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Abstract Increasing exposure to coastal flood hazards will potentially induce an enormous socio-economic
toll on vulnerable communities. To accurately characterize the hazard, we must consider both natural water
level variability and climate change-induced sea-level rise. In this study, we develop a paleo-proxy-based
reconstruction of coastal flood events over the last 500 yr to capture natural water level variability and
superimpose that reconstruction onto expected sea-level rise to explore interannual and multidecadal variability
in plausible future coastal flood risk. We first develop reconstructions of leading principal components

(PCs) of sea surface temperature anomalies from 1500 CE onwards, using tree-ring, coral, and sclerosponge
chronology-based El Nifio Southern Oscillation reconstructions as predictors in a wavelet autoregression
model. These reconstructions of PCs are then used in a stochastic water level emulator to develop ensemble
simulations of hourly still water levels (SWLs) in the San Francisco Bay. The emulator accounts for multiple
relevant processes, including monthly mean sea level (MMSL) anomalies, storm surge, and tide, all varying

at different timescales. Accounting for natural variability in water levels over 15002000 CE increases coastal
flood risk beyond that suggested by instrumental records alone. When superimposed on 0.22 m of sea-level rise
(approximately the amount experienced over the previous century), the simulations show that while high tides
and large storm surges cause the smaller extreme SWLs, the larger extreme SWLs occur during concurrent high
MMSL, high tides, and significant storm surges. Our findings thus highlight the need to consider natural water
level variability for coastal adaptation and planning.

Plain Language Summary Increasing exposure to coastal flood hazards will potentially induce
an enormous socio-economic toll on vulnerable communities. To accurately characterize the flood risk, we
must consider both natural water level variability and climate change-induced sea-level rise. But we need long
records of sea level conditions to quantify the natural variability and characterize the associated extreme flood
levels. Paleo-proxies, such as corals, sponges, and tree rings, capture these long-term conditions during times
when modern instrumental records were unavailable. Using this paleo-proxy-based data, we have developed
500 yr long simulations of coastal water levels using specialized computer models that account for several
climate and weather patterns and estimates of sea surface temperature conditions from 1500 to 2000. We use
these long simulations to quantify the natural fluctuations in coastal water levels at annual and decadal time
scales. When we consider the full extent of such fluctuations, coastal flood risk increases beyond the current
flooding thresholds in San Francisco Bay, our study site. Our findings suggest a strong need to account for
natural water level fluctuations in addition to projections of sea-level rise for any future coastal adaptation
planning.

1. Introduction

It is well established that coastal flooding will increase with projected sea level rise (SLR; Sweet & Park, 2014;
Thomson et al., 2021; Trenberth et al., 2015). Even a modest amount of SLR can result in disproportionately
large (Kriebel et al., 2015; Vitousek et al., 2017) or exponential (Taherkhani et al., 2020) increases in coastal
flood frequency, causing larger floods that threaten infrastructure and vulnerable communities (Moftakhari
et al., 2015, 2017; Neumann et al., 2015). However, the extent of future coastal flooding does not depend solely
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on climate change induced SLR but also on natural variability in water levels, defined here as temporal fluctu-
ations in water levels not attributable to systematic long-term SLR trends. This study advances methods used
to quantify natural variability in coastal water levels, which is a key step in describing future coastal flooding
hazards.

Coastal flooding depends on variability in total water levels (TWLs) resulting from processes that vary over a
range of spatiotemporal scales (Anderson et al., 2019; Barnard et al., 2019; Leonard et al., 2014). These include
(a) regional relative SLR, (b) storm surge, (c) wave setup and swash, (d) high-frequency (i.e., diurnal cycles,
Haigh et al., 2020), and low-frequency (4.4 yr perigean and 18.6 yr nodal cycles; Peng et al., 2019; Rashid
et al., 2021; Thompson et al., 2021) fluctuations in astronomical tides, and (v) non-tidal variations in mean sea
level (MSL) due to seasonal, interannual, and decadal fluctuations in atmospheric and oceanographic forcing
(Anderson et al., 2019; Barnard et al., 2019; Calafat et al., 2013; Dangendorf et al., 2014; Hermans et al., 2020;
Merrifield et al., 2012; Orton et al., 2016; Ray & Foster, 2016; Sweet & Park, 2014; Taherkhani et al., 2020;
Thomson et al., 2021; Vitousek et al., 2017; Wahl & Chambers, 2016). These processes can either dampen or
amplify TWLs based on the synchronization of their phases. Therefore, the joint variability and dynamics of
water level components must be understood to characterize coastal flooding hazards (Anderson et al., 2019;
Barnard et al., 2019; Nederhoff et al., 2021; Parker et al., 2019; Serafin et al., 2017; Thompson et al., 2021),
particularly when they are combined with projected SLR scenarios (Hinkel et al., 2021; Wahl et al., 2017).

Most state-of-the-art coastal flood hazard studies model variability in TWLs and extreme sea levels (ESLs)
using a combination of statistical (Anderson et al., 2019; Rueda et al., 2016) and hydrodynamical (Barnard
et al., 2019, 2014) modeling approaches. Statistical methods such as extreme value analysis are used to esti-
mate the distribution of ESLs from tide gauge records (Ghanbari et al., 2019; Ray & Foster, 2016; Thomson
et al., 2021). The choice of frequency distribution in extreme value analysis can impart significant biases in
ESL estimation (Hinkel et al., 2021; Wahl et al., 2017), although non-stationary approaches (Haigh et al., 2010)
usually mitigate some of this bias (Mentaschi et al., 2016; Wahl & Chambers, 2015). If not accounted for, statis-
tical dependence between components of ESLs, such as storm surge, wave runup, tidal, and fluvial processes, can
also lead to significant bias in ESL assessments (Arns et al., 2020), as can the limited length of observations in
the instrumental record (Moftakhari et al., 2015; Wahl et al., 2017).

To overcome these limitations, a variety of methods have been forwarded to produce very long-time series of
TWLs that account for interactions between meteorological, oceanographic, and hydrological drivers that may
or may not have occurred in the instrumental record. One approach employs hindcasts from coupled climate and
ocean system models (Lang et al., 2019; Muis et al., 2016; Vitousek et al., 2017), though these simulations can
be very computationally expensive. Other approaches employ statistical methods including Monte Carlo simula-
tions (Serafin & Ruggiero, 2014) and joint probability models (Callaghan et al., 2008). Hybrid methods are also
available. For instance, Haigh et al. (2014) used stochastically simulated storm records to drive a hydrodynamical
model and assess coastal vulnerability to cyclonic storm surge events in Australia. Anderson et al. (2019, 2021)
developed the Time-varying Emulator of Short and Long-term Analysis (TESLA) for coastal flood hazard assess-
ment and applied the approach in San Diego, CA, by linking emulated TWLs with synoptic scale climate patterns
at interannual (El Nifio Southern Oscillation, ENSO) through intra-seasonal (Madden Julian Oscillation, MJO)
timescales. Importantly, few statistical emulators (Anderson et al., 2019; Cagigal et al., 2020, 2021) incorpo-
rate atmospheric forcing, which can be crucial for understanding the drivers of extreme coastal flood events as
suggested by Barnard et al. (2015) and Marcos et al. (2015).

Extreme value analysis techniques can be applied to synthetic sea level time series to better understand coastal
flood variability and hazard potential. Using these techniques, global assessments of modeled storm surges (Muis
et al., 2016) and amplification of flood frequency with projected SLR (Vitousek et al., 2017) have revealed
important modes of variability in coastal flooding driven by different processes. However, even synthetic time
series are sometimes too short to reveal important patterns of variability if they are limited to the ~40 yr of data
available in modern reanalysis products. This point was highlighted in Lang et al. (2019), which used simulated
sea levels for the German Bight over the past 1,000 yr from an Earth systems model to show that multidecadal
to centennial variability in extreme flood events are difficult to capture using conventional approaches, and that
long-term ensemble simulations of sea level are an important tool for quantifying flood risk.

