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A B S T R A C T

We will present exact solutions for three variations of the stochastic Korteweg de Vries–Burgers (KdV–Burgers)
equation featuring variable coefficients. In each variant, white noise exhibits spatial uniformity, and the three
categories include additive, multiplicative, and advection noise. Across all cases, the coefficients are time-
dependent functions. Our discovery indicates that solving certain deterministic counterparts of KdV–Burgers
equations and composing the solution with a solution of stochastic differential equations leads to the exact
solution of the stochastic Korteweg de Vries–Burgers (KdV–Burgers) equations.
1. Introduction

The majority of physical and biological systems exhibit nonho-
mogeneity, often influenced by environmental fluctuations and the
existence of nonuniform mediums. Consequently, the nonlinear equa-
tions relevant to practical applications typically involve coefficients
that vary spatially and/or temporally along with stochastic terms.
Reaction–diffusion equations are crucial in modeling heat diffusion
and reaction processes in nonlinear acoustics, biology, chemistry, ge-
netics, and various other research domains. However, like numerous
mathematical models representing real-world phenomena, solving this
problem explicitly poses a considerable challenge.

The Burgers–Korteweg de Vries equation (Burgers–KdV) arises from
many physical contexts,1 for example, the propagation of undular wells
n shallow water,2 the flow of liquids containing gas bubbles,3 the
propagation of waves in an elastic tube filled with a viscous fluid,4
nd weakly nonlinear plasma waves with certain dissipative effects.5,6
It is also used as a non-linear model in crystal lattice theory, non-
linear circuit theory, and turbulence.7,8 Including stochastic white noise
introduces real-life scenarios in which the system’s parameters are
influenced by environmental uncertainties or noise, leading to the need
for a stochastic treatment.9,10

The goal of this paper is to introduce exact solutions for stochastic
Burgers–KdV equation with variable coefficients with space-uniform
white noise. We consider the following three different stochastic KdV–
Burgers equations (additive, advection, and multiplicative noise) with
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a space-uniform white noise of the form

𝑑𝑢 = (𝛿(𝑡)𝜕𝑧𝑧𝑧𝑢+ 𝛽(𝑡)𝑢𝜕𝑧𝑢+𝜇(𝑡)𝜕𝑧𝑧𝑢+𝛼(𝑡)𝜕𝑧𝑢+ 𝛾(𝑡)𝑢)𝑑𝑡+𝜎(𝑡)𝜕𝑧𝑢𝑑𝑊𝑡 (1.1)

and

𝑑𝑢 = (𝛿(𝑡)𝜕𝑧𝑧𝑧𝑢 + 𝛽(𝑡)𝑢𝜕𝑧𝑢 + 𝜇(𝑡)𝜕𝑧𝑧𝑢 + 𝛼(𝑡)𝜕𝑧𝑢 + 𝛾(𝑡)𝑢)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡 (1.2)

for 𝑡 ∈ [𝑡0, 𝑇 ] and 𝑧 ∈ R with 𝑢(0, 𝑧) = 𝜙(𝑧) for 𝑧 ∈ R. We also consider
a linear PDE in the KdV form of

𝑑𝑢 = (𝛿(𝑡)𝜕𝑧𝑧𝑧𝑢 + 𝜇(𝑡)𝜕𝑧𝑧𝑢 + 𝛼(𝑡)𝜕𝑧𝑢 + 𝛾(𝑡)𝑢)𝑑𝑡 + 𝜎(𝑡)𝑢𝑑𝑊𝑡 (1.3)

for 𝑡 ∈ [𝑡0, 𝑇 ] and 𝑧 ∈ R with 𝑢(0, 𝑧) = 𝜙(𝑧) for 𝑧 ∈ R.
Our contribution in this paper is to extend the existing methodolo-

gies by deriving exact solutions for stochastic KdV–Burgers equations
with variable coefficients and spatially uniform white noise. Using Itô
calculus and transformation techniques, we decompose the stochastic
equation into two equations, a deterministic PDE and a stochastic dif-
ferential equation, and solve the deterministic counterparts, a method
inspired by the works of Refs. 11, 12, see also Ref. 13. Our approach
not only enhances theoretical understanding but also addresses more
realistic scenarios that are highly relevant in the modeling of complex
physical and biological systems.

In addition, we provide numerical simulations to demonstrate the
practical implications of our solutions. These simulations serve as cru-
cial tools for validating theoretical predictions and bridging the gap
between mathematical models and their real-life applications.14
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This paper is organized as follows: In Section 2, we recall two
lemmas that provide details and properties in solving SDEs and execute
numerical simulations. In Section 3, We present exact solutions for
stochastic Korteweg de Vries-Burgers (KdV–Burgers) Eqs. (1.1)–(1.3)
featuring variable coefficients. In each variant, white noise exhibits
spatial uniformity, and the three categories include additive, multi-
plicative, and advection noise. Across all cases, the coefficients are
time-dependent functions. Our discovery indicates that solving cer-
tain deterministic counterparts of KdV–Burgers equations and compos-
ing the solution with a solution of stochastic differential equations
leads to the exact solution of the stochastic Korteweg de Vries-Burgers
(KdV–Burgers) equations. We provide several examples.

