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We will present exact solutions for three variations of the stochastic Korteweg de Vries-Burgers (KdV-Burgers)
equation featuring variable coefficients. In each variant, white noise exhibits spatial uniformity, and the three
categories include additive, multiplicative, and advection noise. Across all cases, the coefficients are time-
dependent functions. Our discovery indicates that solving certain deterministic counterparts of KdV-Burgers

equations and composing the solution with a solution of stochastic differential equations leads to the exact
solution of the stochastic Korteweg de Vries—Burgers (KdV-Burgers) equations.

1. Introduction

The majority of physical and biological systems exhibit nonho-
mogeneity, often influenced by environmental fluctuations and the
existence of nonuniform mediums. Consequently, the nonlinear equa-
tions relevant to practical applications typically involve coefficients
that vary spatially and/or temporally along with stochastic terms.
Reaction—diffusion equations are crucial in modeling heat diffusion
and reaction processes in nonlinear acoustics, biology, chemistry, ge-
netics, and various other research domains. However, like numerous
mathematical models representing real-world phenomena, solving this
problem explicitly poses a considerable challenge.

The Burgers—Korteweg de Vries equation (Burgers-KdV) arises from
many physical contexts,' for example, the propagation of undular wells
in shallow water,? the flow of liquids containing gas bubbles,® the
propagation of waves in an elastic tube filled with a viscous fluid,*
and weakly nonlinear plasma waves with certain dissipative effects.>°®
It is also used as a non-linear model in crystal lattice theory, non-
linear circuit theory, and turbulence.”-® Including stochastic white noise
introduces real-life scenarios in which the system’s parameters are
influenced by environmental uncertainties or noise, leading to the need
for a stochastic treatment.®10

The goal of this paper is to introduce exact solutions for stochastic
Burgers-KdV equation with variable coefficients with space-uniform
white noise. We consider the following three different stochastic KdV—
Burgers equations (additive, advection, and multiplicative noise) with

* Corresponding author.

a space-uniform white noise of the form

du = (6(1)0,,,u+ p(t)ud u+ u(t)o,,u+ a(t)o,u+yudt+o(t)o,udWw, (1.1)
and

du = (6(t)0,,,u + p(Oud,u + u(t)o,u + a(t)o,u+ y()u)dt + o(t)dW, (1.2)

for 1 € [y, T] and z € R with u(0, z) = ¢(z) for z € R. We also consider
a linear PDE in the KdV form of

du = (6(t)0,,,u + u)o,u+ a(t)ou+y(u)dt + c(t)ud W, (1.3)

for t € [t;,T] and z € R with u(0, z) = ¢(z) for z € R.

Our contribution in this paper is to extend the existing methodolo-
gies by deriving exact solutions for stochastic KdV-Burgers equations
with variable coefficients and spatially uniform white noise. Using It6
calculus and transformation techniques, we decompose the stochastic
equation into two equations, a deterministic PDE and a stochastic dif-
ferential equation, and solve the deterministic counterparts, a method
inspired by the works of Refs. 11, 12, see also Ref. 13. Our approach
not only enhances theoretical understanding but also addresses more
realistic scenarios that are highly relevant in the modeling of complex
physical and biological systems.

In addition, we provide numerical simulations to demonstrate the
practical implications of our solutions. These simulations serve as cru-
cial tools for validating theoretical predictions and bridging the gap
between mathematical models and their real-life applications.'*
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This paper is organized as follows: In Section 2, we recall two
lemmas that provide details and properties in solving SDEs and execute
numerical simulations. In Section 3, We present exact solutions for
stochastic Korteweg de Vries-Burgers (KdV-Burgers) Egs. (1.1)-(1.3)
featuring variable coefficients. In each variant, white noise exhibits
spatial uniformity, and the three categories include additive, multi-
plicative, and advection noise. Across all cases, the coefficients are
time-dependent functions. Our discovery indicates that solving cer-
tain deterministic counterparts of KdV-Burgers equations and compos-
ing the solution with a solution of stochastic differential equations
leads to the exact solution of the stochastic Korteweg de Vries-Burgers
(KdV-Burgers) equations. We provide several examples.

2. Preliminaries

Consider the probability space (£2,F,P) for which the Brownian
motion {W,,t > 0} is defined and E(W,W,) = min(s,?) for all s,z > 0.
Also consider the filtration 7, := o(W, : s < 1) being the smallest
c—algebra to which W is measurable for s <r.

