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Abstract: This paper presents a framework to evaluate the regional and local resilience of infrastructure networks following disruptions from
natural hazards. Herein, the regional resilience of a network relates to the accessibility of a community within a larger network, whereas the
local resilience concerns the ability of a network to provide its intended service within the boundaries of a community. Using this framework, a
methodology is developed to demonstrate its application to a road and highway transportation network disrupted by ground shaking and
inundation under a Cascadia Subduction Zone earthquake and tsunami scenario. The regional network extents encompass the entire coast
of the US state of Oregon. Embedded within this regional network are 18 local networks associated with coastal communities. Regional and
local connectivity indexes are defined to identify the initial damage and then track the postdisaster recovery of the transportation network,
i.e., evaluate the network resilience. The study results identify the attributes that lead to a regionally or locally resilient network and highlight
the importance of considering local infrastructure networks embedded within larger regional networks. It is shown that without regional con-
siderations, the time to recover may be severely underpredicted. The methodology is further used as a decision support tool to demonstrate how
mitigation options impact the transportation network’s resilience. The importance of strategically considering mitigation options is emphasized
as some communities see significant reductions in time to recover, whereas others see little to no improvement. DOI: 10.1061/(ASCE)
IS.1943-555X.0000694. © 2022 American Society of Civil Engineers.
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Introduction

Infrastructure networks, such as electric power, transportation, and
communication, are essential for community function and resilience
planning (OSSPAC 2013; NIST 2016); however, these networks are
often evaluated without consideration given to the larger regional
network within which they are embedded. That is, a network’s spa-
tial boundaries are limited to the spatial boundaries of the commu-
nity it serves. Infrastructure networks do, however, span multiple
spatial scales ranging from global accessibility, such as, ship and
airplane traffic, to traversing communities and neighborhoods, in-
cluding, local roads and walking trails. Further, depending on the
type of infrastructure network, different services can be identified.
For example, a transportation network may be used to connect peo-
ple to food sources (Coveney and O’Dwyer 2009), health resources
(Zhang et al. 2018), or postdisaster relief (Horner and Widener
2011). Hazards, both natural and anthropogenic, can cause damage
to network components, which translates to larger system disrup-
tions and ultimately limits the ability of a network to perform its
intended service (Crucitti et al. 2004; Buldyrev et al. 2010).

When considering infrastructure networks under disruption from
hazards, multiple spatial scales are of importance (Thacker et al.
2017; Zhang and Alipour 2020). For instance, following a network
disruption, a community may be accessible at the regional scale,
e.g., goods can reach community boundaries; however, if the local
network is in poor condition, then these goods cannot be distributed
throughout the community. Conversely, if the local network of a
community is in good condition following a disaster, but the net-
work is not accessible to the rest of the region, then goods cannot be
transported to the community and so cannot be distributed through-
out the local network. Thus, the extent to which a community is
regionally or locally accessible is important.

The purpose of this paper is to present a generalized framework
to simultaneously assess the regional and local resilience of infra-
structure networks following disruptions from natural hazards. This
framework is used to identify the attributes that lead to the regional
and local resilience of networks, to demonstrate the necessity of
considering local networks embedded within a larger, regional-scale
network, and to evaluate the impact of alternative mitigation options
on network resilience. The generalized framework is intended to be
expandable across infrastructure network systems; however, a meth-
odology is developed to demonstrate how the framework can be
applied to a road and highway transportation network subject to the
multihazard earthquake and tsunami threat posed by the Cascadia
Subduction Zone (CSZ).

The remainder of this paper is organized as follows. The second
section outlines the framework in a generalized manner and draws
on examples in the literature showing how it can be applied across
different infrastructure systems. The third section develops the meth-
odology demonstrating how the framework can be applied to a road
and highway transportation network. The fourth section presents re-
sults from the previous section and shows how the framework can
be used to evaluate mitigation options. The fifth section presents a
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discussion of this work and identifies its limitations. Finally, the
sixth section summarizes the conclusions.

General Framework

Fig. 1 shows the general framework developed to assess the regional
and local resilience of infrastructure networks and is broken down
into three primary steps. The first step consists in organizing and
collecting data. Using network and hazard data, damage to the net-
work components is then evaluated in Step 2. The damage results in
changes to network component functionality, which then determine
how the network will perform as a system in Step 3. Regional and
local resilience metrics are defined and tracked here, from which the
multiscale resilience can be evaluated.

The first step, data collection, consists in gathering resilience
planning guides and policy (Step 1a), network data (Step 1b), ser-
vice information (Step 1c), and hazard data (Step 1d). Resilience
planning guides and policies inform the overall analysis and can
aide in identifying hazards present within a geographic region, met-
rics that can be tracked, or services that infrastructure networks pro-
vide (SPUR 2009; OSSPAC 2013; NIST 2016; NYC Emergency
Management 2019).

Identifying the network (Step 1b) consists of specifying an infra-
structure network to consider and delimitating local and regional
network boundaries. The latter is necessary to consider the problem
under a multiscale lens. For example, transportation networks may
have regional boundaries connecting state to state (Omer et al. 2013)
or local boundaries concerning accessibility within cities (Dong
et al. 2016, 2020). Further, different spatial boundaries impact the
ownership of infrastructure components. For example, a state
may be responsible for bridges along a highway, whereas cities
are responsible for bridges within city boundaries.

Here, the term service refers to the service that an infrastructure
network was originally intended to perform (Step 1c). Infrastruc-
ture networks can perform multiple services. For example, a trans-
portation network can be used to move people from their place of

residence to places that provide health assistance (Zhang et al.
2018). Similarly, the same transportation network may be used
to provide accessibility from places of residence to places of work
(Omer et al. 2011). As such, identifying the service of a network
also consists of identifying origins and destinations that relate to
this service. The service origin and destination are dependent on the
network and vice versa.