2. Preliminaries

Consider the probability space (𝛺, ,𝐏) for which the Brownian
motion {𝑊𝑡, 𝑡 ≥ 0} is defined and 𝐸(𝑊𝑠𝑊𝑡) = min(𝑠, 𝑡) for all 𝑠, 𝑡 ≥ 0.
lso consider the filtration 𝑡 ∶= 𝜎(𝑊𝑠 ∶ 𝑠 ≤ 𝑡) being the smallest
−algebra to which 𝑊𝑠 is measurable for 𝑠 ≤ 𝑡.
Then consider the stochastic differential equation (SDE) with vari-

ble coefficients15,16

𝑋𝑡 = 𝛼(𝑡, 𝑋𝑡)𝑑𝑡 + 𝛽(𝑡, 𝑋𝑡)𝑑𝑊𝑡, (2.1)

with initial state 𝑋𝑡0 and for 𝑡 ∈ [𝑡0, 𝑇 ]. The SDE in (2.1) has a general
solution given by

𝑋𝑡 = 𝑋𝑡0 + ∫

𝑡

𝑡0
𝛼(𝑠,𝑋𝑠)𝑑𝑠 + ∫

𝑡

𝑡0
𝛽(𝑠,𝑋𝑠)𝑑𝑊𝑠,

for 𝑡 ≤ 𝑇 . If 𝛼(𝑡) ∶= 𝛼(𝑡, 𝑋𝑡) and 𝛽(𝑡) ∶= 𝛽(𝑡, 𝑋𝑡), then Eq. (2.1) has a
general solution given by

𝑋𝑡 = 𝑋𝑡0 + ∫

𝑡

𝑡0
𝛼(𝑠)𝑑𝑠 + ∫

𝑡

𝑡0
𝛽(𝑠)𝑑𝑊𝑠

for 𝑡 ≤ 𝑇 . The process {𝑊𝑡; 𝑡 ≥ 0} is a Wiener process with respect
to filtration {𝑡; 𝑡 ≥ 0}. The initial state 𝑋𝑡0 is 𝑡0 and the functions
𝛼(𝑡) and 𝛽(𝑡) are Lebesgue measurable and bounded on [𝑡0, 𝑇 ]. The
latter implies both the global Lipschitz and linearity growth conditions
required to ensure the existence and (pathwise) uniqueness of a strong
solution to (2.1), Ref. 15.

Let 𝑋𝑡 and 𝑌𝑡 be any two diffusion processes such as those defined
y the solution of Eq. (2.1). If 𝐹 (𝑥, 𝑦) is a differentiable function that
orks as a transformation for two processes 𝑋𝑡 and 𝑌𝑡, then the general
i-variate Itô formula15 gives

𝐹 (𝑋𝑡, 𝑌𝑡) = 𝜕𝑥𝐹 (𝑋𝑡, 𝑌𝑡)𝑑𝑋𝑡 + 𝜕𝑦𝐹 (𝑋𝑡, 𝑌𝑡)𝑑𝑌𝑡 +
1
2
𝜕𝑥𝑥𝐹 (𝑋𝑡, 𝑌𝑡)(𝑑𝑋𝑡)2 (2.2)

+ 1
2
𝜕𝑦𝑦𝐹 (𝑋𝑡, 𝑌𝑡)(𝑑𝑌𝑡)2 + 𝜕𝑥𝑦𝐹 (𝑋𝑡, 𝑌𝑡)𝑑𝑋𝑡𝑑𝑌𝑡.

(𝑥, 𝑦) is a differentiable function.
The following two lemmas are crucial to identify the solutions

f the SDEs; they were introduced previously in Ref. 13. These two
emmas are fundamental for our simulations. We also use the lemmas
o simulate the processes with 𝑋0 = 𝑥 and then compose the exact
olutions with the simulations based on Lemma 3.

emma 1.

(1) The stochastic process 𝑋𝑡 solving

𝑑𝑋𝑡 = 𝐶(𝑡)𝑑𝑡 + 𝐸(𝑡)𝑑𝑊𝑡

with 𝑋𝑡0 ∼ 𝑁(𝑥𝑡0 , 𝜎
2
0 ) independent of 𝑊𝑡, is a non-stationary

Gaussian process with mean 𝑥𝑡0 + ∫ 𝑡
𝑡0
𝐶(𝑠)𝑑𝑠 and variance 𝜎2(𝑋𝑡) =

𝜎20 + ∫ 𝑡
𝑡0
𝐸2(𝑠)𝑑𝑠.

(2) The covariance of the two processes 𝑋𝑡 and 𝑊𝑡 is

𝜎(𝑋𝑡,𝑊𝑡) =
𝑡
𝐸(𝑠)𝑑𝑠.
∫𝑡0

2 
(3) Moreover,

[𝑋𝑡|𝑊𝑡 = 𝑤] ∼ 𝑁
⎛

⎜

⎜

⎝

𝑥𝑡0 + ∫

𝑡

𝑡0
𝐶(𝑠)𝑑𝑠 +

𝑤 ∫ 𝑡
𝑡0
𝐸(𝑠)𝑑𝑠

𝑡
, 𝑉 2

1 (𝑡)
⎞

⎟

⎟

⎠

where 𝑉 2
1 (𝑡) = 𝜎20 + ∫ 𝑡

𝑡0
𝐸2(𝑠)𝑑𝑠 −

(∫ 𝑡
𝑡0

𝐸(𝑠)𝑑𝑠)2

𝑡 .

