
1.  Introduction
Accurate tsunami early warning allows for more effective emergency planning, thereby mitigating the human and 
economic toll. However, constructing a rapid forecast model is challenging for several reasons. One is that the 
underlying physical processes are governed by partial differential equations whose solution requires substantial 
computation that cannot be performed in a short timeframe. Furthermore, determining the proper initial condi-
tions for the differential equations requires solving the earthquake source inversion problem, which itself holds 
significant uncertainty due to the lack of direct observations. The current US warning system relies on early esti-
mates of earthquake location and magnitude from seismic data, coupled with direct tsunami observations from 
Deep Ocean Assessment and Reporting of Tsunamis sensors (DART; Titov et al., 2005) in the deep ocean and 
coastal tide gauges. The sparsity of such sensors limits the amount of data one can collect on the tsunami directly. 
Moreover, one has to wait for the tsunami to reach these sensors, which can be hours after the earthquake.

In previous work (Liu et al., 2021a), hereafter referred to as Liu21, we explored machine learning (ML) tech-
niques to forecast tsunami waveforms at two “forecast gauges” in the Puget Sound (denoted Gauges 901 and 911) 
shown in Figure 1. The forecasts were based on synthetic tsunami observations from Cascadia Subduction Zone 
(CSZ) events at an hypothetical “observation gauge” (denoted Gauge 702) in the Strait of Juan de Fuca. This ML 
approach avoids the need for real-time source inversion and tsunami simulation. We showed that several hours of 
tsunami waveforms at the forecast gauges could be forecast from shorter time series at the observation gauge, but 
it still requires 30–60 min of observed data after the tsunami reaches the observation gauge.

Abstract  We investigate the potential of using Global Navigation Satellite System (GNSS) observations to 
directly forecast full tsunami waveforms in real time. We train convolutional neural networks to use less than 
9 min of GNSS data to forecast the full tsunami waveforms over 6 hr at select locations, and obtain accurate 
forecasts on a test data set. Our training and test data consists of synthetic earthquakes and associated GNSS 
data generated for the Cascadia Subduction Zone using the MudPy software, and corresponding tsunami 
waveforms in Puget Sound computed using GeoClaw. We use the same suite of synthetic earthquakes and 
waveforms as in earlier work where tsunami waveforms were used for forecasting, and provide a comparison. 
We also explore varying the number of GNSS stations, their locations, and their observation durations.

Plain Language Summary  Producing rapid real-time forecasts for tsunamis in the first few minutes 
of an earthquake is a challenging problem. Accurate forecasts often rely on direct measurements of the tsunami, 
which are only available at sparse locations, and only after the tsunami has passed the sensors. Real-time 
numerical modeling of the tsunami is also time consuming. This work attempts to bypass these difficulties by 
considering a model that can forecast tsunami wave heights based only on Global Navigation Satellite System 
(GNSS) data, which is available within minutes from an extensive network of stations. We present some 
initial results using this approach for hypothetical tsunamis originating from the Cascadia Subduction Zone, 
with forecast locations in Puget Sound. We show that this approach gives comparable results to earlier work 
based on observing tsunami waveforms for 30 or 60 min, but now using only a few minutes of GNSS data. We 
explore varying the number of GNSS stations and find that the model yields accurate forecasts when as few as 
20 GNSS stations are used, and outperforms our previous model when additional stations are used. The model 
performs well even when only the initial 4 min of GNSS data is used.
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In this paper, we show that equally good forecasts can be made using only a few minutes of data from an existing 
network of Global Navigation Satellite System (GNSS) stations. Tsunami warning centers are already starting 
to incorporate this data in performing earthquake magnitude estimates, and it has been shown that the use of 
GNSS data can have great benefits, particularly for near-field forecasting (Crowell et al., 2018; Melgar, Allen, 
et al., 2016; Ohno et al., 2022; Ohta et al., 2018; Williamson et al., 2020). We show that this can be taken further 
by training Convolutional Neural Networks (CNNs) to forecast the tsunami waveforms directly from the GNSS 
waveforms. Recently ML has been applied to GNSS data in other approaches to tsunami warning, for example, to 
produce a model that rapidly estimates the earthquake magnitude (Lin et al., 2021), or as a supplement to ocean 
pressure sensor data to improve tsunami forecasts (Makinoshima et al., 2021; Tsushima et al., 2014). But to our 
knowledge this is the first demonstration of the potential for very rapid forecasting of accurate tsunami waveforms 
based only on a few minutes of GNSS data.

