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Abstract—In this paper, we present a novel hypothesis testing
framework to model an attacker’s decision-making during the
reconnaissance phase and employ the framework to design
strategic deception strategies that can provide the attacker with
optimally falsified information structures. We characterize the
criterion for such structures to ‘blind” the attacker, i.e., to
completely confuse it, as well as the optimal falsification strategy
when the attacker cannot be blinded. We also characterize
optimal information acquisition costs that can be imposed on
the attacker to maximally “sludge” its decision-making process
during the reconnaissance phase. Numerical results have been
presented to gain important insights into the developed strategies.

Index Terms—Cyber Deception, Hypothesis Testing, Informa-
tion Falsification, Sludging.

I. INTRODUCTION

The use of deception techniques to defend a networked
system against modern cyber threats has recently attracted
attention [1]-[6]. Fundamentally, such techniques provide
misleading information to deceive and/or confuse attackers
into taking (or not taking) certain actions with the goal of
enhancing network security [7]. Deception strategies can help
to reduce the likelihood of an attacker’s success, lessen the
cost of defense from deception-less scenarios, and complement
conventional defense measures for enhancing security.

Prior to launching an attack, an attacker typically gathers
internal information about the target network during the re-
connaissance phase [2], [6], [7] using various scanning tech-
niques [8]-[13]. For example, an attacker may want to gather
information about the types of operating systems (OS) that
different devices in the network are using, ports that are open
in various devices, and the intensity of traffic flows to/from
different networked devices. Such exploitable information can
aid the decision-making of attackers regarding their attacking
strategies and enhance the success of attacks.

To counter such efforts of an attacker, the network’s
defender can employ deception tactics by strategically
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providing falsified information in the scan results [14]—
[18]. However, the design of such deception strategies is
still nascent, with the lack of a rigorous mathematical
characterization of involved information structures, a
comprehension of how an attacker would optimally process
gathered information for its malicious decision-making, and
a thorough study of how a defender can strategically employ
an understanding of such factors to provide an attacker with
optimally falsified information.

To address such issues, in this paper, we model an at-
tacker’s decision-making during the reconnaissance phase as
a hypothesis testing problem [19], where the attacker gathers
and processes information regarding the features of devices
(servers) in a network to decide between the hypotheses of a
server being “real” or being a “fake” that has been deployed
by the defender as a decoy. Features of a server, for example,
can correspond to the type of its OS and the intensity of its
associated traffic flows. Our adoption of such a hypothesis
testing perspective gives rise to a novel principled approach
to the characterization of optimal deception strategies that can
rigorously exploit the involved information structures.

Further, employing our hypothesis testing-based framework,
in addition to studying optimal ways to fabricate falsified
information structures, we investigate the novel possibility
of sludging the attacker by imposing information acquisition
costs with a goal to make it maximally harder for the attacker
to decide and, subsequently, degrade the quality of its deci-
sions. It can be noted that the notion of sludging has its roots
in Nudge Theory [20], which, however, unlike the ‘friction’
that our sludges introduce in the attacker’s decision-making
process, aims to design decision environments to make it easier
for people to decide in a manner that improves their welfare. In
particular, the novel contributions of our paper are as follows:

e We present a novel hypothesis testing framework for

modeling and analyzing an attacker’s process of deciding
the nature of servers (devices) in a network during the
reconnaissance phase.

« We characterize the optimal decision rule that enables the
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attacker to minimize the probability of erroneously decid-
ing the nature of the servers by strategically exploiting
information that it acquires during reconnaissance.

e« We characterize the criterion the defender must satisfy
while feeding the attacker with falsified information to
be able to blind the attacker, i.e., make it completely
confused and incapable of making informed decisions
about the nature of servers.

o We characterize the defender’s optimal information falsi-
fication strategy when the attacker cannot be blinded.

o Under cost budgets of the defender and attacker, we
characterize the optimal information acquisition costs that
the defender should impose on the attacker to maximally
sludge its decision-making process.

The rest of the paper is organized as follows. Section II
discusses related research. Section III presents our developed
hypothesis testing framework and characterizes the attacker’s
optimal decision rule that can best exploit its acquired in-
formation during reconnaissance. Section IV characterizes
the defender’s optimal blinding and non-blinding information
falsification strategies. Section V presents game theoretic
strategies for sludging the attacker in our hypothesis testing
framework. Finally, Section VI concludes the paper.

