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The genetic control of many plant traits can be highly complex. Both allelic variation (sequence change) and dosage variation (copy number
change) contribute to a plant’s phenotype. While numerous studies have investigated the effect of allelic or dosage variation, very few have
documented both within the same system, leaving their relative contribution to phenotypic effects unclear. The Populus genome is highly
polymorphic, and poplars are fairly tolerant of gene dosage variation. Here, using a previously established Populus hybrid F1 population, we
assessed and compared the effect of natural allelic variation and induced dosage variation on biomass, phenology, and leaf morphology
traits. We identified QTLs for many of these traits, but our results indicate limited overlap between the QTLs associated with natural allelic
variation and induced dosage variation. Additionally, the integration of data from both allelic and dosage variation identifies a larger set of
QTLs that together explain a larger percentage of the phenotypic variance. Finally, our results suggest that the effect of the large indels might
mask that of allelic QTLs. Our study helps clarify the relationship between allelic and dosage variation and their effects on quantitative traits.
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Introduction

Natural allelic variation plays an important role in phenotypic di-
versity in plants (Alonso-Blanco et al. 1999, 2009; Todesco et al.
2010; Huang ef al. 2011, 2012; Huang and Han 2014; Jin et al.
2016; Satbhai et al. 2017; Zhang et al. 2021; Duan et al. 2022). The
statistical framework raised by R. A. Fisher provides an approach
to systematically identify the quantitative trait loci (QTL) respon-
sible for heritable variation (Fisher 1919). In the last decade, the
development of new DNA high-throughput sequencing and geno-
typing technologies has dramatically improved our ability to iden-
tify polymorphic genetic markers between individuals or species
(Gupta et al. 2008; Davey et al. 2011; Elshire ef al. 2011). This, in
turn, enables more accurate QTL identification in both plants
and animals (McMullen 2003; Wellcome Trust Case Control
Consortium 2007; Rafalski 2010; Jamann et al. 2015). Despite these
technological advances, a wide percentage of the observed pheno-
typic variance still remains unexplained by the detected QTLs.
This is particularly problematic for complex traits with expected
polygenic contributions. For example, the QTLs detected through
the analysis of biomass-related traits in Populus explain, on aver-
age, 26% of the observed phenotypic variation (Rae ef al. 2009).
To increase biomass yield through tree breeding, we need to con-
sider other types of heritable variations, aiming for a deeper un-
derstanding of the underlying regulatory mechanisms.

Besides allelic variation (sequence variation that does not in-
volve copy number changes), dosage variation can also affect
the phenotypic outcomes of many important plant traits. Copy

number variation (CNVs), especially the ones affecting protein-
coding regions, have been associated with phenotypic outcomes
in multiple plant species (Cook et al. 2012; Diaz et al. 2012; Li
et al. 2012; Carbonell-Bejerano et al. 2017; Prunier et al. 2019).
Pan-genomic analyses have identified structural variants across
different accessions of multiple plant species, many of which af-
fect important agronomic traits such as flower size, fruit weight,
and heat tolerance (Golicz et al. 2016; Pinosio et al. 2016; Alonge
et al. 2020; Zmienko et al. 2020; Yan et al. 2023). Gene deletion
and duplication can directly affect expression level (cis-effect),
which in turn affects phenotypes. Gene dosage may also affect
phenotype through mechanisms explained by the gene balance
hypothesis (Birchler and Veitia 2012). Dosage variation can also
modulate the expression of genes located outside of indel regions
(trans-effect), since many traits are regulated by a complex net-
work comprising multiple genetic components (Birchler and
Veitia 2010; Veitia et al. 2013).

To increase our understanding of the relative contributions of
these two sources of phenotypic variation, we investigated the
phenotypic effects of induced dosage variation and natural allelic
variation within the same population. We also aimed to document
instances of interplay between these two sources of variation. For
example, when a locus encodes a protein whose function is dosage
sensitive, the CN'V-induced expression changes affect the pheno-
type. However, if allelic variation is also present, such as if one al-
lele is hypomorphic or null, two scenarios are possible: (1) the CNV
affecting the deficient allele results in no or little phenotypic vari-
ation or (2) the CNV affecting the normal allele results in magnified
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phenotypic variation. Either way, focusing on either the allelic
variation or the dosage variation alone only addresses part of the
mechanisms at play. A more comprehensive approach, which in-
tegrates both types of variations may be better suited to fully
understand the genetic regulatory factors of complex traits.

Popufus is an attractive system to study the interplay between al-
lelic and dosage variation. It is dioecious and therefore an obligate
outcrosser and its genome are highly polymorphic, both in terms
of sequence polymorphisms and CNVs (Tuskan et af. 2006; Pinosio
et af. 2016). Pollen irradiation is a widely used approach for inducing
indel mutations in plants (Brewbaker and Emery 1961; Yang et af.
2004), starting as early as the 1950s (Nuffer 1957; Mottinger 1970).
In tree species, pollen irradiation followed by pollination has been
well-established (Osborne 1957; Rudolph 1978). Gamma-induced
indels, especially larger ones, are not typically retained in future
generations because they are often associated with lethality in the
gamete, where the copy number goes down to zero. In clonally pro-
pagated crops such as Popufis, on the other hand, they can be re-
tained indefinitely. In a previous report, we described the
establishment of a Popufus F1 hybrid population (592 lines) from
an interspecific cross between a wild-type P. deftoides mother and
gamma-irradiated pollen from P. nigra (Henry et af. 2015b).
Whole-genome sequencing analysis revealed that 58% of the F1
lines carry large-scale insertions or deletions (indels). The size of in-
duced indels varies from 250 kb to whole chromosomes. The num-
ber of indels per line varies between 0 and 10, with 2.5 indels per
individual on average. Indels from different lines can overlap such
that each genomic region is covered by 1-31 indels and only 1.6%
of the genome (6.2 Mb) is not covered by any indel at all.