These types of large ensemble simulations are particularly critical for decomposing low-frequency variability
in coastal water levels and ESLs across various process drivers. Such decompositions have grown in popularity
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over the last decade but have mostly been limited to shorter observational records. For instance, ESL variability
at interannual to decadal scales has been linked to variability in climate forcing using statistical (Frederikse
et al., 2016; Marcos et al., 2015; Wahl & Chambers, 2015, 2016), theory-based (Calafat et al., 2013), and ocean
system (Thompson & Mitchum, 2014) models based on tide-gauge records. Similarly, Rashid et al. (2019) used
a non-stationary generalized extreme values (GEV) distribution (Coles, 2001) derived from tide-gauge records
across the coastal United States to develop ESL indicators that measure interannual to decadal variability in
MSL and storm surge. Incorporating low-frequency variability in ESLs can significantly improve coastal flood
risk assessments and help communities prepare for higher economic losses (Rashid et al., 2021). However, the
lack of long-term tide-gauge records and very long ensemble simulations of coastal water levels limits our under-
standing of low-frequency natural variability in ESLs, and how this variability interacts with variability at higher
frequencies to determine the full range of plausible sea levels that define coastal flood hazards.

In this study, we explore multi-timescale natural variability in coastal flooding through innovative uses of the
paleorecord to reconstruct plausible sequences of water levels and the likelihood of coastal flood events. Past
studies have used a combination of tree rings and marine and nearshore paleo proxies, including geochemical
proxies, to reconstruct total seasonal precipitation (Chen et al., 2015; Neukom et al., 2014; Williams et al., 2021),
extreme precipitation (Borkotoky et al., 2021; Steinschneider et al., 2016, 2018), regional moisture transport
(Mukhopadhyay et al., 2018; Zheng et al., 2021), drought (Baek et al., 2019; McCabe et al., 2008; Woodhouse
et al., 2010), global surface temperature (Osman et al., 2021), terrestrial climate (Krapp et al., 2021), SSTs
(Emile-Geay et al., 2013, 2015; Freund et al., 2019), and sea surface salinity (Nurhati et al., 2011). These stud-
ies rely on robust relationships between environmental signals embedded within networks of paleo-proxies and
large-scale oceanic and atmospheric conditions that determine the likelihood of those environmental responses.
Those same oceanic and atmospheric conditions can influence the likelihood of MSL anomalies and storminess
patterns that influence storm surge, suggesting that similar reconstructions can be used to better understand past
variability in coastal water levels and potentially pre-historic flood frequency. While regional numerical studies
(Lang et al., 2019) have used paleo data-informed reanalysis of ocean systems models, to our knowledge paleo
proxy data has not yet been utilized directly in statistical and hydrodynamic coastal flood models.

Building on the work in Anderson et al. (2019), which used monthly sea surface temperature anomalies (SSTAs)
in the equatorial Pacific Ocean to drive stochastic simulations of coastal water levels (1880-2000 CE), this paper
uses tree-ring, coral, and sclerosponge-based ENSO reconstructions to simulate past variability in SSTAs and
water levels over the last 500 yr (1500-2000 CE). We focus on understanding natural variability in still water
levels (SWLs; i.e., a composite of all tidal and non-tidal components of TWL except wave driven and river deliv-
ered water levels) in San Francisco Bay, California. The simulations are analyzed to evaluate natural variability in
SWL and its components at interannual and-decadal timescales. The following research questions are addressed:
(a) Can paleo-proxy based ENSO reconstructions be used to simulate long-time series of past SWLs? (b) How
much coastal flood risk can be explained by natural variability, especially low-frequency variability of non-tidal
processes? (c) How has coastal flood risk evolved in the San Francisco Bay over the past 500 yr, and what does
this imply about future coastal flood risk? (d) What is the fractional contribution of SWL components to large
flooding events?

2. Data
2.1. Input Data for SWL Emulator

We analyze the natural variability of coastal flood risk in the San Francisco Bay using TESLA, a statistical
emulator of coastal water levels presented in Anderson et al. (2019). Past studies have successfully applied the
TESLA framework at other tide gauge locations such as San Diego (Anderson et al., 2019, 2021), Oregon (Leung
et al., 2019) as well as different islands in the Pacific region (Marra et al., 2022). Following that study, we use
several different atmospheric and oceanographic data sets for developing synthetic SWL time series, which we
summarize here (see Anderson et al., 2019 for more detail). Average monthly SSTAs over the equatorial Pacific
Ocean (120°E~180°E, 5°N-5°S, at 2.5° resolution) are calculated from the Extended Reconstructed Sea Surface
Temperature v4 data set (ERSSTv4; Huang et al., 2015) for the period 1880-2018 by removing 11 yr running
averages for each month. The monthly SSTA values at each longitude are averaged to construct Hovmoller
diagrams (Hovmoller, 1949) that capture SSTA variability from June to the following May by preserving monthly
spatio-temporal behavior of SSTAs. Principal component (PC) analysis in Hovmoller space reveals three leading
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Figure 1. (a) Location of San Francisco tide gauge. (b) Regions bounded by the black dashed lines denote the spatial coverage of the equatorial Pacific region over
which sea surface temperature anomalies (SSTAs) are calculated using ERSSTv4 data set. Regions bounded by the red dashed lines denote the spatial coverage of
the 10° X 10° bounding box over which principal components of the local sea level pressure predictor are calculated. (c—e) Historical time series of annual principal
components (APCs) of SSTAs in Hovmoller space.

EOFs defined at an annual timescale that explain 48%, 11%, and 7% of the variance, respectively (see Figure 1).
The first PC (hereafter referred to as annual PC, in Hovmoller space, or APC,) represents canonical interannual
ENSO variability. APC, has high correlations with the average annual Oceanic Nifio Index (R*> = 0.94) and aver-
age annual Nifio 3.4 index (R*> = 0.91). APC, is associated with transient seasonal anomalies in the eastern Pacific
region, while APC, exhibits a spatio-temporal pattern comparable to an eastward propagating Kelvin wave during
boreal summer and fall. These three APCs in Hovmoller space, defined over 121 yr (1880-2000), are our initial
target variables for reconstruction and are ultimately used to drive stochastic simulations of SWLs in TESLA.