II. RELATED RESEARCH

With cyber criminals increasingly launching more sophisti-
cated attacks that can penetrate deeper into today’s networked
systems, it is imperative to design innovative cyber deception
techniques that can complement traditional defense measures.

Before launching an attack, during the reconnaissance
phase, an attacker typically performs scans (i.e., monitoring
activities) to gather internal information about the target net-
work and identify devices of interest in it [8], [12]. Such
scans can be performed by sending active probes to various
networked devices to understand their features, such as their
OSs, open ports, versions of installed applications, and so
on [13]. Again, such information can sometimes be passively
gathered by attackers by scanning traffic (e.g., packet headers)
that pass through network routers and switches [10]. To
manage scanning activities, various network fingerprinting
tools can be employed, such as Nmap [9] and POf [11].
Information gathered by attackers during reconnaissance aids
the decision-making of attackers and helps them optimize
attacking strategies.

To defeat such reconnaissance efforts and mislead attackers,
a defender can employ deception tactics by feeding attackers
with falsified information in the scan results [14]-[18]. For
example, to mislead attackers into incorrectly determining the
type of OS of a device, [17] falsifies TCP/IP headers of packets
sent by the device. To efficiently implement such packet struc-
ture manipulation schemes, [18] explores Software Defined
Networking (SDN)-based Data-Plane Programming (DPP)
techniques. While [17], [18] explore information falsification-
based defenses from a system implementation perspective, the
authors in [15] analytically characterize such defense strate-
gies against an attacker who acquires probabilistic knowledge

about networked devices’ features by performing scans. The
work in [14] complements [15] by developing game theoretic
ways of providing falsified scan results when the attacker is
strategic in nature. The work in [16] considers that attackers
could observe multiple features of networked devices in the
scan results to decide their attacking strategies, and devises
algorithmic procedures to find falsified values of the features
that should be presented to deceive attackers.

The use of information falsification-based defenses can be
complemented by the use of honeypots [5], [21], which are
fake entities that can be used as decoys to divert attackers
away from valuable assets in a network. To enable such
diversions, [1], [22] develop strategies to lure attackers towards
honeypots in a strategic context, [3], [23] explore cost
effective placement of honeypots in a network, and [24] studies
evaluation of different honeypot technologies.

It should be noted that while past work has sought to devise
strategies to deceive attackers by feeding them with falsified
scan results, they fall short of mathematically characterizing
and duly exploiting the involved information structures, lead-
ing to the developed information falsification strategies to be
ad hoc and sub-optimal in nature— a problem that we aim to
tackle by adopting a hypothesis testing perspective for mod-
eling, analyzing, and characterizing the involved information
processing and falsification methodologies.

We further leverage our developed hypothesis testing frame-
work to characterize information acquisition costs that should
be strategically imposed on the attacker to maximally sludge
its decision-making process and degrade the quality of its
decisions. Such sludging stems from Nudge Theory [20],
which proposes to adaptively design the decision environment
so as to influence the decision-making behavior of people in a
predictable way. While nudges try to make it easier for people
to decide in a way that improves their welfare [20], sludges
make the decision-making process more frictional, leading
people to decide in a manner that may not be aligned with their
best interests [25]. The work in [26] is a preliminary work that
discusses the benefits of using sludges in cyber defense, but
does not develop an analytical approach for employing such
a strategy. Our paper also fills such a void.

III. CYBER DECEPTION MODEL AND ATTACKER’S
OPTIMAL DECISION RULE

Consider the presence of two servers in a network, viz.
Server G and Server H, with a defender (D) using one of
them as the real server and the other as the fake one, i.e., as
a decoy (honeypot). Consider that D chooses G to be the real
server with a probability Pg and H to be the real server with a
probability Py = 1 — Pg. Each server has M features, which
an attacker (A) inspects (by performing scans) during the
reconnaissance phase to decide which server is real. Features
describe characteristics of a server, such as information about
the type of its OS, the intensity of traffic flows to/from the
server (e.g., high or low), and so on.