Gathering hazard data (Step 1d) consists of defining an event
that prevents the network from performing its intended service
(Ouyang 2014; Faturechi and Miller-Hooks 2015; Sun et al. 2018).
Hazards can be either natural, such as earthquakes (Chang and
Nolima 2001; Shiraki et al. 2007; Guo et al. 2017; Ishibashi et al.
2021) and hurricanes (Horner and Widener 2011; Zou and Chen
2020), or anthropogenic, such as intentional attacks (Wu et al.
2007). In the context of natural phenomena, they can often consist
of multiple hazards that, if applicable, add an extra dimension to the
problem (Kappes et al. 2012).

Step 2 of the framework, network component modeling and
analysis, is the result of the hazard impacting the network. In the
context of natural hazards, the hazard and network components
are often combined via the use of fragility models (FEMA 2013;
Cavalieri et al. 2014; Kakderi and Argyroudis 2014; FEMA 2015;
Gidaris et al. 2017). The use of fragility models results in a prob-
ability that network components will be in or exceed a damage state
(Step 2a). The damage states subsequently inform changes to the
network component functionality and performance (Step 2b). The
component functionality influences the component performance. In
the case of transportation networks, performance may correspond
to an increase in travel time along roads and bridges (Shiraki et al.
2007), whereas in power networks it may correspond to component
failure (Ouyang and Dueñas-Osorio 2014; Johnson et al. 2020).

The entire network is then treated as a system in Step 3. The
performance of a network as a system depends upon both individual
component performance and network topology (Zhang et al. 2015).
This system performance can be further evaluated at multiple scales,
hence both the regional and local network performance Steps 3a
and 3b. The arrow between these steps identifies interdependencies

Fig. 1. Framework for assessing regional and local resilience of infrastructure networks.
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between the two. Based on the network and service that are being
considered, there may be either a one-way dependence, such as,
the local network depends on the regional network, or a two-way
dependence, such as, the local and regional networks depend upon
each other. Regional and local metrics are identified (Steps 3c and
3d) to evaluate the performance of the network at multiple scales.
The service origin and destination aid in identifying the local and
regional metrics (Logan and Guikema 2020). Finally, the regional
and local metrics are used to inform the multiscale resilience of the
network (Step 3e).

Methods Applied to a Transportation Network

A methodology was developed to demonstrate how the generalized
framework can be applied to a road and highway transportation net-
work under disruption from earthquake and tsunami hazards. This
section follows Steps 1 and 2 of the framework (Fig. 1).

Hazard, Network, and Service Identification

The North American Pacific Northwest is subject to the rupture of
the CSZ, which can result in both strong earthquake ground shaking

and tsunami inundation. The last full rupture of the CSZ occurred in
1700 and is estimated to have had a moment magnitude between 8.7
and 9.2. Further, some studies have estimated a 7% to 11% prob-
ability that a full-margin rupture will occur between 2010 and 2060
(Goldfinger et al. 2012). Local studies carried out to characterize the
hazard associated with the CSZ have resulted in probabilistic hazard
maps (Gonzàlez et al. 2009; Park et al. 2017), whereas at the regional
scale, the hazard has been characterized based on moment magni-
tude. In this work, scenario-based hazard maps associated with the
M9.0 earthquake and corresponding large, or L, tsunami were used
(Madin et al. 2013; Priest et al. 2013) because this formed the basis
of the Oregon Resilience Plan (OSSPAC 2013). In the future, a prob-
abilistic rather than a scenario-based approach could be considered,
as suggested by one of the reviewers. While a probabilistic seismic
and tsunami hazard analysis (PSTHA) exists for a single commu-
nity at Seaside, Oregon (Park et al. 2017) and has been used for
several risk-based damage studies (e.g., Park et al. 2019; Sanderson
et al. 2021), there currently exists no PSTHA for the entire Pacific
Northwest.

The regional highway transportation network considered is
shown in Fig. 2 and stretches from the California to Washington
state borders in the north–south direction and from the Pacific coast

Fig. 2. Regional highway transportation network showing location of coastal communities, maintenance facilities, airports, and highway tiers.
[Map tiles by Stamen Design, under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/). Data by OpenStreetMap, under ODbL.]
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to Interstate 5 in the east–west direction. The entire transportation
network consists of 2,644 km of roads. Highways were prioritized
according to a tiered approach, with Tier 1 being a backbone that
allows access to most major population centers and Tier 3 providing
access to all coastal communities (OSSPAC 2013). The tiered struc-
ture of the transportation network is shown in Fig. 2 and was used in
this work when prioritizing restoration of highway components.

It was assumed that the role of the transportation network was
to provide postdisaster aid to communities, and the location of air-
ports were used as a proxy for supply sources. Thus, in relation to
the framework in Fig. 1, airports were identified as the service ori-
gins, whereas coastal communities were identified as the service
destinations. A total of 29 airports were considered and grouped
into 3 tiers (Fig. 2). If an airport was located outside of the trans-
portation network, the nearest node on the network is used as a
representative point. It should be emphasized that other services,
such as fuel, food, health, or access to large metropolitan areas,
could be identified, although these are not considered in the illus-
trative example shown here.

Furthermore, locations of transportation maintenance facilities
are shown in Fig. 2. Each coastal town is located within the juris-
diction of a single facility, and it was assumed that the reconstruc-
tion of local roads depended on the communities’ access to their
respective maintenance facility. The maintenance facilities are
labeled A, B, C, and D.

Within the regional network, 18 coastal communities were con-
sidered and are shown as pink dots in Fig. 2 and summarized in
Table 1. The 18 coastal communities were grouped into northern,
central, and southern coasts. The northern coastal communities are
closer to metropolitan areas, whereas the southern coast is con-
sidered more rural. Local network boundaries were delimited by
the urban growth boundary of each community, and some coastal
towns that are near others, such as Astoria-Warrenton and Gearhart-
Seaside, were treated as one community for simplicity’s sake. The
communities range in population from 954 people (Port Orford) to
25,881 people (North Bend-Coos Bay) (US Census Bureau 2019).
On average, the population of all 18 communities is 6,234 people,
and there are 90.5 km of roads within each community. Information
in Table 1, such as population and median income, is supplied to
provide a sense of the size of each community but is not used fur-
ther in this study. Fig. 3 shows the local networks for three of the

coastal communities: Cannon Beach, Newport, and Port Orford.
The extent of tsunami inundation and the location of bridges and
airports are shown.