Lemma 2.

(1) The position random process 𝑍𝑡 ∶= 𝑧 + ∫ 𝑡
𝑡0
𝐵̄(𝑠)𝐾(𝑠)𝑑𝑊𝑠 solves the

Langevin-type second-order SDE

𝑍̈𝑡 =
𝐵′(𝑡)
𝐵(𝑡)

𝑍̇𝑡 + 𝐵(𝑡)𝐾(𝑡)𝑊̇𝑡, 𝑡 ∈ [𝑡0, 𝑇 ]

with initial state 𝑍𝑡0 = 𝑧, where 𝐵̄(𝑠) = ∫ 𝑡
𝑠 𝐵(𝑟)𝑑𝑟 for 𝑡 > 𝑠.

(2) The process 𝑍𝑡 is a nonstationary Gaussian process with mean 𝑧 and
variance 𝜎2(𝑍𝑡) = ∫ 𝑡

𝑡0
(𝐵̄(𝑠)𝐾(𝑠))2𝑑𝑠.

(3) Meanwhile,

𝑍̇𝑡 ∶= 𝐵(𝑡)

(

∫

𝑡

𝑡0
𝐾(𝑟)𝑑𝑊𝑟

)

.

(4) The process 𝑍̇𝑡 is a non-stationary Gaussian process with mean zero
and variance 𝜎2(𝑍̇𝑡) = (𝐵(𝑡))2 ∫ 𝑡

𝑡0
(𝐾(𝑠))2𝑑𝑠.

(5) The covariance of 𝑍𝑡 and 𝑊𝑡 is

𝜎(𝑍𝑡,𝑊𝑡) = ∫

𝑡

𝑡0
𝐵̄(𝑠)𝐾(𝑠)𝑑𝑠

and

𝜎(𝑍̇𝑡,𝑊𝑡) = 𝐵(𝑡)

(

∫

𝑡

𝑡0
𝐾(𝑠)𝑑𝑠

)

.

(6) The conditional distributions are given by

[𝑍𝑡|𝑊𝑡 = 𝑤] ∼ 𝑁
⎛

⎜

⎜

⎝

𝑧 +𝑤
∫ 𝑡
𝑡0
𝐵̄(𝑠)𝐾(𝑠)𝑑𝑠

𝑡
,∫

𝑡

𝑡0
(𝐵̄(𝑠)𝐾(𝑠))2𝑑𝑠 −

(∫ 𝑡
𝑡0
𝐵̄(𝑠)𝐾(𝑠)𝑑𝑠)2

𝑡

⎞

⎟

⎟

⎠

,

and

[𝑍̇𝑡|𝑊𝑡 = 𝑤] ∼ 𝑁

⎛

⎜

⎜

⎜

⎝

𝑤𝐵(𝑡)
(

∫ 𝑡
𝑡0
𝐾(𝑠)𝑑𝑠

)

𝑡
, (𝐵(𝑡))2

⎡

⎢

⎢

⎢

⎣

∫

𝑡

𝑡0
(𝐾(𝑠))2𝑑𝑠 −

(

∫ 𝑡
𝑡0
𝐾(𝑠)𝑑𝑠

)2

𝑡

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

.

. Stochastic Burgers-KdV equation

In this Section, through the use of Ito calculus and interesting
ransformations. We present exact solutions for stochastic Korteweg
e Vries-Burgers (KdV–Burgers) Eqs. (1.1)–(1.3) featuring variable
oefficients17. As the following lemma shows, solving certain determin-
stic counterparts of KdV–Burgers equations and composing the solution
ith a solution of stochastic differential equations leads to the exact
olution of the stochastic Korteweg de Vries-Burgers (KdV–Burgers)
quations. We provide several examples.

emma 3. Let 𝛼, 𝛽, 𝛾, 𝛿, 𝜇, 𝜎 ∈ 𝑏 ([𝑡0, 𝑇 ]
)

be bounded functions on [𝑡0, 𝑇 ].
ssume that 𝛽(𝑡) > 0 for all 𝑡 ∈ [𝑡0, 𝑇 ]. Then we have

(1) The stochastic Burgers–KdV Eq. (1.1) has a solution 𝑢(𝑡, 𝑧) =
𝑈 (𝑡, 𝑋𝑡), where 𝑈 (𝑡, 𝑥) is the solution of

𝜕𝑡𝑈 = 𝛿(𝑡)𝜕𝑥𝑥𝑥𝑈+(𝜇(𝑡)− 1
2
𝜎2(𝑡))𝜕𝑥𝑥𝑈+𝛽(𝑡)𝑈𝜕𝑥𝑈+𝛾(𝑡)𝑢, 𝑈 (0, 𝑥) = 𝜙(𝑥)