We denote the true value of feature ¢ of server X as f;,

i€{l,---, M}, X € {G, H}, and consider that f;* € {0,1},
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i.e., every feature assumes binary values (e.g., the type of OS
of a server being Windows or Linux). Further, we consider
that for i € {1,--- ,M} and X € {G, H},

Pi(f* =0 X isreal) = 1 — P(f* = 1|X isreal) (1)

is the probability of f;* assuming the value O when server X
is the real server, and that

Pi(fi* = 0[X is fake) = 1 — P;(f* = 1|X is fake)  (2)

is the probability of f;* assuming the value 0 when server X is
the fake server. For notational simplicity, we denote P;(fX =
alX is real) as PE(f¥* = a) and P;(f* = a|X is fake) as
PE(fX =a),ac{0,1},ie{1,--- ,M}, X € {G,H}.

Note that, while our results could be extended to scenarios
where D employs more than two servers whose features
assume non-binary values, we consider the model described
above in this paper for expositional simplicity of our novel
approach.

A. Probabilistic Falsification (Flipping) of Feature Values

To decide which server is real before attacking, we consider
that A inspects (i.e., gathers information about) the feature
values of the two servers by performing scans. Further, we
consider that D, to strategically employ deception tactics, can
provide probabilistically flipped (falsified) feature values in
the results of the scan that are observed by 4. To model
restrictions on flipping values of certain features from D’s
perspective, we consider that L out of the M features of each
server are ‘flippable’ by D and that the ratio L/M = «. For a
flippable feature of a server, we consider D to send a flipped
value of the feature with a probability p to A. In other words,
denoting the value of feature 7 of server X that is observed
by A as u;X, we have

p = Prob(u;* = b|f¥ =a)=1—Prob(u* =a|f* =a) 3)
a,be{0,1},a#b,ie{1,--- ,M}, X € {G, H}. To model

A’s uncertainty about which features are flippable, we consider
A to view each feature of each server to be flippable with the

probability «. Thus, for X € {G,H} and i € {1,---, M},
we have
Pli(u =0)=1- P =1)=(1-a)P (i =0)
+a{pPR FX = 1)+ (- PR =0 } (4a)
Pl(ui =0)=1-Pl(u) =1)= (1 - )P/ (f* =0)
+a{pPl(f¥ =1) + 1 -pP/ (£ =0) }<4b>

where Pf(uX = a) and P} (u S 2 = a) are the probabilities
of A observmg the (potentlaly ﬂlpped) value of feature ¢

of server X as a under X being the real and fake server,
respectively, a € {0, 1}.

B. Optimal Decision Rule of the Attacker

We consider A to decide which server is real based on the
observed values of the M features of each of the two servers,
which we consider to be descrlbed by an M X 2 matrix, viz.
[[uf, uf],- [uM,uM]] Accordingly, A’s probability of
erroneously demdlng that the fake server is the real one is

Pgt = PgP(A decides H is real)+Py P(A decides G is real)
=Pg Y I1 P (uf = &) PF (uff = s") +

s€S—S§ ie{l,- ,M}

Pyy  J] PF@f =

seS§ ie{l, M}

s PR (uff =sf) (5

K2

where set S contains all possible M x 2 feature matrices that
A can observe and S§ contains the set of all M x 2 feature
matrices observing which makes A to decide that G is the real
server. In (5), s& and s are the values of feature i of servers
G and H, respectively, of the sth M x 2 feature matrix.

Next, we characterize the optimal decision rule that A
should employ to decide the servers’ natures based on the
observed M x 2 feature matrix.

THEOREM 1. The optimal decision rule of A that minimizes
its probability of erroneously deciding that the fake server is
the real one, i.e., minimizes (5), is:

M ;
PF (4 PR H H is real P
> {lox o +loe P} 2 g e ©
im1 P (ug) P (ug) G is real
Proof. A’s error probability (5) can be expressed as
P]i;“:PG Z H PZ-R(uf = slG)PZF (uf{ = sf{) +
s€S ie{l,--- ,M}
S [ma{ TI PP = )RRl =50} -
seS§ ie{l,-,M}
Pg H PER(u§ = s§)PF (uff = s¥) H (7
ie{1,,M}

