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Abstract—In this paper, we present a novel hypothesis testing
framework to model an attacker’s decision-making during the
reconnaissance phase and employ the framework to design
strategic deception strategies that can provide the attacker with
optimally falsified information structures. We characterize the
criterion for such structures to “blind” the attacker, i.e., to
completely confuse it, as well as the optimal falsification strategy
when the attacker cannot be blinded. We also characterize
optimal information acquisition costs that can be imposed on
the attacker to maximally “sludge” its decision-making process
during the reconnaissance phase. Numerical results have been
presented to gain important insights into the developed strategies.

Index Terms—Cyber Deception, Hypothesis Testing, Informa-
tion Falsification, Sludging.

I. INTRODUCTION

The use of deception techniques to defend a networked

system against modern cyber threats has recently attracted

attention [1]–[6]. Fundamentally, such techniques provide

misleading information to deceive and/or confuse attackers

into taking (or not taking) certain actions with the goal of

enhancing network security [7]. Deception strategies can help

to reduce the likelihood of an attacker’s success, lessen the

cost of defense from deception-less scenarios, and complement

conventional defense measures for enhancing security.

Prior to launching an attack, an attacker typically gathers

internal information about the target network during the re-

connaissance phase [2], [6], [7] using various scanning tech-

niques [8]–[13]. For example, an attacker may want to gather

information about the types of operating systems (OS) that

different devices in the network are using, ports that are open

in various devices, and the intensity of traffic flows to/from

different networked devices. Such exploitable information can

aid the decision-making of attackers regarding their attacking

strategies and enhance the success of attacks.

To counter such efforts of an attacker, the network’s

defender can employ deception tactics by strategically
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providing falsified information in the scan results [14]–

[18]. However, the design of such deception strategies is

still nascent, with the lack of a rigorous mathematical

characterization of involved information structures, a

comprehension of how an attacker would optimally process

gathered information for its malicious decision-making, and

a thorough study of how a defender can strategically employ

an understanding of such factors to provide an attacker with

optimally falsified information.

To address such issues, in this paper, we model an at-

tacker’s decision-making during the reconnaissance phase as

a hypothesis testing problem [19], where the attacker gathers

and processes information regarding the features of devices

(servers) in a network to decide between the hypotheses of a

server being “real” or being a “fake” that has been deployed

by the defender as a decoy. Features of a server, for example,

can correspond to the type of its OS and the intensity of its

associated traffic flows. Our adoption of such a hypothesis

testing perspective gives rise to a novel principled approach

to the characterization of optimal deception strategies that can

rigorously exploit the involved information structures.

Further, employing our hypothesis testing-based framework,

in addition to studying optimal ways to fabricate falsified

information structures, we investigate the novel possibility

of sludging the attacker by imposing information acquisition

costs with a goal to make it maximally harder for the attacker

to decide and, subsequently, degrade the quality of its deci-

sions. It can be noted that the notion of sludging has its roots

in Nudge Theory [20], which, however, unlike the ‘friction’

that our sludges introduce in the attacker’s decision-making

process, aims to design decision environments to make it easier

for people to decide in a manner that improves their welfare. In

particular, the novel contributions of our paper are as follows:
• We present a novel hypothesis testing framework for

modeling and analyzing an attacker’s process of deciding

the nature of servers (devices) in a network during the

reconnaissance phase.

• We characterize the optimal decision rule that enables the
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attacker to minimize the probability of erroneously decid-

ing the nature of the servers by strategically exploiting

information that it acquires during reconnaissance.

• We characterize the criterion the defender must satisfy

while feeding the attacker with falsified information to

be able to blind the attacker, i.e., make it completely

confused and incapable of making informed decisions

about the nature of servers.

• We characterize the defender’s optimal information falsi-

fication strategy when the attacker cannot be blinded.

• Under cost budgets of the defender and attacker, we

characterize the optimal information acquisition costs that

the defender should impose on the attacker to maximally

sludge its decision-making process.

The rest of the paper is organized as follows. Section II

discusses related research. Section III presents our developed

hypothesis testing framework and characterizes the attacker’s

optimal decision rule that can best exploit its acquired in-

formation during reconnaissance. Section IV characterizes

the defender’s optimal blinding and non-blinding information

falsification strategies. Section V presents game theoretic

strategies for sludging the attacker in our hypothesis testing

framework. Finally, Section VI concludes the paper.

II. RELATED RESEARCH

With cyber criminals increasingly launching more sophisti-

cated attacks that can penetrate deeper into today’s networked

systems, it is imperative to design innovative cyber deception

techniques that can complement traditional defense measures.