Then consider the stochastic differential equation (SDE) with vari-

able coefficients!>1¢
dX, = a(t, X,)dt + p(t. X,)dW,, @1

with initial state X ,0 and for ¢ € [y, T]. The SDE in (2.1) has a general
solution given by

t t
X, = X’o +/ a(s, X )ds +/ (s, X )dW,,
fo fo

fort < T.If a(t) := a(t,X,) and B(t) := p(t, X,), then Eq. (2.1) has a
general solution given by

' t
X,=X,0+/ a(s)ds+/ B(s)dW
To To

for + < T. The process {W,;t > 0} is a Wiener process with respect
to filtration {F;;¢ > 0}. The initial state X, is ¥, and the functions
a(t) and p(r) are Lebesgue measurable and bounded on [y, T]. The
latter implies both the global Lipschitz and linearity growth conditions
required to ensure the existence and (pathwise) uniqueness of a strong
solution to (2.1), Ref. 15.

Let X, and Y, be any two diffusion processes such as those defined
by the solution of Eq. (2.1). If F(x, y) is a differentiable function that
works as a transformation for two processes X, and Y,, then the general
bi-variate Itd formula'® gives

dF(X,.Y,)) = 0,F(X,,Y)dX, +0,F(X,,Y)dY, + %()XXF(X,, Y)(dX,)? (2.2)
1
+50, F(X,, Y)(dY,)? + 0, F(X,.Y)dX,dY,.

F(x,y) is a differentiable function.

The following two lemmas are crucial to identify the solutions
of the SDEs; they were introduced previously in Ref. 13. These two
lemmas are fundamental for our simulations. We also use the lemmas
to simulate the processes with X, = x and then compose the exact
solutions with the simulations based on Lemma 3.

Lemma 1.
(1) The stochastic process X, solving
dX, = C(dt + E(t)dW,

with X, ~ N(x,, ag) independent of W,, is a non-stationary

Gaussian process with mean X, + ft:) C(s)ds and variance 6*(X,) =
t

ol + /IO E%(s)ds.

(2) The covariance of the two processes X, and W, is

t
(X, W,) = / E(s)ds.

1o
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(3) Moreover,

: w [ E(s)ds
[X,|W, = w] ~ N|x, +/ C(s)ds + Of V()

To

( /,:J E(s)ds)?

2(4) = 52 !
where V(1) = o) + [ E*(s)ds — ——

Lemma 2.

(1) The position random process Z, := z + f,{’] B(s)K(s)dW, solves the

Langevin-type second-order SDE
. B'(t) . .

Zt = WZ, + B(t)K(f)l’Vt, te [tO’T]
with initial state Z, = z, where B(s) = /ST B(r)dr fort > s.

(2) The process Z, is a nonstationary Gaussian process with mean z and
variance 6*(Z,) = [/ (B(s)K(5))ds.

(3) Meanwhile,

t
Z, := B(t) (/ K(r)dW,).
lo

(4) The process Z, is a non-stationary Gaussian process with mean zero
and variance *(Z;) = (B [,/ (K(s))ds.

(5) The covariance of Z, and W; is
t
o(Z,,W,) =/ B(s)K(s)ds
fo

and

1
O‘(Z,,VV,) = B(1) (/ K(S)ds) .
fo

(6) The conditional distributions are given by

(/) B($)K(s)ds)?

,/(E(S)K(S))zds— — |

/il B&)K(s)ds
w

[Z|W,=w]l~N|z+ .

and
[Z,|W,=w]~ N M M_

t
L (B®) / (K(s)yds -

3. Stochastic Burgers-KdV equation

In this Section, through the use of Ito calculus and interesting
transformations. We present exact solutions for stochastic Korteweg
de Vries-Burgers (KdV-Burgers) Egs. (1.1)-(1.3) featuring variable
coefficients'”. As the following lemma shows, solving certain determin-
istic counterparts of KdV-Burgers equations and composing the solution
with a solution of stochastic differential equations leads to the exact
solution of the stochastic Korteweg de Vries-Burgers (KdV-Burgers)
equations. We provide several examples.