(3.1)

and 𝑋𝑡 is the solution of

𝑑𝑋 = 𝛼(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊 , (3.2)
𝑡 𝑡
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with initial state 𝑋𝑡0 = 𝑧 and for 𝑡 ∈ [𝑡0, 𝑇 ].
(2) The stochastic Burgers–KdV equation with the initial value prob-

lem (1.2) has a solution

𝑢(𝑡, 𝑧) = 𝑅(𝑡)
(

𝑉 (𝑡, 𝑍𝑡) +
1

B(𝑡)
𝑍̇𝑡

)

, (3.3)

where 𝑉 (𝑡, 𝑥) is the solution of

𝜕𝑡𝑉 = 𝛿(𝑡)𝜕𝑥𝑥𝑥𝑉 +𝜇(𝑡)𝜕𝑥𝑥𝑉 +B(𝑡)𝑉 𝜕𝑥𝑉 + 𝛼(𝑡)𝜕𝑥𝑉 , 𝑉 (0, 𝑥) = 𝜙(𝑥),

(3.4)

and 𝑍𝑡 is the solution of a second-order stochastic differential
equation

𝑍̈𝑡 =
B′(𝑡)
B(𝑡)

𝑍̇𝑡 +
B(𝑡)𝜎(𝑡)
𝑅(𝑡)

𝑊̇𝑡, (3.5)

with initial state 𝑍𝑡0 = 𝑧 and for 𝑡 ∈ [𝑡0, 𝑇 ]. Also, 𝑅(𝑡) =
exp(∫ 𝑡

𝑡0
𝛾(𝑠)𝑑𝑠) and B(𝑡) = 𝛽(𝑡)𝑅(𝑡).

Proof. For (1), apply Itô’s formula to the 𝑋𝑡 solution of (3.2) with
the transformation 𝑈 (𝑡, 𝑥) that solves the deterministic KdV–Burgers
Eq. (3.1)

𝑑𝑈 (𝑡, 𝑋𝑡) = 𝑓 (𝑡, 𝑋𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑋𝑡)𝑑𝑊𝑡, (3.6)

where

𝑓 (𝑡, 𝑥) = 𝜕𝑡𝑈 (𝑡, 𝑥) + 𝛼(𝑡)𝜕𝑥𝑈 (𝑡, 𝑥) + 1
2
𝜎2(𝑡)𝜕𝑥𝑥𝑈 (𝑡, 𝑥).

ote that,

𝑡𝑈 (𝑡, 𝑥) = 𝛿(𝑡)𝜕𝑥𝑥𝑥𝑈 + (𝜇(𝑡) − 1
2
𝜎2(𝑡))𝜕𝑥𝑥𝑈 (𝑡, 𝑥)

+ 𝛽(𝑡)𝑈 (𝑡, 𝑥)𝜕𝑥𝑈 (𝑡, 𝑥) + 𝛾(𝑡)𝑈 (𝑡, 𝑥).

herefore,

(𝑡, 𝑥) = 𝛿(𝑡)𝜕𝑥𝑥𝑥𝑈 + 𝜇(𝑡)𝜕𝑥𝑥𝑈 (𝑡, 𝑥) + 𝛽(𝑡)𝑈 (𝑡, 𝑥)𝜕𝑥𝑈 (𝑡, 𝑥)

+ 𝛼(𝑡)𝜕𝑥𝑈 (𝑡, 𝑥) + 𝛾(𝑡)𝑈 (𝑡, 𝑥).

Observe that

𝑔(𝑡, 𝑥) = 𝜎(𝑡)𝜕𝑥𝑈 (𝑡, 𝑥),

which proves (1).
To prove (2), let us take 𝑢(𝑡, 𝑧) = 𝑅(𝑡)𝐿(𝑡, 𝑧). By the bi-variate general

of Itô’s formula we get

𝑑𝑢(𝑡, 𝑧) = 𝑅′(𝑡)𝐿(𝑡, 𝑧)𝑑𝑡 + 𝑅(𝑡)𝑑𝐿(𝑡, 𝑧). (3.7)

In order to prove (1.2) we need to show

𝑑𝐿(𝑡, 𝑧) = (𝛿(𝑡)𝜕𝑧𝑧𝑧𝐿(𝑡, 𝑧) + 𝜇(𝑡)𝜕𝑧𝑧𝐿(𝑡, 𝑧) +B(𝑡)𝐿(𝑡, 𝑧)𝜕𝑧𝐿(𝑡, 𝑧)

+ 𝛼(𝑡)𝜕𝑧𝐿(𝑡, 𝑧))𝑑𝑡 +
𝜎(𝑡)
𝑅(𝑡)

𝑑𝑊𝑡. (3.8)

Before proving (3.8), let us show how this statement will finish the
proof of (1.2). Recalling that 𝑅(𝑡) = exp(∫ 𝑡

𝑡0
𝛾(𝑠)𝑑𝑠) and using (3.8), from

(3.7) we obtain

𝑑𝑢 = 𝑅(𝑡)(𝛿(𝑡)𝜕𝑧𝑧𝑧𝐿(𝑡, 𝑧) + 𝜇(𝑡)𝜕𝑧𝑧𝐿(𝑡, 𝑧) +B(𝑡)𝐿(𝑡, 𝑧)𝜕𝑧𝐿(𝑡, 𝑧) + 𝛼(𝑡)𝜕𝑧𝐿(𝑡, 𝑧))𝑑𝑡

+ 𝛾(𝑡)𝑅(𝑡)𝐿(𝑡, 𝑧)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡.