Before launching an attack, during the reconnaissance

phase, an attacker typically performs scans (i.e., monitoring

activities) to gather internal information about the target net-

work and identify devices of interest in it [8], [12]. Such

scans can be performed by sending active probes to various

networked devices to understand their features, such as their

OSs, open ports, versions of installed applications, and so

on [13]. Again, such information can sometimes be passively

gathered by attackers by scanning traffic (e.g., packet headers)

that pass through network routers and switches [10]. To

manage scanning activities, various network fingerprinting

tools can be employed, such as Nmap [9] and P0f [11].

Information gathered by attackers during reconnaissance aids

the decision-making of attackers and helps them optimize

attacking strategies.

To defeat such reconnaissance efforts and mislead attackers,

a defender can employ deception tactics by feeding attackers

with falsified information in the scan results [14]–[18]. For

example, to mislead attackers into incorrectly determining the

type of OS of a device, [17] falsifies TCP/IP headers of packets

sent by the device. To efficiently implement such packet struc-

ture manipulation schemes, [18] explores Software Defined

Networking (SDN)-based Data-Plane Programming (DPP)

techniques. While [17], [18] explore information falsification-

based defenses from a system implementation perspective, the

authors in [15] analytically characterize such defense strate-

gies against an attacker who acquires probabilistic knowledge

about networked devices’ features by performing scans. The

work in [14] complements [15] by developing game theoretic

ways of providing falsified scan results when the attacker is

strategic in nature. The work in [16] considers that attackers

could observe multiple features of networked devices in the

scan results to decide their attacking strategies, and devises

algorithmic procedures to find falsified values of the features

that should be presented to deceive attackers.

The use of information falsification-based defenses can be

complemented by the use of honeypots [5], [21], which are

fake entities that can be used as decoys to divert attackers

away from valuable assets in a network. To enable such

diversions, [1], [22] develop strategies to lure attackers towards

honeypots in a strategic context, [3], [23] explore cost

effective placement of honeypots in a network, and [24] studies

evaluation of different honeypot technologies.

It should be noted that while past work has sought to devise

strategies to deceive attackers by feeding them with falsified

scan results, they fall short of mathematically characterizing

and duly exploiting the involved information structures, lead-

ing to the developed information falsification strategies to be

ad hoc and sub-optimal in nature– a problem that we aim to

tackle by adopting a hypothesis testing perspective for mod-

eling, analyzing, and characterizing the involved information

processing and falsification methodologies.

We further leverage our developed hypothesis testing frame-

work to characterize information acquisition costs that should

be strategically imposed on the attacker to maximally sludge

its decision-making process and degrade the quality of its

decisions. Such sludging stems from Nudge Theory [20],

which proposes to adaptively design the decision environment

so as to influence the decision-making behavior of people in a

predictable way. While nudges try to make it easier for people

to decide in a way that improves their welfare [20], sludges

make the decision-making process more frictional, leading

people to decide in a manner that may not be aligned with their

best interests [25]. The work in [26] is a preliminary work that

discusses the benefits of using sludges in cyber defense, but

does not develop an analytical approach for employing such

a strategy. Our paper also fills such a void.

III. CYBER DECEPTION MODEL AND ATTACKER’S

OPTIMAL DECISION RULE

Consider the presence of two servers in a network, viz.

Server G and Server H , with a defender (D) using one of

them as the real server and the other as the fake one, i.e., as

a decoy (honeypot). Consider that D chooses G to be the real

server with a probability PG and H to be the real server with a

probability PH = 1−PG. Each server has M features, which

an attacker (A) inspects (by performing scans) during the

reconnaissance phase to decide which server is real. Features

describe characteristics of a server, such as information about

the type of its OS, the intensity of traffic flows to/from the

server (e.g., high or low), and so on.

We denote the true value of feature i of server X as fX
i ,

i ∈ {1, · · · ,M}, X ∈ {G,H}, and consider that fX
i ∈ {0, 1},
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i.e., every feature assumes binary values (e.g., the type of OS

of a server being Windows or Linux). Further, we consider

that for i ∈ {1, · · · ,M} and X ∈ {G,H},

Pi(f
X
i = 0|X is real) = 1− Pi(f

X
i = 1|X is real) (1)

is the probability of fX
i assuming the value 0 when server X

is the real server, and that

Pi(f
X
i = 0|X is fake) = 1− Pi(f

X
i = 1|X is fake) (2)

is the probability of fX
i assuming the value 0 when server X is

the fake server. For notational simplicity, we denote Pi(f
X
i =

a|X is real) as PR
i (fX

i = a) and Pi(f
X
i = a|X is fake) as

PF
i (fX

i = a), a ∈ {0, 1}, i ∈ {1, · · · ,M}, X ∈ {G,H}.

Note that, while our results could be extended to scenarios

where D employs more than two servers whose features

assume non-binary values, we consider the model described

above in this paper for expositional simplicity of our novel

approach.

