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ABSTRACT: Frequency and intensity of hydrological hazards have increased. Consequently, 
riverine bridges are suffering damage due to flooding. Fragility functions are used to estimate 
such damage conditioned on hazard intensity. However, flood fragility functions are limited for 
riverine bridges, and generally lack for masonry bridges. This paper presents a methodology to 
derive flood fragility functions for masonry arch bridges accounting for component failure modes. 
Demand and capacity of bridge components are derived from existing analytical expressions, and 
account for aleatory uncertainties via Monte Carlo simulations. The methodology is illustrated 
using a UK masonry bridge, which collapsed due to winter flood-induced scour. The investigated 
bridge is divided into its components (e.g., arches, pier) and a scour fragility function is derived 
for the arch, based on a lognormal cumulative distribution fitting to the derived failure probability 
data. Future research will develop scour fragility functions for other bridge components.

1 INTRODUCTION

In recent years various bridges have collapsed because of increasing precipitations, floods, and 
lack of maintenance (Schaap and Caner, 2021). In the United Kingdom (UK), recent collapses 
have highlighted the vulnerability of masonry arch bridges to flooding (Solan et al., 2020). For 
instance, eight masonry bridges collapsed in the Cumbria region alone (Northwest of England) 
during the 2009 and 2015 floods, resulting in £10.49 million of reconstruction costs (Li et al., 
2021). Flood-induced bridge damage can result from scour, hydrostatic or hydrodynamic 
actions (HE, 2020a). The literature indicates that scour is the leading cause of bridge damage 
(Sasidharan et al., 2021), including natural, general, contraction, and local scour (HE, 2020a).

Quantifying the flood risk of bridge portfolios is becoming crucial to reduce economical and 
human losses (Swiss Re, 2021). Risk is typically obtained as the product of hazard, exposure, and 
vulnerability (Ang and Tang, 1975). Vulnerability represents the likelihood of losses as a function of 
hazard intensity measure(s) (Galasso et al., 2021), where expected losses are given as the product of 
the expected level of damage and bridge restoration costs for the various levels of damage (Gidaris 
et al., 2017). The expected level of damage conditioned on hazard intensity measure(s) is referred as 
“fragility” and estimated via fragility functions (Wen and Ellingwood, 2005). For applying fragility 
functions in vulnerability assessments, structures within a portfolio are grouped in vulnerability clas
ses (Burns et al., 2021; Mangalathu et al., 2017), i.e. groups of structures which do not have statistic
ally significant different responses (e.g. reinforced concrete multi-column bent bridges).

Bridge flood vulnerability classes that explicitly account for bridge structural performance and 
their possible failure modes are currently scarce in the literature (Gidaris et al., 2017; Degan Di 
Dieco et al., 2022). When considering masonry arch bridges, Lamb et al. (2019) derived scour fragil
ity functions by fitting lognormal fragility functions to probability data of historical failures, and 
flood return period as intensity measure. Eidsvig et al. (2021) and Mendoza Cabanzo et al. (2022) 
derived scour fragility functions via limit state analyses of load carrying capacity and flow discharge 
as intensity measure. George and Menon (2021) proposed scour fragility functions derived via 
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kinematic chain limit analyses with scour-induced pier rotation as intensity measure. Maroni et al. 
(2020) developed a Bayesian scour fragility function using a qualitative risk classification, scour 
depth data from monitoring, and relative scour depth as intensity measure. The reviewed studies 
show that their fragility functions do not consider failure modes of components. Subdividing 
a bridge into key structural components affects damage estimates of bridge portfolios (Minnucci 
et al., 2022; Nielson and DesRoches, 2007) and consequently their risk. As a result, the first step to 
build robust estimates for flood-induced damage and risk is the investigation of significant failure 
modes of bridge components and their interdependencies (Argyroudis and Mitoulis, 2021; Ren 
et al., 2019).

