F,, is the joint width factor, F, is the joint depth factor, and F,,, is the mortar factor. The
value of F¢y, and F; shall be determined according to Tables 7.5.1a,b,c,d of CS 454 (HE,
2020c) after a bridge inspection; however, their values have been assumed in this study, and
considered deterministic.

The compressive load effect E (i.e. demand) is determined according to the assessment level
1 of CS 454 (HE, 2020c), where simple structural analyses are carried out and the masonry
tensile strength is neglected:

E(Fm) = Sa(Fm)/@[ (7)

where S,(T,,) is the compressive force in the component, linear function of the unit weight of
masonry I';, [see Equation 45 in Chapter 3 of Como (2013)], and ®; is the slenderness and eccen-
tricity factor given by Equation 6.4 of BS EN 1996-1-1:2005 (BSI, 2013). Note that the compres-
sive force in the component S,(T',,) is derived from the structural analysis, I, is the basic
random variable, ®; is considered deterministic and constant with scour depth, and load partial
factors have been assumed equal to 1.0. The unit weight of masonry I',, is assumed normally
distributed with mean value 7,, and coefficient of variation CoV,. The eccentricity of loads has
been considered in the verification via the slenderness and eccentricity factor ®; (BSI, 2013)
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®; =1—2(e;/t) (8)

where e; = 0.05¢ is the minimum eccentricity at the element top and ¢ is the element thickness.

In this study, dead loads, superimposed dead loads and pier local scour are the considered
actions (HE, 2020c). To determine the thrust maximum value, Méry’s method (Méry, 1840) is
applied in the main plane (X-Y) of the case study bridge (Figure 2a). Méry (1840) supposed
a three-hinge mechanism for the arch, with hinges located at the springing lines and crown,
and the masonry material assumed linear elastic. The resulting scheme is structurally deter-
mined, the maximum thrust occurs at the springing level and e is equal to 1/6 of the arch’s
thickness. Therefore, the expressions for S,(I',,) was derived using equilibrium equations, and
then implemented in Jupiter notebooks with Python (PSF, 2022).

Subsequently, R.n Equation 2 and T, in Equation 7 have been sampled with simple MC
simulations (Schmidt et al., 2019) to estimate R(R,) and E(T,;,). Then, the arch probability of
failure Phas been calculated as:

Py=n(M(x) < 0)/N 9)

where N is the number of conducted simulations and n(M(x) < 0) is the number of simula-
tions n for which M(x) < 0 according to Equation 1. A convergence assessment of the MC
estimator for both R. and T, was performed in terms of Col following procedures in Ballio
and Guadagnini (2004), i.e. root mean square of sample mean/variance divided by sample
mean/variance, to identify the needed number of simulations for stabilisation of CoV values.
Finally, failure probability data was fitted with a lognormal fragility function by following
procedures in Baker (2015):

P =0 [111 (ds‘,(,(. /9) /B] (10)

where d; ;. is the pier local scour depth, 6 and ﬂ are the estimates of median and log standard
deviation, respectively, obtained using the maximum likelihood estimation method.