In addition to the APCs, TESLA uses two leading PCs of daily outgoing long-wave radiation related to the MJO
and its longitudinal phases from 1975 onwards (Wheeler & Hendon, 2004), which are taken from the Australian
Bureau of Meteorology. The two leading MJO PCs are subsequently clustered into eight longitudinal phases and
three categories of convection strength (Lafleur et al., 2015). Furthermore, TESLA uses sea level pressure (SLP)
and squared SLP gradients from the National Centers for Environmental Prediction Climate Forecast System
Reanalysis (CFSR, Saha et al., 2011) that cover the wave generation area relevant to San Francisco as defined
by ESTELA (Pérez et al., 2014). Daily PCs of SLP and SLP gradients are clustered using a k-means algorithm
into 36 weather types representing synoptic daily weather. These same SLP fields are also averaged to a monthly
scale in a 10° x 10° bounding box (at 0.5° resolution) around the San Francisco Bay, and monthly PCs are
calculated. We select 36 weather types to ensure that there are at least 60 days under each weather type in the
historical record. Past studies (Anderson et al., 2019; Cagigal et al., 2020; de Souza et al., 2022) have identified 36
weather types to be adequately representative of synoptic daily weather conditions, excluding tropical cyclones.
For calculating monthly PCs using monthly averages of SLP fields, we select the 10° X 10° bounding box after a
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Table 1
Details of El Niiio Southern Oscillation (ENSO) Reconstructions Explored to Develop Sea-Surface Temperature Anomaly Reconstructions
Temporal
coverage
Spatial coverage of (CE) of
Data source/study Variable reconstruction reconstruction Paleo proxy data
Freund et al. (2019) Seasonal SST anomaly for 5°S-5°N, 170°W-120°E 1617-2008 Network of 27 corals and sclerosponges
NCT and NWP
Li et al. (2013) Nifio 3.4 index 5°S-5°N, 170°W-120°E 1301-2005 2222 tree-ring chronologies
Cook et al. (2008) Nifio 3.4 index 5°S-5°N, 160°W-150°E 1300-1979 404 Tree-ring chronologies from Mexico and Texas
Tierney et al. (2015) SST 10°N-10°S, 85°E-175°W 1607-1997 57 tropical coral data sets
Emile-Geay et al. (2013)  Nifio 3.4 index 5°S-5°N, 162.5°W-120°E 1150-1995 Annually resolved globally distributed 36 proxy
records of corals, tree-ring records, marine
sediment core, ice cores.
Sanchez et al. (2020) Nifio 3.4 index 5.8°N-3.9°S, 18632016 Oxygen isotopes from corals and sclerosponges
159.28°E-162.13°W
Datwyler et al. (2019) First principal component of 5°N-5°S, 170°-120°W 10002014 Multiproxy (81 globally distributed proxy records
ENSO including ice core, tree ring, corals, lake
sediments etc.)
Wilson et al. (2010) Nifo 3.4 index 5°S—-5°N, 170°W-120°E 15402007 Corals, tree-ring, and ice cores
Nurhati et al. (2011) SST 5.87°N-5.87°S, 1886-1998 Corals and sclerosponges

162.13°E-162.13°W

Note. The ENSO reconstructions ultimately selected to support annual principal component reconstruction are highlighted in bold.

rigorous sensitivity analysis (Table S1) in which we study the influence of bounding box size and resolution on
the predictive skill of the derived monthly PCs for the prediction of MMSL.

Observed SWLs in the San Francisco Bay are obtained from the National Oceanic and Atmospheric Adminis-
tration (NOAA) tide gauge 9414290 (see Figure 1). The time series of storm surge is extracted using the hourly
tide gauge record following a frequency domain decomposition after removing MSL and monthly to seasonal sea
level anomaly components (Serafin & Ruggiero, 2014).

2.2. ENSO Reconstruction Data

We consider previously developed ENSO reconstructions to help reconstruct the APCs described in Section 2.1
above. These ENSO reconstructions are based on combinations of annually or seasonally resolved tree-rings,
corals, sclerosponges, marine sediment cores, and ice core records (Table 1). The ENSO reconstruction that
stretches back furthest begins in 1000 CE (Datwyler et al., 2019), while the reconstruction that begins latest
ranges from 1886 to 1998 (Nurhati et al., 2011). Most of these reconstructions target the Nino 3.4 index (Cook
et al., 2008; Emile-Geay et al., 2013; Li et al., 2013; Sanchez et al., 2020; Wilson et al., 2010), but others target
other aspects of equatorial Pacific SSTAs. For instance, Freund et al. (2019) use a network of 27 corals and
sclerosponges to reconstruct seasonal anomalies in the Nifio Cold Tongue (NCT) in the Eastern Pacific and Nifio
Warm Pool in the Central Pacific, thereby resolving differences between Eastern El Nifio and Central El Nifio
events.

3. Methods

We first present an overview of TESLA, the time varying emulator for short and long-term analysis of coastal
flooding, presented in Anderson et al. (2019) (Section 3.1). The emulator relies in part on equatorial Pacific
SSTAs (the APCs described above in Section 2.1), which we reconstruct using paleo proxy-based ENSO recon-
structions (Section 3.2). Specifically, we use a coupled linear regression and Wavelet Auto-Regression Model
(WARM; Kwon et al., 2007) to simulate leading APCs back to 1500 CE. TESLA then uses the reconstructed
APCs to generate ensembles of synthetic hourly SWL time series from 1500 to 2000 CE. These time series are
used to make inferences about extreme SWL variability over last 500 yr (Sections 3.3 and 3.4). Figure 2 provides
a schematic representation of this workflow.
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Figure 2. Schematic diagram of overall workflow with Time-varying Emulator of Short and Long-term Analysis (TESLA) module adapted from Anderson

et al. (2019). The Sea surface temperature (ERSSTv4) anomalies are used to compute the annual principal components (APCs) first. APCs and El Nifio Southern
Oscillation (ENSO) reconstructions are used to develop APC reconstruction using the linear model coupled Wavelet Auto-regression model (yellow box). APC
reconstructions inform the Annual weather types. The data inputs (green boxes) for Intra-seasonal and daily weather types (bottom two blue boxes) inform the TESLA
framework (orange box), which is used to generate synthetic time series of hourly still water level (SWL) from 1500 to 2000 CE. Lastly, a flood risk analysis is carried
out (violet box) using the SWL and its components to understand the temporal variability of flood risk and the effect of natural variability and sea level rise.

3.1. SWL Emulation With TESLA

SWL reconstructions are developed using the TESLA model (Anderson et al., 2019), which we briefly describe
here. At any location, TESLA represents TWLs as a linear superposition of processes, driven by oceanographic,
hydrologic, and meteorological forcings:

TWL =SWL + R (1a)

SWL = nmsL + 114 + #isE + mvmsLa + #iss (1b)

Here, nuse is the MSL, n4 is the astronomical tide, and nontidal components #sg, 7mmvsLa, and #ss are seasonal
water level anomalies, monthly mean sea level anomalies (MMSLA), and variability due to storm surge, respec-
tively. R denotes wave runup, including wave setup and swash, which can dominate TWLs on outer coast beaches
(e.g., Serafin et al., 2017). At the tide gauge location within the enclosed San Francisco Bay, wave runup can be
assumed negligible.

TESLA uses Pacific SSTAs (i.e., the APCs in Hovmoller space) in two stages to model SWL variability: (a)
to simulate weather types, which, at a daily scale, connect synoptic weather to local conditions that drive
high-frequency components of SWL (#ss); and (b) to explain monthly to seasonal scale variability (#sg + 7mmsLa)
in SWLs. In the first stage, TESLA employs the APCs in a statistical downscaling approach that links climate
patterns (or weather types) at different time scales to synoptic daily weather patterns, which in turn regulate
variability in SWLs. Specifically, weather types at annual, intra-seasonal, and daily scales represent variability in
ENSO, MJO, and SLP, respectively. Simulation of SWLs follows the following hierarchical process: (a) annual
weather types (AWTs) are selected from a k-means clustering based on the three leading APCs. (b) Intra-seasonal
weather types are developed by clustering the two leading PCs of outgoing longwave radiation to represent cate-
gorical MJO states. (c) An autoregressive logistic regression model then simulates synthetic daily weather types
conditioned on weather types at annual, intra-seasonal, and antecedent daily time scales. (d) Finally, synthetic
time series of storm surge at an hourly time scale are generated using joint probability distributions (Gaussian
copulas) of sea state parameters defined separately for different daily weather types. Those joint probability
distributions were fit using storm surge observations.
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In the second stage, TESLA models slowly evolving monthly to seasonal components of SWLs (hereafter called
AMMSL = #sE + AvmsLa) Using a multivariate regression model parameterized with the three APCs and three local
SLP-derived monthly scale PCs (MPCs, see Section 2.1) as covariates. The regression is comprised of the six
covariates along with representations of the 12-month (annual) cycle:

AMMSL = #SE + IMMSLA =
= ao + a;APC, + a;APC; + a3;APC; + a4sMPC, + asMPC,
+ asMPC;
+ (bo + b1 APC; + b,APC; + b3APCs + bsMPC, + bsMPC, ?2)
+ bsMPC3)cos(2xt)
+ (co + c1APC; + c;APC; + ¢3APC; + ¢c4aMPC; + ¢sMPC,

+ ¢6MPC3)sin(2xt)

This model is fit to observed values of nymsL at a specific tide gauge location over the historical period. We
remove a linear SLR trend and adjust the local MSL datum from the raw tide gauge data before calculating
observed values of #sg and nvmsia- In Equation 2, 7 represents the fractional year (day in year/total days in year)
and nyvst is modeled at a monthly resolution. Annual scale harmonics are included using the periodic functions
of sin(2zwt) and cos(2zwt) with w = 1 to capture seasonal variability. The regression model ultimately explains
approximately 65% of the observed variance in MMSL (see Figure S1a in Supporting Information S1).

To account for the tidal component of SWL (14 in Equation 1), a deterministic astronomical tide time series
is added to the non-tidal SWL components. We simulate this tide time series using UTide (Codiga, 2011) at
present-day MSL (ymsp). Thus, the MSL and tidal components are together accounted for in this time series
and are hereafter referred to as nrig. Finally, we add back the observed linear SLR trend of 0.0022 m/yr starting
from 1900 to get a total of 0.22 m SLR over the most recent century in the simulation period (1900-2000). The
SLR trend is derived from the observed tide gauge time series at San Francisco Bay (Figure S1b in Supporting
Information S1).

3.2. SSTA and SWL Simulations Using ENSO Reconstructions

Interannual to decadal variations in the leading three APCs of SSTAs in Hovmoller space guide TESLA simu-
lations. We utilize previously developed ENSO reconstructions (Table 1) to reconstruct these APCs for the past
500 yr, which are then input into TESLA to generate hourly reconstructions of yvmst. and #ss over the same time
period, as described in Section 3.1.

For each APC, (i = 1, 2, 3), we first select the ENSO products from Table 1 that lead to the best reconstruction.
An initial screening process based on stepwise regression suggests that only one ENSO reconstruction product
should be selected for each APC (see Supporting Information, Figures S2-S4 in Supporting Information S1).
Therefore, for APC; we select the single best ENSO reconstruction (ENSO)) to use in a linear regression fit to
data between years ¢ = 1,880, ...,2,000:

APCy; = foi + BENSO; + € i =1,2,3 3)

To assess model fit, we use a five-fold leave-25 yr out cross-validation, in which five combinations of consec-
utive 25 yr of data are withheld from the full data set of 121 yr, and the model is fit to the remaining 96 (or
97) yr of remaining data. We then estimate the APCs for the withheld 25 yr and repeat this process to generate
out-of-sample APC estimates for the entire 121 yr data set. For each APC regression model, performance is
measured using the cross-validated R? between historical APCs and out-of-sample predictions (Figure S5 in
Supporting Information S1). For those ENSO reconstruction products that do not extend to 2000, we shorten the
length of each of the five folds to accommodate the overlapping period between the ENSO product and the APCs.

As with all regression models, predictions from the regressions in Equation 3 represent the conditional expec-
tations of each APC given values for the reconstructed ENSO indices. These predictions make it possible to
reconstruct APCs, but as an expected value they also underestimate the true variance of each APC. Extreme APC
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values (and the extreme SWLs they might prompt) are of particular interest for modeling coastal flood risk. So,
it is critical to model and propagate the variance of regression residuals (Mukhopadhyay et al., 2018; Razavi
et al., 2016). The choice of residual error model plays an important role, especially if there is low-frequency vari-
ability in the residuals not captured in the regression. Here, we apply a Wavelet autoregressive model (WARM;
Kwon et al., 2007) to quantify and propagate residual variance and low-frequency periodicities into our final
reconstructions of the APCs (see Appendix A1l for more detail). We add the simulated time series of APC resid-
uals to the regression-generated APC estimates to generate final APC reconstructions.

The full length of the reconstruction is set to the length of the longest ENSO reconstruction used to predict the
APCs (back to 1500 CE in this study). For the APCs that are reconstructed with shorter ENSO products (i.e.,
beginning later than 1500 CE), we only use simulations from the WARM model to fill in the period between 1500
CE and the start of the shorter ENSO products.

Using the APC reconstructions, we simulate three components of SWLs over the 1500-2000 period. First, simu-
lations of nvmst are generated using the simulated APCs and Equation 2. These reconstructions emphasize the
seasonal and monthly sea level anomalies driven by atmospheric variability linked to equatorial Pacific SSTAs.
Second, an hourly deterministic simulated tide component (#1iq.) is added to the nvmst reconstructions. Lastly,
simulated time series of #ss are added to the reconstructions to generate 1,000, 500 yr traces of SWL time series
at an hourly time step.

3.2.1. Variability in nyvsy,

The reconstructions of nvwst. are assessed separately from the simulations of SWL to isolate the effects of slowly
evolving sea level variations on extreme water levels from the effects of other SWL components. We use a
quasi-stationary extreme value analysis (Wahl & Chambers, 2015) to understand the variability of zvmst, over the
last 500 yr. In this analysis, we first identify the annual maxima series (AMS) of nmmse in each 500 yr simulation.
Then, using sliding windows of size w (with w = 100 or 30 yr), we estimate the magnitude of the 100 yrevent
based on a GEV distribution fit to the AMS within the window via maximum likelihood. The window is moved
1 year at a time across the entire reconstruction period (1500-2000). We note that results are not sensitive to the
choice of return period.

The time series of 100 yr events is calculated for each of the 1,000 stochastic traces of mmst, resulting in an
ensemble that quantifies uncertainty in this statistic through time due to natural variability linked to the ENSO
reconstructions and additional noise from the ENSO regressions and TESLA model. We compare the variance in
the 100 yr event across this ensemble to the uncertainty in the 100 yr event estimate based on uncertainty in the
GEV fit. That is, we calculate the sampling variability in the 100 yr event using the Delta method (Coles, 2001)
for each trace and each w-year sliding window, and then report the average confidence interval width from all
GEV estimations.

3.3. Variability in Extreme SWLs and Its Components Due To Natural Variability and SLR

After assessing nmms in isolation, we evaluate the variability in SWLs and all its components due both to natural
variability and SLR. First, we separate the effects of natural variability from SLR on the SWL simulations by
considering three conditions. Time series for condition 1 are directly obtained using TESLA, which incorporates
observed SLR of 0.0022 m/yr starting in 1900 (for a total of 0.2 m of SLR by 2000). In condition 2, time series
of SWLs do not contain an SLR component, so that they only reflect natural variability in the component time
series. These time series are created by removing the linear SLR from SWLs in condition 1 between 1900 to
2000. In condition 3, SWL time series reflect a total of 0.2 m SLR applied over the entire length (500 yr) of SWL
simulations, such that they combine the full range of natural variability in condition 2 with SLR experienced by
2000. The condition 3 represents a situation when we have (500 x 1,000) simulations of the SWL time series at
the year 2000 CE with the total SLR of 0.2 m, such that this time series it accounts for larger extent of natural
variability in the system informed by 500 yr of reconstruction. This does not decrease the SLR, rather it extends
our understanding of the randomness or natural variability in the system. All three conditions are developed by
updating #rige, While nvmse and #ss remain unchanged.