A. Probabilistic Falsification (Flipping) of Feature Values

To decide which server is real before attacking, we consider

that A inspects (i.e., gathers information about) the feature

values of the two servers by performing scans. Further, we

consider that D, to strategically employ deception tactics, can

provide probabilistically flipped (falsified) feature values in

the results of the scan that are observed by A. To model

restrictions on flipping values of certain features from D’s

perspective, we consider that L out of the M features of each

server are ‘flippable’ by D and that the ratio L/M = α. For a

flippable feature of a server, we consider D to send a flipped

value of the feature with a probability p to A. In other words,

denoting the value of feature i of server X that is observed

by A as uX
i , we have

p = Prob(uX
i = b|fX

i = a) = 1− Prob(uX
i = a|fX

i = a) (3)

a, b ∈ {0, 1}, a ̸= b, i ∈ {1, · · · ,M}, X ∈ {G,H}. To model

A’s uncertainty about which features are flippable, we consider

A to view each feature of each server to be flippable with the

probability α. Thus, for X ∈ {G,H} and i ∈ {1, · · · ,M},

we have

PR
i (uX

i = 0) = 1− PR
i (uX

i = 1) = (1− α)PR
i (fX

i = 0)

+ α
{

pPR
i (fX

i = 1) + (1− p)PR
i (fX

i = 0)
}

(4a)

PF
i (uX

i = 0) = 1− PF
i (uX

i = 1) = (1− α)PF
i (fX

i = 0)

+ α
{

pPF
i (fX

i = 1) + (1− p)PF
i (fX

i = 0)
}

(4b)

where PR
i (uX

i = a) and PF
i (uX

i = a) are the probabilities
of A observing the (potentially flipped) value of feature i
of server X as a under X being the real and fake server,

respectively, a ∈ {0, 1}.

B. Optimal Decision Rule of the Attacker

We consider A to decide which server is real based on the

observed values of the M features of each of the two servers,

which we consider to be described by an M × 2 matrix, viz.
[

[uG
1 , u

H
1 ], · · · , [uG

M , uH
M ]

]T
. Accordingly, A’s probability of

erroneously deciding that the fake server is the real one is

PA
E =PGP (A decides H is real)+PHP (A decides G is real)

=PG

∑

s∈S−SG
R

∏

i∈{1,··· ,M}

PR
i

(

uG
i = sGi

)

PF
i

(

uH
i = sHi

)

+

PH

∑

s∈SG
R

∏

i∈{1,··· ,M}

PF
i

(

uG
i = sGi

)

PR
i

(

uH
i = sHi

)

(5)

where set S contains all possible M × 2 feature matrices that

A can observe and SG
R contains the set of all M × 2 feature

matrices observing which makes A to decide that G is the real

server. In (5), sGi and sHi are the values of feature i of servers

G and H , respectively, of the sth M × 2 feature matrix.

Next, we characterize the optimal decision rule that A
should employ to decide the servers’ natures based on the

observed M × 2 feature matrix.

THEOREM 1. The optimal decision rule of A that minimizes

its probability of erroneously deciding that the fake server is

the real one, i.e., minimizes (5), is:

M
∑

i=1

{

log
PF
i (uG

i )

PR
i (uG

i )
+log

PR
i (uH

i )

PF
i (uH

i )

} H is real
≷

G is real
log

PG

PH

(6)

Proof. A’s error probability (5) can be expressed as

PA
E =PG

∑

s∈S

∏

i∈{1,··· ,M}

PR
i

(

uG
i = sGi

)

PF
i

(

uH
i = sHi

)

+

∑

s∈SG
R

[

PH

{

∏

i∈{1,··· ,M}

PF
i

(

uG
i = sGi

)

PR
i

(

uH
i = sHi

)

}

−

PG

{

∏

i∈{1,··· ,M}

PR
i

(

uG
i = sGi

)

PF
i

(

uH
i = sHi

)

}]

(7)

Since
∑

s∈S

∏

i∈{1,··· ,M} P
R
i

(

uG
i = sGi

)

PF
i

(

uH
i = sHi

)

= 1,

(7) reduces to

PA
E =PG +

∑

s∈SG
R

[

PH

{

∏

i∈{1,··· ,M}

PF
i

(

uG
i = sGi

)

PR
i

(

uH
i = sHi

)

}

−PG

{

∏

i∈{1,··· ,M}

PR
i

(

uG
i = sGi

)

PF
i

(

uH
i = sHi

)

}]

(8)

Clearly, to minimize (8), those M × 2 feature matrices of S
must be assigned to SG

R that make the second term of (8)

negative, i.e., that make

PH

{

∏

i∈{1,··· ,M}

PF
i

(

uG
i = sGi

)

PR
i

(

uH
i = sHi

)

}

<

PG

{

∏

i∈{1,··· ,M}

PR
i

(

uG
i = sGi

)

PF
i

(

uH
i = sHi

)

}

(9)

for any s ∈ SG
R . Thus, after observing an M×2 feature matrix,

to minimize its error probability (5), which occurs when (9) is

satisfied, A should use the following decision rule to decide

which server is real:

∏

i∈{1,··· ,M}

PF
i (uG

i )P
R
i (uH

i )

PR
i (uG

i )P
F
i (uH

i )

H is real
≷

G is real

PG

PH

(10)

which makes A decide that Server G is ‘real’ if the quantity

of the LHS of (10) is less than the threshold on the RHS
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(i.e., PG/PH ), and decide that Server H is ‘real’ otherwise.