This paper proposes a methodology of fragility functions for masonry arch bridges which 
accounts for failure modes of key structural components. Figure 1 illustrates the rational of the 
proposed methodology for pier local scour inducing compressive rotational failure of a masonry 
arch; however, the methodology is derived to accommodate further components and their failure 
modes. In this methodology, existing analytical expressions are used to estimate bridge compo
nent capacities, while structural analysis schemes are used to estimate demands on bridge compo
nents. As a proof-of-concept, the proposed methodology is applied to a two-span masonry arch 
bridge which was spanning over River Calder in Halifax (West Yorkshire, North of England) and 
that collapsed in winter 2015 because of flood-induced scour (Tubaldi et al., 2018). This paper is 
divided into five sections. Section 2 details the methodology for developing fragility functions, the 
approach to account for scour effects on estimates of masonry arch capacity and demand, and 
the case study bridge. Section 3 shows the derived fragility function. Section 4 discusses underpin
ning assumptions and suggests future work. Section 5 summarizes the key findings.

2 METHODS

2.1  Fragility function derivation

Fragility functions can be derived empirically or analytically (Shinozuka et al., 2000). While 
empirical fragility functions are derived from observed damage data, analytical fragility func
tions are defined upon failure probability data, i.e. the ratio of the number of cases that 
exceed the failure state to the total number of simulations, for each investigated intensity 
measure (Mendoza Cabanzo et al., 2022). Based on structural reliability theory, the limit state 
function M(x) (Mendoza Cabanzo et al., 2022) is given by:

where M(x) measures the difference between resistance effects R(x) (i.e. capacity) and load 
effects E(x) (i.e. demand), and x is a vector of a particular sample point. From Equation 1, it 
follows that failure is defined when M xð Þ � 0. Failure data can be generated via simple 
Monte Carlo (MC) simulations (Schmidt et al., 2019) and fitted with a cumulative distribution 
function, such as the lognormal fragility function (Baker, 2015). This study focuses on the 
limit state function for ultimate compressive strength only.

Figure 1.  The proposed methodology for deriving flood fragility functions for masonry arch bridges.
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The compressive resistance of masonry elements R (i.e. capacity) is given by Equation 4.7.1 
of CD 376 (HE, 2020b):

where b (mm) is the element width, Rc (N/mm2)is the basic random variable defining the 
masonry compressive strength, t (mm) is the overall element thickness, e (mm) is the eccentricity 
of the centre of compression in the element, 0.6 is a deterministic coefficient, and Fc is the condi
tion factor and function of cracking in the arch (see Equation 6). Note that the 0.6 coefficient 
derives from Equation 4.7.1 in CD 376 (HE, 2020b), where 0.6 = 0.4 γM, and γM = 1.5 is a par
tial safety factor. The masonry compressive strength Rc is assumed normally distributed with 
mean value �rc and coefficient of variation CoVc. For the normal random variable Rc, the mean 
value �rc is obtained from the characteristic value fk as follow (Melchers and Beck, 2018):

where k0.05 is the value of the standard normal variable for a probability of 0:05, fk is given by 
Equation 3.1 of BS EN 1996-1-1:2005 (BSI, 2013):

where α; β, and K are constants, function of mortar and unit type, and listed at paragraph 
3.6.1.2 of BS EN 1996-1-1:2005 (BSI, 2013), fm is the mean compressive mortar strength, and 
fb is the normalised mean compressive unit strength (i.e. brick), in the direction of the applied 
action effect, and all these variables have been considered deterministic. Annex 2 of Morton 
(2012) provides the equation for fb:

with both CF conditioning factor and δ shape factor related to brick tests given by Annex 
A of BS EN 772-1:2011 (BSI, 2015), fbm is the mean compressive strength of the unit, and all 
these variables have been considered deterministic. The condition factor Fc, given by 
Equations 7.5.1a,b of CS 454 (HE, 2020c), is used to consider the material degradation defects 
in arch conditions:

where FCM is the arch barrel condition factor, Fj is the joint factor for arch diagonal cracks, 
Fw is the joint width factor, Fd is the joint depth factor, and Fmo is the mortar factor. The 
value of FCM and Fj shall be determined according to Tables 7.5.1a,b,c,d of CS 454 (HE, 
2020c) after a bridge inspection; however, their values have been assumed in this study, and 
considered deterministic.

