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A B S T R A C T

Machine learning, with its remarkable ability for retrieving information and identifying patterns
from data, has emerged as a powerful tool for discovering governing equations. It has been
increasingly informed by physics, and more recently by thermodynamics, to further uncover
the thermodynamic structure underlying the evolution equations, i.e., the thermodynamic
potentials driving the system and the operators governing the kinetics. However, despite
its great success, the inverse problem of thermodynamic model discovery from macroscopic
data is in many cases non-unique, meaning that multiple pairs of potentials and operators
can give rise to the same macroscopic dynamics, which significantly hinders the physical
interpretability of the learned models. In this work, we consider the problem of deriving the
macroscopic (continuum) equations from microscopic (particle) data, and encode knowledge
from statistical mechanics to resolve this non-uniqueness for the first time. The proposed
machine learning framework, named as Statistical-Physics-Informed Neural Networks (Stat-
PINNs), is here developed for purely dissipative isothermal systems. Interestingly, it only uses
data from short-time particle simulations to learn the thermodynamic structure, which can in
turn be used to predict long-time macroscopic evolutions. We demonstrate the approach for
particle systems with Arrhenius-type interactions, common to a wide range of phenomena,
such as defect diffusion in solids, surface absorption, and chemical reactions. Our results
from Stat-PINNs can successfully recover the known analytic solution for the case with long-
range interactions and discover the hitherto unknown potential and operator governing the
short-range interaction cases. We compare our results with direct particle simulations and an
analogous approach that solely excludes statistical mechanics, and observe that, in addition to
recovering the unique thermodynamic structure, statistical mechanics relations can increase the
robustness and predictive capability of the learning strategy.

1. Introduction

Dissipative phenomena are pervasive across material systems, from diffusion in gases, to viscous flow in fluids, to plasticity in
crystalline and granular media. Yet, our understanding of these phenomena is severely hindered by computational and theoretical
hallenges. Computationally, direct particle simulations remain elusive for macroscopic length- and time-scales, even with the latest
upercomputers. And theoretically, only a small number of particle systems enjoy an analytical macroscopic description in terms of
hermodynamic field equations (Kipnis and Landim, 1998; Presutti, 2009; Bodineau et al., 2016; Katsoulakis and Vlachos, 2003).
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Therefore, macroscopic equations, while computationally efficient, are often based on phenomenological assumptions not grounded
in the physics of the underlying particle dynamics. As a result, strategies for modeling of dissipative phenomena typically suffer
from a trade-off between physical fidelity and computational efficiency. Notable approaches include sequential and concurrent
multiscale techniques (Tadmor and Miller, 2011), mathematical coarse-graining strategies (Givon et al., 2004), such as the Mori–
Zwanzig formalism (Zwanzig, 2001), and data-driven approaches (Brunton and Kutz, 2022), like dimensionality reduction and

achine-learning techniques. The latter will be the focus of the present investigation.
Despite the numerous challenges in rigorously deriving macroscopic equations away from equilibrium, great progress has been

made in the last 15 years in the understanding of their structure. Indeed, the General Equation for Non-Equilibrium Reversible-
Irreversible Coupling (GENERIC) formalism (Grmela and Öttinger, 1997; Öttinger and Grmela, 1997; Öttinger, 2005) provides the
structure of macroscopic evolution equations as they emerge from underlying microscopic Hamiltonian dynamics while ensuring
ompatibility with the laws of thermodynamics. According to this formalism, the state variables 𝑧 describing a closed system
volve through a combination of a symplectic operator acting on the energy of the system and a dissipative operator acting on the

entropy,
𝜕 𝑧
𝜕 𝑡 = 𝑧

𝛿 𝐸
𝛿 𝑧 +𝑧

𝛿 𝑆
𝛿 𝑧 , (1)

where 𝐸 and 𝑆 denote the total energy and entropy functionals, and 𝑧 and 𝑧 are an (antisymmetric) Poisson operator and a
symmetric and positive semi-definite operator, respectively, satisfying the degeneracy conditions 𝑧

𝛿 𝑆
𝛿 𝑧 = 𝑧

𝛿 𝐸
𝛿 𝑧 = 0. This structure

guarantees the conservation of energy in closed systems, as well as a positive entropy production, in accordance with the second
law of thermodynamics.

For isothermal systems, which are the focus of this article, the evolution is a special case of Eq. (1), namely (see Öttinger (2005,
Sect. 1.2.2))

𝜕 𝑧
𝜕 𝑡 = −𝑧

𝛿 𝐹 [𝑧]
𝛿 𝑧 , (2)

where 𝐹 is the free energy functional and 𝑧 is the dissipative operator, which is a symmetric and positive semi-definite operator
that linearly acts on the thermodynamic force 𝛿 𝐹

𝛿 𝑧 and depends on the field 𝑧 (generally in a nonlinear manner). Eq. (2) is often
alled a gradient flow, since the free energy functional 𝐹 decreases monotonically along trajectories (i.e., it is a Lyapunov functional):

𝜕 𝐹
𝜕 𝑡 =

⟨

𝛿 𝐹 [𝑧]
𝛿 𝑧 , 𝜕 𝑧

𝜕 𝑡
⟩

= −
⟨

𝛿 𝐹 [𝑧]
𝛿 𝑧 ,𝑧

𝛿 𝐹 [𝑧]
𝛿 𝑧

⟩

≤ 0.