Using this resource, we investigated the association between
dosage variation across the genome and a variety of phenotypes.
This resulted in the identification of “dosage QTLs” associated
with biomass, phenology, leaf morphology, and vessel develop-
ment traits (Bastiaanse et af. 2019, 2020a; Rodriguez-Zaccaro
et af. 2021). Since both parental genomes are highly polymorphic,
natural allelic variation is expected to play an important role in
the observed phenotypic variation, but it was not taken into ac-
count in these earlier studies.

Here, we aim to investigate whether allelic variation, and in this
case, the differences between the two haplotypes within each par-
ent, also influence these traits (allelic QTLs). Next, we aimed to
document the possible interaction between natural allelic vari-
ation and induced dosage variation in this population (Fig. 1).
This Popufus clonal system is superior to our study goal since it al-
lows us to obtain replicated phenotypic information easily. In a
subset of 343 F1 lines, all offspring of the same two parental clones
from this Popufus population, and detected both dosage and allelic
QTLs. Our results suggest a limited overlap between QTLs asso-
ciated with allelic and dosage variation. A custom method was de-
veloped to assess the effect of both allelic and dosage variation in
a joint model. The results indicated that allelic and dosage vari-
ation affect traits independently. Detection of allelic QTLs in a
subset of the population that does not carry large indels resulted
in a different set of QTLs, suggesting that large-scale indels might
mask the effect of allelic QTLs in the full population. Finally, direct
integration of both types of QTLs makes the association between
trait values and genetic information stronger.

Materials and methods
Data acquisition and preprocessing

Genomic sequencing data, RNA-seq data, and phenotypic informa-
tion were obtained from previous studies (Henry et af. 2015b;

Zinkgraf et af. 2016; Bastiaanse et af. 2019, 2020a). Briefly, an
interspecific cross between wild-type P. defioides and
pollen-irradiated P. nigra produced 592 F1 hybrid lines.
High-coverage Illumina short-read sequences were obtained
from the two parental lines with read depth around 45x and
65x% for P. deftoides and P. nigra, respectively. Additionally, low-
coverage Illumina genome sequences were obtained from each
of the F1 hybrid clones (read depth around 0.5% per line). Leaf
RNA sequencing was performed on 166 F1 lines, each in tripli-
cates. The raw RNA-seq reads were pooled per clone and used
to assist in haplotype phasing. The collection and statistical ana-
lysis of phenotypic information were described in previous stud-
ies (Bastiaanse et af. 2019, 2020a). Three categories of phenotypes
—Ileaf morphology, phenology, and biomass—were used in our
study (Supplementary File 1).

The preprocessing of sequencing data followed a custom pipe-
line developed previously. It starts with a demultiplexing step per-
formed using a custom pipeline (https://github.com/Comai-Lab/
allprep) for separating raw reads into individual libraries. Reads
were aligned to the Popufus reference P. trichocarpa v3.0 (Tuskan
et af. 2006), using a custom Python script based on Burrows-
Wheeler Aligner (Li and Durbin 2009) (https://comailab.org/data-
and-method/bwa-doall-a-package-for-batch-library-processing-
and-alignment/). Bam files were generated in this step, which
were used to obtain a mpileup file using a custom Python package
(https://github.com/Comai-Lab/mpileup-tools) based on
Samtools (Li et af. 2009), followed by a simplification step to con-
vert the mpileup file into a parsed-mpileup file.

Haplotype phasing

To describe the parental haplotypes, we identified heterozygous
positions in each parent and determined the phasing between
these positions, using a custom computational pipeline (https://
github.com/guoweier/QTL_manuscript). Specifically, we started
by identifying single nucleotide polymorphisms (SNPs) that can dis-
tinguish between two haplotypes within a parent (Supplementary
Fig. 1a). In short, we selected two lists of SNPs, one for P. deftoides
and the other for P. nigra. The example of P. deftoides SNPs selection
is shown in Supplementary Fig. 1a. For P. deftoides, we selected posi-
tions that exhibited heterozygosity in P. defioides and homozygosity
in P. nigra; or positions that showed heterozygosity in P. deftoides
with different heterozygous allele combinations in P. nigra.

Next, we used RNA-seq data obtained from a subset of 122 F1 in-
dividuals to derive phased parental haplotypes (Supplementary
Fig. 1b). Briefly, we first used the RNA-seq raw data from the diploid
F1 lines for haplotype phasing, after retaining the positions that are
at least 20x read depth in the RNA-Seq data. Second, we treated
RNA-seq raw data as genomic sequencing data, with the preproces-
sing approaches that have been described above. Parsed-mpileup
file with 122 RNA-seq lines was obtained after running the pipeline.
Then, the RNA-seq parsed-mpileup file was used to identify inher-
ited alleles from P. deftoides and P. nigra, respectively. Finally, we col-
lected the adjacent SNPs combination orders and recorded the
order as parental haplotypes when data from more than 90% (109
out of 122) of RNA-seq lines were consistent with it.