The compressive load effect E (i.e. demand) is determined according to the assessment level 
1 of CS 454 (HE, 2020c), where simple structural analyses are carried out and the masonry 
tensile strength is neglected:

where Sa �mð Þ is the compressive force in the component, linear function of the unit weight of 
masonry �m [see Equation 45 in Chapter 3 of Como (2013)], and �i is the slenderness and eccen
tricity factor given by Equation 6.4 of BS EN 1996-1-1:2005 (BSI, 2013). Note that the compres
sive force in the component Sað�mÞ is derived from the structural analysis, �m is the basic 
random variable, �i is considered deterministic and constant with scour depth, and load partial 
factors have been assumed equal to 1.0. The unit weight of masonry �m is assumed normally 
distributed with mean value γm and coefficient of variation CoVv. The eccentricity of loads has 
been considered in the verification via the slenderness and eccentricity factor �i (BSI, 2013)
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where ei = 0.05t is the minimum eccentricity at the element top and t is the element thickness.
In this study, dead loads, superimposed dead loads and pier local scour are the considered 

actions (HE, 2020c). To determine the thrust maximum value, Méry’s method (Méry, 1840) is 
applied in the main plane (X-Y) of the case study bridge (Figure 2a). Méry (1840) supposed 
a three-hinge mechanism for the arch, with hinges located at the springing lines and crown, 
and the masonry material assumed linear elastic. The resulting scheme is structurally deter
mined, the maximum thrust occurs at the springing level and e is equal to 1/6 of the arch’s 
thickness. Therefore, the expressions for Sa �mð Þ was derived using equilibrium equations, and 
then implemented in Jupiter notebooks with Python (PSF, 2022).

Subsequently, Rcin Equation 2 and �m in Equation 7 have been sampled with simple MC 
simulations (Schmidt et al., 2019) to estimate R(Rc) and E �mð Þ. Then, the arch probability of 
failure Pf has been calculated as:

where N is the number of conducted simulations and n M xð Þ � 0ð Þ is the number of simula
tions n for which M xð Þ � 0 according to Equation 1. A convergence assessment of the MC 
estimator for both Rc and �m was performed in terms of CoV following procedures in Ballio 
and Guadagnini (2004), i.e. root mean square of sample mean/variance divided by sample 
mean/variance, to identify the needed number of simulations for stabilisation of CoV values. 
Finally, failure probability data was fitted with a lognormal fragility function by following 
procedures in Baker (2015):

where ds.loc is the pier local scour depth, θ̂ and β̂ are the estimates of median and log standard 
deviation, respectively, obtained using the maximum likelihood estimation method.

2.2  Case study

The fragility assessment was carried out on a two-span masonry arch bridge in Halifax (West 
Yorkshire, England), which was spanning over River Calder and that collapsed in Decem
ber 2015 due to flood-induced scour (Tubaldi et al., 2018). The geometry of the bridge is typ
ical in terms of span of various UK riverine bridge portfolios (Mathews and Hardman, 2017; 
Stevens et al., 2020). Figure 2a depicts the geometry of the investigated bridge, including: 
length of 20.30m between abutment faces; out-to-out width along the transverse direction of 
3.80m; the two arches are segmental in shape, assumed of one ring, with span length of 9.26m, 
intrados rise of 3.45m, arch thickness of 0.50m (ri/L = 0.37, ta/L = 0.05); the pier has 
a rectangular transverse section of width 1.8m and depth 3.40m; bridge total length of 33.40m.