We consider the same forecast Gauges 901 and 911 as in Liu21, and use the same set of 959 CSZ events to train 
and test the ML model. In contrast to Liu21, our model input is now less than 9 min of GNSS data from a set 
of up to 60 GNSS stations (selected from a set of 62 stations shown in Figure 2). We show that this model does 
as well as the Liu21 model, despite using observation data that is available almost immediately after the earth-
quake. Moreover, all 62 GNSS stations exist in practice (along with many more in the CSZ region), and there is 
a similar or greater density of GNSS stations in other active subduction zone regions such as Japan (Kawamoto 
et al., 2017) and Chile (Báez et al., 2018). Consequently, the methods studied here may be widely applicable to 
other subduction zones around the world.

2.  GNSS and Tsunami Waveform Data Sets
The hypothetical earthquakes used for training the ML model are the same as those used in Liu21, which were 
taken from a set of 1,300 synthetic CSZ events that were generated by Melgar, LeVeque et al. (2016) and archived 
at (Melgar, 2016), and that range in magnitude from Mw 7.8 to 9.3. These realizations were generated using 
a Karhunen-Loève (KL) expansion as proposed by LeVeque et al. (2016) and implemented in the fakequakes 
module of the MudPy software (Melgar, 2020). We used the seafloor motion for each event as data for a tsunami 
simulation, performed using the GeoClaw software (Clawpack Development Team,  2020). Synthetic gauges 
placed at the gauge locations 702, 901, and 911 recorded the simulated tsunami over a 6 hr period. As in Liu21, 
from the set of 1,300 realizations we chose Ndata = 959 events with significant tsunamis, and used Ntrain = 613 
realizations (64%) in the training set, reserving Nvalid = 154 and Ntest = 192 realizations (16% and 20%) for the 
validation and test sets, respectively. All sets contained a random sample of events from the full range of magni-
tudes. Further details of the preparation appear in (Text S1 in Supporting Information S1).

The main contrast between this work and Liu21 is that our model now only utilizes the synthetic GNSS data from 
each of the events. This data at the 62 GNSS stations was computed with MudPy and archived at (Melgar, 2016); 
the original paper using this data focused on the use of GNSS data in the context of earthquake early warning.

Figure 2 shows the location of the 62 stations and a typical set of 20 stations chosen for training a model in our 
robustness study discussed below. The GNSS data for one sample realization #1127 at 10 of these stations is also 
shown to illustrate this data. Three channels (E, N, and Z) are recorded corresponding to ground motion in the 
east, north, and vertical direction, respectively. For plots of the slip, seafloor deformation, and tsunami propaga-
tion for this same realization #1127, see Liu21.

3.  Methods
3.1.  Forecast Model

Our forecast model is an ensemble of CNNs. Each CNN has an input variable of dimension Ngnss × Ndir × Nin and 
output variable of dimension Ngauge × Nout. Here, Ngnss denotes the number of GNSS stations used for prediction, 
Ndir = 3 the number of GNSS channels (E, N, and Z), Nin the number of data points in the GNSS measurements 
(with a sampling rate of 1 Hz), Ngauge = 3, the total number of gauges where we make the forecast of the surface 
elevation, Nout = 256 the number of data points in computed tsunami surface elevation (tsunami waveform) over 
6 hr. In our experiments, the choice of stations and Ngnss will be varied. To vary the number of seconds of obser-
vations used, we keep Nin fixed and mask the later values.
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Figure 1.  Strait of Juan de Fuca (SJdF) region with gauge locations. Gauge 702 is the hypothetical observation gauge used in Liu21, while Gauge 901 in Discovery 
Bay and 911 in Admiralty Inlet are the forecast gauges used both in that work and here. Reprinted with permission from Liu et al. (2021a).