2.2 Case study

The fragility assessment was carried out on a two-span masonry arch bridge in Halifax (West
Yorkshire, England), which was spanning over River Calder and that collapsed in Decem-
ber 2015 due to flood-induced scour (Tubaldi et al., 2018). The geometry of the bridge is typ-
ical in terms of span of various UK riverine bridge portfolios (Mathews and Hardman, 2017;
Stevens et al., 2020). Figure 2a depicts the geometry of the investigated bridge, including:
length of 20.30m between abutment faces; out-to-out width along the transverse direction of
3.80m; the two arches are segmental in shape, assumed of one ring, with span length of 9.26m,
intrados rise of 3.45m, arch thickness of 0.50m (r/L = 0.37, t,/L = 0.05); the pier has
a rectangular transverse section of width 1.8m and depth 3.40m; bridge total length of 33.40m.
The masonry of arches, pier, spandrel walls, and parapet has unit weight y,, 22 kN/m’
(Tubaldi et al., 2018), assumed as mean value y,, = y,,, and CoV, = 10% (Su et al., 2020), while
backfill soil has unit weight of 19 kN/m? (Tubaldi et al., 2018) and considered deterministic.
Regarding mechanical properties: (i) for general purpose mortar M4: a = 0.7, = 0.3, f,, = 4
MPa; (ii) for group 1 calcium silicate units: K = 0.55; (iii) for red sandstone wide blocks (Wiggins
et al., 2019): CF = 1, 6 = 1.18 for air-dry brick testing, f, = 10 MPa; (iv) resulting masonry: f;
=4.69 MPa, COV. = 15% (Conde et al, 2020), kgps = 1.6449, 7. =6.23 MPa.
Regarding the structural scheme (Figure 2b), parapet, spandrel walls, and backfill are con-
sidered as dead loads; the three-hinged arch lies on beam-like pier and abutments; the pier lies on
beam-like shallow foundation, while abutments do not have any foundation; the foundation lies
on Winkler-like spring soil; the soil-foundation modelling is outside of the scope of this study, as
well as considering lateral earth pressures. Given the structure’s vertical symmetry, the structural
analysis is limited to half of a span; a one-meter arch barrel depth (i.e. # = 1.00m) is examined.
Before performing the probabilistic assessment, the deterministic assessment identified the
arch as the component at the highest risk of failure among other components. Therefore, the
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arch is the main focus of the reliability analysis performed in this study and for which the fra-
gility function is derived.

Failure probability data was derived for six different discrete levels of local scour depth, d ;,. =
[1.20, 1.50, 2.00, 2.30, 2.49, 2.54]m, previously investigated by Tubaldi et al. (2018), and related to
a not-symmetric scour hole. Scour effects on capacity and demand were considered via the empir-
ical coefficients of Equation 6 and Equation 8, respectively, to reflect that pier local scour induces
(Tubaldi et al., 2018): cracks in the arch barrel, central pier, pier-foundation interface, and eccen-
tricity of vertical loads. Considering that the diagonal crack F,;, values reduce capacity the most
(HE, 2020c), this case study investigates arch diagonal cracks only. Input values for F,. are: Fcy, =
0.3 to 0.9 for diagonal cracks, while the variation of F.;, with scour depth is assumed linear
between Fcyr = 0.3 for d g, =2.54m and Fcyr = 0.9 for dg g = 120m; Fw = 1.0 for width of joint
= 6mm;F,; = 0.8 for joints with 10% of thickness of barrel insufficiently filled; F,,,, = 0.9 for loose
joint condition; the multiplication of F,, F,,,, and Fy leads to F; = 0.576; while F, = 10. For dj o
= 1.00 m. The assumption of F,, values is based on the interpretation of arch cracking patterns
and damages in tension due to pier vertical displacement and rotation determined by Tubaldi
et al. (2018) via three dimensional finite element analyses. For an arch barrel depth L/2 = 3.1m, ¢;
= 0.05 3.1m = 0.16m, Equation 8 gives ®; = 0.90 and assumed constant with scour depth.

Figure 2. (a) Illustration of the case study bridge (dimensions in m); (b) model of the system
bridge-river in scoured conditions.