The masonry of arches, pier, spandrel walls, and parapet has unit weight γm 22 kN/m3 

(Tubaldi et al., 2018), assumed as mean value �γm ¼ γm, and CoVv = 10% (Su et al., 2020), while 
backfill soil has unit weight of 19 kN/m3 (Tubaldi et al., 2018) and considered deterministic.

Regarding mechanical properties: (i) for general purpose mortar M4: α = 0.7, β = 0.3, fm = 4 
MPa; (ii) for group 1 calcium silicate units: K = 0.55; (iii) for red sandstone wide blocks (Wiggins 
et al., 2019): CF = 1, δ = 1.18 for air-dry brick testing, fb = 10 MPa; (iv) resulting masonry: fk 

=4.69 MPa, COVc = 15% (Conde et al., 2020), k00.5 = 1.6449, �rc ¼ 6:23 MPa.
Regarding the structural scheme (Figure 2b), parapet, spandrel walls, and backfill are con

sidered as dead loads; the three-hinged arch lies on beam-like pier and abutments; the pier lies on 
beam-like shallow foundation, while abutments do not have any foundation; the foundation lies 
on Winkler-like spring soil; the soil-foundation modelling is outside of the scope of this study, as 
well as considering lateral earth pressures. Given the structure’s vertical symmetry, the structural 
analysis is limited to half of a span; a one-meter arch barrel depth (i.e. t = 1.00m) is examined.

Before performing the probabilistic assessment, the deterministic assessment identified the 
arch as the component at the highest risk of failure among other components. Therefore, the 
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arch is the main focus of the reliability analysis performed in this study and for which the fra
gility function is derived.

Failure probability data was derived for six different discrete levels of local scour depth, ds.loc = 
[1.20, 1.50, 2.00, 2.30, 2.49, 2.54]m, previously investigated by Tubaldi et al. (2018), and related to 
a not-symmetric scour hole. Scour effects on capacity and demand were considered via the empir
ical coefficients of Equation 6 and Equation 8, respectively, to reflect that pier local scour induces 
(Tubaldi et al., 2018): cracks in the arch barrel, central pier, pier-foundation interface, and eccen
tricity of vertical loads. Considering that the diagonal crack FcM values reduce capacity the most 
(HE, 2020c), this case study investigates arch diagonal cracks only. Input values for Fc are: FCM = 
0.3 to 0.9 for diagonal cracks, while the variation of FcM with scour depth is assumed linear 
between FCM = 0.3 for ds.loc =2.54m and FCM = 0.9 for ds.loc = 120m; Fw = 1.0 for width of joint 
= 6mm;Fd = 0.8 for joints with 10% of thickness of barrel insufficiently filled; Fmo = 0.9 for loose 
joint condition; the multiplication of Fw, Fmo, and Fd leads to Fj = 0.576; while Fc = 10. For ds.loc 

= 1.00 m. The assumption of FcM values is based on the interpretation of arch cracking patterns 
and damages in tension due to pier vertical displacement and rotation determined by Tubaldi 
et al. (2018) via three dimensional finite element analyses. For an arch barrel depth L/2 = 3.1m, ei 

= 0.05 3.1m = 0.16m, Equation 8 gives �i ¼ 0:90 and assumed constant with scour depth.

3 RESULTS

The proposed methodology is demonstrated for the compressive failure mechanism of arches due 
to pier local scour for the UK case study described previously. 100.000 MC simulations were 
needed to obtain convergence for Rc and �m in terms of CoV; the results of MC simulations are 
here forth referred to as “realisations”. The 100.000 realisations of Rc and �m were used to esti
mate capacity and demand according to Equation 2 and 7, respectively. Then, the obtained cap
acity and demand were used to estimate the limit state function (Equation 1) for the six 
investigated scour depths and the number of simulations for which M xð Þ � 0 was recorded. For 
instance, for ds.loc = 1.50m, Fc = 0.900 and �i ¼ 0:90, lead to 39.879 failures (M xð Þ � 0). There
fore, the first-not-null failure probability point is (1.50m, 0.3988); further points were determined 
by changing Fc at each investigated scour depth, while �i was considered constant, followed by 
performing MC simulations.