For each of these three conditions, we examine the probability distribution of AMS across all 1,000 simulations
and compare the water levels with flooding thresholds for San Francisco. We use four flooding thresholds for
this purpose, as shown in Table 2. The minor, moderate, and major flooding thresholds are prescribed by Sweet
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Table 2 et al. (2022). All threshold values are converted to water levels above MSL
Flooding Thresholds at the San Francisco Tide Gauge (9414290) Location at the San Francisco tide gauge location (0.95 m) assuming Mean Higher

Flooding threshold (source)

Water levels, m above Water levels,
mean higher high water m above MSL

High Water at this gauge is 1.78 m, both relative to the same Mean Lower
Low Water tidal datum (https://tidesandcurrents.noaa.gov/stationhome.

Nuisance Flooding (NOAA)
Minor (Sweet et al., 2022)
Moderate (Sweet et al., 2022)
Major (Sweet et al., 2022)

html1?id=9414290).

0.35 1.179

0.571 14 We then focus on the annual maxima that exceed the moderate flooding
0.853 1.68 threshold under condition 3 (which combines natural variability and 0.2 m
. AT of SLR) and explore the fractional contribution of SWL components (1ymsL,

ntide> and 7ss) to these large flooding events. The choice of condition 3 and

moderate flooding are selected for demonstration, but the analysis could be

extended to any other flooding threshold and conditions of interest. We first
calculate the component-wise average contribution to total SWL during moderate flooding events. Then, we
calculate the joint likelihood of SWL components during moderate flooding events to understand which of the
three SWL components more often or less often drive moderate flooding events, and how the roles of different
components change as the magnitude of the SWL events become more extreme. These joint likelihoods are
calculated in two different ways using trivariate empirical copulas (Nelsen, 2007, Zhang & Singh, 2019; see
Appendix A2 for detail):

1. “OR” case: joint likelihood of at least one of the SWL components being greater than their respective moder-
ate flooding thresholds (see Appendix A2 and Equation A4).

2. “AND” case: joint likelihood of SWL components all simultaneously being greater than their respective
moderate flooding thresholds (see Appendix A2 and Equation AS).

In both “OR” and “AND” cases, the moderate flooding thresholds of SWL components are calculated as the
quantiles of SWL components when hourly SWL crosses the moderate flooding threshold (as in Table 2). Among
these moderate flooding events, we select more likely (smaller) and less likely (larger) events based on their prob-
ability of joint occurrence, and then report the non-exceedance probabilities of individual empirical marginals
of #vmsL, #Tide> and #ss. These empirical marginals show how the contributions of different components to SWL
change as the magnitude of the SWL events become more extreme.

SWL emulation in TESLA is carried out using the open source codes on GitHub page https://github.com/teslakit/
teslakit with modifications necessary for the present work. Reconstructions of APCs and SWLs from 1500 to
2000 CE and the results of the quasi-stationary flood risk analysis are publicly accessible at Mukhopadhyay
et al. (2022). All statistical analyses are carried out with R (R Core Team, 2021) programming language.

4. Results
4.1. Validation and Reconstruction of SSTA APCs

Based on a stepwise regression (see Figures S2—S4 in Supporting Information S1), we select the following ENSO
predictors for each of the APCs in Hovmoller space (bolded in Table 1): (a) the Nifio 3.4 index described by Li
et al. (2013) for APC,, hereafter simply referred to as Nifio 3.4, (b) the NCT for March—April-May (MAM) from
Freund et al. (2019) for APC,, (referred to as NCT,,,,,) and (c) the NCT index for September—October—-Novem-
ber (SON) from Freund et al. (2019) for APC, (referred to as NCTy,). These covariates explain 53%, 5%, and
40% of variability in APC,, APC,, and APC;, respectively. The Nifio 3.4 index for APC, is based on a network
of 2,222 tree-ring chronologies from both tropical and mid-latitude regions and captures canonical ENSO vari-
ability over the past 700 yr (1301-2005), including extended periods of La Nina during the little ice age and
El Nifio during the late twentieth century (Li et al., 2013). The NCTg index for APC,, based on corals and
sclerosponges, is designed specifically to capture ENSO activity in the western equatorial Pacific in the fall, but
extends over a shorter period of 1617-2008. APC, cannot be well represented by any of the ENSO reconstruc-
tions available, with the best (NCT,,,,,) still providing a poor fit. Additional analysis (not shown) suggests that
APC, is also not well correlated with SSTAs outside of the tropical Pacific.

Figure 3 shows the coupled linear regression-WARM model performance in simulating APC,. Figure 3a shows
the cross-validated R? between historical APC, and out-of-sample predictions based on the Nifio 3.4 index. The
global wavelet power spectrum of the residuals (e;) of APC, regression estimates are shown in Figure 3b. There
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is significant low-frequency variability at 3, 6, and 13 yr periodicities in the residuals. The WARM model uses
these frequencies to decompose and simulate the residuals, recreating these same signatures (Figure 3b). WARM
model residual simulations are added back to the regression estimated APC, to generate APC, simulations, which
match the observed distribution of APC, (Figure 3c). Similar results for APC, and APC, are shown in Figures S6
and S7 in Supporting Information S1.

APC simulations and their power spectra are shown for all three APCs in Figure 4. Figures 4a, 4c, and 4e show
historical versus median simulated APCs derived using the coupled linear regression-WARM model, with the gray
bars indicating 95% confidence bounds across the 1,000 traces of simulated APCs. We report the cross-validated
R?between the historical APCs and their out-of-sample predictions based on the Nifio 3.4, NCT),,,;, and NCT

indices, respectively. The cross-validated R? values indicate the performance of each linear model only. In
Figures 4b, 4d, 4f, we show the global wavelet spectrum of the simulated APCs for the historical (121 yr) period,
rather than the spectrum of regression residuals (as was shown for APC, in Figure 3). That is, Figures 4b, 4d, 4f
highlight the low-frequency variability present in the final reconstructions of each APC.

As highlighted earlier, APC, and APC, are predicted well, but not APC,. Importantly, though, the simulations
of APC values show a significant amount of variability around their conditional expectations. For all APCs, this
variability manifests across scales, and it is well captured by the coupled linear regression-WARM model. APC,
observations exhibit a significant peak power at around 6 yr and two secondary but insignificant peaks around
3 and 13 yr (Figure 4b). The APC, simulations capture the peak 6 yr signal but overestimate the secondary 13
yr peak, albeit with substantial uncertainty. APC, exhibits a substantial peak with a 7 yr periodicity, which the
WARM model reproduces very well (Figure 4d). Little of this signal is captured by the ENSO regression. APC,
exhibits a significant 3 yr peak and a smaller, insignificant peak at 6 yr (Figure 4f). These are reasonably well
captured by ensemble of linear regression-WARM model simulations.

4.1.1. Natural Variability in Reconstructions of 7ymst

The 1,000 traces of simulated APCs for 1500-2000 (Figures S8—S10 in Supporting Information S1) are used to
drive the TESLA model, generating 1,000 traces each of hourly #ymsL, #1ide> and #ss and thus SWL time series.
We first focus on the reconstructions of nymsL. Figure 5a shows the median and 95% bounds of the AMS of
nvmsL across the 1,000 traces. The interannual variability in the AMS closely follows the variations in the ENSO
predictors (Figures 5b—5d), especially the Nifio 3.4 index that drives APC, (Figure 5b). Both #ymvs. AMS and the
Nifio 3.4 index exhibit significant variability and frequent peaks during the 20th century and a dearth of events
during the 16th century. This is consistent with past work showing sensitivity of high tide and major flooding to
the El Nifio events across the U.S. West Coast (e.g., Sweet et al., 2018).