Genotyping

The adjusted phased haplotypes were applied to low-coverage se-
quencing data for genotyping. Specifically, for each SNP marker,
genotype in F1 hybrids was only recorded when it inherited the al-
ternative allele. Recorded genotypic information was then binned
(50 SNPs per bin) to increase the robustness of genotype calls. As a
control, the same genotyping process was applied to the RNA-seq
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a P. deltoides

Parents

P.nigra &

D1vs D2
Inherit the same
P. nigra haplotype (N1)

N1 vs truncated N2
Inherit the same
P. deltoides haplotype (D2)

l Main Goal
Natural Induced
variation variation

(D1/D2; N1/N2) (Induced indels)

b Type Variation Examined in this article
D1 vs D2 Yes
Pre-existing N1 vs N2 Yes
variation
P. deltoides vs P. nigra No
Induced variation Induced indels Yes

Fig. 1. Major goal of this study. a) Illustration of the Populus population used in this study and the main goal of this study. The F1 population came from an
interspecific cross between P. deltoides (female) and P. nigra (male). The phenotypic differences can result from i) natural variation (D1/D2, N1/N2); ii)
Radiation-induced variation (indels). Our main goal is to investigate the interplay between natural variation and induced variation. D1/D2: P. deltoides
haplotypel and haplotype2. N1/N2: P. nigra haplotypel and haplotype2. b) Type of variation examined in this article. For natural variation, we are
examining the SNPs between 2 haplotypes within P. deltoides, as well as the SNPs between 2 haplotypes within P. nigra. We are not testing the
species-specific SNPs (P. deltoides vs P. nigra) in this study. For induced variation, we examined the radiation-induced indels.

data. The transcriptomic genotypes and genomic genotypes were
compared manually (all resulting figures can be viewed at https://
github.com/guoweier/QTL manuscript). Next, for the individuals
for which both genomic and RNA-seq data were available, we
sorted the F1 lines based on the read-depth of the low-coverage
genome sequencing data. We then selected a read-depth thresh-
old based on the following: a) Genotypes based on the low-pass
genomic data clearly show an expected pattern of recombination
along the whole genome and, b) Genotypes obtained from the gen-
omic and RNA-Seq data are consistent. Lines for which only gen-
omic data was available were retained if genomic coverage was
above this threshold. As a result, 343 lines were selected to pro-
ceed for QTL analysis. Transcriptomic and genomic genotypes
comparison of chromosome 1 on the selected F1 line with the low-
est read-depth is shown in Supplementary Fig. 2.

Dosage variation quantification

Methods for quantifying dosage variation have been described in
previous studies (Bastiaanse et al. 2019). Shortly, we defined bins
based on indels breakpoints and tiled bins along the chromo-
somes. For each bin, the dosage genotype was determined by com-
paring the mean read coverage for each individual to the mean of
the population. Dosage indicates the total copy number in any gi-
ven bin. These F1 lines are diploids, so the background dosage
number is 2. Since all dosage variation originates from P. nigra
(Henry et al. 2015b), which is the paternal parent, we decided to
only focus on the dosage changes in P. nigra. So the normal dosage
state is 1, representing the F1 line carrying 1 copy from P. nigra. If
an F1 clone carries a deletion which occupies 4 bins on chromo-
some 10, the dosage genotype for these 4 bins was set to 0, while
the rest of bins on chromosome 10 were set to 1. Dosage genotypes
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Fig. 2. Representative illustration of QTL analysis using both allelic and dosage variation information. QTLs detected from sequence variation between
two haplotypes (D1/D2) of P. deltoides, sequence variation between two haplotypes (N1/N2) of P. nigra and dosage variation can all contribute to the same
trait (here tree height). P. deltoides and P. nigra haplotypes were acquired through analysis of allelic variation within each parent (D1/D2 or N1/N2). Dosage
information was obtained through the calculation of relative copy number states in each chromosome bin (see details in Material and Methods).

were acquired for all 343 lines for which SNPs genotypes were also
obtained. An illustration diagram can be found in Fig. 2.

QTL analysis

To conduct a QTL analysis that simultaneously includes both al-
lelic and dosage variation we employed a custom Python pipeline
available at https://github.com/guoweier/QTL manuscript. We
generated a common marker list encompassing three types of
variation: the P. deltoides haplotype, the P. nigra haplotype, and
the dosage variation. First, we identified the physical positions
of binned markers in P. deltoides and P. nigra genotypes, respective-
ly. We then imputed genotypes in the unknown regions using in-
formation from their flanking binned markers. For example, on
the P. nigra genotype, marker 1 is ChrO1_1_10000 with genotype
N1 and marker 2 is Chr01_20000_30000 with genotype N1. So the
genotype in ChrO1 10001 19999 is N1. If two flanking markers
contained different genotypes, or if there was a missing flanking
marker, the genomic region in between was assigned as a missing
value “NA”. Second, we built a common marker list for the two
parents, using P. deltoides markers as the reference and imputed
P. nigra genotypes based on the markers’ physical positions.
Last, we applied the common marker to the dosage genotype
and obtained the dosage value for each new marker.