7 (3 K3

Since Zses Hie{l,--- M
(7) reduces to

PA=Ps+Y [PH{

}PiR(uf = s?)P-F(uH = sH) =1,

[1 PF(uf = &) PRl = 51}

€8¢ ie{1, M}
*PG{ H PR (uG = siG)PiF (uﬁ = sf{) H ®)
ie{l,-- ,M}

Clearly, to minimize (8), those M x 2 feature matrices of S
must be assigned to S§ that make the second term of (8)
negative, i.e., that make

I s
ie€{l,-- ,M}
11 PR(

PG{
{1,

|

siG)PiR(u{{ = sfl)} <
= s0)PF(uf =sf)} )

for any s € Sg. Thus, after observing an M x 2 feature matrix,
to minimize its error probability (5), which occurs when (9) is
satisfied, A should use the following decision rule to decide
which server is real:

IDF' G IDR H
11 (ui) P (uy”)

i Lie
ie{l,---,M}

H is real
> il
Py

B (uC) P (ulf) {10

=<
i G is real

which makes A decide that Server G is ‘real’ if the quantity
of the LHS of (10) is less than the threshold on the RHS
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(i.e., Po/Pm), and decide that Server H is ‘real’ otherwise.
Now, taking the log of both sides of (10) and simplifying it
yields (6). This proves the theorem. ]

IV. OPTIMAL FALSIFICATION-BASED DECEPTION

In this section, we characterize the optimal strategies that
should be employed by D to falsify (flip) the feature values
of the servers in the scan results so as to maximally degrade
A’s capability of identifying the real server. To this end,
we first present the falsification criterion that makes A’s
optimal decision rule in (6) to become completely ineffective
in exploiting the observed scan results, in which case we say
that A is blind, making A to experience the maximum possible
decision-making error probability.

LEMMA 1. A becomes blind, i.e., incapable of making an
informed decision based on the observed M X 2 feature matrix,
when ap = 1/2.

Proof. When A becomes blind, i.e., its decision rule (6)
becomes completely ineffective, .4 would have to decide
which server is real solely based on Pg and Py (i.e., decide
G is real if P > Py, and decide H is real otherwise). From
the LHS of (6), clearly, this happens when Pf'(uX = a) =
PFuX =a),i e {1,---,M}, X € {G,H}, a € {0,1},
which, using (4a) and (4b), yields

(1= a)PR(f* =a) +a[p{l - P(f¥ =a)} + (1 -p)
P (f*=a)]=(1-a)P (ff=a) + a[p{1 — P[(f}¥=a)}
+(L=p) P/ (fi* = a)] (11)
Simplifying (11), we get
{1—2a0p{PF(f =a)-PE(fX=a)}=0 (12)

Clearly, (12) is satisfied when ap = 1/2, which proves the
lemma. O

Next, we characterize the minimum fraction of flippable
features needed to blind A.

COROLLARY 1. The minimum fraction of flippable features
needed to blind A is apjing = 1/2.

Proof. From Lemma 1, in the criterion for blinding A, viz.
a = 1/(2p), clearly, « is minimized when p attains its
maximum value of 1, which leads to apjing = 1/2. O

A. Optimal Falsification Strategy when A cannot be Blinded

We now characterize the optimal flipping probability p that
should be employed by D to maximally degrade A’s decision-
making capability under use of the optimal decision rule in (6)
when o < 1/2, i.e., when 4 cannot be blinded. Analytical
characterization of the error probability of A’s decision rule
in (6), however, to perform such an analysis is mathematically
intractable. Hence, we find p that optimizes a surrogate func-
tion in lieu of the error probability of the decision rule in (6).
Specifically, to define our surrogate function, let us first define

A = {E "] - EF [u*]}? (13)

where
EfuX]=0-PRu =0)+1- PR =1)  (14a)
EffuX] =0-PF(uf =0)+1-PF(u* =1)  (14b)

are the expectations of uX under X being a real and fake
server, respectively, ¢ € {1,--- , M}, X € {G,H}. Us-
ing (13), we define our surrogate function as

D S SEP (e
Xe{G,H} ie{l,-- ,M}
Using approaches similar to ones in [19], [27], it can be

shown that the error probability of the decision rule in (6)
monotonically increases as A (15) decreases. Thus, D would
want to employ p that solves the following optimization
problem:

minimize A (16a)
P
Subj.to 0<p<1 (16b)

Next, we characterize the optimal p that solves (16).