Figure 6 shows variability in the 100 yr flood event for ymsL based on a sliding 100 yr window (Figure 6a) and 30
yr window (Figure 6¢) applied to each of the 1,000 traces. The sampling uncertainty associated with a fitted GEV
model to 100 yr of data is also shown for comparison (blue error bar). Figures 6b and 6d show the coefficient
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observations and predictions are also shown. (b, d, f) The global power spectrum of the observed APCs (black) and the mean global power spectrum of 1,000
WARM-simulated time series (red), along with a 95% significance level based on a red noise background process (pink).

of variation in the 100-year event across sliding windows, expressed as a distribution across the traces for each
window size.

Several major features emerge from Figure 6. First, when using the 100 yr window, the median value across
the 1,000 traces does not change significantly during the 500 yr period, exhibiting only a slight increase in the
earliest part of the 16th century (Figure 6a). The lack of variability in the median is unsurprising, because the
100 yr window smooths out ENSO-induced variability that tends to manifest at inter-annual to decadal (rather
than centennial) scales. In addition, the uncertainty in the 100 yr event for #ymse across the ensemble of traces is
similar in size to the sampling uncertainty associated with a fitted GEV model to 100 yr of data (i.e., the width
of the gray area is similar to the width of the blue error bars). This suggests that the simulation-based approach to
uncertainty quantification aligns well with that estimated using more traditional statistical techniques.

In Figure 6a, the uncertainty bounds for the 100 yr events across the 1,000 traces appear relatively stable.
However, this belies a significant degree of decadal-to-centennial variability in the 100 yr event for each of the
1,000 traces, which stems not only from the ENSO-based reconstructions but also the low-frequency variability
captured by the WARM models. This is seen in Figure 6a using three randomly selected traces of the 100 yr event
for nmmse (gray dotted lines). Notably, each of the three traces exhibit more variability in the 100 yr event than
the median value across the ensemble (red line). Figure 6b shows the coefficient of variation in the 100 yr event
across all 1,000 traces, and further emphasizes that the variability in the 100 yr event for each trace is significant
in comparison to its median value.

This result becomes even more apparent if the window used to estimate the 100 yr event is shorter. Figures 6¢
and 6d is the same as Figures 6a and 6b, but based on 100 yr events estimated from a sliding 30 yr window. With
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a shorter window, not only do individual traces exhibit more variability in the 100 yr event estimate, but the
median 100 yr event estimate also varies across the centuries. Within this shorter window, ENSO variability is
significant enough so that many traces within the ensemble exhibit the same fluctuations, driving changes in the
median estimate. In Figure 6¢, sampling uncertainty in a GEV model (the blue error bar) covers only about half
of the total ensemble uncertainty in the 100 yr events for the nvmsL reconstructions in certain centuries, and the
coefficients of variation across traces can reach upwards of 40%.
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1,000 simulations with 95 percentile range shown by the shaded region. Average sampling variability from generalized extreme value fit is shown by error bar (blue).
(b) Coefficient of variations across 100 simulations. (c, d) Same as (a, b) but 100 yr events estimated from 30 yr sliding window.
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Figure 7. Flood risk analysis using still water level (SWL) (fypyst, + Mige T Mss): (@) with sea level rise (SLR) after 1900, and two synthetic annual maxima SWL
considering (b) no SLR and (c) a total of 0.2 m SLR for entire 500 yr. Red line shows median of 1,000 simulations (shaded region shows 95% interval). Gray lines
are three randomly sampled traces from simulations. For each trace, two extreme events over 97.5th percentiles are shown as SWL annual maxima values (year of

occurrence).

The results in Figure 6 have important implications, because the design of coastal flood infrastructure is often
based on a single trace of TWLs (i.e., the observed record), and the results here suggest that one component
(nmmsL) of TWLs over a single trace can vary substantially on multi-decadal timescales. Therefore, data collected
over a short period (e.g., 30 yr) may poorly reflect the range of natural variability possible in extreme events
of nvmse, and this issue may still not be fully resolved with a 100 yr record. For context, Figure 6a suggests
decadal-to-centennial scale variation of about 15 cm in the 100 yr event of mvst when using a 100 yr sliding
window, while these variations grow to 40 cm when using a 30 yr sliding window (Figure 6¢). These variations
could have larger impacts to that of mean SLR over a 20-30-yr period (assuming a projected 2—-3 mm/yr rate for
the U.S. West Coast; Sweet et al., 2022).

4.2. Variability in SWLs Due To Natural Variability and SLR

Figure 7 introduces the three conditions of SLR and natural variability discussed in Section 3.4. Figure 7a shows
the AMS series of SWL reconstructions from 1500 to 2000 for condition 1. The effect of SLR of 0.0022 m/yr
occurring since 1900 is evident from the gradual increase in annual maxima from 1900 forward. Figure 7b shows
the AMS SWL for condition 2 that removes SLR from SWLs, and Figure 7c shows the effects of 0.2 m of SLR
added to all 500 yr of simulation (condition 3). There is large annual to decadal variations in the AMS, which
is consistent with the findings in Figure 5. The combined effect of SLR and natural variability is evident in the
increased median AMS SWL in Figure 7c compared to Figures 7a and 7b.

The probability density functions for AMS SWL are shown in Figure 8 for each of the three conditions, along
with flooding thresholds at the tide gauge. The overall shift in water levels from nuisance flooding toward minor
flooding are evident once SLR is considered across the entire simulation (i.e., condition 3). There is also a
considerable number of AMS SWL values above the moderate flooding threshold under condition 3, consist-
ent with previous studies examining high tide flooding in San Francisco with SLR (Sweet et al., 2018, 2022).
Between conditions 1 and 3, the likelihood of minor flooding (1.4 m above MSL) increases from 8.6% to 93.5%.
Most notably, between conditions 1 and 3, the likelihood of moderate flooding (1.68 m above MSL) grows from
0.001% to 3.6%. We argue that this increase in flood risk is the result of accounting for the full extent of natural
variability over the last 500 yr.
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Figure 8. Probability density functions of annual maxima still water level (SWL) for three conditions: (a) condition 1:
with sea level rise (SLR) after 1900; (b) condition 2: no SLR; and (c) condition 3: a total of 0.2 m SLR for the entire 500 yr
simulation.

The ensemble simulations for condition 3 allow us to investigate the combined effect of SLR and natural variabil-
ity in SWL more reliably, as well as the contribution of individual components to total flooding magnitude. First,
we highlight a few randomly selected moderate flooding events for a randomly selected trace under condition 3
to explore how the components (7vmsL, #tides and #ss) combine to lead to moderate flooding in SWLs (see blue
boxes in Figure 7c). Figure 9 shows the hourly time series of these components for one event (similar results for
other events are shown in Figures S11-S15 in Supporting Information S1). Figure 9 shows an anomalously high
value of nvmst occurring simultaneously with above average #ri¢e and a peak in #ss. When looking at multiple
such events (Figures S11-S15 in Supporting Information S1), it becomes clear that a diverse combination of
nMMSL, MTides and #ss values can result in moderate flooding, with not all peaking simultaneously. This suggests
the need for a more careful assessment of the contributions and joint likelihoods of SWL components during
moderate flooding events.

Figure 10a shows the average contribution of hourly values of #ymsL, #tide, and #ss across all events where hourly
SWL cross the moderate flooding threshold for all simulations under condition 3. On average, #ywmsL, ATide, and
nss contribute 5.7%, 78.5%, and 15.8% of the SWL during these events. The large contribution of #riqe empha-
sizes that moderate flooding is really only possible at high tide, consistent with the findings from Serafin and
Ruggiero (2014). Also, storm surge appears to contribute three times as much to moderate flooding water levels
as compared to slower variations in MMSLAs.