Single models were established for analyzing the correlation
between phenotypes and each variation type. The model is speci-
fied as follows:

Yi:/i0 +73 gti+ §

where Y; is the phenotype; /3 is the intercept; /3; is the unknown
coefficient; gf; is one of the examining genotypes (P. deltoides
haplotype or P. nigra haplotype or dosage); and ¢; is the residual
variance. P. deltoides haplotypes were recorded as D1 or D2. P. nigra

haplotypes were recorded as N1 or N2, while deleted regions were
recorded as “NA”. The dosage of the P. nigra allele was recorded as
0 (deletion), 1 (regular), or 2 (insertion). To establish a suitable
threshold for identifying significant QTLs, we employed a permu-
tation test approach (Doerge and Churchill 1996). In short, for
each trait and each genotype (P. deltoides haplotype or P. nigra
haplotype or dosage), the phenotype data from the 343 F1 lines
were randomized. Next, a linear regression between trait values
and marker values was calculated with all the markers along
the genome. The maximum #-value was selected. This randomiza-
tion process was repeated 1,000 times. Then, we selected the top 5
and 1% of maximum ¢-values. In the observed dataset, the mar-
kers with ¢-values larger than the 5% threshold were considered
significant, and those larger than the 1% threshold were consid-
ered as confirmed. Adjacent significant markers were considered
as belonging to the same QTL.

To investigate how much phenotypic variance can be explained
by each single QTL, we performed the QTL mapping using a multi-
variate model including all markers located underneath that
QTL and extracted the adjusted R-square values. For phenotypic
variance explained by all QTLs associated with one trait, we
took the most significant marker (marker with the largest z-value)
underlying each QTL and ran a multivariate model including
these selected markers. Integration of QTLs from allelic and dos-
age variation followed a similar approach. For each trait, we col-
lected the most significant marker from each QTL and fitted
these markers into a multivariate model. Adjusted R-square va-
lues were recorded.

We designed a custom approach to perform QTL mapping
combining all three types of variation. In short, we collected
the genotypic information (P. deltoides haplotype or P. nigra haplo-
type or dosage) and assigned a State for each combined genotype.
There were 10 possible States for the combined variable
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(Supplementary File 2). Then, a linear regression was performed
using the Im() function in R, which is specified as follows:

Y, =73, + 73 State; + &

where Y; is the phenotype of the ith individual; /3y is the intercept;
/3; is the unknown coefficient; State; is the variable after combin-
ing the three genotypes (P. defioides haplotype or P. nigra haplo-
type or dosage) information of the ith individual; and ¢; is the
residual variance. Next, we performed pairwise comparisons of
all present States using the function pairwisePermutationTest()
in the R package “rcompanion” (Mangiafico 2020). Each compari-
son pair was treated independently, which generated 45 compar-
isons (Supplementary File 2). For each comparison, the P-values
were collected and adjusted using the Benjamini and Hochberg
(BH) method (Benjamini and Hochberg 1995). Adjacent markers
were considered to belong to the same QTL. Last we identified
the pairs of States that were significantly different to infer
the possible genetic factors underlying the observed phenotypic
variation. Specifically, QTLs were classified into 6 groups:
deletion, deletion + insertion, insertion, P. deftoides, P. deftoides +
P. nigra, and P. nigra (Supplementary File 2). The proportion of
phenotypic variance explained by this custom QTL approach
was determined using a method similar to that described above
for QTLs from single models.

Differentially expressed gene analysis and GO
enrichment analysis

Differentially expressed genes were identified and the ones located
within allelic QTLs were recorded. For each QTL, extreme phenotyp-
ic mutants (10 and 90% quantile) were selected, excluding the indel
mutants having an indel under the QTL bins. Differential expression
analysis were performed using the limma-voom method (https://
ucdavis-bioinformatics-training. github.i0/2022-April-GGI-DE-in-R/
data_analysis/DE_Analysis_with quizzes fixed). Specifically, the
estimated read counts were filtered such that only genes having
more than 10 reads per million in at least 80% of the libraries
were retained. P-values were adjusted using the Benjamin—
Hochberg method (Benjamini and Hochberg 1995). Genes located
under the QTL bins and with adjusted P-value < 0.05 were retained.
The annotation information from Phytozome (https://phytozome-
next.jei.doe.gov/info/Ptrichocarpa_v3_1) was added for each gene.

GO terms for Popufus genes were obtained from Phytozome
(https://phytozome-next.jgi.doe.gov/info/Ptrichocarpa_v3_1).
Enrichment analysis was performed by comparing GO terms
of genes present in QTL bins against the genes expressed in leaf
tissue. GO terms were considered suggestively enriched if the
adjusted P-value (BH method) <0.1.

Results

Deriving combined genotype and dosage
information from low-coverage genome data

The Popufus F1 lines (592) were originally sequenced at a low read
depth ( 0.5x per line), which was sufficient to identify large-scale
indels but was not sufficient to reliably haplotype and genotype
each individual (Howie et af. 2009; Williams et af. 2012; Martin
etaf. 2016; Hager et af. 2020). Fortunately, RNA-seq data from
122 of these F1 lines was also available, as well as Illumina short-
read sequencing data from two parental lines (P. deftoides 45x,
P. nigra 65x) (Henry et af. 2015b; Bastiaanse et af. 2020a). Using
these resources, we designed a custom computational process

to derive parental haplotypes and genotype the F1 lines for both
parental contributions (Fig. 2 and Supplementary File 3; see
Materials and Methods).

The process is divided into 3 steps: parental SNP detection, par-
ental haplotype phasing, and genotyping. Because our population
is an F1 population, polymorphisms between the two parental
genomes are not informative. Instead, we characterized the 2 pairs
of parental haplotypes separately. We first selected 37,556 and
33,035 positions that were heterozygous in the parental clones
of P. defioides and P. nigra, respectively. Next, we used the
RNA-seq reads from 122 diploid F1 lines to derive phased haplo-
types for a subset of these SNPs for the two parents separately.
Finally, the phased haplotypes were applied to the low-coverage
genomic data ( 0.5x per line) to genotype the remaining F1 indivi-
duals. In total, we were able to obtain reliable genotype informa-
tion for 343 F1 lines (Supplementary Fig. 1c). Last, we generated
binned markers (50 SNPs per bin) to increase genotype robustness,
and a final common marker set of 507 binned markers was gener-
ated for multi-genotype QTL analysis that applied to both the
P. deftoides and the P. nigra genomes (Supplementary Fig. 3).