The bracket ⟨⋅, ⋅⟩ denotes an inner product in a Hilbert space, and the inequality holds since 𝑧 is positive semidefinite, which is
consistent with the second law of thermodynamics for isothermal systems.

The GENERIC formalism has proven to be very advantageous from a modeling standpoint (Mielke, 2011), and has been
successfully used to model, for instance, finite-dimensional mechanical systems, phase field models, thermoviscoelastic solids, or
diffusion phenomena. Its structure also reveals additional information. As just noted, the free energy acts as a Lyapunov functional
for systems evolving according to Eq. (2). Furthermore, Eqs. (1) and (2) are also endowed with strong statistical mechanics
foundations (Öttinger et al., 2021; Montefusco et al., 2021; Li et al., 2019; Kraaij et al., 2020; Leadbetter et al., 2023), leading
directly, for instance, to the stochastic PDE describing the evolution of finitely many particles (the so-called equation of fluctuating
hydrodynamics). In view of its success and microscopic foundation, we here assume that the macroscopic equations that we aim to
discover are of GENERIC type.

With the advent of machine learning, several strategies have emerged to discover the thermodynamic potentials and operators
f the GENERIC equation from the temporal evolution of macroscopic field variables. These strategies include, in the context of
DEs, Structure-Preserving Neural Networks (SPNNs) (Hernandez et al., 2021), GENERIC Neural Ordinary Differential Equations

GNODEs) (Lee et al., 2021), GENERIC formalism Informed Neural Networks (GFINNs) (Zhang et al., 2022), and thermodynamics-
nformed graph neural networks (Hernández et al., 2022). Within a variational perspective, Variational Onsager Neural Networks
VONNs) (Huang et al., 2022) learn the action density guiding the partial differential equations (of GENERIC type) in isothermal
ystems. The benefit of these strategies is that the learned structure automatically incorporates central physical features, such as
he conservation of energy in closed systems, or the existence of a Lyapunov functional. However, all of the above methods can
uffer from a lack of uniqueness, in the sense that correctly learning the dynamical equations in the form of Eqs. (1) or (2) does not
lways guarantee the discovery of the correct thermodynamics and kinetics. This lack of uniqueness, which commonly occurs, for
xample, in diffusive phenomena, can thus severely limit the physics learned by the machine learning algorithms. As an example,

the evolution of the density field 𝜌 for the simplest case of linear diffusion
𝜕 𝜌
𝜕 𝑡 = 𝛥𝜌, (3)

can be written in infinitely many different ways in the form of Eq. (2). That is, there are infinitely many pairs
(

(𝑗)
𝜌 , 𝐹 (𝑗)

)

, with
= 1, 2,…, which lead the linear diffusion equation (3). We describe here two possible representations. The first one is (1)

𝜌 𝜉 = 𝜉,
here 𝜉 is an arbitrary field function, and 𝐹 (1) = − 1

2 ∫ |∇𝜌|2𝑑 𝑥. Indeed, 𝛿 𝐹
𝛿 𝜌 = −𝛥𝜌. This is the so-called 𝐿2 gradient flow of the

negative Dirichlet integral. Second, the diffusion equation can be written as what is now called a Wasserstein gradient flow where
(2)

𝜌 𝜉 = −∇ ⋅ (𝜌∇𝜉) and 𝐹 (2) = ∫ 𝜌 ln 𝜌d𝑥 is the Boltzmann entropy. In this case, 𝛿 𝐹 (2)

𝛿 𝜌 = ln 𝜌+ 1, hence (2)
𝜌

𝛿 𝐹 (2)

𝛿 𝜌 = −∇ ⋅ (𝜌∇(ln 𝜌 + 1)) =
−∇ ⋅

(

𝜌∇𝜌
𝜌

)

= −∇ ⋅ ∇𝜌 = −𝛥𝜌, and 𝜕 𝜌
𝜕 𝑡 = 𝛥𝜌. Thus, already in this very simple example, it is not possible to determine the operator

 and the functional 𝐹 from purely macroscopic (thermodynamic) considerations.
𝜌

2 



S. Huang et al.

d


S
t
e

t
d

p
a
o
c
p

a
t

Journal of the Mechanics and Physics of Solids 194 (2025) 105908 
Fig. 1. Sketch of the Stat-PINNs (Statistical-Physics-Informed Neural Networks) framework for discovering the macroscopic evolution equation from short-time
particle simulations.