Hence, we obtain (3.7) as we wanted.
Let us proceed to prove (3.8). Eq. (3.5) can be written as a system

of equations of the following form

𝑑𝑁𝑡 =
B′(𝑡)
B(𝑡)

𝑁𝑡𝑑𝑡 +
B(𝑡)𝜎(𝑡)
𝑅(𝑡)

𝑑𝑊𝑡, (3.9)

𝑑𝑍𝑡 = 𝑁𝑡𝑑𝑡. (3.10)

Let 𝑉 (𝑡, 𝑥) be the solution of

𝜕 𝑉 = 𝛿(𝑡)𝜕 𝑉 + 𝜇(𝑡)𝜕 𝑉 +B(𝑡)𝑉 𝜕 𝑉 + 𝛼(𝑡)𝜕 𝑉 , 𝑉 (0, 𝑥) = 𝜙(𝑥).
𝑡 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥 𝑑

3 
Using the bivariate general Itô formula for 𝑉 (𝑡, 𝑍𝑡), we obtain

𝑑𝑉 (𝑡, 𝑍𝑡) = 𝜕𝑡𝑉 (𝑡, 𝑍𝑡)𝑑𝑡 + 𝜕𝑥𝑉 (𝑡, 𝑍𝑡)𝑑𝑍𝑡

since (𝑑𝑡)2 = 0, 𝑑𝑡𝑑𝑍𝑡 = 𝑁𝑡(𝑑𝑡)2 = 0 and (𝑑𝑍𝑡)2 = (𝑁𝑡)2(𝑑𝑡)2 = 0. Thus,

𝑑𝑉 (𝑡, 𝑍𝑡) =
(

𝛿(𝑡)𝜕𝑥𝑥𝑥𝑉 (𝑡, 𝑍𝑡) + 𝜇(𝑡)𝜕𝑥𝑥𝑉 (𝑡, 𝑍𝑡)

+ B(𝑡)𝑉 (𝑡, 𝑍𝑡)𝜕𝑥𝑉 (𝑡, 𝑍𝑡) + 𝛼(𝑡)𝜕𝑥𝑉 (𝑡, 𝑍𝑡)
)

𝑑𝑡

+ 𝜕𝑥𝑉 (𝑡, 𝑍𝑡)𝑁𝑡𝑑𝑡. (3.11)

If we define 𝐿(𝑡, 𝑧) = 𝑉 (𝑡, 𝑍𝑡) +
1

B(𝑡)
𝑍̇𝑡, we can rewrite the right-hand

ide of Eq. (3.11) as

(𝛿(𝑡)𝜕𝑧𝑧𝑧𝐿(𝑡, 𝑧) + 𝜇(𝑡)𝜕𝑧𝑧𝐿(𝑡, 𝑧) +B(𝑡)(𝐿(𝑡, 𝑧)

− 1
B(𝑡)

𝑍̇𝑡)𝜕𝑧𝐿(𝑡, 𝑧) + 𝛼(𝑡)𝜕𝑧𝐿(𝑡, 𝑧) + 𝜕𝑧𝐿(𝑡, 𝑧)𝑁𝑡)𝑑𝑡

(𝛿(𝑡)𝜕𝑧𝑧𝑧𝐿(𝑡, 𝑧) + 𝜇(𝑡)𝜕𝑧𝑧𝐿(𝑡, 𝑧) +B(𝑡)𝐿(𝑡, 𝑧)𝜕𝑧𝐿(𝑡, 𝑧) + 𝛼(𝑡)𝜕𝑧𝐿(𝑡, 𝑧))𝑑𝑡.

t follows that

𝐿(𝑡, 𝑧) = (𝛿(𝑡)𝜕𝑧𝑧𝑧𝐿(𝑡, 𝑧) + 𝜇(𝑡)𝜕𝑧𝑧𝐿(𝑡, 𝑧) +B(𝑡)𝐿(𝑡, 𝑧)𝜕𝑧𝐿(𝑡, 𝑧)

+ 𝛼(𝑡)𝜕𝑧𝐿(𝑡, 𝑧))𝑑𝑡 + 𝑑
(

1
B(𝑡)

𝑍̇𝑡

)

.

pplying the bivariate general Itô formula Itô’s formula once again, we
btain
(

1
B(𝑡)

𝑁𝑡

)

=
−B′(𝑡)
(B(𝑡))2

𝑁𝑡𝑑𝑡 +
1

B(𝑡)
𝑑𝑁𝑡

since (𝑑𝑡)2 = 0, 𝑑𝑡𝑑𝑁𝑡 = 0 and 𝑑2𝑥∕B(𝑡)
𝑑𝑥2

= 0. Therefore, we have

𝑑
(

1
B(𝑡)

𝑍̇𝑡

)

=
−B′(𝑡)
(B(𝑡))2

𝑁𝑡𝑑𝑡 +
1

B(𝑡)

(

B′(𝑡)
B(𝑡)

𝑁𝑡𝑑𝑡 +
B(𝑡)𝜎(𝑡)
𝑅(𝑡)

𝑑𝑊𝑡

)

=
𝜎(𝑡)
𝑅(𝑡)