Probabilistic Network Component Analyses

Road and Bridge Damage Analysis
Using the hazard layers and transportation network, a probabilistic
damage analysis was performed for both bridges and roads. Burns
et al. (2021) conducted a multihazard damage analysis for bridges on
the transportation network using, among other tools, Hazus fragility
curves. The Hazus fragility curves for bridges include 28 bridge
classifications that, for brevity’s sake, are not presented here. Burns
et al. (2021) concluded that the Hazus landslide and liquefaction
fragility curves tended to overestimate bridge damage. Therefore,
only ground shaking from earthquake and tsunami inundation were
considered here. The resulting damage state probabilities were used
in this study.

Road damage analysis was conducted using Hazus roadway fra-
gility curves (FEMA 2013, 2015). The earthquake intensity measure
was permanent ground deformation, whereas inundation depth was
used for the tsunami. For consistency with the bridge damage analy-
sis of Burns et al. (2021), landslides, lateral spreading, and lique-
faction were not considered for the road damage analysis.

The bridge damage state probabilities from Burns et al. (2021)
were directly sampled in aMonte Carlo simulation, whereas damage
to road segments were simulated based on the approach outlined in
Baker (2008) and used by Kameshwar et al. (2019) and Sanderson
et al. (2021) to estimate damage to the transportation network in
Seaside, Oregon. That is, the probability that the damage state,
DS, of each road segment would exceed damage state i was
computed as

PðDS ≥ dsijDÞ ¼ PðCi < DÞ ð1Þ
where D = demand at the road segment; and Ci = damage capacity
associated with damage state dsi. The damage capacity of each
road segment was simulated as a lognormal random variable, LNð·Þ,
computed as

Ci ∼ LNðθi; βiÞ ð2Þ

Table 1. Sociodemographic and transportation network summary for each coastal community and entire coast

Community Population
Median annual
income (USD)

Number
of nodes

Number
of edges

Length roads
(km)

Assigned maintenance
facility

Astoria-Warrenton 15,385 52,195 1,290 1,558 208.6 A
Gearhart-Seaside 8,382 51,729 710 885 103.0 A
Cannon Beach 1,491 50,846 323 392 38.1 A
Manzanita-Nehalem-Wheeler 1,105 49,922 449 555 62.3 A
Rockaway Beach 1,166 45,781 448 545 52.5 A
Garibaldi-Bay City 2,472 53,064 354 412 43.0 A
Tillamook 5,231 41,109 330 474 48.1 A
Lincoln City 8,826 39,344 950 1,179 140.3 B
Depoe Bay 1,805 57,143 195 222 22.4 B
Newport 10,559 49,039 959 1,186 135.8 B
Toledo 3,579 60,455 320 370 46.8 B
Waldport 2,055 47,971 211 250 29.1 B
Florence 8,921 42,356 905 1,119 137.3 C
North Bend-Coos Bay 25,881 50,905 1,653 2,107 240.9 D
Bandon 3,100 32,226 456 540 61.8 D
Port Orford 954 27,500 281 337 57.1 D
Gold Beach 22,418 42,625 284 321 49.2 D
Brookings 6,431 62,384 856 985 152.6 D
Full Network 112,203 — 16,370 19,111 2,643.7 —
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where θi and βi = median and dispersion parameters associated with
damage capacity of damage state dsi. The parameterizing medians
and dispersion values are shown in Tables 2 and 3 for earthquake
peak ground deformation (PGD) and tsunami inundation depth,
respectively. Although correlation across road segments was not
considered here, this could be accounted for by simulating a multi-
variate lognormal distribution (Yang et al. 2009).

A total of 1,000 iterations were performed, resulting in discrete
damage states for each road and bridge and for both hazards. The
multihazard damage state was then computed using the Boolean
logic rules outlined in the Hazus tsunami methodology manual

DSEQ;Tsu ¼ maxðDSEQ;DSTsuÞ ð3Þ

DSEQ;Tsu ¼ Extensive;

if∶ fDSEQ ¼ moderate andDSTsu ¼ moderateg ð4Þ

DSEQ;Tsu ¼ Complete;

if∶ fDSEQ ¼ extensive andDSTsu ¼ extensiveg ð5Þ
where DSEQ and DSTsu are the discrete earthquake and tsunami
damage states associated with each Monte Carlo iteration. For
bridges that lie on a road segment, bridge damage state is assumed
rather than an underlying road damage state. If multiple bridges
were located on a single road segment, the maximum damage state
of the bridges was used.

Restoration and Functionality
The restoration and functionality of roads and bridges were com-
puted using Hazus restoration curves, which are represented as a
normal cumulative distribution function (CDF) and parameterized
via a mean and standard deviation (SD). Functionality is defined as
the percentage of the component that is expected to be open or op-
erational (FEMA 2013). Restoration curves indicate the function-
ality of road segments and bridges as a function of time and were
computed as

(a) (b) (c)

Fig. 3. Example of three local networks for (a) Cannon Beach; (b) Newport; and (c) Port Orford. [Map tiles by Stamen Design, under CC BY 3.0
(https://creativecommons.org/licenses/by/3.0/). Data by OpenStreetMap, under ODbL.]

Table 2. Road fragility parameterization from peak ground deformation

Damage
state

Major road Urban road

Median
PGD (θ)

(m)
Dispersion (β)

(m)

Median
PGD (θ)

(m)
Dispersion (β)

(m)

Slight 0.30 0.0178 0.15 0.0178
Moderate 0.61 0.0178 0.30 0.0178
Extensive 1.52 0.0178 0.61 0.0178
Complete 1.52 0.0178 0.61 0.0178

Table 3. Road fragility parameterization from tsunami inundation depth (median, θ, and dispersion, β, are dependent on flow speed, u)

Damage
state

Low flow (u ≤ 1 m=s) Moderate flow (1 < u ≤ 5 m=s) High flow (u > 5 m=s)

Median inundation
depth (θ) (m)

Dispersion (β)
(m)

Median inundation
depth (θ) (m)

Dispersion (β)
(m)

Median inundation
depth (θ) (m)

Dispersion (β)
(m)

Slight 0.67 0.12 0.48 0.15 0.42 0.15
Moderate 1.28 0.12 0.91 0.15 0.80 0.15
Extensive 2.07 0.12 1.48 0.15 1.30 0.15
Complete 3.35 0.12 2.39 0.15 2.10 0.15
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fðtÞ ¼ Φ

�
t − μdsi

σdsi

�
ð6Þ

where fðtÞ = functionality of the road or bridge; t = time in days
after event; μdsi and σdsi = mean and SD associated with damage
state dsi; and Φð·Þ = standard normal CDF. The road and bridge
restoration curves are shown in Fig. 4. The means and SDs are
shown in Table 4 and vary depending on the infrastructure type
(road or bridge), the type of hazard (earthquake ground motion
or tsunami inundation), and the degree of damage (slight, moderate,
extensive, or complete).