In terms of dosage variation, among the 343 remaining F1 lines,
54.2% (186 out of 343) were previously characterized to carry
at least one indel. Deletions were more prevalent (66.5%) than in-
sertions (33.5%) among these indels, as observed in the original
population (Henry et af: 2015b). As described previously, we char-
acterized dosage variation in 546 dosage binned markers, with an
average of 6 indels in each dosage marker (Bastiaanse et af. 2019,
2020a; Rodriguez-Zaccaro et af. 2021). Finally, these dosage mar-
kers were combined with the natural allelic information to obtain
a unified marker list of 507 binned markers, for which we had
gathered information about the P. deftoides haplotypes, the P. nigra
haplotypes, and the dosage information for each of the 343 F1
individuals.

Contributions of natural allelic variation and
induced dosage variation on phenotypes can be
assigned to QTLs

This population was previously characterized phenotypically
(Bastiaanse et af. 2019, 2020a; Rodriguez-Zaccaro et af. 2021) for 3
phenotype categories (38 traits): leaf morphology (22 traits), phen-
ology (7 traits), and biomass (9 traits; Supplementary File 1). In our
subset of 343 Fls, using a single model (Trait  Genotype), QTLs
were observed for 27 traits. Specifically, 9, 6, and 86 QTLs were
identified from P. defioides, P. nigra, and dosage genotypes, respect-
ively (Table1 and Supplementary File 4). Of the dosage QTLs
detected here, 77.9% (67 out of 86) were detected in the previous
analysis as well (Supplementary Fig. 4, Bastiaanse et af. 2019,
2020a).

Overall comparison of the number of QTLs detected using the
three single models reveals that dosage variation has the most pro-
nounced impact on phenotypic variation (Fig. 3, Supplementary
Figs. 5 and 6). Interestingly, QTLs observed from the 3 single models
did not overlap with each other (Fig.4), indicating that natural vari-
ation in the two parental species, P. deftoides and P. nigra, and dosage
variation may influence these traits independently.

To investigate to what extent indels can affect the identification
of allelic QTL results, we selected the 157 lines from this F1 popula-
tion that did not carry any indels and tested the identification
of allelic QTL on this subset. In total, 1 and 8 allelic QTLs were
identified from the P. defioides and P. nigra parents, respectively
(Supplementary Table 1 and Supplementary File 4). Interestingly,
there were no common allelic QTLs between the subset population
(157 lines) and the full population (343 lines). A subset of both sets
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Fig. 3. Observed QTLs for phenology traits using single models. a) Number of lines carrying indels under each bin. b) Gene density across the genome. (¢ to
e) QTLs detected from P. deltoides (c), P. nigra (d), and dosage (e) genotypes. The traits from outermost to innermost in each track are c¢) Color_y1_y2 y3,
Drop_yl_y2 y3, Time_serie_color_yl_y2 y3, Time serie_drop_yl y2 y3;d) Bud_burst yl_y2, Time seric_bud burst yl y2;e) Bud burst yl y2,
Color_yl_y2_y3, Drop_yl_y2_y3, Green_canopy_duration_yl_y2, Time_serie_bud_burst_yl_y2, Time_serie_color_yl_y2 y3, and
Time_serie_drop_yl_y2_y3. Phenotypic data were obtained from previous reports, and detailed trait information is summarized in Supplementary File 1.

of allelic QTLs overlapped with previously published QTLs. For ex-
ample, for the allelic QTLs in the full population, P. nigra QTLs on
chromosomes 6 and 17 for phenology-related traits (bud burst)
were consistent with previously reported allelic QTLs (Frewen
et al. 2000; Rohde et al. 2011; Fabbrini et al. 2012). For the allelic
QTLs in the subset population, P. nigra QTLs on chromosome 3
for phenology-related traits (bud burst) and leaf shape were con-
sistent with reported QTLs in Populus (Rohde ez al. 2011; Xia et al.
2018). These results suggest that the identification of allelic QTL
in the full population is significantly affected by the presence of
the large-scale indels, which could completely mask the effect of
some or all of the allelic QTLs when present.

Coming back to the full population, allelic variation and dosage
variation explained 4.94 and 11.27% phenotypic variance, respect-
ively (Fig. 5a). To investigate whether combining the effects of nat-
ural allelic variation and induced dosage variation can explain a
larger percentage of the observed phenotypic variance, we used
a multivariate model to detect allelic and dosage QTLs simultan-
eously. We first selected 12 traits for which both allelic and dosage
variation were associated with detected QTLs (Supplementary File
5). Integration of QTLs from the three single models explained
15.51% of the observed phenotypic variance in these 12 traits.
This percentage was significantly higher than the percentage of

variance explained by either allelic variation alone (Tukey’s test,
P<0.001) or dosage variation alone (Tukey’s test, P=0.019;
Fig. 5a and Supplementary File 6).

To investigate the molecular mechanism underlying the de-
tected QTLs, we identified the genes located within the observed
QTL regions and examined their differential expression levels
based on the leaf transcriptomic data from our previous study
(Bastiaanse ez al. 2020a) (Supplementary File 7). GO enrichment
analysis indicated that differentially expressed genes (DEGs) asso-
ciated with allelic QTLs were suggestively enriched with transla-
tion (0.05<P-value<0.1; Supplementary Fig. 7), while DEGs
associated with dosage QTLs were significantly enriched with
stress response processes (Bastiaanse ez al. 2020a).