Lemma 3. Leta,B,7,8,u,0 € C® ([ty,T]) be bounded functions on [ty, T.
Assume that p(t) > 0 for all t € [t,, T]. Then we have

(1) The stochastic Burgers-KdV Eq. (1.1) has a solution u(t,z) =
U(t, X,), where U(t, x) is the solution of

o,U = 5(t)6XXXU+(/4(t)—%az(t))bxxU+ﬂ(t)U0XU+y(t)u, U(0,x) = ¢(x)
3.1
and X, is the solution of

dX, = a)dt+c()dW,, 3.2)



K. Adjibi et al.

with initial state X, =2 and for ¢ € [1,, T

(2) The stochastic Burgers—KdV equation with the initial value prob-
lem (1.2) has a solution

u(t, z) = R() <V(t Z,)+ %1() ,), (3.3)
where V (¢, x) is the solution of

OV =580,V +u®d,V+BOVY +a(d,V, V(0,x)=dx),
B4
and Z, is the solution of a second-order stochastic differential

equation

B'@) . BMo(@) ..
= V4
DT R (0) W
with initial state Z, =z and for + € [t),T]. Also, R(t) =
exp( /,(’) y(s)ds) and B() = pE)R(®).

(3.5)

Proof. For (1), apply It6’s formula to the X, solution of (3.2) with
the transformation U(t,x) that solves the deterministic KdV-Burgers
Eq. (3.1)

dU(t, X,) = f(t, X,)dt + g(t, X,)dW,, (3.6)
where
ft,x)=0,U(t,x)+ a(t)o, U(t,x)+ %az(t)axxU(t, X).

Note that,

o,U(t,x) = 6(t)0,. U + (u(t) — %az(t))dxxU(t, x)
+ pU 1, x)0, U(t, x) +y(OU (2, x).

Therefore,

F(t.%) = 8(1)0, U + (00, U(t,x) + fOU L x)0, U (t, x)

+ a()o, U(t, x) +y(OU(t, x).
Observe that
g(t,x) =)o, U(t, x),

which proves (1).
To prove (2), let us take u(t, z) =
of Itd’s formula we get

R(1) L(t, z). By the bi-variate general

du(t,z) = R'(t) L(t, z)dt + R(t)d L(t, z). (3.7)

In order to prove (1.2) we need to show

dL(t,z) = (5(t)0,,. L(t, z) + u(t)d,, L(t, z) + B(t)L(t, )9, L(t, z)
+ a(t)o, L(t, z))dt + %dW, (3.8)

Before proving (3.8), let us show how this statement will finish the
proof of (1.2). Recalling that R(r) = exp(ft:) y(s)ds) and using (3.8), from
(3.7) we obtain

du = R(®)(6(1)0,,, L(t, z) + u(1)d,, L(t, z) + B(t)L(t, 2)0, L(t, z) + a(t)d, L(t, z))dt
+7OROLE, 2)d1 + o(HdW,.
Hence, we obtain (3.7) as we wanted.

Let us proceed to prove (3.8). Eq. (3.5) can be written as a system
of equations of the following form

_ B0 B()o (1)
dN, = B0 N,dt + 0 aw,, (3.9
dZ, = N,dt. (3.10)

Let V (¢, x) be the solution of

0V = 8(1)dy V + u00V + BV +a®)d,V, V(0,x) = p(x).
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Using the bivariate general It6 formula for V (¢, Z,), we obtain

dV(t,Z) =0,V (t, Z)dt + 0.V (t, Z)d Z,

since (d1)? =0, dtd Z, = N,(dt)> = 0 and (d Z,)* = (N,)*(dt)> = 0. Thus,
dV(t,Z) = (60, V(1. Z) + u()0,, V(. Z,)

+ BOV(, Z)OV(t, Z) + a()o,V(t, Z,)) dt

+0,V(t, Z,)N,dt. (3.11)

If we define L(z,z) =
side of Eq. (3.11) as

Vit Z)+ — % Z,, we can rewrite the right-hand

0]

(6()0,,, L1, 2) + u(1)0,, L(t, z) + B(t)(L(t, 2)

1
‘B(I)Z )0, L(t,z) + a(t)0, L(t, z) + 0, L(t, z) N,)dt

= (6(1)0,,, L(t, 2) + u(t)o,, L(t, z) + B(t)L(t, z)0, L(t, z) + a(t)0, L(t, z))dt.
It follows that

dL(t,z) = (6(t)0,,, L(t, z) + u(t)o,, L(t, z) + B(t)L(¢t, z)0, L(t, z)
+ a(t)o,L(t,z))dt +d (‘B(t) ,) .

Applying the bivariate general It6 formula It6’s formula once again, we
obtain

1 —B'(1) 1

d|{ —N, | = N,dt+ ——dN,
(‘B(z) ’) BO2 T B
2
since (d1)*> =0, dtd N, = 0 and % = 0. Therefore, we have
X

1\ _ =B 1 (B0 B(H)o(t) _ o

d <%(t) Z’) = @or B ( 30 T RO dW’) RORG

Hence, we obtain (3.8) as we wanted. []

Remark 1. If §, 4 and p are constants, then the KdV-Burgers equation

0,U =60,,U + uU, +pUd.U (3.12)

has the following explicit solution:
2 3 3 2
U(t,x) = SL sech? Lx — Ou t 6” tanh Lx — Ou t)+ Ou .
2545 106~ 25082 ) 2588 106~ 25082 ) 2586
(3.13)

Part (3) of Lemma 1 and part (6) of Lemma 2 are used to simulate
the stochastic processes for the solutions in Lemma 3 with its two parts.
The following proposition will provide solutions for linear KdV-type
equations.