𝑑𝑊𝑡.

ence, we obtain (3.8) as we wanted. □

emark 1. If 𝛿, 𝜇 and 𝛽 are constants, then the KdV-Burgers equation

𝑡𝑈 = 𝛿𝜕𝑥𝑥𝑥𝑈 + 𝜇𝑈𝑥𝑥 + 𝛽𝑈𝜕𝑥𝑈 (3.12)

has the following explicit solution:

(𝑡, 𝑥) =
3𝜇2

25𝛽𝛿
sech2

(

𝜇
10𝛿

𝑥 −
6𝜇3

250𝛿2
𝑡
)

−
6𝜇2

25𝛽𝛿
tanh

(

𝜇
10𝛿

𝑥 −
6𝜇3

250𝛿2
𝑡
)

+
6𝜇2

25𝛽𝛿
.

(3.13)

Part (3) of Lemma 1 and part (6) of Lemma 2 are used to simulate
he stochastic processes for the solutions in Lemma 3 with its two parts.
he following proposition will provide solutions for linear KdV-type
quations.

roposition 1. Let us consider the stochastic process

𝑡(𝑥) = 𝑥 + 1
2 ∫

𝑡

0
𝜎2(𝑠)𝑑𝑠 − ∫

𝑡

0
𝜎(𝑠)𝑊𝑠 (3.14)

or 𝑥 ∈ R and the equation

𝑢(𝑡, 𝑥) = 𝑓 (𝑢(𝑡, 𝑥))𝑑𝑡 + 𝜎(𝑡)𝑢(𝑡, 𝑥)𝑑𝑊𝑡, (3.15)

nd 𝑓 is linear function, Eq. (3.15) can be reduced to

𝑣(𝑡, 𝑥) = 𝑓 (𝑣(𝑡, 𝑥))𝑑𝑡

hrough the transformation

(𝑡, 𝑥) = 𝑢(𝑡, 𝑥)𝑒𝑋𝑡(𝑥).

Proof: By Itô’s formula we see that

𝑋𝑡 𝑋𝑡 2
𝑒 = 𝑒 (𝜎 (𝑡)𝑑𝑡 − 𝜎(𝑡)𝑑𝑊𝑡). (3.16)
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Fig. 1. Two realizations of the stochastic process in Eq. (3.22).
a

𝑉

s

𝑍

nd by product rule 𝑑𝑣 = 𝑢𝑑𝑒𝑋𝑡 + 𝑒𝑋𝑡𝑑𝑢 + 𝑑𝑒𝑋𝑡𝑑𝑢, and after replacing
3.15), (3.14) and (3.16), we obtain

𝑣 = 𝑢𝑒𝑋𝑡
(

𝜎2𝑑𝑡 − 𝜎𝑑𝑊𝑡
)

+ 𝑒𝑋𝑡
(

𝑓 (𝑢)𝑑𝑡 + 𝜎𝑢𝑑𝑊𝑡
)

+
(

𝑓 (𝑢)𝑑𝑡 + 𝜎𝑢𝑑𝑊𝑡
)

𝑒𝑋𝑡
(

𝜎2𝑑𝑡 − 𝜎𝑑𝑊𝑡
)

.

Finally, using standard Itô calculus rules and simplifying, we obtain

𝑣 = 𝑓 (𝑣)𝑑𝑡.

The following formula will be useful for the following examples, see
hapter 7 by Calin:
𝑏

𝑎
𝑓 (𝑡)𝑑𝑊𝑡 = 𝑓 (𝑡)𝑊𝑡|

𝑏
𝑎 − ∫

𝑏

𝑎
𝑓 ′(𝑡)𝑊𝑡𝑑𝑡.

Next, we provide several examples.

Example 1. Consider the stochastic KdV–Burgers equation

𝑑𝑢 = (𝛿𝜕𝑧𝑧𝑧𝑢 + 𝛽𝑢𝜕𝑧𝑢 + 𝜇𝜕𝑧𝑧𝑢 + 𝛼(𝑡)𝜕𝑧𝑢)𝑑𝑡 + 𝜎𝜕𝑧𝑢 𝑑𝑊𝑡, (3.17)

where 𝛿, 𝛽, 𝜎 and 𝜇 are real constants. By Lemma 1 part (1), Eq. (3.17)
has a solution 𝑢(𝑡, 𝑧) = 𝑈 (𝑡, 𝑋𝑡), such that 𝑈 (𝑡, 𝑥) is the solution of

𝜕𝑡𝑈 = 𝛿𝜕𝑥𝑥𝑥𝑈 +
(

𝜇 − 𝜎2

2

)

𝑈𝑥𝑥 + 𝛽𝑈𝜕𝑥𝑈. (3.18)

In particular, the KdV–Burgers equation (𝛿 = 𝛽 = 𝜇 = 𝛼 = 𝜎 = 1)

𝑑𝑢 = (𝜕𝑧𝑧𝑧𝑢 + 𝑢𝜕𝑧𝑢 + 𝜕𝑧𝑧𝑢 + 𝜕𝑧𝑢)𝑑𝑡 + 𝜕𝑧𝑢 𝑑𝑊𝑡 (3.19)

has a solution 𝑢(𝑡, 𝑧) = 𝑈 (𝑡, 𝑋𝑡), such that 𝑈 (𝑡, 𝑥) is given by

𝑈 (𝑡, 𝑥) = 3
25

sech2
( 1
10

𝑥 − 6
250

𝑡
)