The dissipative operator  and the free energy functional 𝐹 are, however, unique for any given particle system. In the example
above, it is a classic result going back to Einstein in 1905 that particle undergoing Brownian motion result macroscopically in linear
iffusion. For these particles, the Boltzmann entropy 𝐹 (2) is the natural functional, and this is twinned with the Wasserstein operator
(2)
𝜌 . In contrast, there is no natural particle foundation of the Dirichlet integral 𝐹 (1).

The central idea of the present work is to incorporate microscopic information in the form of statistical physics to learn the
true thermodynamics and kinetics of the system and resolve the non-uniqueness issue for the first time. While noise in the data is
typically considered an undesirable feature, when such noise represents physical thermal fluctuations of particle data, it encodes a
wealth of information that has proven instrumental in advancing our understanding of non-equilibrium phenomena (Kubo, 1966;
eifert, 2012; Sevick et al., 2008). Of particular interest to this work is the profound link between fluctuations of a given variable and
he true dissipative operator governing its evolution, via an infinite-dimensional fluctuation–dissipation relation (Öttinger, 2005; Li
t al., 2019). In particular, by measuring the fluctuations of 𝑧 in addition to its expected value, it is possible to uniquely determine

the dissipative operator guiding the evolution. The proposed machine learning strategy, which we denote as Statistical-Physics
Informed Neural Networks (Stat-PINNs), is schematically shown in Fig. 1 for purely dissipative phenomena. It consists of two neural
networks aimed at learning the unique thermodynamic dissipative operator 𝑧 and thermodynamic potential (the free energy 𝐹
for an isothermal process). Interestingly, both of these quantities, which govern the dynamics over arbitrarily long times, may be
learned from short-time particle simulations.

Stat-PINNs are here developed in detail for dissipative phenomena with conservation laws, such as diffusion of conserved mass as
heir inverse problem is known to suffer from a lack of uniqueness. The proposed paradigm strongly encodes all the properties of the
issipative operator: acting linearly on the thermodynamic force 𝛿 𝐹

𝛿 𝑧 (while generally being nonlinear in the state variables 𝑧), being
symmetric and positive semi-definite, as well as the restrictions associated with conservative fields 𝑧. We demonstrate the approach
for particle systems with Arrhenius-type interactions, which are very common in thermally activated processes such as defect
diffusion in solids, surface absorption, and chemical reactions. This specific particle process chosen has a known analytical solution
for long-range interactions (Vlachos and Katsoulakis, 2000), while the continuum equation for short-range interactions is unknown,
to the best of the authors’ knowledge. Furthermore, it is one-dimensional, making it computationally feasible to perform long-time
article simulations as comparison data, to validate the proposed approach. Interestingly, Stat-PINNs are capable of recovering the
nalytical free energy and dissipative operator for the case of long-range interactions, as well as discovering those for the case
f short-range interactions. The results are compared to an analogous approach that solely includes thermodynamic relations and
onservation laws, i.e., only excluding statistical mechanics. We observe that, in addition to recovering the unique thermodynamic
otential and operator, statistical mechanics relations increase the robustness and predictive capability of the learning strategy.

We remark that Stat-PINNs purposely use a neural network to discover the free energy from data, in lieu of some alternative
pproaches rooted in statistical physics. One such alternative option would have been to use large deviation theory to determine
he free energy (Touchette, 2009). While this approach is natural and elegant from a viewpoint of statistical mechanics, it requires
3 
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resolution on an exponential scale. Conversely, the potential in this work is fitted directly by a neural network. There is also a
ich body of literature on the computation of equilibrium free energies (see Lelièvre et al. (2010) for an in-depth presentation).

These approaches allow the computation of free energy differences as required here, however only in a setting where a perturbative
analysis of the system of interest is possible. The example of the Arrhenius process below demonstrates that the method presented
here does not rely on perturbations.

The paper is organized as follows. In Section 2, we review the GENERIC formalism for isothermal dissipative systems and discuss
the infinite-dimensional fluctuation–dissipation relation needed to uniquely discover the dissipative operator. Next, in Section 3, we
introduce the Stat-PINNs architecture and the corresponding structure-preserving parameterization. This machine learning strategy is
then applied in Section 4 over three Arrhenius-type interacting particle processes, of which only one of them has a known analytic
olution. There, the results are compared to long-time particle simulations and Physics-Informed Neural Networks (PINNs) not
nformed by statistical mechanics. Finally, conclusions will be drawn in Section 5.

. Isothermal dissipative dynamics

We consider an isothermal system whose macroscopic evolution may be written as a gradient flow of the non-equilibrium free
nergy as in Eq. (2).