Figure 2.  (a) Illustration of the case study bridge (dimensions in m); (b) model of the system 
bridge-river in scoured conditions.
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The derived scour fragility function for the arch is shown in Figure 3 for a scour depth 
range of 1.00m to 2.6m, where 1.0m is the foundation’s depth and 2.6m is just above the 
2.54m collapse scour depth estimated by Tubaldi et al. (2018). Note that the minimum value 
considered for scour depth is 1.20m because pier displacements develop only after scour depth 
exceeds the foundation depth (i.e. 1.0m). From fitting the failure probability data, a median 
bθ ¼ 1:52m and log standard deviation of bβ ¼ 0:05 were estimated.

The proposed approach for deriving arch scour fragility functions could be repeated for 
a different bridge geometry and the resulting fragility function could be used to predict the failure 
probability of a masonry arch, if measurements of pier scour depth is available at the bridge site. 
Provided the made assumptions (see Section 4), the derived fragility function shown in Figure 3 
represents one of the inputs needed to determine the bridge fragility function(s) in a failure mode 
analysis when multiple components are considered (e.g. piers, foundation). To the authors’ 
knowledge, the derived arch scour fragility function represents the first attempt in the literature 
to determine flood fragility functions of masonry arch bridges from component fragilities.

4 DISCUSSION AND FUTURE RESEARCH

The proposed deriving methodology for flood fragility functions for masonry arch bridges 
advances the existing literature. Towards defining reliable fragility estimates, this study inves
tigated the fragility of a masonry arch for the compressive resistance assessment, considering 
effects of pier local scour on arch demand and capacity; a UK case study was used to demon
strate the methodology. Results (Figure 3) showed that the investigated arch presents 
a median value of pier local scour depth of approximately 1.50m.

In the calculations, assumptions were made for dimensions and quality of bricks and mortar 
because no information was available. The effects of scour on the arch were considered via 
empirical coefficients (i.e. Fc, �i), subjectively linked to scour depth because no relations were 
found. Furthermore, this study investigated a reduction of arch capacity due to diagonal cracks 
only, but other cracks (e.g. longitudinal) are possible (HE, 2020c). In addition, the interaction 
between backfill-arch-spandrel walls shall be investigated since it may affect the bridge flood 
response (Sarhosis et al., 2016). Failure probability data was fitted with a lognormal fragility 
function, which was shown to provide equal failure probabilities of other possible functions 
(Lallemant et al., 2015); however, more failure data shall be generated from the discretization of 
the expressions of condition factor Fc and eccentricity factor �i as function of scour depth.

Although this work presents a fragility function for one component only (arch), it recommends to 
extend the methodology to the other components, to avoid underestimating the risk failure of 
a bridge (Nielson and DesRoches, 2007). Future work will develop scour fragility functions for com
pression limit state of other bridge components, such as pier, to obtain the global failure fragility 

Figure 3.  Derived scour fragility function for the investigated masonry arch.
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function(s). Further studies could consider additional random variables, e.g. shear strength of the 
mortar, to understand if there is more than one fragility function for a considered damage state; 
epistemic uncertainties, e.g. variability in the parameters of the used probability distribution func
tion, shall be addressed and validated to enable implementation of fragility functions.

5 CONCLUSIONS

This study proposes a deriving methodology for scour fragility functions of masonry arch 
bridges able to account for failure modes of significant bridge components, which represents 
a novelty in the existing literature. Using a UK case study, a fragility function for the arch of 
a masonry bridge subjected to pier local scour was derived via simple MC simulations and 
analytical design expressions as an example. Future research opportunities include: (a) apply
ing the proposed methodology to other bridge components; (b) investigating the relations 
scour depth-masonry capacity and demand; (c) investigating effects of various epistemic 
uncertainties; (d) validating the developed fragility functions.
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