− 6
25

tanh
( 1
10

𝑥 − 6
250

𝑡
)

+ 6
25

(3.20)

and 𝑋𝑡 = 𝑧 + 𝑡 +𝑊𝑡 is the solution of (𝛼 = 1 and 𝜎 = 1)

𝑑𝑋𝑡 = 𝑑𝑡 + 𝑑𝑊𝑡, (3.21)

with initial state 𝑋0 = 𝑧 and for 𝑡 ∈ [0, 1].
Finally, the explicit solution of (3.19) is given by

𝑢(𝑡, 𝑧) = 𝑈 (𝑡, 𝑋𝑡) =
3
25

sech2
(

𝑧 + 𝑡 +𝑊𝑡
10

− 6𝑡
250

)

− 6
25

tanh
(

𝑧 + 𝑡 +𝑊𝑡
10

− 6𝑡
250

)

+ 6
25

(3.22)

for 𝑡 ∈ [0, 1] and 𝑧 ∈ R.
Fig. 1 shows two realizations of the general solution in (3.22).

Example 2. Consider another stochastic KdV–Burgers equation

𝑑𝑢 = (𝜕𝑧𝑧𝑧𝑢 + 𝜕𝑧𝑧𝑢 + 𝑢𝜕𝑧𝑢)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡, (3.23)

𝑢(0, 𝑧) = 3 sech2
( 𝑧 )

− 6 tanh
( 𝑧 )

+ 6 (3.24)

25 10 25 10 25 f

4 
for 𝑡 ∈ [0, 1]. By Lemma 3 part (2), Eq. (3.32) has a solution

𝑢(𝑡, 𝑧) = 𝑉 (𝑡, 𝑍𝑡) + 𝑍̇𝑡,

where 𝑅(𝑡) = 1, such that 𝑉 (𝑡, 𝑥) is the solution of

𝜕𝑡𝑉 = 𝜕𝑥𝑥𝑥𝑉 + 𝜕𝑥𝑥𝑉 + 𝑉 𝜕𝑥𝑉 , (3.25)

𝑉 (0, 𝑧) = 3
25

sech2
( 𝑧
10

)

− 6
25

tanh
( 𝑧
10

)

+ 6
25

, (3.26)

nd 𝑍𝑡 is the solution of

𝑍̈𝑡 = 𝜎(𝑡)𝑊̇𝑡, (3.27)

with initial state 𝑍0 = 𝑧 and for 𝑡 ∈ [0, 1].
Again, Eq. (3.33) has the general solution

(𝑡, 𝑧) = 3
25

sech2
( 𝑧
10

− 6𝑡
250

)

− 6
25

tanh
( 𝑧
10

− 6𝑡
250

)

+ 6
25

(3.28)

for 𝑧 ∈ R. Also, 𝑍̇𝑡 = ∫ 𝑡
0 𝜎(𝑟)𝑑𝑊𝑟 due to Lemma 2. Thus, Eq. (3.32) has

a solution

𝑢(𝑡, 𝑧) = 3
25

sech2
(

𝑧 + ∫ 𝑡
0 𝜎(𝑠)𝑑𝑊𝑠

10
− 6𝑡

250

)

− 6
25

tanh

(

𝑧 + ∫ 𝑡
0 𝜎(𝑠)𝑑𝑊𝑠

10
− 6𝑡

250

)

+ 6
25

+ ∫

𝑡

0
𝜎(𝑟)𝑑𝑊𝑟.

(3.29)

If 𝜎(𝑡) = 1, by Lemma 2 the stochastic differential Eq. (3.34) has a
solution given by

𝑍𝑡 = 𝑧 − ∫

𝑡

0
𝑊𝑠𝑑𝑠

for 𝑡 ∈ [0, 1].
The general solution of the stochastic KdV–Burgers equation (3.32)

is given by

𝑢(𝑡, 𝑧) = 3
25

sech2
(

𝑧 − ∫ 𝑡
0 𝑊𝑠𝑑𝑠
10

− 6𝑡
250

)

− 6
25

tanh

(

𝑧 − ∫ 𝑡
0 𝑊𝑠𝑑𝑠
10

− 6𝑡
250

)

+ 6
25

+ 𝑍̇𝑡 (3.30)

for 𝑡 ∈ [0, 1] and 𝑧 ∈ R.
If 𝜎(𝑡) = 𝑡𝑛, by Lemma 2 the stochastic differential Eq. (3.34) has a

olution given by

𝑡 = 𝑧 − ∫

𝑡

0
(𝑡 − 𝑠)𝑠𝑛𝑑𝑊𝑠 = 𝑧 − 𝑡∫

𝑡

0
𝑠𝑛𝑑𝑊𝑠 + ∫

𝑡

0
𝑠𝑛+1𝑑𝑊𝑠

= 𝑧 − 𝑡
(

𝑡𝑛𝑊𝑡 − ∫

𝑡

0
𝑛𝑠𝑛−1𝑊𝑠𝑑𝑠

)