Proposition 1. Let us consider the stochastic process

t t
X, (x)=x+ 1 / GZ(S)dS - / o(s)W,
2 Jo 0

for x € R and the equation

(3.14)

du(t,x) = f(u(t, x))dt + o(t)u(t, x)dW,, (3.15)
and f is linear function, Eq. (3.15) can be reduced to
du(t,x) = f(u(t, x))dt
through the transformation
v(t, x) = u(t, x)eXi ),
Proof: By It6’s formula we see that

de™t = eXi(c2(1)dt — o (t)dW)). (3.16)
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Fig. 1. Two realizations of the stochastic process in Eq. (3.22).

And by product rule dv = ude*t + eXidu + de*1du, and after replacing
(3.15), (3.14) and (3.16), we obtain

dv = ue®t (o2dt — cdW,) + & (f(wdt + cud W,)
+ (fdt + oudW,) ¥t (6*dt — cdW,) .

Finally, using standard It6 calculus rules and simplifying, we obtain
dv = f(v)dt.

The following formula will be useful for the following examples, see
Chapter 7 by Calin:

b b
[ rwaw,=rowis- [ rrowar
a a
Next, we provide several examples.
Example 1. Consider the stochastic KdV-Burgers equation
du = (60,,,u+ pudu+ o u+ a(t)o,u)dt + co,udW,, (3.17)

where §, f,6 and u are real constants. By Lemma 1 part (1), Eq. (3.17)
has a solution u(t, z) = U(t, X,), such that U(z, x) is the solution of

2
0,U = 60,,.U + (,4 - %) U, +pUOU. (3.18)

In particular, the KdV-Burgers equation (§=f=u=a=0=1)

du = (0,,,u+udu+ 0 u+dudt + oudW, (3.19)
has a solution u(z, z) = U(t, X,), such that U(t, x) is given by
3 (1 6 ) 6 1 6 ) 6
1,x)= —sech? (—x— ——1) — — tanh ( —x — ——1) + — 2
Ul x) = o5 sec <1ox 250 ) " 25" (10" 350')tas 320
and X, = z +t + W, is the solution of (¢« =1 and ¢ = 1)
dX, =dt+dW,, (3.21)
with initial state X, = z and for ¢ € [0, 1].
Finally, the explicit solution of (3.19) is given by
_ _ 3 s fz+Ht+ W, _ ot
u(t,z)—U(t,X,)—25 sech < 0 250>
6 z+t+ W, 6t 6
- —tanh | — — — — 3.22
25 1" ( 10 250>+25 3.22)

fort€[0,1] and z € R.
Fig. 1 shows two realizations of the general solution in (3.22).

Example 2. Consider another stochastic KdV-Burgers equation

du = (0,,,u+ 0,u+ud uydt + o(t)dw,, (3.23)
3 [ z 6 z 6
= Zsech? (X )= 2tanh (2 )+ =2 2
u(0,2) 25 see ( 10) 25 tan ( 10) * 25 (.29

for t € [0, 1]. By Lemma 3 part (2), Eq. (3.32) has a solution
wt,z)=V(t,Z)+ Z,,

where R(7) = 1, such that V (¢, x) is the solution of

OV = 0V +0,V +VaV, (3.25)
3 [ z 6 z 6
= Zsech® (2 ) - = tanh( =)+ — 2
V(0.2) = 55 sec (10) 25 (10) s (3.26)
and Z, is the solution of
Z, =)W, (3.27)
with initial state Z, = z and for 7 € [0, 1].
Again, Eq. (3.33) has the general solution
3 2 ( Z 6t 6 z 6t 6
Vit,z)= = sech? (= — —— ) — —tanh | = — — ) + — 3.28
(:2) = 55 sec <10 250) 25 (10 250)+ 25 (3.28)

for z€ R. Also, Z, = fot o(r)dW, due to Lemma 2. Thus, Eq. (3.32) has
a solution

t
z+ [, o(s)dW
u(t,z) = 3 sech? —/0 (W ot
25

10 ~ 250
6 tanh Z+/0t oWdWs _ 6 + 6 +/I (r)dw,
- = _— — o(r .
25 10 250 ] 7257 ), r