To account for limitations in resources, the restoration curves
were modified at both the regional and local scales. At the regional
scale, restoration was prioritized according to the tiers shown in
Fig. 2. Each subsequent tier began restoration following all roads
and bridges in the prior tier, reaching a randomly sampled function-
ality level. Here, the necessary functionality level to begin restora-
tion of the following tier followed a normal distribution with a
mean of 0.5 and a SD of 0.1. For example, if this value was sampled
as 0.6, all Tier 1–Phase 1 roads and bridges must have reached a 0.6
functionality following the restoration curves of Fig. 4 before any
Tier 1–Phase 2 road segments began restoration. The assumption is
that not all roads and bridges will begin undergoing repair immedi-
ately due to limitations in resources. Note that in this work, a mean
of 0.5 and SD of 0.1 were assumed; however, these values could be
refined in future work based on regional preparation levels. That is,

if a region has a good preparation level, then the parameterizing
mean could be lower, indicating that subsequent tiers initiate their
restoration process sooner. The resulting average regional function-
ality across all 1,000 iterations at Days 1, 60, 90, and 720 are shown
in Fig. 5.

At the local scale, the functionality of roads and bridges was
modified based on accessibility to maintenance facilities. It was as-
sumed that communities rely on supplies from maintenance facili-
ties to repair their roads and that communities located further from
maintenance facilities will take longer to receive these supplies. The
standard functionality was thus modified for local roads as

fLðtÞ ¼ fðtÞ · δk ð7Þ
where f was taken from Eq. (6) and δ was computed as

δðtÞ ¼ Tðo;dÞ;0
Tðo;dÞ;t

ð8Þ

where Tðo;dÞ;t = travel time along shortest path between origin o and
destination d at time t. Here, the origin was taken as the maintenance
facility and the destination as the community of interest. The refer-
ence time in the numerator is 0, indicating predisturbance travel
times. As the regional network recovers, the postdisturbance travel
time in the denominator approaches the predisturbance travel time
and δ approaches 1. Thus, values of δ range between 0 and 1. The
constant k in Eq. (7) was defined as

k ¼

8>><
>>:

0.5; Tðo;dÞ;0 < 1 h

1; 1 h ≤ Tðo;dÞ;0 < 2 h

2; Tðo;dÞ;0 ≥ 2 h

ð9Þ

With this formulation, the assumption behind k is that more trips
can be made between communities closer to their maintenance fa-
cility than those located further away. The values of kwere assumed;
however, these could be refined in future work based on models that
are dependent on resources available at the origin and destination.
For example, if resources for repair are limited and prioritized by
community, k can be a time-dependent function that approaches 0
as resources are allocated from maintenance facilities to each com-
munity. Thus, when k ¼ 0, δ ¼ 1, and the local functionality is
taken directly from Eq. (6). The term δk introduces a one-way de-
pendence of the local network restoration on the regional network
restoration. The average local functionality at Newport across all
1,000 iterations at Days 1, 60, 90, and 720 are shown in Fig. 6.

Functionality-Based Travel Time Surface
The local and regional functionality of roads and bridges were then
related to increased travel times along these segments. A commonly
used relationship between travel times, traffic capacities, and traffic
volumes is the Bureau of Public Roads (BPR) curve (Martin and
McGuckin 1998), computed as

Fig. 4. Restoration curves for earthquake ground shaking (EQ) and
tsunami inundation (TS) associated with (a) roads; and (b) bridges.

Table 4. Road and bridge restoration curve parameterization

Damage
state

Road Bridge

Earthquake
mean
(days)

Earthquake
SD

(days)

Tsunami
mean
(days)

Tsunami
SD

(days)

Earthquake
mean
(days)

Earthquake
SD

(days)

Tsunami
mean
(days)

Tsunami
SD

(days)

Slight 0.9 0.05 1 0.05 0.6 0.6 1 0.5
Moderate 2.2 1.8 3 1.5 2.5 2.7 4 2
Extensive 21 16 20 10 75 42 30 15
Complete 21 15 30 15 230 110 120 60
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T 0
c;s ¼ T 0

o;s

�
1þ α

�
vs
cs

�
β
�

ð10Þ

where T 0
c;s and T 0

o;s = current and original travel times along seg-
ment s; α and β = constants typically taken to be 0.15 and 4,

respectively, under normal flow conditions; and vs and cs = traffic
volume and capacity, respectively, along segment s.

It was assumed that immediately after the rupture of the CSZ,
the traffic volume on the regional road network would initially be
limited and gradually return to predisturbance conditions. The traffic

(a) (b) (c) (d)

Fig. 5. Restoration of regional road network. Average functionality, fR, of regional roads and bridges is shown at (a) Day 1; (b) Day 60; (c) Day 90;
and (d) Day 720. fR ¼ 0 is nonfunctional, fR ¼ 1 is fully functional. [Map tiles by Stamen Design, under CC BY 3.0 (https://creativecommons.org
/licenses/by/3.0/). Data by OpenStreetMap, under ODbL.]