The joint likelihood of occurrence of at least one of #vmsL, #mide, and #ss exceeding the values experienced during
a moderate flooding event is shown in Figure 10b, following the “OR” case discussed in Section 3.4. Probabilities
on the y-axis in Figure 10b are calculated using Equation A4 and plotted against hourly SWL magnitudes during
moderate flooding events. Figure 10b shows that as the magnitude of moderate flooding becomes more intense,
the probability of having at least one of #vmsL, #ide, and #ss exceeding its value during that event declines. This
is consistent with the idea that larger moderate flooding events will be less likely. Among these events, we pick
more likely events based on an “OR” joint likelihood of 20% or more (blue shaded region in Figure 10b), and less
likely events based on a joint likelihood of 5% or less (orange shaded region). For both the more and less likely
events, we plot the marginal non-exceedance probabilities for #ymsL, #ride, and #ss in Figures 10c and 10d, respec-
tively. These non-exceedance probabilities in the marginal illustrate which of the three components are consist-
ently at the upper end of their range during more or less likely moderate flooding events, and which components
exhibit more variability in magnitude during these events.
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For the more likely events (Figure 10c), both tide and storm surge levels are consistently toward the upper end of
their range during these events. Conversely, nvvst varies much more greatly across its range during these events,
suggesting that more likely moderate flooding events (which are often smaller in magnitude) can be generated
with a wide range of nvmse provided that #rige and #ss are near their maximum values.

In contrast, during less likely (and often larger) moderate flooding events (Figure 10d), the range of variability in
all three components is compressed toward the upper end of the distribution (i.e., above their 95th percentiles).
That is, to generate the less likely and often larger moderate flooding events in SWL that approach the major
flooding threshold (2.07 m), it requires that tide and storm surge reach the upper tails of their distribution and
simultaneously that slower variations in MMSLs do the same. We note that these results are consistent when
using the “AND” joint likelihood in Equation A5, although the overall joint probabilities are lower (see Figure
S16 in Supporting Information S1).

5. Discussion and Conclusion

Although multiple processes influence coastal flooding, ESL is sensitive to ENSO phase along the U.S. Pacific
Coast (Menéndez & Woodworth, 2010; Sweet & Park, 2014). Our reconstructions suggest a strong relationship
between non-tidal, slowly evolving anomalies in mean monthly sea levels and ENSO phase. In particular, the
AMS of nymst reconstructions follow interannual to decadal scale variations in ENSO events consistent with
previous studies (Serafin et al., 2017; Sweet & Park, 2014), and also exhibit small shifts during the little ice age
and increased Nifio 3.4 activity in the 20th century. The spatio-temporal shifts in ENSO over the Pacific during the
latter half of the twentieth century are accounted for in our modeling using the predictors NCT),,,; and NCT.
NCTj, in particular represents ENSO activity in the western equatorial Pacific in the fall (Freund et al., 2019),
which is consistent with APC, being described as an eastward propagating Kelvin wave during boreal summer
and fall (Anderson et al., 2019). The linear models explain 56% and 38% of variance in the conditional mean of
APC, and APC, using their respective ENSO predictors, but overall low-frequency periodicities of all APCs are
well captured using WARM simulations. Purely regression-based methods using modes of variability can only
partially address the uncertainties from natural variability, particularly in tide gauge observation-based studies
(Sweet et al., 2022). The coupled linear regression-WARM framework presented here shows a promising alter-
native for ENSO-based reconstructions of tide gauge records, as it provides an effective approach for accounting
for natural variability in water levels at different coastal locations.

The highly stochastic nature of the slowly evolving monthly and seasonal sea level anomalies, linked to synoptic
weather conditions, reveals that longer record lengths are essential for reliable estimation of design levels and
their uncertainty. Our results show that variations in slowly evolving MMSLs can have a larger impact than SLR
of 2-3 mm/yr over 20-30 yr. In addition, the ensemble uncertainty in estimates of the 100 yr return level of nymsr
is significantly larger when record lengths are reduced from 100 to 30 yr, and also exceeds the uncertainty that
would be estimated using more traditional statistical approaches (e.g., uncertainty bands from a fitted GEV distri-
bution to annual maxima). These results emphasize that reliable estimates of extreme sea water levels need long
observational records, and that great care is needed in selecting design events when based on data that only span
a few decades (Lang et al., 2019; Moftakhari et al., 2015; Wahl & Chambers, 2015; Wahl et al., 2017).

Our results show that when the effects of 0.2 m of SLR and natural variability in SWLs are combined, there is a
large increase in the occurrence of moderate flooding events in the San Francisco Bay. Estimating the probability
of these floods is difficult if based only on the most recent sea level records that contain recent levels of SLR,
because they lack a full representation of natural variability in SWL components. The approach presented in this
work addresses this challenge. Even without considering wave- and river-driven water levels, the increases in
moderate flood risk could be very detrimental to the San Francisco Bay coastal infrastructure. This increase in
flood risk further emphasizes the need to account for these changes due to the natural variability of coastal water
levels in future coastal development.

For San Francisco Bay, extreme SWLs are tidally dominated, as opposed to the east coast where contributions
of non-tidal components such as storm surges are typically dominant in extreme sea levels (Sweet et al., 2018).
Our findings confirm this result, but also show that contributions of non-tidal factors to low-probability extremes
in the West cannot be neglected (Serafin et al., 2017). In particular, we find that variations in #vvst can act as a
dominant factor in the tails of coastal flooding events in the San Francisco Bay. While smaller flooding events
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are primarily dominated by high tide coupled with storm surge, the largest events require that positive anomalies
in 7mmsL synchronize with tides and storm surges. This suggests the potential to improve subseasonal-to-seasonal
forecasts of major coastal flood risk based on forecasts of #vmsL, Which can be improved with more advanced
ENSO forecasts.

A few limitations of this work require discussion and could suggest important avenues for future work. First,
the simulation of tide data with present MSL could, however small, be a source of error and needs to be further
explored. Nonlinear interactions between storm surges, MMSLs, and tides are not accounted for in our linear
superposition approach (Equation 1) and can lead to additional error. Furthermore, this work did not account for
the impact of wave or river driven water levels given the nature of the study site location, but additional work
should expand this approach to consider all components of TWLs. We also note that although there is clear
evidence of a shift in coastal water levels above minor and moderate flooding thresholds when SLR and natural
variability are combined, the uncertainties from different modeling components can obscure SWL comparisons
with strict flooding thresholds.

In this work, we only reconstruct annual scale proxies for sea level variability from the tropical Pacific, while
other atmospheric and oceanographic inputs that are incorporated in TESLA (e.g., MJO, local SLP predictors)
that are sub-seasonal or more localized, are reconstructed based on the initial APC reconstructions. Future work
should develop paleo-proxy based reconstructions for these other climatic and oceanographic drivers to further
inform the water level emulator. Further investigations can be carried out to understand the effects of extra-tropical
climate modes (e.g., Pacific Decadal Oscillation) on coastal sea level variability and the need for expanding the
current framework to consider paleo-proxy reconstructions for those modes. In addition, the computationally
efficient framework presented in this work should be expanded to better understand the combined impacts of
SLR and natural water variability on coastal flood risk beyond the West Coast. However, future work would be
required to identify relevant paleo-proxies for slowly evolving water levels beyond the Pacific.