Figure 2.  The map shows the location of 62 Global Navigation Satellite System (GNSS) stations, with a subset of 20 stations used in the sensor robustness study 
indicated with labels. The rectangle shows the study area from Figure 1. Sample GNSS data from 10 stations is shown on the right, for one Cascadia Subduction Zone 
earthquake Realization #1127. The red and blue symbols show the Group 1 and 2 stations discussed in the text, near the coast and inland, respectively. Up to 512 s of 
GNSS data is used to insure the full signal reaches all stations for all events.
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The CNN first applies a sequence of nine pairs of convolutional and max-pool layers, then applies the 8 trans-
posed convolutional layers (Goodfellow et  al.,  2016). The CNN model is implemented and trained using the 
framework provided in the Python package pytorch (Paszke et al., 2019). Precise specifications of the model 
appear in Text S2 in Supporting Information S1.

3.2.  Model Training

Our goal is to estimate the parameters of the CNNs by solving a standard optimization problem: with GNSS data 
as input, we minimize the L1 error function between the CNN output and free surface time series as a function 
of the CNN parameters (Goodfellow et al., 2016); the L1 error tends to prioritize larger magnitude events. In this 
minimization process, we can train the CNN by finding the parameters that best fit the data. This optimization is 
done using the stochastic gradient descent algorithm Adam (Kingma & Ba, 2015) with batch size 20 and fixed 
learning rate 10 −4. Rather than training a single CNN, we will train an ensemble made up of 25 CNNs. For each 
ensemble, we train CNNs individually via Adam until the validation error reaches a certain threshold.

3.3.  Experiments

We perform three experiments. First, we conduct a sensor robustness study to explore the performance of the 
trained ensemble with respect to the number of GNSS stations used. We train six separate ensembles, with the 
number of GNSS stations used for input taken as Ngnss = 10, 20, …, 60. We randomly select a non-clustered subset 
of stations for each Ngnss (e.g., see Figure 2, full list in Table S1 in Supporting Information S1).

Second, we test how the observation duration affects the forecast performance. We vary the amount of GNSS data 
used by masking the input values after specified times Tgnss = 120, 240, 360 or 480s. When varying the observa-
tion duration, we use Ngnss = 60 stations throughout.

Third, we examine the effect that the sensor's distance to the fault may have on the performance. Among the 
GNSS stations south of 49° latitude we select two groups of Ngnss = 20 stations: Group 1 stations lie along the 
coast, Group 2 farther inland (as shown in Figure 2).

4.  Results
We carry out the training procedure using NVIDIA Tesla V100 SXM2 32 GB and it typically takes 90 min to 
complete training one ensemble. We provide the full details regarding the training in the supporting plots in 
Figures S1 and S2 in Supporting Information S1.

Selected forecast waveforms from the test set are shown in Figure 3 for the ensemble Ngnss = 60. For comparison, 
we include the predictions by the model developed in Liu21 based on 60 min of tsunami observation data from 
Gauge 702. The prediction error for Gauge 901 is expected to be higher than for 911 because of its location in 
Discovery Bay. The shallower 901 location corresponds to larger waves with more nonlinear behavior than the 
deeper water at Gauge 911. Figure 3 also shows Taylor diagrams (Taylor, 2001) summarizing the forecast results 
for both the other CNN ensembles that we trained in our robustness study (Ngnss = 10, …, 60), as well as those 
from Liu21. Taylor diagrams give a way of visualizing three measures of similarity between different time series, 
and have been used for this purpose in some other tsunami modeling studies, for example, (Lu et al., 2013). From 
these figures, we gather that the GNSS model exploiting input from all 60 stations performed the best.