(a) (b) (c) (d)

Fig. 6. Restoration of local road network for Newport. Average functionality of local roads and bridges at (a) Day 1; (b) Day 60; (c) Day 90; and
(d) Day 720. fL ¼ 0 is nonfunctional, fL ¼ 1 is fully functional. [Map tiles by Stamen Design, under CC BY 3.0 (https://creativecommons.org
/licenses/by/3.0/). Data by OpenStreetMap, under ODbL.]
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volume, vs, was modified by a traffic volume multiplier, φðtÞ, de-
fined as a normal CDF with a mean of 30 days and a SD of 14 days.
The traffic volume multiplier is similar to the restoration curves of
Fig. 4 in that a normal CDF is used to define a unitless curve that is a
function of time following the disaster. The traffic volume multiplier
is simply used to reduce the traffic volume along road segment s.
The parameterizing mean and SD were assumed for this work and
can be refined in future work based on output from postdisaster traf-
fic forecasting models. The BPR curve in Eq. (10) was thus modi-
fied to account for reductions in traffic volume and regional road
and bridge functionality, fR, as

T 0
c;s ¼ T 0

o;s

�
1

fR
þ α

�
φ · vs
fR · cs

�
β
�

ð11Þ

A normalized version of Eq. (11) is shown in Fig. 7 as a
function of ðφ · vsÞ=cs and fR. Each contour corresponds to val-
ues of T 0

c;s=T 0
o;s. Along the top axis, where fR ¼ 1, the standard

BPR curve of Eq. (10) is obtained. Along the leftmost axis where
v · φ ¼ 0, i.e., there is no traffic volume, the travel time is increased
by T 0

o;s=fR. For example, a road or bridge that is 50% functional
results in double the travel time. This formulation accounts for
a reduction in both traffic volume and road and bridge capacity.
Alternative formulations to compute postdisaster traffic volumes
and travel times exist, such as gravity models and user-equilibrium
traffic assignment (Shiraki et al. 2007; Guo et al. 2017); how-
ever, these were not implemented here because they require origin–
destination trip assignments. The travel time surface was employed
where traffic volume data were available, i.e., on the regional net-
work. On the local networks, the travel time along a road segment
was increased by T 0

c;s ¼ T 0
o;s=fL.

Results of Application to Transportation Network

Whereas the previous section followed Steps 1 and 2 of the gen-
eralized framework shown in Fig. 1, this section follows Step 3.
That is, the network is considered as a system, and both regional
and local metrics are defined to evaluate the resilience of the trans-
portation network at multiple spatial scales. Further, it is demon-
strated how this framework can be used as a decision support tool.

Regional Connectivity Index

The assumed role of the transportation network was to provide
postdisaster aid to communities, and the locations of airports were
used as a proxy for supply sources. Airports take on the role of
service origin and were grouped into three tiers (Fig. 2). To define
accessibility from these supply sources to the coastal communities,
or service destinations, a regional connectivity index, RCI, was cre-
ated. The RCI is based on the concept of travel time resilience
(Omer et al. 2011), and was defined as

RCIðtÞ ¼
X
jϵTiers

wj
minoϵTierjTðo;dÞ;0
minoϵTierjTðo;dÞ;t

ð12Þ

where Tðo;dÞ;t = travel time along shortest path between origin o and
destination d at time t. At each time step t, the transportation net-
work was updated according to the methodology outlined in the pre-
vious section and the shortest path recomputed using this updated
network. The python package NetworkX was used to compute the
shortest path between nodes (Hagberg et al. 2008). Airports were
taken as the origins, whereas the communities were taken as the
destinations. The time in the numerator is t ¼ 0, indicating predis-
turbance travel times. Each airport tier was represented by the var-
iable j, for example, j ¼ 1, 2, and 3. The variable wj is a weight that
represents the importance of airport tiers, and the summation of
weights across all tiers is equal to one. The weights were included
to prioritize airport tiers depending on interests and features such as
runway capacity and local logistics. By formulating the RCI as such,
each community’s index was normalized by their respective travel
time under normal circumstances, for example, predisturbance travel
times. This metric thus helps identify which communities were fur-
thest displaced from their predisturbance conditions. By tracking the
RCI across time and considering the network recovery, each trajec-
tory will reapproach 1, where the postdisturbance travel times are
identical to the predisturbance travel times.

Fig. 8 shows the RCI for Cannon Beach, Newport, and Port
Orford for all 1,000 iterations and with equal weights across all three
airport tiers. These three communities are on the northern, central,
and southern coasts, respectively. The solid thick line indicates the
average of all iterations at each time step, whereas the shaded region
shows �1 SD. Fig. 8(c) shows that, on average, the RCI of Port
Orford begins at approximately 0.18, indicating that across all air-
port tiers it takes about five times as long as the predisturbance travel
time to access the community. The recovery trajectory shows that,
on average, the accessibility to Port Orford is fully reestablished
around 2.4 years after the CSZ. Conversely, the RCI of Cannon
Beach begins on average at approximately 0.5, indicating that across
all tiers the travel time to these airports is approximately doubled.
Fig. 8 shows that on average Cannon Beach recovers approximately
1.75 years after the event. The low initial RCI and slower recovery
time of Port Orford is due to its location within the larger regional
network. The nearest Tier 1 and 3 airports are both located along
Interstate 5 with no direct route to Port Orford, so the shortest path
is from either the south through California or north through Bandon.

Perhaps counterintuitively, Fig. 8 shows that some of the RCI
trajectories see a slight reduction before monotonically recovering.
This occurs during all iterations for Newport and a handful of iter-
ations for Cannon Beach. This is due to the form of the travel time
surface and tradeoffs between road restoration and increased traf-
fic volumes as a function of time. Port Orford does not see these
reductions in RCI because it is located along the southern coast,
and the southern highways are prioritized later for restoration, for
example, after the traffic volumes are restored to predisturbance
conditions.

Fig. 7. Travel time surface used to relate traffic volume, traffic capa-
city, and functionality of roads and bridges. Each contour corresponds
to values of T 0

c;s=T 0
o;s.
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Uncertainty in the RCI trajectories of Fig. 8 stem from both
uncertainty in the initial road/bridge damage states and the tiered
restoration process of the regional network. Further, correlations
across road segment damage states were not considered here, which
contributes to the overall uncertainty when considering the network
as a whole.