LEMMA 2. The optimal flipping probability that D should use
to maximally degrade A’s decision-making capability when
a<l/2isp=1

Proof. Substituting (4a) and (4b) into (14), and subsequently

substituting the simplified expressions of EF[u:X] and EF [u;X]
that are yielded into (13), we get
AY = {1—2ap}(PF(FX = 1) - PR(FX = 1)) (a7

Substituting (17) into (15), we get

M
A={1-20p}* 3" ST{PF(X=1)

Xe{G,H} i=1

— PR(fF=1)}* (18)

Denote v(p) = {1 — 2ap}?, which is the only term that is a
function of p in (18). Since %v(p) =8a? > 0, y(p) is a
convex function of p. Further, since d%’y(p) =4a(2ap — 1),
we have iL+(p) < 0 when p < 5. Thus, when o < 1/2, in
which case %w(p) < 0for0<p<1,p=1minimizes (18)".
This proves the lemma. O

Next, in Fig. 1(a) and Fig. 1(b), we plot A (18) and the error
probability of (6), respectively, versus p for different values
of a. For the figures, we consider servers G and H to have
M = 3 features, Pg = 0.31, Py = 1— Pg = 0.69, [PR(f1 =

1), Py(fs = 1), P{(f§' = 1)] = [0.8,0.58,0.55], [P{"(f{
1), P (2—1)P3(f3=1)]=[0-3702502] [P
1), PR(fE = 1),PE(fH = 1)] = [0.4,0.67, 031] and
[P (f1 1), PE(T = 1), P{ (3= 1)] = [0.9,0.23,0.67].

The error probability of (6) was found via Monte Carlo
simulations. As can be seen from Fig. 1(a), when o > 0.5,
there always exists a value of p that makes A = 0, i.e., blinds
A, with optimal p in such a scenario ranging from 0.5 (when

!Consistent with Lemma 1, note that i d y(p) = 0 when p = 1/(2a),
a condition which makes A = 0, thereby bhndmg A and resulting in the
maximum possible error probability of (6) to occur, but attaining which
requires o > 1/2.
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Fig. 1. Nature of A (18) and the error probability of (6) w.r.t flipping
probability (p) for different a.

a = 1) to 1 (when o = 0.5) following the blinding criterion in
Lemma 1. In accordance, as can be seen from Fig. 1(b), when
a > 0.5, the error probability of (6) maximizes at p = i
as prescribed by Lemma 1 (specifically at p = 55z = 1
when a = 0.5, at p = 54= = 0.71 when a = 0.7, and at
p= 35 =0.5 when a = 1).

Further, when o < 1/2 in Fig. 1(a), note that A > 0 for
any p (i.e., A cannot be blinded), and that A monotonically
decreases with p attaining its minimum value at p = 1. In
accordance, when o < 1/2, it can be noted from Fig. 1(b)
that the error probability of (6) monotonically increases with
p and maximizes at p = 1. The above observations corroborate
Lemma 1 and Lemma 2 while depicting the relationship
between A (18) and the error probability of (6).

V. GAME THEORETIC SLUDGING FOR CYBER DECEPTION

In this section, in addition to being capable of feeding A
with potentially falsified feature values, we consider that D
invests certain costs for defending the servers’ features to make
it harder for A to inspect (scan) them, thereby sludging the
decision-making process of .4 (and degrading the quality of its
decision regarding the servers’ natures). Employment of such
cost structures can correspond to D’s use of a sophisticated

scheme to encrypt packets of the server(s) (e.g., to hinder A’s
efforts of understanding OS type(s) by scanning and analyzing
traffic [10]), and, again, to the use of specialized firewall
packages (e.g., to impede A’s efforts of identifying open ports
in the server(s) [28]). In such a scenario, under cost budgets of
A and D, we investigate how .4 can optimally determine which
features to inspect and how D can choose a cost structure to
defend the servers’ features so as to maximally sludge .A.