There, 𝑧 = 𝑧(𝑥, 𝑡) describes the field(s) of interest, and 𝐹 [𝑧] = 𝛽𝐹 [𝑧] is the normalized total free energy functional (this will be
eferred to as free energy in the following, in the interest of simplicity), where 𝐹 [𝑧] is the original free energy functional in energy
nits, and 𝛽 = 1∕𝑘𝐵𝑇 , with 𝑘𝐵 being the Boltzmann constant and 𝑇 the temperature of system. Further, 𝛿 𝐹∕𝛿 𝑧 is the functional

derivative of the free energy, which acts as the thermodynamic driving force of the dissipative dynamics. Finally, 𝑧 is a linear,
symmetric and positive semi-definite operator, where the subscript 𝑧 emphasizes its dependency on the field(s) 𝑧, which can be
nonlinear in general. Dissipative dynamics of the form of Eq. (2) were proposed by Ginzburg–Landau and may be seen as a special
case of the GENERIC formalism for a system at constant temperature (Öttinger, 2005; Mielke, 2011).

The continuum equation (2) can be mathematically seen as the system’s dynamics in the limit of infinite number of particles. For
finite, yet a large number of particles, isothermal dissipative systems can often be described by a stochastic differential equation of
the form (to be interpreted in a suitable way as discussed below)

𝜕 𝑧𝜖
𝜕 𝑡 = −𝑧𝜖

𝛿 𝐹 [𝑧𝜖]
𝛿 𝑧𝜖

+
√

2𝜖𝑧𝜖 ⋄ 𝑊̇𝑥,𝑡, (4)

where 𝜖 represents the level of ‘‘zooming out’’ in the description, i.e. 𝜖 ≈ 1
𝐿𝑑 , where 𝑑 is the space dimension and 1∕𝐿 the

characteristic inter-particle length scale (in the continuum limit, 𝜖 → 0, the equation becomes deterministic, as expected). Here
𝑊̇𝑥,𝑡 is a space–time white noise satisfying E[𝑊̇𝑥,𝑡] = 0 and E[𝑊̇𝑥,𝑡𝑊̇𝑥′ ,𝑡′ ] = 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′), with E [⋅] denoting the expectation and
(⋅) being the Dirac delta function. The stochastic integral denoted with the symbol ⋄ is the Klimontovich integral1. For this notion
f stochastic integral, as well as the related integrals of Itô and Stratonovich and their conversion formulae see Pavliotis (2014, Sect.

3.2); for a discussion in the context of (4) see Öttinger et al. (2021).
The reformulation of Eq. (4) as an equation with Itô noise results in (Öttinger, 2005, Section 1.2.5)

𝜕 𝑧𝜖
𝜕 𝑡 = −𝑧𝜖

𝛿 𝐹 [𝑧𝜖]
𝛿 𝑧𝜖

+ 𝜖 𝜕𝑧𝜖𝑧𝜖 +
√

2𝜖𝑧𝜖 𝑊̇𝑥,𝑡. (5)

The second but last term is of higher order, 𝑂(𝜖), and can thus be neglected in the computations, where it is sufficient to resolve
𝑂(

√

𝜖). We thus study the following equation in this work
𝜕 𝑧𝜖
𝜕 𝑡 = −𝑧𝜖

𝛿 𝐹 [𝑧𝜖]
𝛿 𝑧𝜖

+
√

2𝜖𝑧𝜖 𝑊̇𝑥,𝑡, (6)

where the noise is of Itô form. We highlight that the fluctuation operator 𝜎𝑧𝜖 =
√

2𝜖𝑧𝜖 acting on the white noise 𝑊̇𝑥,𝑡 is related
o the dissipative operator 𝑧𝜖 through an infinite-dimensional fluctuation–dissipation relation, 𝜎𝑧𝜖𝜎

∗
𝑧𝜖

= 2𝜖𝑧𝜖 . This relation will
be crucial in upcoming sections to determine the dissipative operator from fluctuation data. Existence of a solution to Eq. (6) is
typically very subtle; for atomistic initial data as data representing particles as in this article, martingale solutions can be shown to
exist for simple cases (Konarovskyi et al., 2019). For regularization by correlated noise, as it is relevant for applications, existence
esults are available, see for example (Cornalba et al., 2021; Fehrman and Gess, 2024; Dirr et al., 2020) and the references therein.

We remark that Eq. (4) with the Klimontovich integral is natural from a physical viewpoint, as the Gibbs measure 1
𝑍 exp(− 1

𝜖 𝐹 )
s in suitable situations, at least formally, invariant. That is, the Gibbs measure is the equilibrium distribution, consistently with
tatistical mechanics theory. We sketch this for Eq. (5) interpreted as an ordinary differential equation,

𝜕 𝑧𝜖
𝜕 𝑡 = −𝑧𝜖∇𝐹 + 𝜖∇𝑧𝜖 +

√

2𝜖𝑧𝜖 𝑊̇ , (7)

1 In short, the Klimontovich, Itô and Stratonovich integrals of a function can be defined as the limit of a Riemann sum, where the function is evaluated at
the right, left or middle point, respectively, for each interval. Each will lead to different result, in contrast to what usually happens for deterministic integrals.
4 
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where 𝑊 is a Wiener noise (Gaussian white noise) in time. Then the evolution of an observable 𝑓 (𝑧𝜖) can be computed from (7)
using the Itô formula. It is given by 𝜕 𝑓