Local Connectivity Index

At the local scale, a local connectivity index (LCI) was introduced
to measure the overall local network resilience. Similarly, based on
the concept of travel time resilience, the LCI was defined as

LCIðtÞ ¼
 X

o∈S

X
d∈S

Tðo;dÞ;0

!, X
o∈S

X
d∈S

Tðo;dÞ;t

!
ð13Þ

where Tðo;dÞ;t = travel time along shortest path between origin o and
destination d at time t. Nodes o and d are taken from a subsample of
nodes, S, of the entire local network. The nodes that make up S
were randomly sampled during each iteration from the local net-
work. A reduction factor was introduced that scales down the num-
ber of nodes within each local network, here taken as 32. Thus, for
example, if a local network had 1,280 nodes, a reduction factor of
32 resulted in the subsample’s being composed of 40 nodes. The
shortest path between all possible combinations of these 40 nodes
was computed. This reduced the number of origin–destination pairs
from 818,560 to 780. Sensitivity testing, although not shown here,
indicated that across all iterations the use of a reduction factor of 32

provided an accurate estimate of the mean LCI while significantly
reducing computational costs. Use of the reduction factor did, how-
ever, result in increased uncertainty.

The results of this LCI formulation for Cannon Beach, Newport,
and Port Orford are shown in Fig. 9. The dashed-dotted line indi-
cates the mean LCI if damage to the regional network is not con-
sidered. For these three communities, the LCI starts near 0 and
recovers at different rates. The low initial LCI is driven by the net-
work damage sustained by coastal communities as these are closer
to the CSZ and hazard intensity measures are larger. The results for
Newport show reductions in LCI similar to that in the RCI from
Fig. 8. This is due to the one-way dependence of the local network
on the regional network and accessibility to maintenance facilities.
Similarly, Port Orford has a slow time to recover due to the one-
way dependence.

As in Fig. 8, uncertainty in the LCI trajectories of Fig. 9 are due
to the initial road/bridge damage states, no correlation across dam-
age states, and the tiered restoration process of the regional network.
Another source of uncertainty in the LCI is that a subsample of
origin–destination nodes is used, rather than the entire network.

Considering Both Regional and Local Resilience

Having established both the RCI and LCI, the status of the net-
work at multiple scales was evaluated. Fig. 10 shows the mean LCI
and RCI at each time step plotted against each other for 6 of the
18 communities. The results for the mean LCI and RCI for the
three communities discussed in detail previously, Cannon Beach,

Fig. 9. Local Connectivity Index (LCI) for (a) Cannon Beach; (b) Newport; and (c) Port Orford. Thin lines correspond to each iteration of Monte
Carlo simulation, the thick line is the average, and the shaded region indicates the�1 SD range. The dashed-dotted line indicates the mean LCI when
the regional network is not considered.

Fig. 8. Regional Connectivity Index (RCI) for (a) Cannon Beach; (b) Newport; and (c) Port Orford. Thin lines lines correspond to each iteration of the
Monte Carlo simulation, the thick line is the average curve, and the shaded region indicates the �1 SD range.
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Newport, Port Orford, are shown in Figs. 10(a–c). Three more com-
munities, Rockaway Beach, Lincoln City, and Toledo, are shown in
Figs. 10(d–f) to demonstrate differences in recovery trajectories.
Both the RCI and LCI range between 0 and 1. Each marker corre-
sponds to Days 1, 30, 60, 180, 360, and 720. Four quadrants are
identified in Fig. 10. A trajectory that passes through the lower right
quadrant indicates that the local recovery outpaces the regional re-
covery, and thus a community may have reestablished its local net-
work but remain isolated from the rest of the region. Conversely, a
trajectory that passes through the upper left quadrant conveys the
opposite. That is, the community is accessible from the rest of the
region, but the local network has not been reestablished to the same
level of functionality.

Of the communities shown in Fig. 10, Port Orford in Fig. 10(c)
has a regional recovery that initially outpaces the local recovery,
thereby indicating that aid from the airports may be able to reach
the community, but the local network has still not been repaired
to the same level of functionality. Conversely, Toledo, shown in
Fig. 10(f), exhibits the opposite trend. That is, the local recovery
outpaces the regional recovery, indicating that the local network is
recovering quicker; however, the community has poor access to
airports throughout the region.

Both Cannon Beach in Fig. 10(a) and Newport in Fig. 10(b)
show a robust initial RCI compared to the LCI. For both commun-
ities, the regional recovery is initially slow while the local network
is being repaired. The dips in the RCI and LCI that were previ-
ously identified for Newport are shown in Newport’s trajectory, as
both the RCI and LCI decrease around day 30 before beginning a
monotonic recovery.

Rockaway Beach, Fig. 10(d), and Lincoln City, Fig. 10(e), show
recovery trajectories that are both near to a 45° line, indicating that
the regional and local connectivity indexes are on pace with each
other. While these trajectories appear nearly identical, the temporal

component of these plots should be considered. Whereas Lincoln
City is approaching a full recovery around Day 180, Rockway
Beach is only halfway recovered.

The recovery trajectories of the six communities shown in
Fig. 10 emphasize how communities recover not in isolation from
the rest of the region, but in concert with the regional network.
Aside from Toledo [Fig. 10(f)], the local recovery of the commun-
ities shown in Fig. 10 is highly dependent on the recovery of the
regional network. That is, the regional recovery either outpaces or
is in line with the local recovery. This further emphasizes the need
for local networks to be considered in a larger network following
regional disasters.

The RCI and LCI can also be used to determine the time until
a community returns to some index threshold at both the regional
and local scales. Fig. 11 shows, for all 18 communities, the time
until the RCI exceeds 0.75 [Fig. 11(a)], the LCI exceeds 0.75
[Fig. 11(b)], and both the RCI and LCI exceed 0.75 [Fig. 11(c)].
The selection of the value of 0.75 is subjective and was selected
because it corresponds to travel times that are 1.33 times longer
than predisturbance conditions and are thus approaching near-
normal. While not shown here, a sensitivity analysis indicates that
regardless of whether 0.7, 0.75, 0.8, or 0.9 is chosen as an exceed-
ance threshold for the LCI/RCI, the relative comparisons across
communities remain similar. The figure is oriented such that each
community is shown from north (Astoria-Warrenton) to south
(Brookings). Uncertainty is quantified via violin plots, which are
nonparametric distributions of all 1,000 iterations. The mean time
until exceedance is shown via the markers.