(3.29)

If o(f) =1, by Lemma 2 the stochastic differential Eq. (3.34) has a
solution given by

t
Z,=z—/ Wds
0

for t € [0, 1].
The general solution of the stochastic KdV-Burgers equation (3.32)
is given by

t
z— [y Wds
u(t,z) = % sech? (L ot )

10 T 250
t
6 z- yWids 6 6 .
- S (L ST O L0 s 3.30
25 4n ( 10 250 ) tas T4 (3:30)

forz€[0,1] and z € R.
If o(r) =", by Lemma 2 the stochastic differential Eq. (3.34) has a
solution given by

t t t
z—/(t—s)s"dWszz—t/ s"dm+/ s"ldw,
0 0 0

t 1
z—z(t"m—/ ns”_lVVSds>+t"+1VV,—/(n+1)s"l/Vsds
0 0

Z

for t € [0, 1].
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Fig. 2. Four realizations of the stochastic process in Eq. (3.29) when o(t) = 1 (top) and o(r) = > (bottom).

In that case, the general solution of the stochastic KdV-Burgers
equation (3.32) is given by

3 2 Z, 6t 6 Z, 6t 6 .
tz)=—sech’ (L - 2L ) - Zanh (2L - 2L )4+ 2 47, (3.31
ult 2) = 55 sec (10 250) 25 (10 250 ) * 25 T4 (33D
where Z, = z —t ("W, — [ ns"'W,ds ) + "' W, — [/(n + 1)s"W,dss for
t € [0,1] and z € R. Fig. 2 shows two realizations of the general solution
in (3.29).

Another example for the stochastic forced term is given here.
Seel8-23

Example 3. Consider another stochastic Burgers equation
2

du = (exp(t)()zzu + exp(t)uazu)dt + dVI/t, u(O, Z) = m (3.32)
for ¢ € [0, 1]. By Lemma 3 part (2), Eq. (3.32) has a solution
1 .

t,z)=V(t Z —Z,
ut2) =V.Z)+ 2
where R(r) = 1, such that V (s, x) is the solution of

2

6,V = eXp(t)axxV + eXp(t)deV, V(O, x) = m, (3.33)
and Z, is the solution of
Z, = Z, + exp(t) W, (3.39)

with initial state Z, = z and for 7 € [0, 1].
Again, Eq. (3.33) has the general solution
2

Vit,x)= 1+ exp(—1 — x — exp())

for x € R.

By Lemma 2, the stochastic differential Eq. (3.34) has a solution
given by

t
Z, = z+exp()W, —/ exp(s)d W,
0
and
Z, = expW,

for t € [0, 1].
Therefore, the general solution of the stochastic Burgers Eq. (3.32)

is given by
2

- (3.35)
1 4+ exp(—1 — z — exp(?) — exp()W; + /0 exp(s)d W)

u(t,z) =W, +

forr€[0,1] and z € R.
Fig. 3 shows two realizations of the general solution in (3.35).

4. Conclusion

In this paper, we carried out a study on exact solutions to a class
of stochastic Burgers—-Korteweg de Vries (KdV-Burgers) equations. The
analysis we have carried out clearly demonstrates the effectiveness
of It6 calculus and different transformation techniques in developing
explicit solutions by splitting the random element and solving the
deterministic kinetic part.

Including exact solutions to the stochastic Burgers-KdV equation
not only contributes a theoretical aspect but also provides essential
insights for various physical and biological applications of these equa-
tions. The introduction of spatially uniform noise and variable coeffi-
cients signifies a more plausible environment, which often characterizes
complex systems in real life due to inherent stochasticity or uncertainty.
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Fig. 3. Two realizations of the stochastic process in Eq. (3.35).

Moreover, the figures made using stochastic simulations based on
exact solutions of the Burgers—KdV equation are very interesting. These
figures form a logical link between analytical solutions, which are
not always feasible to investigate in the physical domain, and actual
applications of the derived method, attesting to the corroboration of
exact solutions in diverse environments.

In conclusion, this research significantly contributes to the study
of stochastic partial differential equations and paves the way for es-
tablishing a basis for the solution of equations with common noise
structures and variable coefficients. Future research may involve gen-
eralization of the methodology developed here for higher-order space
dimensions. This may also consist of the dynamics in the stochastic
Kudryashov-Sinelshchikov equation or in using nonuniform spatial
noise. Future perspectives will enrich the fields of stochastic analysis
and mathematical physics.
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