For notational simplicity, in this section, w.l.o.g, we drop the
superscript ‘X’ that we have been using to associate features
with servers and label the 2\ features of the two servers taken
together from 1 to N, where N = 2M. Now, consider that
the strategy of D is defined by the vector ¢ = [c1,- - ,cn],
where ¢; > 0 is the cost that D invests to defend feature ¢
such that Zfil ¢; < CP, where C?P is the cost budget of D,
with A subsequently incurring ¢; if it were to inspect feature s.
Further, consider that the strategy of A is defined by the vector
z = |21, -+, 2N], Where z; is the probability with which A
inspects feature 7 such that Zf;l cizi < CA, with CA being
A’s cost budget. Given z, following (15), the quality of A’s
decision can be described by

N
Alz) =) Aiz (19)
i=1
where A;, i € {1,---, N}, following (17), becomes
Ai={1—-20p}*{PF(f; =1) - PR(fi=1)}*  (0)

where Pf(f; = 1) and PF(f; = 1) are the probabilities
of f; being 1 under the server that feature ¢ belongs to
being real and fake, respectively. Now, to analyze sludging
in a strategic context, we model the problem as a leader-
follower game, where D acts as the leader by choosing c
with a goal to maximally sludge the decision-making process
of A so as to minimize (19) while knowing that A, acting
as the follower, would choose z to inspect those features that
maximize (19) against the set cost structure. We model the
associated optimizations from D’s and .A’s perspectives as the
following bilevel optimization problem.

N
min Z Az} (21a)
i=1
N
s.t. Z ¢ <CP (D’s budget constr.) (21b)
i=1
N
z* = argmax Z Az (21¢)
Z =1
N
s.t. Z cizi < CA (A’s budget constr.) (21d)
i=1

Note that the bilevel optimization in (21) consists of an
upper-level optimization in (21a)-(21b), which models D’s op-
timization task, and a lower-level optimization in (21c)-(21d),
which models A’s optimization task. Clearly, if CP < C4,
then the optimal solution to the lower-level problem in (21c)-
(21d) would be zf = 1, Vi € {1,---,N}, regardless of
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how D chooses c. Thus, in the following, we consider the
more challenging case of CP > C“. Also, note that it
would be straightforward to show that in the optimal solution
of the upper-level problem in (21a)-(21b), we would have
Z’L 16 = CD

Now, it can be noted that A’s optimization task, which
corresponds to the lower-level problem, can be treated as a
continuous Knapsack problem [29], whose optimal solution,
for a given c, can be found using the following theorem.

THEOREM 2 ([29]). Suppose that the N features are labeled
such that

A A An_ A
>2s x> SN SN (22)
C1 C2 CN-1 CN

Further, suppose that feature k is such that k = min{n :

S > CAY. Then, optimal z* that solves the continuous
Knapsack problem in (21c)-(21d), for a fixed c, is given by
1 fl1<i<k
* A k=1 N1 o
7z = (=i ey i=k
0 ifk<i<N

(23)

Next, we characterize the optimal c¢ that solves the upper-
level problem in (21a)-(21b) from D’s side. We first present
an important characteristic that must hold for ¢ to be optimal.

LEMMA 3. For ¢* = [cf,--- ,cN] to form the optimal cost
structure that solves the upper-level problem in (21a)-(21b)
from D’s perspective against A strategically solving the lower-
level problem using Theorem 2, we must have

A A An_ A
Sl SN TN (24)
G Co CN-1 CN

Proof. We prove the lemma by showing that any deviation
from c* prescribed by (24) against A optimally selecting
features for inspection using Theorem 2 is detrimental for D.

First, note that A;/cf = Aj;/ct, i,j € {1,---,N}, i # j,
implies that

AV

c; = A—jcj (25)

Now, since CP > C“, Theorem 2 suggests that for A’s

strategy z* = [2],--- , z}] to be optimal against c*, we must
have ZZ 1 cl z¥ = CA, which implies that
A * * .
Z (A—jc])zi = CA (using (25))
- N
— A = 24 (26)
c

where Acg« (= Zf\;l A;z}) is the maximum value of the
objective function in (21c) yielded by optimal z* that solves
the lower-level problem against ¢*, and j € {1,--- ,N}.
Now, consider an arbitrary cost structure ¢’ that has V
features that have lesser costs, W features that have equal

costs, and N — V — W features that have greater costs, than
their corresponding costs in c*. Also, w.l.o.g, consider that
the features of the two servers are labeled such that ¢/ =