6. Conclusions

This study contributes a novel approach to couple paleo-proxy reconstructions of equatorial SSTAs with
coastal water level emulation to better understand natural variability in still water level and its components at
interannual-centennial timescales. We developed a coupled linear regression-WARM framework to utilize several
paleo proxy-based ENSO reconstructions to inform a modified version of the TESLA coastal water level emula-
tor and generate stochastic reconstructions of water levels since 1500 CE. Using the San Francisco (USA) tide
gauge for demonstration, we analyzed the combined effect of sea level rise and natural variability on extreme still
water level and its components. The primary conclusions of this work are as follows.

e ENSO variability significantly impacts slowly evolving mean monthly sea level anomalies along the Western
U.S. coast, and these variations can impart large sampling variability into the estimation of design events (e.g.,
100 yr flood) if record lengths are short (<30 yr).

¢ The combined effect of natural variability in mean monthly sea level anomalies, storm surge, tide, and sea
level rise can substantially increase the likelihood of large coastal flood events, well beyond what recent
observations suggest.

e With sea-level rise, a diverse combination of still water level components can lead to coastal flooding events.
However, low-magnitude coastal flooding is most often driven by the simultaneous occurrence of high tide
and large storm surges, while high-magnitude flooding requires the simultaneous occurrence of high tide,
large storm surges, and anomalously high monthly sea level anomalies.

Appendix A

Al. Wavelet Autoregressive Model for APC Residuals

In this study, we apply a Wavelet autoregressive model (WARM; Kwon et al., 2007) to quantify and propagate
residual variance and low-frequency periodicities into our final reconstructions of the APCs. The residuals ¢
in Equation 3 are modeled by first decomposing them into H orthogonal component series representing low
frequency signals and a noise component (v;).

H
€= Y, Znai +iiri = 1,2,3 (AD)
h=1
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This decomposition is based on the wavelet spectrum of ¢;; (using the Morlet wavelet). From that spectrum, we
identify H frequency bands of low-frequency variability where the global variation is significantly different from
a background red-noise process (at the 95% significance level). The J scales of the wavelet spectrum (ay,, ..., an,)
that are significant for the Ath frequency band are clustered together, and from those scales, a times series projec-
tion for the ith component Z, is estimated as the sum of the real part of the wavelet transform (note the subscript
i for the ith APC has been dropped for simplicity):

J 12
5,6 R(Wi(an,))
Zhi= Y Zhij = J - A2

hit j; hit,j C{S W()(O) ; ah/ 1/2 ( )
Here, C; is a wavelet function constant (0.776 for the Morlet wavelet), yo(0) = 7~'/* is the factor that removes

/

energy scaling for the Morlet wavelet, a}" * converts the wavelet transform to an energy density function, and §;

and §, are the scale-averaging coefficient and time-averaging factor, respectively. R{.} denotes the real part of W,
the wavelet transform of the residual time series ¢, ; at scale ay,.

For the i"* APC residual ¢,; , the decomposed time series Z;,,; and the noise v;; are then modeled stochastically
using an autoregressive moving average (ARMA) model. Simulations from each ARMA model are summed to
generate a trace of ¢,; with the correct variance and low-frequency structure. To generate ensemble reconstruc-
tions of each APC, the following steps are used:

1. Estimate the conditional expectation of each APC based on the ENSO-based regressions in Equation 3 (A/lsa).

2. Using the WARM model, simulate § = 1,000 traces of residual time series for the same period as the APC
reconstructions in step 1 (€;;). Each simulation has a 121 yr burn-in period i.e., discarded to ensure simula-
tions are not in-phase due to initial conditions.

3. Add the simulated time series of APC residuals €;; to the regression-generated APC estimates (A/lsa) to

generate APC simulations (APC,;). Compare the statistical properties of these simulated time series to those
in the observed APC time series.

A2. Joint Likelihood Estimation of SWL Components

We assess the joint likelihood of occurrence of the three SWL components during moderate flooding events
through the following procedure:

1. We begin by constructing a trivariate empirical copula (Nelsen, 2007) of non-exceedance probabilities of
hourly time series of #vmsL, #Tide> and #ss. If the normalized ranked values of hourly series of #yvmsL, #1ide, and
nss are denoted as U, V, and W respectively, we construct the empirical copula (C,) as:

LU <u Vi <o, W < w)
Cu(u, v, w) = 1 Z (A3)
i3 |o ,otherwise

The sample size n = T X n.sim , where T is the total number of days in 500 yr and n.sim is the number of
simulations, chosen here to be 1,000. The empirical marginals (u. v. w) are defined over the 3-dimensional
domain [0. 11. We also compute pairwise bivariate empirical copulas Cyy(u, v), Cuw(u, w), and Cyw(v, w).
The pairwise copula formulations are similar to Equation A3 but for bivariate cases.

2. Next, to calculate the joint probability of occurrence of nmwmst. #midce and #ss at the water levels correspond-
ing to daily maximum SWLs above the moderate flooding threshold, we first take a subset (u*, v*, w*)
of (u.v.w) time series triplets by selecting the entries corresponding to SWL > 1.68 m above MSL.
Then at these marginal triplets (u*,v*,w*), we calculate the probabilities Cyy(u*,v*), Cuw(u*, w*)
and Cyw(v*,w*) using the pairwise empirical copulas. We also calculate the joint probabilities
PWU <u",V <v', W < w*) = C,(U; <u*, V; < v, W; < w*) = C,(u*, v*, w*).

3. Next, following Zhang and Singh (2019), we calculate two joint probabilities:

(a) “OR?” case: joint likelihood of at least one of the triplets (u. v. w) being greater than (u*, v*, w*), as shown
equation in Equation A4. In Equation A4, g,., g;, and g are the values of nymsL, #tige and #gs, respectively,
during moderate flooding.
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P(mvmsL > Gm U fitide > : U fiss > qs) = 1 — C,(u*, v*, w*) (AD)

(b) “AND” case: joint likelihood of (u. v. w) all simultaneously being greater than (u*, v*, w*), as shown in
Equation AS.

P(mamsL > Ggm N Atide > G N 1ss > qs)
=1-u"—v* — w* + Cyv(u*, v*) + Cuw(u*, w*) (A5)
+ Cyw(v*, w*) — C,(u*, v*, w*)

The operator symbols ‘U’ and ‘N’ in Equations A4 and AS denote union and intersection operations respectively.

Acronyms and Abbreviations

AWT Annual weather type

APC Annual principal component

MJO Madden-Julian Oscillation

ENSO El Nifio Southern Oscillation

EVA Extreme value analysis

GEV Generalized extreme value

MMSL Monthly mean sea level

PCA Principal component analysis

PC Principal component

SLR Sea level rise

TWL Total water level

SWL Still water level

MMSLA Monthly mean sea level anomaly
MSL Mean sea level

ESL Extreme sea level

TESLA Time-varying emulator for short- and long-term analysis
CE Common era

SLP Sea level pressure

MPC Monthly scale principal component
NOAA National Oceanic and Atmospheric Administration
SSTA Sea surface temperature anomaly
WARM Wavelet Auto-regression model
AMS Annual maxima series

NCT Nifio Cold Tongue

NWP Nifio Warm Pool

Data Availability Statement

Data set for this research is available in this in-text data citation reference: Mukhopadhyay et al. (2022) (with
Creative Commons Attribution 4.0 International license, without any restrictions).
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Erratum

In the originally published version of this article, the text in the caption for Figure 7 contained some errors.
“1990” has been corrected to “1900” and “97. Fifth” has been corrected to “97.5th.” In addition, the caption for
Figure 8 contains an error. “1990” has been corrected to “1900.” This may be considered the authoritative version
of record.
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