Although the CNNs were trained using the L1 error function, we additionally measure the skill of the CNN 
ensembles in predicting the maximum surface elevation ηmax at each gauge, a primary quantity of interest in 
judging the magnitude of the tsunami at each location. To predict ηmax, we simply compute the maximum of 
the forecast waveform of each individual model in the ensemble and use the mean as the predicted value. Plots 
demonstrating the forecast performance ηmax are shown in Figures 4 and 5.

Figure 4 shows a plot of the mean absolute error and maximum absolute error, along with the L1 test error for each 
ensemble. The L1 test error and the error metrics for ηmax follow similar trends. Figure 5 shows scatter plots of the 
forecast ηmax versus the observed value (i.e., the value from the GeoClaw simulation) for each event in the test set. 
In general, both small and large tsunamis are forecast accurately. Also note that there are large magnitude events 
that created relatively small tsunamis at the gauge locations considered, and these are also predicted accurately. 
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In the data set used for these comparisons with Liu21, we filtered out events for which the tsunami signal was 
below a threshold, as described above. However, we obtain similar results when the model is trained and tested 
using the full unfiltered data set, as shown in (Text S3 in Supporting Information S1).

For the CNN ensembles trained in the sensor robustness study, the performance generally improves when more 
GNSS stations are used, but relatively little improvement of overall performance is seen beyond 20 stations and 

Figure 3.  The left column shows time series forecasts using the ensemble Ngnss = 60 for gauge locations 901 and 911 for three sample realizations. The top realization 
(#1127) was also illustrated in Liu21. The right column shows the Taylor diagram for each realizations for gauge 901, now comparing the results obtained using seven 
different machine learning predictions. Six of these use a varying number of Global Navigation Satellite System (GNSS) stations Ngnss from 10 to 60, while the point 
denoted by “Liu21” is the previous result for the 5-hr forecast window from Liu21, that used 60 min of tsunami waveform from Gauge 702 as input data. The Taylor 
diagram (e.g., Lu et al., 2013; Taylor, 2001) simultaneously shows the standard deviation of each waveform separately (radial distance), the root mean square error 
relative to the correct waveform (green contours), and the correlation coefficient between the forecast and correct waveforms (angular distance, blue contours). More 
accurate forecasts give points closer to the red dot.
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this threshold agrees with the change in the decay behavior of the validation error. The sharpest decline in the 
performance of the model occurs when only 10 stations are used.

When 30 or more stations are used, we see increased overall performance of the CNNs trained with GNSS data 
than those reported in Liu21. This illustrates important practical advantages of using the GNSS data: we obtain 
a highly accurate forecast with data available within 9 min from the start of the tsunamigenic earthquake event, 
as opposed to 60 min after the tsunami starts to enter the Strait as required in Liu21, potentially a 2-hr difference. 
Moreover, these GNSS stations actually exist and are operational. This makes the new model a more suitable 
candidate for use in an early warning system.

The ensembles using varying observation durations show that the performance is not significantly affected when 
only the first 240s of GNSS data is used, suggesting that accurate forecast is possible within 4 min. The duration 
required for other locations will naturally depend on the distance from the fault to the GNSS stations and the 
duration of the earthquake events of interest. However, in general this duration will be on the order of minutes 
rather than the hours often require to obtain direct tsunami observations.

The results from ensembles using two different groups of 20 stations show that using only the stations that 
are situated inland at a significant distance from the fault causes the performance to deteriorate, especially for 
larger events (Figure 5). This suggests the model relies significantly on the measurements closer to the fault. But 
also note that both perform worse than when an equal number of well-distributed stations are used (Ngnss = 20), 
suggesting that the inland stations also provide useful information. A sensitivity study using projected gradients 
supports these findings (Text S4 in Supporting Information S1).