𝜕 𝑡 = 𝐿𝑓 , where 𝐿 is the generator (see Oksendal (2013, Sect. 7.3)). The density 𝜌 evolves
according to the associated Fokker–Planck equation, which involves the formal adjoint operator 𝐿∗, that is, 𝜕 𝜌

𝜕 𝑡 = 𝐿∗𝜌, with

𝐿∗𝜌 = ∇ ⋅ (𝑧𝜖𝜌∇𝐹 ) − 𝜖∇ ⋅ (∇𝑧𝜖𝜌) + 𝜖∇ ⋅ ∇(𝑧𝜖𝜌) = ∇ ⋅
[

(𝑧𝜖𝜌∇𝐹 ) + 𝜖𝑧𝜖∇𝜌
]

.

This expression vanishes for 𝜌 = 1
𝑍 exp(− 1

𝜖 𝐹 ), indicating it is the equilibrium distribution as expected. For background on this
material see Pavliotis (2014).

2.1. Harnessing fluctuations to learn the dissipative operator

We here briefly describe the computational strategy of Li et al. (2019) to learn a discretized version of the dissipative operator
𝑧𝜖 from fluctuation data in particle simulations at a fixed value of 𝜖. To that end, the profile 𝑧 and the thermodynamic driving
force 𝑄 ∶= 𝛿 𝐹∕𝛿 𝑧 are approximated as in finite element discretizations as 𝑧(𝑥, 𝑡) ≈ ∑

𝑖 𝑧𝑖(𝑡)𝛾𝑖(𝑥) and 𝑄(𝑥, 𝑡) ≈ ∑

𝑖 𝑄𝑖(𝑡)𝛾𝑖(𝑥), where
{

𝛾𝑖(𝑥)
}

is a set of suitable basis functions. Then the weak form of Eq. (2) can be approximated as
∑

𝑖

⟨

𝛾𝑗 , 𝛾𝑖
⟩

𝑧̇𝑖 = −
∑

𝑖

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

𝑄𝑖 for all 𝑗 , (8)

where the bracket ⟨⋅, ⋅⟩ denotes the 𝐿2 inner product. Here
⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

represents the discretized dissipative operator (now a finite-
dimensional matrix). In Li et al. (2019), it is shown that the entries may be computed by the covariation of the rescaled fluctuations
as

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

= lim
ℎ↘0

1
2ℎ

E
[(

𝑌𝛾𝑖
(

𝑡0 + ℎ
)

− 𝑌𝛾𝑖
(

𝑡0
)

)

⋅
(

𝑌𝛾𝑗
(

𝑡0 + ℎ
)

− 𝑌𝛾𝑗
(

𝑡0
)

)]

. (9)

Here 𝑌𝛾 = lim𝜖→0 ⟨𝑧𝜖 − 𝑧, 𝛾⟩ ∕√𝜖 are the fluctuations of the many-particle system around the limit 𝑧 = E
[

𝑧𝜖
]

; the fluctuations are
scaled by a factor of

√

𝜖, as they are by the central limit theorem of that order. Above, 𝑡0 is an initial time, arbitrary as long as the
ystem has reached a local equilibrium for the profile 𝑧(𝑥, 𝑡), and ℎ is a time step that is infinitesimally small from a macroscopic
erspective, yet, sufficiently large for the system to exhibit some stochastic events at the microscale. In practice, multiple realizations
f a particle simulation at a fixed value of 𝜖 and given profile 𝑧(𝑥) are performed, and the simulation domain is discretized with
hape functions

{

𝛾𝑖(𝑥)
}

. The values of ⟨𝑧𝜖 , 𝛾⟩ are then recorded at times 𝑡0 and 𝑡0 + ℎ to compute the right-hand side of Eq. (9).
To fully tabulate the discretized operator

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

and enable in such a way standalone macroscopic simulations, its input,
𝑧(𝑥), shall also be discretized. The approach we will here use to that regard differs from that of Li et al. (2019), and this will be
escribed in further detail in Section 3.1.

. Statistical-Physics-Informed Neural Networks (Stat-PINNs)

In this section we are going to introduce a machine learning framework, which we refer to as Statistical-Physics-Informed Neural
etworks (Stat-PINNs), to learn the full evolution equation described by Eq. (2) (including both the dissipative operator 𝑧 and the

ree energy 𝐹 [𝑧]) from particle simulations spanning a macroscopically small time step. First, in Section 3.1, we will introduce a
tructure-preserving parameterization of the discretized operator entries

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

, so that its input, 𝑧(𝑥), is also discretized. Next, in
ection 3.2, we will discuss various common dependences of the free energy functional on 𝑧(𝑥) and the corresponding structure for
he evolution equations. Finally, we will describe the architecture of Stat-PINNs in Section 3.3, which includes two neural networks
or sequentially learning the dissipative operator 𝑧 and the free energy 𝐹 [𝑧].