Now, taking the log of both sides of (10) and simplifying it

yields (6). This proves the theorem.

IV. OPTIMAL FALSIFICATION-BASED DECEPTION

In this section, we characterize the optimal strategies that

should be employed by D to falsify (flip) the feature values

of the servers in the scan results so as to maximally degrade

A’s capability of identifying the real server. To this end,

we first present the falsification criterion that makes A’s

optimal decision rule in (6) to become completely ineffective

in exploiting the observed scan results, in which case we say

that A is blind, making A to experience the maximum possible

decision-making error probability.

LEMMA 1. A becomes blind, i.e., incapable of making an

informed decision based on the observed M×2 feature matrix,

when αp = 1/2.

Proof. When A becomes blind, i.e., its decision rule (6)

becomes completely ineffective, A would have to decide

which server is real solely based on PG and PH (i.e., decide

G is real if PG > PH , and decide H is real otherwise). From

the LHS of (6), clearly, this happens when PR
i (uX

i = a) =
PF
i (uX

i = a), i ∈ {1, · · · ,M}, X ∈ {G,H}, a ∈ {0, 1},

which, using (4a) and (4b), yields

(1− α)PR
i (fX

i = a) + α
[

p{1− PR
i (fX

i = a)}+ (1− p)

PR
i (fX

i =a)
]

=(1−α)PF
i (fX

i =a) + α
[

p{1− PF
i (fX

i =a)}

+ (1− p)PF
i (fX

i = a)
]

(11)

Simplifying (11), we get
{

1− 2αp
}

{PF
i (fX

i = a)− PR
i (fX

i = a)} = 0 (12)

Clearly, (12) is satisfied when αp = 1/2, which proves the

lemma.

Next, we characterize the minimum fraction of flippable

features needed to blind A.

COROLLARY 1. The minimum fraction of flippable features

needed to blind A is αblind = 1/2.

Proof. From Lemma 1, in the criterion for blinding A, viz.

α = 1/(2p), clearly, α is minimized when p attains its

maximum value of 1, which leads to αblind = 1/2.

A. Optimal Falsification Strategy when A cannot be Blinded

We now characterize the optimal flipping probability p that

should be employed by D to maximally degrade A’s decision-

making capability under use of the optimal decision rule in (6)

when α < 1/2, i.e., when A cannot be blinded. Analytical

characterization of the error probability of A’s decision rule

in (6), however, to perform such an analysis is mathematically

intractable. Hence, we find p that optimizes a surrogate func-

tion in lieu of the error probability of the decision rule in (6).

Specifically, to define our surrogate function, let us first define

∆X
i = {ER[uX

i ]− E
F [uX

i ]}2 (13)

where

E
R[uX

i ] = 0 · PR
i (uX

i = 0) + 1 · PR
i (uX

i = 1) (14a)

E
F [uX

i ] = 0 · PF
i (uX

i = 0) + 1 · PF
i (uX

i = 1) (14b)

are the expectations of uX
i under X being a real and fake

server, respectively, i ∈ {1, · · · ,M}, X ∈ {G,H}. Us-

ing (13), we define our surrogate function as

∆ =
∑

X∈{G,H}

∑

i∈{1,··· ,M}

∆X
i (15)

Using approaches similar to ones in [19], [27], it can be

shown that the error probability of the decision rule in (6)

monotonically increases as ∆ (15) decreases. Thus, D would

want to employ p that solves the following optimization

problem:

minimize
p

∆ (16a)

Subj. to 0 f p f 1 (16b)

Next, we characterize the optimal p that solves (16).

LEMMA 2. The optimal flipping probability that D should use

to maximally degrade A’s decision-making capability when

α < 1/2 is p = 1.

Proof. Substituting (4a) and (4b) into (14), and subsequently

substituting the simplified expressions of ER[uX
i ] and E

F [uX
i ]

that are yielded into (13), we get

∆X
i =

{

1− 2αp
}2

{PF
i (fX

i = 1)− PR
i (fX

i = 1)}2 (17)

Substituting (17) into (15), we get

∆=
{

1−2αp
}2

∑

X∈{G,H}

M
∑

i=1

{PF
i (fX

i =1)− PR
i (fX

i =1)}2 (18)

Denote γ(p) = {1 − 2αp}2, which is the only term that is a

function of p in (18). Since d2

dp2 γ(p) = 8α2 g 0, γ(p) is a

convex function of p. Further, since d
dp
γ(p) = 4α(2αp − 1),

we have d
dp
γ(p) < 0 when p < 1

2α
. Thus, when α < 1/2, in

which case d
dp
γ(p) < 0 for 0 f p f 1, p = 1 minimizes (18)1.