5.  Conclusions
We have developed a CNN model that uses less than 9 min of GNSS observations at existing onshore stations 
near the CSZ to produce a 6-hr forecast of the resulting tsunami waveforms at several gauge locations. These 
gauge locations agree with those used in our previous work denoted Liu21 (Liu et al., 2021a). We demonstrate 
that this GNSS-based approach works as well as our previous model input of 30 or 60 min of the tsunami wave-
form observed at a hypothetical gauge. We conclude that this approach is very promising for use in real-time 
warning systems and deserves further development.

Figure 4.  Model performance measured by comparing the maximum surface elevation ηmax in the forecast waveform to that of the correct waveform, for each 
realization in the test set. The mean absolute error (MAE) and maximum error, as well as the L1 test error are plotted. The MAE for model in Liu21 is also shown. 
Overall best result is obtained using all stations Ngnss = 60 and all 512 s of Global Navigation Satellite System (GNSS) data.
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Figure 5.  The scatter plots of the predicted ηmax (the maximum surface elevation at the gauge 901 over the full time series) versus the correct value for each realization 
in the test set, for ensembles trained on (a) Ngnss = 10, 20, 60 stations, (b) observation durations Tgnss = 120, 240, 480s, (c) the two stations groups. In each row the 
prediction with worst error is marked by ×, and sensitivity studies for these cases appear in Supporting Information S1 (Text S4).
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Several aspects of our work require additional research that is currently underway. We chose gauge locations in 
Puget Sound, WA for our study in Liu21 with the idea that observations at a single gauge (e.g., our Gauge 702) at 
the entrance of the Strait of Juan de Fuca might be sufficient to produce good forecasts in Puget Sound. That was 
important since there are currently no suitable observation gauges in this region and deploying even one gauge 
would be expensive. In this work, we used the same gauge locations in order to compare forecasts with our previ-
ous results; however, the existence of numerous GNSS stations in the region warrants further exploration of our 
model's ability to train and generate forecasts at other locations. We are currently collaborating with researchers 
at the NOAA Center for Tsunami Research to explore the ability of these ML models to provide both nearfield 
warnings for a CSZ event and also to potentially complement the existing farfield forecasting capabilities based 
on DART data. In addition to further experiments based on CSZ events, we are working with other researchers at 
Tohoku University to experiment with forecasting Nankai Trough events.

Our tests have all been performed so far with the synthetic GNSS data produced by the fakequakes software, with-
out the addition of any noise. Real GNSS data can be quite noisy and it will be important to assess the robustness 
of this ML approach to noisy data. The synthetic GNSS waveforms are based on a simplified model of the earth's 
structure; we plan to explore how robust our CNN model is to synthetic data produced with a different model of 
the earth. This acts as a step toward exploring how well a model trained on synthetic data would forecast a real 
tsunami when the input data is from actual GNSS observations.

Data Availability Statement
The software for all numerical experiments performed in this work is available at https://github.com/dsrim/ML_
GNSS_SJdF_2022 under the BSD-3 license. The earthquake realizations used in this paper were generated by 
Melgar, LeVeque et al. (2016) and archived at (Melgar, 2016). The tsunami waveforms for each realizations were 
generated using the GeoClaw Software (Clawpack Development Team, 2020), and available at (Liu et al., 2021b).

References
Báez, J. C., Leyton, F., Troncoso, C., del Campo, F., Bevis, M., Vigny, C., et al. (2018). The Chilean GNSS network: Current status and progress 

toward early warning applications. Seismological Research Letters, 89(4), 1546–1554. https://doi.org/10.1785/0220180011
Clawpack Development Team. (2020). Clawpack software. Retrieved from http://www.clawpack.org
Crowell, B. W., Melgar, D., & Geng, J. (2018). Hypothetical real-time GNSS modeling of the 2016 Mw 7.8 Kaikoura Earthquake: Perspectives 

from ground motion and tsunami inundation prediction. Bulletin of the Seismological Society of America, 108(3B), 1736–1745. https://doi.
org/10.1785/0120170247