.1. Structure-preserving parameterization of the discretized dissipative operator

As previously noted in Section 2, the dissipative operator 𝑧 is linear as an operator acting on the thermodynamic driving force,
ymmetric, and positive semi-definite. Furthermore, 𝑧 may be subjected to additional constraints when the field(s) 𝑧 represent
onserved quantities such as mass or energy. In order to learn a thermodynamic-consistent and numerically stable structure for its
iscretized version from particle data, these properties should be retained during the learning strategy. We will here discuss how
o preserve such properties in the context of a conserved filed 𝑧 (linearity is automatically satisfied and hence omitted from the
iscussions).

For simplicity, we consider a one-dimensional problem and choose linear finite element shape functions {𝛾𝑖(𝑥)}, satisfying
𝑖(𝑥𝑗 ) = 𝛿𝑖𝑗 , with 𝑥𝑖 = 𝑖𝛥𝑥𝛾 and 𝑖 = 0, 1, 2,… , 𝑁𝛾 . This choice provides a piecewise linear approximation for both 𝑧 and 𝑄, and
s sufficient to characterize dissipative operators containing up to second-order derivatives. Notably, the local support of the shape
unctions can result in a sparse matrix

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

, highly simplifying the learning strategy, as will be discussed next.
In general, the dissipative operator 𝑧 can have nonlocal dependencies on both 𝑧 and the thermodynamic force 𝑄 being acted on.

ere, we classify the nonlocality of 𝑧 into three categories. First, 𝑧 may be local on both 𝑧 and 𝑄, such as 𝑧𝑄 = −∇ ⋅ (𝑧(𝑥, 𝑡)∇𝑄).
n this case, 𝑧𝛾𝑖(𝑥) has the same local support as 𝛾𝑖(𝑥) on 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖+1] and only depends on the profile of 𝑧(𝑥, 𝑡) within that
upport. Second, 𝑧 may be local on the acting force 𝑄 but nonlocal on the profile 𝑧, such as 𝑧𝑄 = −∇ ⋅

(

∫ 𝐿
−𝐿 𝑧(𝑥 − 𝜉 , 𝑡)𝑑 𝜉∇𝑄

)

.
ere, 𝑧𝛾𝑖(𝑥) still has the same local support as 𝛾𝑖(𝑥) but depends on a wider range of the profile 𝑧. Third, 𝑧 may be nonlocal on
, such as  𝑄 = ∫ 𝜅 𝑥 − 𝜉 𝑧(𝑥 − 𝜉 , 𝑡) + 𝑧(𝜉 − 𝑥, 𝑡) 𝑄(𝜉)𝑑 𝜉, where 𝜅(⋅) is a kernel function. In this case,  𝛾 (𝑥) has a larger local
𝑧 (| |) [ ] 𝑧 𝑖
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support than 𝛾𝑖(𝑥) and may even be non-zero on the full domain. In the following, we will focus on the first and second cases, and
refer the reader to Appendix A for a detailed discussion on the fully nonlocal case.

When the operator 𝑧 is local on the driving force 𝑄 (first and second cases listed above), 𝑧𝛾𝑖(𝑥) has the same local
support as 𝛾𝑖(𝑥). As a result, the discretized dissipative operator becomes a tridiagonal matrix, i.e.,

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

non-zero only when
𝑗 ∈ {𝑖 − 1, 𝑖, 𝑖 + 1}. Under this assumption, which may be verified numerically using Eq. (9), Li et al. (2019) parameterized these
three operator entries by the values of the local profile and its gradient at point 𝑥𝑖, i.e., 𝑧𝑖 and ∇𝑧|𝑖. However, this approximation
reaks the symmetry of the operator and may induce, based on our observations, numerical instabilities when solving Eq. (8). To

preserve the operator symmetry, we here regard the entries of the tridiagonal matrix as two functions of several discrete values of
𝑧. Specifically,

𝐾0(𝐙0
𝑖 ) = ⟨𝛾𝑖,𝑧𝛾𝑖⟩ , and

𝐾1(𝐙1
𝑖 ) =

⟨

𝛾𝑖+1,𝑧𝛾𝑖
⟩

=
⟨

𝛾𝑖,𝑧𝛾𝑖+1
⟩

,
(10)

where 𝐙0
𝑖 = (𝑧𝑖−1, 𝑧𝑖, 𝑧𝑖+1) and 𝐙1

𝑖 = (𝑧𝑖, 𝑧𝑖+1) when the operator is local on 𝑧 (or the nonlocal effect is negligible within the given
umerical discretization). If 𝑧 is nonlocal on 𝑧, then additional neighboring points may be needed, e.g., 𝐙0