This proves the lemma.

Next, in Fig. 1(a) and Fig. 1(b), we plot ∆ (18) and the error

probability of (6), respectively, versus p for different values

of α. For the figures, we consider servers G and H to have

M= 3 features, PG = 0.31, PH = 1−PG = 0.69, [PR
1 (fG

1 =
1), PR

2 (fG
2 = 1), PR

3 (fG
3 = 1)] = [0.8, 0.58, 0.55], [PF

1 (fG
1 =

1), PF
2 (fG

2 = 1), PF
3 (fG

3 = 1)] = [0.3, 0.25, 0.2], [PR
1 (fH

1 =
1), PR

2 (fH
2 = 1), PR

3 (fH
3 = 1)] = [0.4, 0.67, 0.31], and

[PF
1 (fH

1 = 1), PF
2 (fH

2 = 1), PF
3 (fH

3 = 1)] = [0.9, 0.23, 0.67].
The error probability of (6) was found via Monte Carlo

simulations. As can be seen from Fig. 1(a), when α g 0.5,

there always exists a value of p that makes ∆ = 0, i.e., blinds

A, with optimal p in such a scenario ranging from 0.5 (when

1Consistent with Lemma 1, note that d
dp

γ(p) = 0 when p = 1/(2α),
a condition which makes ∆ = 0, thereby blinding A and resulting in the
maximum possible error probability of (6) to occur, but attaining which
requires α ≥ 1/2.
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(a) Nature of ∆ (18) w.r.t flipping probability (p) for different α.
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(b) Nature of the error probability of (6) w.r.t flipping probability
(p) for different α.

Fig. 1. Nature of ∆ (18) and the error probability of (6) w.r.t flipping
probability (p) for different α.

α = 1) to 1 (when α = 0.5) following the blinding criterion in

Lemma 1. In accordance, as can be seen from Fig. 1(b), when

α g 0.5, the error probability of (6) maximizes at p = 1

2α

as prescribed by Lemma 1 (specifically at p = 1

2·0.5 = 1
when α = 0.5, at p = 1

2·0.7 = 0.71 when α = 0.7, and at

p = 1

2·1 = 0.5 when α = 1).

Further, when α < 1/2 in Fig. 1(a), note that ∆ > 0 for

any p (i.e., A cannot be blinded), and that ∆ monotonically

decreases with p attaining its minimum value at p = 1. In

accordance, when α < 1/2, it can be noted from Fig. 1(b)

that the error probability of (6) monotonically increases with

p and maximizes at p = 1. The above observations corroborate

Lemma 1 and Lemma 2 while depicting the relationship

between ∆ (18) and the error probability of (6).

V. GAME THEORETIC SLUDGING FOR CYBER DECEPTION

In this section, in addition to being capable of feeding A
with potentially falsified feature values, we consider that D
invests certain costs for defending the servers’ features to make

it harder for A to inspect (scan) them, thereby sludging the

decision-making process of A (and degrading the quality of its

decision regarding the servers’ natures). Employment of such

cost structures can correspond to D’s use of a sophisticated

scheme to encrypt packets of the server(s) (e.g., to hinder A’s

efforts of understanding OS type(s) by scanning and analyzing

traffic [10]), and, again, to the use of specialized firewall

packages (e.g., to impede A’s efforts of identifying open ports

in the server(s) [28]). In such a scenario, under cost budgets of

A and D, we investigate how A can optimally determine which

features to inspect and how D can choose a cost structure to

defend the servers’ features so as to maximally sludge A.

For notational simplicity, in this section, w.l.o.g, we drop the

superscript ‘X’ that we have been using to associate features

with servers and label the 2M features of the two servers taken

together from 1 to N , where N = 2M . Now, consider that

the strategy of D is defined by the vector c = [c1, · · · , cN ],
where ci g 0 is the cost that D invests to defend feature i
such that

∑N
i=1

ci f CD, where CD is the cost budget of D,

with A subsequently incurring ci if it were to inspect feature i.
Further, consider that the strategy of A is defined by the vector

z = [z1, · · · , zN ], where zi is the probability with which A
inspects feature i such that