Considering the time until the RCI exceeds 0.75 in Fig. 11(a),
notable trends between the location of a community within the
regional network and the time to recover can be obtained. The faster
recovering communities are either (1) located along a Tier 1–Phase
2 road, including, Astoria-Warrenton, Tillamook, Lincoln City,

Fig. 10. RCI versus LCI recovery trajectories for (a) Cannon Beach; (b) Newport; (c) Port Orford; (d) Rockaway Beach; (e) Lincoln City; and
(f) Toledo.
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Florence, and North Bend-Coos Bay, or (2) one where the connect-
ing roads to the rest of the region are not located along the coast,
including, Bandon and Brookings. A handful of these communities
share both features. For example, Astoria-Warrenton is located at

the tail of a Tier 1–Phase 2 road that does not run directly along the
coast and, subsequently, results in the fastest regional recovery. It is
interesting to note that, although a community may be located on
a Tier 1–Phase 2 road, this does not necessarily guarantee a fast

Fig. 11. Time in years required for connectivity index to exceed 0.75 for (a) RCI; (b) LCI; and (c) joint RCI and LCI. Dots indicate mean time to
exceed 0.75.
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recovery, for example, Newport. This is due to the fact that the con-
necting roads are located along the coast and thus subject to larger
hazard intensity measures.

Fig. 11(c) shows that Astoria-Warrenton has the quickest aver-
age joint time to recover, followed by Florence, Brookings, and
Lincoln City. The fast recovery of Astoria-Warrenton is driven by
regional recovery and at the local scale by the maintenance facility
located within the urban growth boundary. Because there is a main-
tenance facility located within the urban growth boundary, the local
restoration follows the Hazus restoration curves exactly.

Like Astoria-Warrenton, Florence is located at the tail of a Tier
1–Phase 2 road and exhibits a fast recovery. Compared to the neigh-
boring communities, Waldport and North Bend-Coos Bay, the re-
covery of Florence is significantly faster. This is driven by a couple
of factors. On one hand, Waldport is only accessible via Tier 3 and
undefined roads, so the regional recovery is slow. This is apparent
in Fig. 11(a), as the mean regional time to recover for Waldport is
approximately 2 years compared to less than a year for Florence.
South of Florence, North Bend-Coos Bay is also situated on a Tier
1–Phase 2 road and can be seen to have a similar regional recovery
time. However, the local recovery of North Bend-Coos Bay is nearly
a year longer than that of Florence. This variation in local recovery
between the two communities is due to the fact that Florence and
North Bend-Coos Bay are in different maintenance facility districts
(Table 1; Fig. 2). In this case, Florence has better accessibility to
the assigned maintenance facility C, compared to that of North
Bend-Coos Bay which is assigned maintenance facility D.

The community of Brookings has a short average recovery time
because the Tier 2 airport located within the urban growth boun-
daries, and the community is not subject to liquefaction. Because of
the latter, only the tsunami hazard impacts the performance of the
local road network.

Each of the coastal communities can be delimited as northern
coast (Astoria-Warrenton to Tillamook), central coast (Lincoln City
to Florence), and southern coast (North Bend-Coos Bay to Brook-
ings). Considering these groupings, trends in time to recover can be
identified. For example, amongst the northern coastal communities,
Gearhart-Seaside to Tillamook have similar recovery times, whereas
Astoria-Warrenton recovers nearly a year before. For the central
coastal communities, both Lincoln City and Florence recover faster
than the other four communities. And for the southern coast, Brook-
ings recovers faster. The fast recovery time of these four commun-
ities within their respective northern, central, and southern coastal
distinctions may indicate that these communities could be used as
coastal hubs for postdisaster restoration efforts.

Decision Support

Two variations in how this framework can be used as a decision
support tool are shown in Fig. 12. Fig. 12(a) shows how the weight-
ing parameter of Eq. (12) impacts the mean time to restore the RCI
to 0.75. The points corresponding to All Tiers are the same as the
mean values from Fig. 11(a), in which all airport tiers were weighted
equally. The points labeled Any Tier correspond to the minimum
time for the RCI to exceed 0.75 considering each airport tier indi-
vidually. Interestingly, northern coastal communities see little to
no variation when considering each airport tier individually. Con-
versely, the central and southern coastal communities do see devi-
ations, indicating that they may be accessible to certain airports, but
not to all. Tier 2 and 3 airports are located along the coast in some
central and southern coastal communities. Thus, if these airports
can accommodate postdisaster needs, the southern coastal com-
munities may recovery just as fast as, if not faster than, the northern
coastal communities.

Fig. 12(b) shows the effect that adding additional maintenance
facilities has on the time to restore the LCI to 0.75. This further
highlights dependencies between the regional and local networks
in that the maintenance facilities located throughout the region have
an impact on local network restoration. In addition to the four main-
tenance facilities shown in Fig. 2, three additional facilities were
added to the network in the communities of Wheeler, Toledo, and
Port Orford. Fig. 12(b) shows the mean time until the LCI exceeds
0.75 for both the status quo conditions, e.g., the same points shown
in Fig. 11(b), and with the addition of three new maintenance fa-
cilities. The beneficial effect that a new maintenance facility in Port
Orford has on the southern coastal communities is apparent as
these communities see a reduction in the time until the LCI exceeds
0.75. Northern coastal communities, Manzanita-Nehalem-Wheeler,
and Cannon Beach see improvements with the addition of a main-
tenance facility in Wheeler. The remaining communities do not see
as much of an improvement either because they already have a short
time to recover, or their assigned maintenance facility is the same as
the status quo conditions.