[(c1 = d1),-++ ey —bv), (C*V+1)v T (CT/+W)’ (C*V+W+1 +
Sviws1), -+, (cy + dn)], which implies that
Ay _ Ay Avyr _ _ Avyw
i —61 Ty — oy Vi1 Viw
A A
i V4+W+1 > N 27
Vw1 + 0y 4w+1 iy +on

where §; > 0, i € {1,---, N}, is the amount of change of
feature ¢’s cost in ¢’ from the one in c*. Note, we must have

v N
Sa = >
=1

i=V4+W+1
to ensure preservation of D’s cost budget. Now, for z' =
[2], -, 2] to form A’s optimal strategy against ¢’ following
Theorem 2, clearly, z’ must satisfy

(28)

1% V+Ww
> e > oz Z (¢t +6;) = CA (29)
i=1 i=V+1 i=V4+W+1

Using (25), for j € {1,---, N}, we can express (29) as

1%
Z /[ ]—I—Zzl c* +Zz {—c ] =cA
i=1 I oi=view+
which, after some simplifications, yields
al A
‘A, = ZioA L 'S
>oahi=lot [Zw Zz(s} (30)
i=1 J i=V4+W+1
Using (26), (30) can be expressed as
N
A = Age + =3 [Zz 5i— > z'.cs} 31)

i=V+W+1

where Aq (= Zl 1 ZA) is the maximum value of the
objective function in (21c) ylelded by optimal z’ that solves
the lower-level problem against ¢’. Now, note that from (27),
we have C;Afls > CA+5 , for any v € {1,--- ,V},z €
{V+W+1,-- N} This 1mp11es that, using Theorem 2,
forz;>0 xe{V+W+1 , N}, we must have z, = 1,
) 6 {1 ,V'}. Thus, in (31) the least value of the term
Yl 70 — Zz Vw00 18 >l 8 — Zf\;v+w+1 0i,
which, using (28), equals 0, implying that Ao > Ac«. In
other words, any deviation from c* can enhance the decision-
making performance of 4. This proves the lemma. O

Next, we characterize the optimal cost structure that satisfies
Lemma 3’s condition to solve the upper-level problem.

THEOREM 3. The optimal cost structure c¢* = [cf,--- ,cy]

that solves the upper-level problem in (21a)-(21b) from D’s

perspective corresponds to, for any chosen i € {1,--- /N},
=5 C’Dandc *Ajcf,VjG{l,...,N},j7éi.

C —
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Fig. 2. Nature of A;/c; and A with varying costs of features for N = 2.

Proof. For optimal c* to satisfy D’s bu%et, for any chosen
i€ {l,---, N}, we must have ¢j + 3, ;,,¢; = CP, in
which, Vj € {1,--- N}, j # i, setting ¢} = 32¢} using (25)
to make (24) hold true, we get

N
c + Z ﬁcf:CD

(32)
A;
J=1,5#i
Simplification of (32) yields ¢ = ZNAi —CP, i €
j=1=J
{1+ N}, with ¢i = Zic; following (25), Vj €
{1,---,N}, j #i. This proves the theorem. O

Fig. 2 provides numerical results corroborating Lemma 3
and Theorem 3. For the figure, we consider NV = 2, i.e., M =
1, with the feature of server G labeled as Feature 1 and that of
H labeled as Feature 2 under P (f; = 1) = 0.94, P['(f1 =
1) = 0.19, PE(fo = 1) = 0832, Pf(fo = 1) = 0.17,
CP =58, CA =48, o = 0.1, and p = 1 (which is the
optimal value of p since a < 0.5 in the figure). The figure
plots &<, j ¢ {1,2}, as well as the objective function in (21c),

Ci

viz. A = Zf\[:l A;zy, with 2z} chosen using Theorem 2 to
solve the lower-level problem in (21c)-(21d), versus c; for
0 < ¢; < CP (with ¢ = CP — ¢;). It can be noted from the
figure that the minimum value of A (21c) is achieved when
A1 /c1 = As/co, which corroborates Lemma 3, and that this
occurs at ¢; = 3.26 (with ¢ = CP — ¢; = 2.54), which can
be shown to tally with the solution prescribed by Theorem 3.