∑N
i=1

cizi f CA, with CA being

A’s cost budget. Given z, following (15), the quality of A’s

decision can be described by

∆(z) =
N
∑

i=1

∆izi (19)

where ∆i, i ∈ {1, · · · , N}, following (17), becomes

∆i =
{

1− 2αp
}2

{PF
i (fi = 1)− PR

i (fi = 1)}2 (20)

where PR
i (fi = 1) and PF

i (fi = 1) are the probabilities

of fi being 1 under the server that feature i belongs to

being real and fake, respectively. Now, to analyze sludging

in a strategic context, we model the problem as a leader-

follower game, where D acts as the leader by choosing c

with a goal to maximally sludge the decision-making process

of A so as to minimize (19) while knowing that A, acting

as the follower, would choose z to inspect those features that

maximize (19) against the set cost structure. We model the

associated optimizations from D’s and A’s perspectives as the

following bilevel optimization problem.

min
c

N
∑

i=1

∆iz
∗
i (21a)

s.t.

N
∑

i=1

ci f CD (D’s budget constr.) (21b)

z
∗ = argmax

z

N
∑

i=1

∆izi (21c)

s.t.

N
∑

i=1

cizi f CA (A’s budget constr.) (21d)

Note that the bilevel optimization in (21) consists of an

upper-level optimization in (21a)-(21b), which models D’s op-

timization task, and a lower-level optimization in (21c)-(21d),

which models A’s optimization task. Clearly, if CD f CA,

then the optimal solution to the lower-level problem in (21c)-

(21d) would be z∗i = 1, ∀i ∈ {1, · · · , N}, regardless of
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how D chooses c. Thus, in the following, we consider the

more challenging case of CD > CA. Also, note that it

would be straightforward to show that in the optimal solution

of the upper-level problem in (21a)-(21b), we would have
∑N

i=1
ci = CD.

Now, it can be noted that A’s optimization task, which

corresponds to the lower-level problem, can be treated as a

continuous Knapsack problem [29], whose optimal solution,

for a given c, can be found using the following theorem.

THEOREM 2 ([29]). Suppose that the N features are labeled

such that

∆1

c1
g

∆2

c2
g · · · g

∆N−1

cN−1

g
∆N

cN
(22)

Further, suppose that feature k is such that k = min{n :
∑n

i=1
ci > CA}. Then, optimal z∗ that solves the continuous

Knapsack problem in (21c)-(21d), for a fixed c, is given by

z∗i =











1 if 1 f i < k

(CA −
∑k−1

i=1
ci)

1

ck
if i = k

0 if k < i f N

(23)

Next, we characterize the optimal c that solves the upper-

level problem in (21a)-(21b) from D’s side. We first present

an important characteristic that must hold for c to be optimal.

LEMMA 3. For c
∗ = [c∗1, · · · , c

∗
N ] to form the optimal cost

structure that solves the upper-level problem in (21a)-(21b)

from D’s perspective against A strategically solving the lower-

level problem using Theorem 2, we must have

∆1

c∗1
=

∆2

c∗2
= · · · =

∆N−1

c∗N−1

=
∆N

c∗N
(24)

Proof. We prove the lemma by showing that any deviation

from c
∗ prescribed by (24) against A optimally selecting

features for inspection using Theorem 2 is detrimental for D.

First, note that ∆i/c
∗
i = ∆j/c

∗
j , i, j ∈ {1, · · · , N}, i ̸= j,

implies that

c∗i =
∆i

∆j

c∗j (25)

Now, since CD > CA, Theorem 2 suggests that for A’s

strategy z
∗ = [z∗1 , · · · , z

∗
N ] to be optimal against c∗, we must

have
∑N

i=1
c∗i z

∗
i = CA, which implies that

N
∑

i=1

(∆i

∆j

c∗j

)

z∗i = CA (using (25))

=⇒ ∆c
∗ =

∆j

c∗j
CA (26)

where ∆c
∗ (=

∑N
i=1

∆iz
∗
i ) is the maximum value of the

objective function in (21c) yielded by optimal z∗ that solves

the lower-level problem against c∗, and j ∈ {1, · · · , N}.

Now, consider an arbitrary cost structure c
′ that has V

features that have lesser costs, W features that have equal

costs, and N − V −W features that have greater costs, than

their corresponding costs in c
∗. Also, w.l.o.g, consider that

the features of the two servers are labeled such that c
′ =

[(c∗1 − δ1), · · · , (c
∗
V − δV ), (c

∗
V+1), · · · , (c

∗
V+W ), (c∗V+W+1 +

δV+W+1), · · · , (c
∗
N + δN )], which implies that

∆1

c∗1 − δ1
g · · · g

∆V

c∗V − δV
>

∆V+1

c∗V+1

= · · · =
∆V+W

c∗V+W

>
∆V+W+1

c∗V+W+1
+ δV+W+1

g · · · g
∆N

c∗N + δN
(27)

where δi > 0, i ∈ {1, · · · , N}, is the amount of change of

feature i’s cost in c
′ from the one in c

∗. Note, we must have

V
∑

i=1

δi =

N
∑

i=V+W+1

δi (28)

to ensure preservation of D’s cost budget. Now, for z
′ =

[z′1, · · · , z
′
N ] to form A’s optimal strategy against c′ following

Theorem 2, clearly, z′ must satisfy

V
∑

i=1

z
′

i(c
∗
i − δi) +

V+W
∑

i=V+1

z
′

ic
∗
i +

N
∑

i=V+W+1

z
′

i(c
∗
i + δi) = CA (29)