Fig. 12. Example of using framework as decision support tool: (a) time
for RCI to exceed 0.75 considering different airport tier weightings;
and (b) time for LCI to exceed 0.75 under both status quo conditions
and with additional maintenance facilities.
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Discussion

The methodology that was developed can be used to aid discussions
in mitigation planning along multiple fronts. First, due to increases
in travel time that may result from natural hazards, individuals re-
siding in communities may face a sense of so-called islanding or
isolation from the rest of the region or their local community. For
example, if the travel time between two communities begins to in-
crease beyond expectations, such as, what used to be a 1-h trip now
takes 5 h, individuals may feel isolated from the rest of the region.
Planning guides have alluded to this concept without explicitly de-
fining what constitutes an island (CH2M Hill 2012; CREW 2013;
OSSPAC 2013). The RCI and LCI could serve as the means to quan-
tify this. For example, decision makers may determine that if a com-
munity is below a threshold of 0.2, for instance, a fivefold increase
in travel time relative to predisturbance conditions, then this estab-
lishes an island. Further, rather than a connectivity index, an island-
ing index could be formulated, for example, one minus the RCI or
LCI, to define the severity of islanding.

In addition, the results obtained from this methodology empha-
size the necessity of considering postdisaster performance and re-
storation of local networks within a larger regional setting. The use
of restoration curves without consideration given to regional-level
restoration efforts may lead to underpredicting the time to recover.
It was shown that by applying Hazus restoration curves without
regional considerations, the LCI will approach 90% recovery
within a couple of months. With regional considerations, the frame-
work presented here estimates recovery times well beyond 1 year
for most coastal communities. Future research could aim to refine
the postdisaster dependencies and interdependencies of local net-
works within larger regional settings.

Some assumptions were made to implement the methodology.
First, no damage to airports was considered, and it was assumed
that temporary measures were employed to quickly resume oper-
ations. This has been observed in connection with air traffic control
towers in prior earthquakes (e.g., Almufti et al. 2014). Damage to
airports could, however, be considered in future work using airport
fragility curves and restoration functions similar to those used for
roads and bridges. Further, assumptions in the restoration process
were made. To account for limitations in resources at the regional
scale, the restoration curves were modified by assuming that the
restoration of higher priority tiers needed to reach a randomly
sampled functionality level. Alternative approaches to quantifying
the restoration of infrastructure systems exist and could be used in
future work (Costa et al. 2021; Wang and van de Lindt 2021). Fur-
ther, the traffic volumes on the road network were assumed to be
zero immediately after the event and to slowly recover to predis-
turbance conditions. Alternative approaches to accounting for post-
disaster traffic volumes exist and could also be incorporated (Dong
et al. 2016; Guo et al. 2017). Minor assumptions include both the
location of maintenance facilities and the grouping of nearby com-
munities into one large community, for example, Astoria-Warrenton
and Gearhart-Seaside.

Despite these assumptions, the framework can still aid stake-
holders in mitigation planning. Because the recovery of infrastruc-
ture systems following disasters involves multiple actors that do not
follow physical laws, there is considerable uncertainty and com-
plexity regarding both accurate and precise estimates of the time
it takes to recover. As such, this framework is not intended to be
predictive in the sense that other models of physical processes may
be. Rather, the framework is intended to be used to make compar-
isons of local versus regional resilience of a given community, for
example, community A is more regionally resilient than it is locally

resilient, and comparisons across communities, such as, commu-
nity A is more regionally/locally resilient than community B.

In addition to addressing the limitations, future work could also
include considering a larger transportation network that extends
both further east and into neighboring states. A multistate network
may aid in a more concerted effort to reduce the impacts of large-
scale events. Additionally, critical facilities such as fire stations and
hospitals are used in disaster research and, while important, over-
look what community members may value. Thus, this work has the
potential to be expanded beyond an engineering perspective to a
larger interdisciplinary perspective. Similar to how previous work
considered equitable access to various services via transportation
networks (Logan and Guikema 2020), interview data on what com-
munity members value could be geocoded and used within this
methodology to determine how accessible these locations are for
members of a community.

Conclusions

This paper presented a multiscale framework for simultaneously
assessing the regional and local resilience of infrastructure net-
works following disruptions from natural hazards. The framework
is intended to be expandable across different types of infrastruc-
ture networks. A methodology was developed from the generalized
framework to demonstrate how it can be applied to a road and high-
way transportation network under disruption from a multihazard
CSZ earthquake ground shaking and tsunami inundation scenario.
With airports used as proxies for the location of supply sources, the
application of this methodology provides insights into the resil-
ience of a transportation network at multiple spatial scales. Consid-
ering the problem under a multiscale lens results in both regional
and local metrics related to increases in travel times. The regional
metric of a community, the RCI, considered accessibility from the
community boundaries to airports, whereas the local metric, the
LCI, considered accessibility within the urban growth boundary
of the community itself. Comparing the two metrics together yields
insights into how a community will fare immediately after an event
and during the recovery process at both spatial scales.

By developing a methodology for a transportation network from
the generalized framework, several conclusions can be drawn:
1. The postdisaster performance and recovery of local networks

should be considered in the context of a larger regional net-
work. The methodology incorporated a one-way dependence of
the restoration of local networks on access to resources within a
regional network. By comparing the results in this paper to pre-
vious work in which regional networks were not considered,
the time to recover for a single community was shown to be
four times longer than previously estimated. Further, the recov-
ery of local networks was shown to vary across communities,
indicating that communities are sensitive to where they are sit-
uated within regional networks.

2. Attributes that lead to regional and local resilience differ. It was
shown that regionally resilient communities are not guaranteed
to be locally resilient, and vice versa. Communities experienc-
ing fast regional recovery had access to roads that were both
identified as higher priority for restoration and located in areas
subject to smaller hazard intensity measures. Communities that
quickly recovered locally were shown to be highly dependent on
access to maintenance facilities. In addition, select communities
were shown to have attributes that led to a faster recovery rel-
ative to neighboring communities and could potentially serve as
hubs for restoration efforts.
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3. Implementation of mitigation options should be strategically
considered and do not guarantee an improvement in the time
it takes to recover. It was shown that adding additional mainte-
nance facilities impacted some communities, but others saw little
to no improvements. In this work, communities that are more
rural saw improvements in time to recover when an additional
maintenance facility was added in the region. Conversely, com-
munities closer to metropolitan areas saw minimal improvement.
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