A combined univariate model helps refine our
understanding of trait regulation

Allelic and dosage variation effects may also interact with each
other. For example, dosage effects are expected to be different if
the causal gene also carries a loss-of-function allele (Fig. 6). To
better understand the interaction between the effects of natural
allelic variation and induced dosage variation, we combined the
information from the three variation types and assigned each
combined genotype to a unique state. For example, D1.N1.1 on
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marker 1 represents the individuals with P. deltoides haplotype I, P.
nigra haplotype 1, and 1 P. nigra copy for marker 1. In this model,
all individuals fit into one of 10 possible states, and we can

96

‘ I
‘o
Fig. 4. Number of QTLs detected from single and combined models.
Single.dos: QTLs from the single model Trait Dosage. Single.Pd: QTLs from
the single model Trait P. deltoides haplotypes. Single.Pn: QTLs from the
single model Trait P. nigra haplotypes. Combined.del: QTLs associated with
a deletion. Combined.ins: QTLs associated with an insertion. Combined.Pd:

QTLs associated with the P. deltoides haplotypes. Combined.Pd.Pn: QTLs
associated with an insertion and the P. deltoides and P. nigra haplotypes.
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incorporate these integrated genotypic states into a univariate
model, such as Trait  States (Supplementary File 2). Next, pair-
wise comparisons can be performed between groups in the
different genotype states using linear regression. Loci exhibit
significant phenotypic differences through pairwise comparison
and were assigned as QTLs. We categorized these QTLs into 6
groups (deletion, insertion, deletion + insertion, P. deltoides,
P. nigra, and P.deltoides + P. nigra), according to the phenotypic dif-
ferences between compared genotypic states (see Materials and
Methods).

In total, we observed 163 QTLs from the combined model that
belonged to 4 different groups [deletion, insertion, P. deltoides,
and P.deltoides + P. nigra (Table2 and Supplementary File 4)].
Among these 4 groups, most QTLs were associated with deletions
(Fig. 4). This result is consistent with expectation from single
models, since dosage variation was associated with QTLs much
more often than allelic differences (Fig. 4). These findings are
also illustrated in the Circos plots, where deletions (Fig. 7c,
Supplementary Figs. 8¢ and 9¢) are associated with most QTLs,
followed by insertions (Fig. 7d, Supplementary Figs. 8d and 9d),
and allelic variation (Fig. 7e, Supplementary Figs. 8e and 9e).
These observations confirmed that dosage variation drives
phenotypic variation for most traits in our population, while
variation in parental haplotype did not strongly modulate the ef-
fects of dosage variation.

The combined model detected only a few instances where the
QTLs observed by different genotypes overlapped (Fig. 4). These
QTLs were associated with leaf shape and localized on chromo-
some 17 (Supplementary Fig. 9), where they were associated
with both deletions and insertions. This result is consistent with
the outcome from the single model analysis, indicating that dos-
age and allelic variation may independently affect the examined
traits.

Model
B combined

a abc E Single.Dos
$ Single.Pd
$ Single.Pn

.
a I—LO—l
Smg\‘e Dos 5\“@\'8 Pd S '\g;e Pn

Model

Fig. 5. Phenotypic variance explained using the single and combined models. a) Phenotypic variance explained by allelic and dosage variation using single
models. 12 traits were selected for the observation of both allelic and dosage QTLs. On the x-axis, A/l represents the variance explained by all QTLs
identified using the three single models. Allelic represents the variance explained by the collection of QTLs from P. deltoides and P. nigra haplotypes. Dosage
represents the variance explained by dosage variation. b) Comparison of the percentage of phenotypic variance explained by the single and combined
models. On the x-axis, Combined represents the variance explained by QTLs observed from the combined model. Single.Dos, Single.Pd and Single.Pn
represent QTLs identified from three single models associated with dosage variation, P. deltoides haplotypes, and P. nigra haplotypes, respectively.
Statistical significance was calculated through pairwise permutation tests (P-value < 0.05).
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P. nigra QTL N1 N1 N1 N2 N2 N2
[ ] [ ] @ [ ] ]
Non-function Functional
protein protein

Dosage 1 2 0 1 2 0
Nigra genotype N1 N1 N1 N2 N2 NA
Dosage of N2 0 0 0 1 0
Resulting functional | 0 1 2 0 nigra 1
protein nigra 2

Fig. 6. Representative diagram of possible interplay between P. nigra haplotypes and dosage variation. N1 (P. nigra I) encodes a non-functional protein,
while N2 (P. nigra 2) encodes a functional protein. Copy number changes on N1 have no effect on phenotypes, while copy number changes on N2 result in
dramatic differences on phenotypic outcomes. Chromosomes inherited from P. deltoides (not shown) are always present in one copy.

Table 2. QTLs obtained using the combined model.

Phenotype Groupsu Total # of QTL # of traits Variance explained by Variance explained by all
(# of traits) with QTL single QTL (n £ 0) (%) QTLs of a trait (u £ 0) (%)
Biomass (9) deletion 14 6 7.6+£6.7 123+£5.6
Leaf (22) deletion 84 12 6.4+£42 27.1+£30.2
insertion 12 5 13.0£12.0
P. deltoides 2 2 69+1.1
Phenology (7) deletion 39 6 5.8+44 245+ 14.1
insertion 7 3 10.3+7.0
P. deltoides + P. nigra 5 3 5.0+ 1.1

a

only shows groups for which QTLs were identified.