Using (25), for j ∈ {1, · · · , N}, we can express (29) as

V
∑

i=1

z
′

i

[∆i

∆j

c∗j −δi

]

+

V+W
∑

i=V+1

z
′

i

∆i

∆j

c∗j +

N
∑

i=V+W+1

z
′

i

[∆i

∆j

c∗j + δi

]

=CA

which, after some simplifications, yields

N
∑

i=1

z
′

i∆i =
∆j

c∗j
CA +

∆j

c∗j

[

V
∑

i=1

z
′

iδi −

N
∑

i=V+W+1

z
′

iδi

]

(30)

Using (26), (30) can be expressed as

∆c
′ = ∆c

∗ +
∆j

c∗j

[

V
∑

i=1

z
′

iδi −

N
∑

i=V+W+1

z
′

iδi

]

(31)

where ∆c
′ (=

∑N
i=1

z
′

i∆i) is the maximum value of the

objective function in (21c) yielded by optimal z′ that solves

the lower-level problem against c′. Now, note that from (27),

we have ∆v

c∗v−δv
> ∆x

c∗x+δx
, for any v ∈ {1, · · · , V }, x ∈

{V + W + 1, · · · , N}. This implies that, using Theorem 2,

for z′x > 0, x ∈ {V +W +1, · · · , N}, we must have zv = 1,

∀v ∈ {1, · · · , V }. Thus, in (31), the least value of the term
∑V

i=1
z

′

iδi −
∑N

i=V+W+1
z

′

iδi is
∑V

i=1
δi −

∑N
i=V+W+1

δi,
which, using (28), equals 0, implying that ∆c

′ g ∆c
∗ . In

other words, any deviation from c
∗ can enhance the decision-

making performance of A. This proves the lemma.

Next, we characterize the optimal cost structure that satisfies

Lemma 3’s condition to solve the upper-level problem.

THEOREM 3. The optimal cost structure c
∗ = [c∗1, · · · , c

∗
N ]

that solves the upper-level problem in (21a)-(21b) from D’s

perspective corresponds to, for any chosen i ∈ {1, · · · , N},

c∗i = ∆i∑
N
j=1

∆j
CD and c∗j =

∆j

∆i
c∗i , ∀j ∈ {1, · · · , N}, j ̸= i.
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Fig. 2. Nature of ∆i/ci and ∆ with varying costs of features for N = 2.

Proof. For optimal c∗ to satisfy D’s budget, for any chosen

i ∈ {1, · · · , N}, we must have c∗i +
∑N

j=1,j ̸=i c
∗
j = CD, in

which, ∀j ∈ {1, · · · , N}, j ̸= i, setting c∗j =
∆j

∆i
c∗i using (25)

to make (24) hold true, we get

c∗i +

N
∑

j=1,j ̸=i

∆j

∆i

c∗i = CD (32)

Simplification of (32) yields c∗i = ∆i∑
N
j=1

∆j
CD, i ∈

{1, · · · , N}, with c∗j =
∆j

∆i
c∗i following (25), ∀j ∈

{1, · · · , N}, j ̸= i. This proves the theorem.

Fig. 2 provides numerical results corroborating Lemma 3

and Theorem 3. For the figure, we consider N = 2, i.e., M =
1, with the feature of server G labeled as Feature 1 and that of

H labeled as Feature 2 under PR
1 (f1 = 1) = 0.94, PF

1 (f1 =
1) = 0.19, PR

2 (f2 = 1) = 0.832, PF
2 (f2 = 1) = 0.17,

CD = 5.8, CA = 4.8, α = 0.1, and p = 1 (which is the

optimal value of p since α < 0.5 in the figure). The figure

plots ∆i

ci
, i ∈ {1, 2}, as well as the objective function in (21c),

viz. ∆ =
∑N

i=1
∆iz

∗
i , with z∗i chosen using Theorem 2 to

solve the lower-level problem in (21c)-(21d), versus c1 for

0 f c1 f CD (with c2 = CD − c1). It can be noted from the

figure that the minimum value of ∆ (21c) is achieved when

∆1/c1 = ∆2/c2, which corroborates Lemma 3, and that this

occurs at c1 = 3.26 (with c2 = CD − c1 = 2.54), which can

be shown to tally with the solution prescribed by Theorem 3.