𝑖 = (𝑧𝑖−2, 𝑧𝑖−1, 𝑧𝑖, 𝑧𝑖+1, 𝑧𝑖+2)
and 𝐙1

𝑖 = (𝑧𝑖−1, 𝑧𝑖, 𝑧𝑖+1, 𝑧𝑖+2). We remark that this multi-point expansion method on operator entry 𝐾𝑝 with 𝑝 = 0, 1 can be equivalently
written as 𝐾𝑝(𝐙

𝑝
𝑖 ) = 𝐾̃𝑝(𝐙̃

𝑝
𝑖+ 𝑝

2
) to change the functional dependency from profiles at multiple local points 𝐙𝑝

𝑖 to the value of the profile

and its derivatives 𝐙̃𝑝
𝑖+ 𝑝

2
at the middle point 𝑥𝑖+ 𝑝

2
= (𝑥𝑖 + 𝑥𝑖+𝑝)∕2 (see Appendix B for further details).

Next, we turn our attention to the constraints on the operator when the field 𝑧 obeys a conservation law of the form 𝑑
𝑑 𝑡 ∫ 𝑧(𝑥) 𝑑 𝑥 =

, such as the density in the diffusive system that will be discussed in Section 4. In this case, the operator entries should satisfy
𝑗
⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

= 0 (Li et al., 2019), and, thus

𝐾0(𝐙0
𝑖 ) = −𝐾1(𝐙1

𝑖−1) −𝐾1(𝐙1
𝑖 ). (11)

hat is, the whole discretized operator can be written as a function of the off-diagonal entry 𝐾1.
Finally, the discretized operator should be positive semi-definite for an arbitrary profile 𝑧(𝑥). Although the Cholesky decomposi-

ion is often used to guarantee that a given matrix is positive semi-definite, we here use an alternative approach, which will prove
o be much simpler to implement. We first note that, by combining Eqs. (8) and (11), the evolution equation of the system can be
e-written as

𝑗+1
∑

𝑖=𝑗−1

⟨

𝛾𝑗 , 𝛾𝑖
⟩ 𝜕 𝑧𝑖

𝜕 𝑡 = −𝛥𝑏

[

𝐾1(𝐙1
𝑗 )𝛥𝑓𝑄𝑗

]

, (12)

where 𝛥𝑓𝐵𝑖 = 𝐵𝑖+1−𝐵𝑖 is the forward finite difference for an arbitrary field 𝐵 and 𝛥𝑏𝐵𝑖 = 𝐵𝑖−𝐵𝑖−1 is the backward finite difference.
q. (12) therefore suggests that −𝑧 is a second-order diffusion type operator with −𝐾1 acting as the mobility coefficient. As
igorously shown in Appendix A, the discretized operator can then be enforced to be positive semi-definite by simply requiring
1 ≤ 0 for an arbitrary profile.

.2. Free energy parameterization and ensuing equation structure

The thermodynamic driving force for systems governed by Eq. (2) is given by the functional derivative of the free energy,
.e., 𝑄 = 𝛿 𝐹∕𝛿 𝑧. We will here assume, as it is common in continuum descriptions, that the free energy functional has a density

associated with it so that 𝐹 [𝑧] = ∫ 𝑓 𝑑 𝑥. Yet, we will allow for various dependencies of 𝑓 on the profile 𝑧, which will result in
ifferent thermodynamic forces and, consequently, in different types of evolution equations.

The simplest case is that of 𝑓 = 𝑓 (𝑧), where the free energy density is only a function of the local profile, and the thermodynamic
orce is then given by

𝑄 = 𝑓 ′(𝑧). (13)

or a discretized dissipative operator of the form of Eq. (12), the evolution equation will then be a standard second-order diffusion
quation.

If the free energy density also depends on the local gradient, i.e., 𝑓 = 𝑓 (𝑧,∇𝑧), the thermodynamic force is then given by

𝑄 =
𝜕 𝑓
𝜕 𝑧 − ∇ ⋅

𝜕 𝑓
𝜕∇𝑧

. (14)

We remark that if we use a first-order backward (or forward) finite difference scheme to discretize ∇𝑧, the divergence in Eq. (14)
should be expressed as a forward (or backward) scheme, respectively (see Appendix C for further details). In the discrete setting,
𝑓 can be viewed as a function of two local points and 𝑄 as a function of three local points. Following the operator form given in
Eq. (12), the evolution equation is now a fourth-order equation, such as a Cahn–Hilliard equation.

The free energy density may also have a dependency on higher-order derivatives. For instance, if it also depends on the Laplacian
denoted as ∇2𝑧 for simplicity for a one-dimensional system), i.e., 𝑓 = 𝑓 (𝑧,∇𝑧,∇2𝑧), the thermodynamic force now includes an
dditional term,

𝑄 =
𝜕 𝑓

− ∇ ⋅
𝜕 𝑓

+ ∇2 𝜕 𝑓
. (15)
𝜕 𝑧 𝜕∇𝑧 𝜕∇2𝑧
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Fig. 2. Architecture for Stat-PINNs. Macroscopic dissipative evolution equations of the form 𝜕 𝑧
𝜕 𝑡 = −𝑧

𝛿 𝐹 [𝑧]
𝛿 𝑧 are learned through the sequential training of NN𝐾1

and NN𝑓 . These neural networks are aimed at learning the discretized operator 𝑧 (in particular, the off-diagonal element of its tri-diagonal matrix representation)
and the free energy density 𝑓 (𝐹 [𝑧] = ∫ 𝑓 𝑑 𝑥).