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. Retrieved from http://www.deeplearningbook.org
Kawamoto, S., Ohta, Y., Hiyama, Y., Todoriki, M., Nishimura, T., Furuya, T., et al. (2017). REGARD: A new GNSS-based real-time finite 

fault modeling system for GEONET. Journal of Geophysical Research: Solid Earth, 122, 1324–1349. https://doi.org/10.1002/2016JB013485
Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International Conference for Learning Representations. Retrieved 

from http://arxiv.org/abs/1412.6980
LeVeque, R. J., Waagan, K., González, F. I., Rim, D., & Lin, G. (2016). Generating random earthquake events for probabilistic tsunami hazard 

assessment. Pure and Applied Geophysics, 173(12), 3671–3692. https://doi.org/10.1007/s00024-016-1357-1
Lin, J.-T., Melgar, D., Thomas, A. M., & Searcy, J. (2021). Early warning for great earthquakes from characterization of crustal deformation 

patterns with deep learning. Journal of Geophysical Research: Solid Earth, 126, e2021JB022703. https://doi.org/10.1029/2021JB022703
Liu, C. M., Rim, D., Baraldi, R., & LeVeque, R. J. (2021a). Comparison of machine learning approaches for tsunami forecasting from sparse 

observations. Pure and Applied Geophysics, 178(12), 5129–5153. https://doi.org/10.1007/s00024-021-02841-9
Liu, C. M., Rim, D., Baraldi, R., & LeVeque, R. J. (2021b). Comparison of machine learning approaches for tsunami forecasting from sparse 

observations. [Datasets]. Zenodo. https://doi.org/10.5281/zenodo.5156748
Lu, W., Jiang, Y., & Lin, J. (2013). Modeling propagation of 2011 Honshu tsunami. Engineering Applications of Computational Fluid Mechanics, 

7(4), 507–518. https://doi.org/10.1080/19942060.2013.11015489
Makinoshima, F., Oishi, Y., Yamazaki, T., Furumura, T., & Imamura, F. (2021). Early forecasting of tsunami inundation from tsunami and geodetic 

observation data with convolutional neural networks. Nature Communications, 12(1), 2253. https://doi.org/10.1038/s41467-021-22348-0
Melgar, D. (2016). Cascadia FakeQuakes waveform data and scenario plots. [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.59943
Melgar, D. (2020). Mudpy. Retrieved from https://github.com/dmelgarm/MudPy
Melgar, D., Allen, R. M., Riquelme, S., Geng, J., Bravo, F., Báez, J. C., et al. (2016). Local tsunami warnings: Perspectives from recent large 

events. Geophysical Research Letters, 43(3), 1109–1117. https://doi.org/10.1002/2015GL067100
Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example appli-

cation to the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 121, 6658–6674. https://doi.org/10.1002/2016jb013314
Ohno, K., Ohta, Y., Hino, R., Koshimura, S., Musa, A., Abe, T., & Kobayashi, H. (2022). Rapid and quantitative uncertainty estimation of coseis-

mic slip distribution for large interplate earthquakes using real-time GNSS data and its application to tsunami inundation prediction. Earth 
Planets and Space, 74(1), 24. https://doi.org/10.1186/s40623-022-01586-6

Ohta, Y., Inoue, T., Koshimura, S., Kawamoto, S., & Hino, R. (2018). Role of real-time GNSS in near-field tsunami forecasting. Journal of 
Disaster Research, 13(3), 453–459. https://doi.org/10.20965/jdr.2018.p0453