In Fig. 3, we plot (21a), i.e., ∆ =
∑N

i=1
∆iz

∗
i , corre-

sponding to D and A optimally choosing c
∗ and z

∗ using

Theorem 3 and Theorem 2, respectively, with varying N
(= 2M ), i.e., the combined number of features of servers

G and H . For the figure, we consider, ∀i ∈ {1, · · · ,M},

PR
i (fG

i = 1) = 0.8, PF
i (fG

i = 1) = 0.3, PR
i (fH

i = 1) = 0.4,

and PF
i (fH

i = 1) = 0.9, with CD = 5.8, CA = 4.8, and

p = 1 (which is optimal since α f 0.5 in the figure). As can

be seen, ∆ increases (i.e., A’s decision-making quality gets

enhanced) with N since, following Theorem 3, for a given CD,

increase of N makes D to invest lesser cost in defending each

2 4 6 8 10
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Fig. 3. Nature of ∆ with increasing number of features.
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Fig. 4. Nature of ∆ with varying cost budget (CD) of D.

feature which makes it easier for A to inspect more features

to make more informed decisions. Further, as expected, for

any given N , increase of α is beneficial for D as it enables

it to perform more extensive flipping to deceive A. Note that

∆ always equals 0 when α = 0.5 (under p = 1) since A is

blind.

In Fig. 4, we plot (21a) under D and A optimally choosing

c
∗ and z

∗ using Theorem 3 and Theorem 2, respectively,

with varying cost budget (CD) of D. For the figure, we

consider N = 10, i.e., servers G and H to each have

M = 5 features, with [PR
1 (fG

1 = 1), PR
2 (fG

2 = 1), PR
3 (fG

3 =
1), PR

4 (fG
4 = 1), PR

5 (fG
5 = 1)] = [0.1, 0.3, 0.5, 0.56, 0.8],

[PF
1 (fG

1 = 1), PF
2 (fG

2 = 1), PF
3 (fG

3 = 1), PF
4 (fG

4 =
1), PF

5 (fG
5 = 1)] = [0.88, 0.86, 0.79, 0.12, 0.3], [PR

1 (fH
1 =

1), PR
2 (fH

2 = 1), PR
3 (fH

3 = 1), PR
4 (fH

4 = 1), PR
5 (fH

5 =
1)] = [0.18, 0.89, 0.55, 0.4, 0.78], [PF

1 (fH
1 = 1), PF

2 (fH
2 =

1), PF
3 (fH

3 = 1), PF
4 (fH

4 = 1), PF
5 (fH

5 = 1)] =
[0.8, 0.28, 0.66, 0.9, 0.34], α = 0.1, and p = 1 (which is

optimal since α < 0.5 in the figure). As can be seen, for

any given CA, ∆ decreases (i.e., A’s decision-making quality

degrades) with CD since, following Theorem 3, for a given

N , D can invest a higher cost in defending each feature as CD
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increases. This makes it harder for A to inspect the features

and increasingly sludges its decision-making process, resulting

in A to make poorer quality decisions. Further, as expected,

for any given CD, ∆ increases with CA since, following

Theorem 2, A can inspect more features as CA increases,

enabling it to make more informed decisions.

Before concluding, for completeness, we make a remark

regarding A’s optimal decision rule when it inspects a subset

of G’s and H’s features, as was considered in this section.

REMARK 1. Following a similar procedure as used to de-

rive (6), it can be shown that A’s optimal decision rule when

it inspects a subset of G’s and H’s features is given by

M
∑

i=1

{

IGi log
PF
i (uG

i )

PR
i (uG

i )
+ IHi log

PR
i (uH

i )

PF
i (uH

i )

} H is real
≷

G is real
log

PG

PH

(33)

where IXi is a Boolean random variable such that IXi = 1
(denoting that A chooses to inspect feature i of server X)

and IXi = 0 (denoting otherwise), with the value assumed

by IXi governed by the probabilities in z, i ∈ {1, · · · ,M},

X ∈ {G,H}.

VI. CONCLUSION

This paper presented a novel hypothesis testing framework

that models an attacker’s process of deciding the nature of

servers in a network based on information that it gathers

regarding their features during reconnaissance. The paper

characterized the optimal decision rule that the attacker should

use to process its gathered information for deciding the

servers’ natures. The paper also characterized the optimal

information falsification strategy that the defender should use

to minimize performance of the attacker’s optimal decision

rule, including characterization of the criterion that must be

satisfied to blind the attacker. Further, under cost budgets, the

paper characterized the optimal information acquisition costs

that the defender can impose on the attacker to strategically

sludge its decision-making process for maximally degrading

the quality of its taken decisions.

In the future, we plan to build on our hypothesis testing-

based cyber deception framework to make it adapt with

possible cognitive biases of the defender and attacker.
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