Finally, we investigated the percentage of phenotypic variance
explained by the QTLs identified using the combined model. To
calculate phenotypic variance for each trait, QTLs belonging to
the same trait were merged. Merged QTLs explained on average
23.2% of the phenotypic variance, which is significantly higher
than the variance explained from dosage variation only (on average
10.6%) or P. deltoides haplotype variation (on average of 4.3%) (per-
mutation test, P-value <0.05), and is suggestively higher than
only P. nigra haplotypes (on average of 5.1%; permutation test,
P-value <0.1) (Fig.5b and Supplementary File 6). Meanwhile, we ob-
served that the integration of QTLs from all three single models ex-
plained a smaller percentage of the phenotypic variance than the
QTLs from the combined model (12.2% vs 23.2%; permutation
test, P-value < 0.05). Presumably, the increase originates from the
QTLs identified using the combined model but not identified using
the single models. Some of these QTLs were shown to be suggestive
(0.05 < p-value < 0.1) when using the single models (Fig. 8a, chro-
mosomes 3, 4), while others were not identified at all using the sin-
gle model (Fig. 7, chromosome 14). These findings confirm the
advantage of using a combined model approach.

Discussion

Identifying candidate genes underlying a target trait is a crucial
step toward understanding the mechanisms affecting the trait,
and for applying this knowledge to plant breeding. Quantitative

The observed QTLs were categorized into groups based on their origin: deletion, insertion, deletion + insertion, P. deltoides, P. nigra, P. deltoides + P. nigra. This table

trait loci (QTL) analysis, which typically correlates SNP to traits
or phenotype-associated features such as gene expression and
RNA alternative splicing (Brem et al. 2002; Li et al. 2016), is an effi-
cient approach for this endeavor. Besides SNPs, other genetic fea-
tures such as dosage variation (Bastiaanse et al. 2019, 2020a;
Rodriguez-Zaccaro et al. 2021) can affect traits of interest. A un-
ique Populus population, which carries natural allelic variation
and induced dosage variation was previously established (Henry
et al. 2015b). Previous analysis demonstrated few point mutations
and small indels in this population (Henry et al. 2015b), indicating
that preexisting SNPs and induced large-scale indels are the major
sources of genetic variation in this population and presumably
drive the observed phenotypic variation. In our study, we aimed
to investigate the effects of natural allelic variation and induced
dosage variation on quantitative traits. In general, our results in-
dicate no overlap between QTLs from natural and dosage vari-
ation in our system.

A single model approach was used to describe the correlation
between each source of variation and target traits. P. deltoides
and P. nigra genotypic information allowed for the identification
of QTLs between different haplotypes within each parental spe-
cies. Compared with previous QTL analysis in other Populus cross
populations (Rae ez al. 2009; Rohde ez al. 2011; Fabbrini ez al. 2012),
our study found fewer allelic QTLs. As demonstrated by our re-
search identifying QTLs in the subset of trees that do not carry
large indels, this may be because the presence of many large
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Fig. 7. Observed QTLs for the phenology traits using the combined model. a) Number of lines carrying indels under each bin. b) Gene density across the
genome. (c to e) QTLs detected based on variation in deletion (c), insertion (d), and P.deltoides + P.nigra haplotypes (e). The traits from outermost to
innermost in each track are ¢) Bud_burst_y1_y2, Color_yl_y2 y3, Drop_yl_y2 y3, Green_canopy_duration_y1_y2, Time_serie_bud_burst_y1_y2,
Time_serie_drop_yl y2 y3;d) Color_yl y2 y3, Drop_yl_y2 y3, Time_serie_drop_yl y2 y3;e) Color_yl y2 y3,and Time_serie_bud_burst_yl_y2,

Time_serie_color_yl _y2 y3.

indels may mask the observation of QTLs associated with natural
allelic variation. For example, dosage-sensitive genes can play the
trans-regulatory factors and affect large numbers of genes across
the genome (Bastiaanse ez al. 2020a). Interestingly, we found no
overlap between the P. deltoides QTLs and the P. nigra QTLs. A pre-
vious study (Rohde et al.2011) also reported no overlap between
P. deltoides and P. nigra QTLs when the two species were used as
the two parents of the same population (P. deltoides % P. nigra),
which is consistent with our results. However, in the same study,
shared QTLs were observed if P. deltoides and P. nigra were used in
different crosses (Rohde er al. 2011). This might be because, if both
P. deltoides and P. nigra carry genetic variation at the same location
and both parental genotypes affect the trait, the source of pheno-
typic variation is more difficult to identify. Instead, when they are
crossed with other Populus species, which do not carry variations
that affect the trait, QTLs can be detected. With the current
data, it is difficult to determine if the pathways that control these
three phenotypic categories—biomass, leaf morphology, and
phenology—are similar or not.