Acknowledgments
Diego Melgar generated the hypo-
thetical earthquakes used in this work 
and provided advice on the best use of 
GNSS data. The authors are also grateful 
to Xinsheng Qin for setting up and 
performing the GeoClaw simulations 
used as training and test data. Responding 
to the comments and questions of two 
anonymous referees led to significant 
improvements in this paper. RJL and 
CML were supported in part by Tohoku 
University. This research was sponsored 
by the Department of Energy Office of 
Science under the Advanced Scientific 
Computing Research John von Neumann 
Fellowship. Sandia National Laboratories 
is a multimission laboratory managed 
and operated by National Technology 
and Engineering Solutions of Sandia, 
LLC., a wholly owned subsidiary of 
Honeywell International, Inc., for the U.S. 
Department of Energy's National Nuclear 
Security Administration under contract 
DE-NA0003525. This paper describes 
objective technical results and analysis. 
Any subjective views or opinions that 
might be expressed in the paper do not 
necessarily represent the views of the 
U.S. Department of Energy or the United 
States Government.

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L099511 by O
regon State U

niversity, W
iley O

nline Library on [27/03/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://github.com/dsrim/ML_GNSS_SJdF_2022
https://github.com/dsrim/ML_GNSS_SJdF_2022
https://doi.org/10.1785/0220180011
http://www.clawpack.org
https://doi.org/10.1785/0120170247
https://doi.org/10.1785/0120170247
http://www.deeplearningbook.org
https://doi.org/10.1002/2016JB013485
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/s00024-016-1357-1
https://doi.org/10.1029/2021JB022703
https://doi.org/10.1007/s00024-021-02841-9
https://doi.org/10.5281/zenodo.5156748
https://doi.org/10.1080/19942060.2013.11015489
https://doi.org/10.1038/s41467-021-22348-0
https://doi.org/10.5281/zenodo.59943
https://github.com/dmelgarm/MudPy%20doi:%2010.5281/zenodo.3703200
https://doi.org/10.1002/2015GL067100
https://doi.org/10.1002/2016jb013314
https://doi.org/10.1186/s40623-022-01586-6
https://doi.org/10.20965/jdr.2018.p0453


Geophysical Research Letters

RIM ET AL.

10.1029/2022GL099511

9 of 9

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019). Pytorch: An imperative style, high-performance deep learning 
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing 
systems 32 (pp. 8024–8035). Curran Associates, Inc.

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, 106(D7), 
7183–7192. https://doi.org/10.1029/2000JD900719

Titov, V. V., Gonzalez, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., & Venturato, A. J. (2005). Real-time tsunami forecasting: 
Challenges and solutions. Natural Hazards, 35(1), 35–41. https://doi.org/10.1007/s11069-004-2403-3

Tsushima, H., Hino, R., Ohta, Y., Iinuma, T., & Miura, S. (2014). tFISH/RAPiD: Rapid improvement of near-field tsunami forecast-
ing based on offshore tsunami data by incorporating onshore GNSS data. Geophysical Research Letters, 41(10), 3390–3397. https://doi.
org/10.1002/2014GL059863

Williamson, A. L., Melgar, D., Crowell, B. W., Arcas, D., Melbourne, T. I., Wei, Y., & Kwong, K. (2020). Toward near-field tsunami forecasting 
along the Cascadia subduction zone using rapid GNSS source models. Journal of Geophysical Research: Solid Earth, 125, e2020JB019636. 
https://doi.org/10.1029/2020JB019636

References From the Supporting Information
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via 

gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L099511 by O
regon State U

niversity, W
iley O

nline Library on [27/03/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1029/2000JD900719
https://doi.org/10.1007/s11069-004-2403-3
https://doi.org/10.1002/2014GL059863
https://doi.org/10.1002/2014GL059863
https://doi.org/10.1029/2020JB019636

	Tsunami Early Warning From Global Navigation Satellite System Data Using Convolutional Neural Networks
	Abstract
	Plain Language Summary
	1. Introduction
	2. GNSS and Tsunami Waveform Data Sets
	3. Methods
	3.1. Forecast Model
	3.2. Model Training
	3.3. Experiments

	4. Results
	5. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