3 RESULTS

The proposed methodology is demonstrated for the compressive failure mechanism of arches due
to pier local scour for the UK case study described previously. 100.000 MC simulations were
needed to obtain convergence for R. and T, in terms of CoV; the results of MC simulations are
here forth referred to as “realisations”. The 100.000 realisations of R. and I',,, were used to esti-
mate capacity and demand according to Equation 2 and 7, respectively. Then, the obtained cap-
acity and demand were used to estimate the limit state function (Equation 1) for the six
investigated scour depths and the number of simulations for which M (x) < 0 was recorded. For
instance, for dsjoc = 1.50m, F. = 0.900 and ®; = 0.90, lead to 39.879 failures (M (x) < 0). There-
fore, the first-not-null failure probability point is (1.50m, 0.3988); further points were determined
by changing F, at each investigated scour depth, while ®; was considered constant, followed by
performing MC simulations.
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The derived scour fragility function for the arch is shown in Figure 3 for a scour depth
range of 1.00m to 2.6m, where 1.0m is the foundation’s depth and 2.6m is just above the
2.54m collapse scour depth estimated by Tubaldi et al. (2018). Note that the minimum value
considered for scour depth is 1.20m because pier displacements develop only after scour depth
exceeds the foundation depth (i.e. 1.0m). From fitting the failure probability data, a median
6 = 1.52m and log standard deviation of # = 0.05 were estimated.

The proposed approach for deriving arch scour fragility functions could be repeated for
a different bridge geometry and the resulting fragility function could be used to predict the failure
probability of a masonry arch, if measurements of pier scour depth is available at the bridge site.
Provided the made assumptions (see Section 4), the derived fragility function shown in Figure 3
represents one of the inputs needed to determine the bridge fragility function(s) in a failure mode
analysis when multiple components are considered (e.g. piers, foundation). To the authors’
knowledge, the derived arch scour fragility function represents the first attempt in the literature
to determine flood fragility functions of masonry arch bridges from component fragilities.

Figure 3. Derived scour fragility function for the investigated masonry arch.

4 DISCUSSION AND FUTURE RESEARCH

The proposed deriving methodology for flood fragility functions for masonry arch bridges
advances the existing literature. Towards defining reliable fragility estimates, this study inves-
tigated the fragility of a masonry arch for the compressive resistance assessment, considering
effects of pier local scour on arch demand and capacity; a UK case study was used to demon-
strate the methodology. Results (Figure 3) showed that the investigated arch presents
a median value of pier local scour depth of approximately 1.50m.

In the calculations, assumptions were made for dimensions and quality of bricks and mortar
because no information was available. The effects of scour on the arch were considered via
empirical coefficients (i.e. F,, ®;), subjectively linked to scour depth because no relations were
found. Furthermore, this study investigated a reduction of arch capacity due to diagonal cracks
only, but other cracks (e.g. longitudinal) are possible (HE, 2020c). In addition, the interaction
between backfill-arch-spandrel walls shall be investigated since it may affect the bridge flood
response (Sarhosis et al., 2016). Failure probability data was fitted with a lognormal fragility
function, which was shown to provide equal failure probabilities of other possible functions
(Lallemant et al., 2015); however, more failure data shall be generated from the discretization of
the expressions of condition factor F, and eccentricity factor ®; as function of scour depth.

Although this work presents a fragility function for one component only (arch), it recommends to
extend the methodology to the other components, to avoid underestimating the risk failure of
a bridge (Nielson and DesRoches, 2007). Future work will develop scour fragility functions for com-
pression limit state of other bridge components, such as pier, to obtain the global failure fragility

1512



function(s). Further studies could consider additional random variables, e.g. shear strength of the
mortar, to understand if there is more than one fragility function for a considered damage state;
epistemic uncertainties, e.g. variability in the parameters of the used probability distribution func-
tion, shall be addressed and validated to enable implementation of fragility functions.

5 CONCLUSIONS

This study proposes a deriving methodology for scour fragility functions of masonry arch
bridges able to account for failure modes of significant bridge components, which represents
a novelty in the existing literature. Using a UK case study, a fragility function for the arch of
a masonry bridge subjected to pier local scour was derived via simple MC simulations and
analytical design expressions as an example. Future research opportunities include: (a) apply-
ing the proposed methodology to other bridge components; (b) investigating the relations
scour depth-masonry capacity and demand; (c) investigating effects of various epistemic
uncertainties; (d) validating the developed fragility functions.
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