Dosage variation was induced by y irradiation of P. nigra pollen
and all resulting indels are located on the P. nigra chromosomes
(Henry et al. 2015b). Therefore, we expected to observe some overlap
between P. nigra allelic QTLs and dosage QTLs. For example, if the
P. nigra QTL is associated with alleles affecting gene expression

levels, then dosage and allelic variation would have similar effects,
with decreased protein level to 0 in the case of deletion or increased
levels to two-folds in the case of an insertion. According to this mod-
el, both P. nigra QTL and dosage QTL act through dosage-dependent
regulation of the target trait. The dosage-dependent behavior is con-
sistent with additivity and has been described as the basis for quan-
titative variation (Lukens and Doebley 1999; Frary et al. 2000).
Surprisingly, dosage QTLs and allelic QTLs do not overlap
(Fig. 4). There can be multiple reasons for this outcome, depending
on the mechanisms underlying the QTL at hand. For loci that dis-
play only allelic QTL, the impact of 1x to 2x constitutive dosage
variation might be insufficient to affect protein function, whereas
allelic variation could potentially affect gene function through
more drastic modifications, such as significantly altering the ex-
pression pattern, or directly affecting the protein function if there
are changes in the amino acid sequence. It is also possible that
dosage variation at those loci was absent or too infrequent in
the indel population for the detection of a dosage QTL effect.
Indeed, over 50% of the P. nigra loci are connected to fewer than
5 indels (Henry et al. 2015b), limiting the statistical power of our
dosage QTL analysis. Finally, gene dosage compensation is an-
other possible explanation, in which the structural gene dosage
effect is canceled by an inverse regulatory effect, exerted either
within the same locus or from an unlinked region (Birchler ez al.
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Fig. 8. Examples of QTLs identified using the single and combined models on the phenology-related trait Time serie_bud burst y1 y2. Each dot
represents a genetic marker. The X-axis indicates genomic positions. The y-axis indicates the LOD scores (a) or adjusted P-value with negative log10 fold
(b, ¢). Dots above the horizontal lines were selected as QTLs. These QTLs were categorized as observed only in the single models (triangle arrow), only in
the combined model (double arrows) and in both single and combined models (single arrows). a) LOD scores of genetic markers from three single models.
Top: Trait'- Dosage; Middle: Trait- P. deltoides haplotype; Bottom: Trait'- P. nigra haplotype. (b, ¢) Combined model categorized QTLs into 6 groups based
on their origin. Deletion (b) and P. deltoide + P. nigra (Pd + Pn) (c) groups are shown here because QTLs were identified in these comparisons. b) Each plot
represents one pairwise comparison between two genotype states for which genotypes are equal but dosage varies. ¢) Each plot represents one pairwise
comparison between two genotype states for which dosage is equal but the P. deltoides and P. nigra haplotypes vary.

1990; Birchler and Veitia 2012). The combination of these two op-
posite effects would result in no significant change of gene expres-
sion. Conversely, for loci for which only dosage QTLs were
detected, it is possible that natural allelic variation is not present
at these loci, or that it has too subtle an impact to affect the asso-
ciated phenotype. The gene balance hypothesis can explain the
success in detecting dosage QTLs and the failure of detecting alle-
lic QTLs in the case of genes encoding proteins that are part of
multisubunit complexes. According to this hypothesis, traits

regulated by multisubunit complexes are particularly sensitive
to dosage. Copy number variations involving the genes encoding
these subunits can perturb their stoichiometry, leading to a dra-
matic alteration in the protein complex function and, ultimately,
impacting the connected traits (Birchler and Veitia 2012). On the
other hand, sequence variation with subtle effects would be diffi-
cult to identify (Birchler and Veitia 2021).

Integration of QTLs from dosage and allelic variation, compared
to either allelic QTLs or dosage QTLs alone, significantly improved
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the percentage of variance explained (Fig. 5a). These results suggest
that a large proportion of the phenotypic variation was caused by
the induced large-scale indels, but not all of it. Some of the pheno-
typic variation is caused by natural allelic variation, and taking
both the allelic and dosage variation into account improves pheno-
typic prediction. However, the integration of all identified QTLs
from the single models explained, on average, only 12.2% of the ob-
served phenotypic variance, indicating that the majority of the
variance remains unexplained. This could be due to the interaction
between allelic and dosage variation. For example, dosage effects
are expected to be allele-sensitive if the responsible gene is hetero-
zygous for a null allele (Fig. 6). As a result, single models focusing
solely on natural allelic variation or induced dosage variation are
not able to identify these interactive effects.

We next developed a combined model including all variation
types. We categorized the QTLs into 6 groups based on the following
types of variation: deletion, insertion, deletion + insertion, P. deltoides
haplotypes, P. nigra haplotypes, and P. deltoides + P. nigra haplotypes.
Most QTLs were associated with dosage-related groups, with dele-
tions being the most common cause, followed by insertions. QTLs as-
sociated with allelic variation (P. deltoides, P. nigra, and P. deltoides + P.
nigra haplotypes) were the least common. Most QTLs were observed
within dosage-related groups. Possibly, this is because dosage var-
iants were newly induced and have not experienced selection.
There was no overlap between allelic and dosage QTLs, which is con-
sistent with the results obtained using the single models.

Taken together, we investigated the contribution of natural al-
lelic variation and induced dosage variation in F1 Populus hybrids
on quantitative traits. We found no overlap between allelic and
dosage variation QTLs, suggesting that the naturally occurring
sequence polymorphisms and the induced structural variation in-
fluence the traits under different constraints and through differ-
ent mechanisms. Integrating the QTLs from allelic and dosage
variation significantly increased the proportion of phenotypic ex-
plained variance compared to considering only allelic or dosage
QTLs. A new method was designed to include all types of variation
simultaneously for QTL analysis, and it was applied to investigate
the interaction between allelic and dosage variation in detail. This
novel approach significantly increased the explained proportion
of phenotypic variance and revealed that genomic fragment dele-
tion had the most pronounced effect on traits. The future direc-
tion would be to identify responsible genes within the QTL
intervals as a next step toward helping the development of
Populus clones with commercial benefits.

Data availability
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