In Fig. 3, we plot (2la), ie, A = YN A,z¥, corre-
sponding to D and A optimally choosing c¢* and z* using
Theorem 3 and Theorem 2, respectively, with varying N
(= 2M), i.e., the combined number of features of servers
G and H. For the figure, we consider, Vi € {1,---,M},
PR(fE =1) = 08, PF(f€ = 1) = 0.3, PR(f = 1) = 0.4,
and PF(ff = 1) = 0.9, with C? = 5.8, C4 = 4.8, and
p = 1 (which is optimal since o < 0.5 in the figure). As can
be seen, A increases (i.e., A’s decision-making quality gets
enhanced) with IV since, following Theorem 3, for a given C?,
increase of N makes D to invest lesser cost in defending each

15

—a=0.1 ----a=0.4
- —a=0.2 a=0.5
v

101

2 4 6 8 10
Combined number of features (N) of G and H

Fig. 3. Nature of A with increasing number of features.
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Fig. 4. Nature of A with varying cost budget (CP) of D.

feature which makes it easier for A to inspect more features
to make more informed decisions. Further, as expected, for
any given N, increase of « is beneficial for D as it enables
it to perform more extensive flipping to deceive .A. Note that
A always equals 0 when o = 0.5 (under p = 1) since A is
blind.

In Fig. 4, we plot (21a) under D and A optimally choosing
c* and z* using Theorem 3 and Theorem 2, respectively,
with varying cost budget (CP) of D. For the figure, we
consider N = 10, i.e., servers G and H to each have
M =5 features, with [PE(fF = 1), PE(f$ = 1), PE(f$ =
), PE(f¢ = 1), PR(f¢¥ = 1)] = [0.1,0.3,0.5,0.56,0.8],
1), PP (¢ = 1)] = [0.88,0.86,0.79,0.12,0.3], [P (fH
1)7P2R(f2H = 1)7P3R(fi§{ = 1)7Pf(f4H = 1)>P5f%(f5{{
1)] = [0.18,0.89,0.55,0.4,0.78], [Pf(ff = 1),PF(fH
1)’P?F(f?{{ = 1)7P4F(f4H = 1)7P;<fffi = 1)} =
[0.8,0.28,0.66,0.9,0.34], « = 0.1, and p = 1 (which is
optimal since o < 0.5 in the figure). As can be seen, for
any given C4, A decreases (i.e., A’s decision-making quality
degrades) with C? since, following Theorem 3, for a given
N, D can invest a higher cost in defending each feature as C”

*
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increases. This makes it harder for 4 to inspect the features
and increasingly sludges its decision-making process, resulting
in A to make poorer quality decisions. Further, as expected,
for any given CP, A increases with C* since, following
Theorem 2, A can inspect more features as C# increases,
enabling it to make more informed decisions.

Before concluding, for completeness, we make a remark
regarding A’s optimal decision rule when it inspects a subset
of G’s and H'’s features, as was considered in this section.

REMARK 1. Following a similar procedure as used to de-
rive (6), it can be shown that A’s optimal decision rule when
it inspects a subset of G’s and H's features is given by

M .
PF(u¢ PR(yHYY H is real P

Z {IIG log 7’R(ulc) + I log 7},(%}1) } 2 og lCA

im1 B (ug?) Pr(ui') ) G is real Py

(33)

where IX is a Boolean random variable such that IX = 1
(denoting that A chooses to inspect feature i of server X)
and IiX = 0 (denoting otherwise), with the value assumed
by I:X governed by the probabilities in z, i € {1,--- , M},
X € {G,H}.

VI. CONCLUSION

This paper presented a novel hypothesis testing framework
that models an attacker’s process of deciding the nature of
servers in a network based on information that it gathers
regarding their features during reconnaissance. The paper
characterized the optimal decision rule that the attacker should
use to process its gathered information for deciding the
servers’ natures. The paper also characterized the optimal
information falsification strategy that the defender should use
to minimize performance of the attacker’s optimal decision
rule, including characterization of the criterion that must be
satisfied to blind the attacker. Further, under cost budgets, the
paper characterized the optimal information acquisition costs
that the defender can impose on the attacker to strategically
sludge its decision-making process for maximally degrading
the quality of its taken decisions.

In the future, we plan to build on our hypothesis testing-
based cyber deception framework to make it adapt with
possible cognitive biases of the defender and attacker.
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