+ 𝑡𝑛+1𝑊𝑡 − ∫

𝑡

0
(𝑛 + 1)𝑠𝑛𝑊𝑠𝑑𝑠
or 𝑡 ∈ [0, 1].
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Fig. 2. Four realizations of the stochastic process in Eq. (3.29) when 𝜎(𝑡) = 1 (top) and 𝜎(𝑡) = 𝑡2 (bottom).
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In that case, the general solution of the stochastic KdV–Burgers
equation (3.32) is given by

(𝑡, 𝑧) = 3
25

sech2
(

𝑍𝑡
10

− 6𝑡
250

)

− 6
25

tanh
(

𝑍𝑡
10

− 6𝑡
250

)

+ 6
25

+ 𝑍̇𝑡, (3.31)

where 𝑍𝑡 = 𝑧 − 𝑡
(

𝑡𝑛𝑊𝑡 − ∫ 𝑡
0 𝑛𝑠𝑛−1𝑊𝑠𝑑𝑠

)

+ 𝑡𝑛+1𝑊𝑡 − ∫ 𝑡
0 (𝑛 + 1)𝑠𝑛𝑊𝑠𝑑𝑠 for

∈ [0, 1] and 𝑧 ∈ R. Fig. 2 shows two realizations of the general solution
n (3.29).

Another example for the stochastic forced term is given here.
ee18–23.

xample 3. Consider another stochastic Burgers equation

𝑢 = (exp(𝑡)𝜕𝑧𝑧𝑢+ exp(𝑡)𝑢𝜕𝑧𝑢)𝑑𝑡+ 𝑑𝑊𝑡, 𝑢(0, 𝑧) = 2
1 + exp(−2 − 𝑧)

(3.32)

for 𝑡 ∈ [0, 1]. By Lemma 3 part (2), Eq. (3.32) has a solution

𝑢(𝑡, 𝑧) = 𝑉 (𝑡, 𝑍𝑡) +
1

exp(𝑡)
𝑍̇𝑡,

where 𝑅(𝑡) = 1, such that 𝑉 (𝑡, 𝑥) is the solution of

𝜕𝑡𝑉 = exp(𝑡)𝜕𝑥𝑥𝑉 + exp(𝑡)𝑉 𝜕𝑥𝑉 , 𝑉 (0, 𝑥) = 2
1 + exp(−2 − 𝑥)

, (3.33)

and 𝑍𝑡 is the solution of

𝑍̈𝑡 = 𝑍̇𝑡 + exp(𝑡)𝑊̇𝑡 (3.34)

with initial state 𝑍0 = 𝑧 and for 𝑡 ∈ [0, 1].
Again, Eq. (3.33) has the general solution

𝑉 (𝑡, 𝑥) = 2
1 + exp(−1 − 𝑥 − exp(𝑡))

or 𝑥 ∈ R.
5 
By Lemma 2, the stochastic differential Eq. (3.34) has a solution
iven by

𝑡 = 𝑧 + exp(𝑡)𝑊𝑡 − ∫

𝑡

0
exp(𝑠)𝑑𝑊𝑠,

nd

̇ 𝑡 = exp(𝑡)𝑊𝑡

or 𝑡 ∈ [0, 1].
Therefore, the general solution of the stochastic Burgers Eq. (3.32)

s given by

(𝑡, 𝑧) = 𝑊𝑡 +
2

1 + exp(−1 − 𝑧 − exp(𝑡) − exp(𝑡)𝑊𝑡 + ∫ 𝑡
0 exp(𝑠)𝑑𝑊𝑠)

(3.35)

for 𝑡 ∈ [0, 1] and 𝑧 ∈ R.
Fig. 3 shows two realizations of the general solution in (3.35).

4. Conclusion

In this paper, we carried out a study on exact solutions to a class
of stochastic Burgers–Korteweg de Vries (KdV–Burgers) equations. The
analysis we have carried out clearly demonstrates the effectiveness
of Itô calculus and different transformation techniques in developing
explicit solutions by splitting the random element and solving the
deterministic kinetic part.

Including exact solutions to the stochastic Burgers–KdV equation
not only contributes a theoretical aspect but also provides essential
insights for various physical and biological applications of these equa-
tions. The introduction of spatially uniform noise and variable coeffi-
cients signifies a more plausible environment, which often characterizes
complex systems in real life due to inherent stochasticity or uncertainty.
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Fig. 3. Two realizations of the stochastic process in Eq. (3.35).
Moreover, the figures made using stochastic simulations based on
xact solutions of the Burgers–KdV equation are very interesting. These
igures form a logical link between analytical solutions, which are
ot always feasible to investigate in the physical domain, and actual
pplications of the derived method, attesting to the corroboration of
xact solutions in diverse environments.
In conclusion, this research significantly contributes to the study

f stochastic partial differential equations and paves the way for es-
ablishing a basis for the solution of equations with common noise
tructures and variable coefficients. Future research may involve gen-
ralization of the methodology developed here for higher-order space
imensions. This may also consist of the dynamics in the stochastic
udryashov–Sinelshchikov equation or in using nonuniform spatial
oise. Future perspectives will enrich the fields of stochastic analysis
nd mathematical physics.
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