In the discrete setting, if we use a backward, forward, or central scheme to calculate ∇𝑧 and use a second-order central scheme for
∇2𝑧, the discretized 𝑓 can be viewed as a function of three local points and 𝑄 as a function of five local points (see Appendix C for
more details). Eq. (12) is now a sixth-order partial differential equation.

The above discussion highlights how higher-order terms in the dependence of the free energy density increase the order of the
resulting PDE. Yet, it is interesting to note that, regardless of the order of the PDE (it being fourth- or even sixth- order), one can still
se linear shape functions to discretize the dissipative operator, as this only contains second-order derivatives under the assumptions
ade in Section 3.1. Testing examples can be found in Appendix D.

.3. Stat-PINNs architecture

We will now introduce a machine learning architecture, which we denote as Statistical-Physics-Informed Neural Networks (Stat-
INNs), to learn the coarse-grained dissipative evolution equation. This architecture is depicted in Fig. 2 and consists of two neural
etworks that will be trained sequentially. These neural networks are aimed at learning the discretized operator 𝑧 and the free
nergy density 𝑓 , based on the parameterizations discussed in Sections 3.1 and 3.2, respectively.

The first neural network is constructed to learn the off-diagonal entry 𝐾1, as this is sufficient to fully characterize the discretized
perator (see Section 3.1). Such an entry will be learned from multiple realizations of short-time particle simulations using Eqs. (9)
nd (11) so that both the diagonal and off-diagonal entries are well-approximated. We denote the measured data of the diagonal
perator entries, off-diagonal operator entries and corresponding field values as

{

𝐾 (𝑠)
0 , 𝐾 (𝑠)

1 ,𝐙0(𝑠)
𝑖𝑠

}𝑁𝐾

𝑠=1
, where 𝑁𝐾 is the number of

raining data and 𝑖𝑠 denotes the spatial index for the 𝑠th sample. We remark that 𝐙0(𝑠)
𝑖𝑠 includes both 𝐙1(𝑠)

𝑖𝑠−1 and 𝐙1(𝑠)
𝑖𝑠 , which are the field

alues needed in the loss function, as will be seen next. The off-diagonal entry 𝐾1(𝐙1;𝜽1) is represented through a neural network
N𝐾1

(𝐙̃1∗;𝜃𝜃𝜃1), applied onto a non-positive function 𝑔(⋅), i.e., 𝑔(NN𝐾1
), to ensure the positive semi-definiteness of the operator. Here,

̃ 1∗ is the normalized version of 𝐙1 =
{

𝐙1(𝑠)
𝑖𝑠

}𝑁𝐾

𝑠=1
and 𝜃1 represents the trainable parameters. Further details on the relation between

1 and NN𝐾1
can be found in Appendix E. Then, the training is performed by minimizing the following loss function

𝐾 =
𝜆0
2𝑁0

𝑁0
∑

𝑠=1

‖

‖

‖

‖

−𝐾1

(

𝐙1(𝑠)
𝑖𝑠−1;𝜃𝜃𝜃1

)

−𝐾1

(

𝐙1(𝑠)
𝑖𝑠 ;𝜃𝜃𝜃1

)

−𝐾 (𝑠)
0
‖

‖

‖

‖

2

+
𝜆1
2𝑁1

𝑁1
∑

𝑠=1

‖

‖

‖

‖

𝐾1

(

𝐙1(𝑠)
𝑖𝑠 ;𝜃𝜃𝜃1

)

−𝐾 (𝑠)
1
‖

‖

‖

‖

2
,

(16)

where 𝜆0 and 𝜆1 are two adaptive loss weights determined automatically based on the neural tangent kernel method (Wang et al.,
2022).

Once the dissipative operator 𝑧 is learned from the first neural network, we can learn the free energy density 𝑓 (𝐙̃𝑓 ) from
macroscopic evolutions over a small time step 𝛥𝑡. We approximate 𝑓 through a second neural network NN𝑓 (𝐙̃𝑓∗;𝜽𝑓 ), where 𝜽𝑓
enotes the trainable parameters for NN𝑓 , 𝐙̃𝑓 denotes the value of the local field and potentially its spatial derivative, and 𝐙̃𝑓∗ is

the corresponding normalized version (see Appendix E for details). The training data is denoted as
{

𝐙𝑄(𝑠)
𝑖𝑠 , 𝛥𝐙𝑄(𝑠)

𝑖𝑠

}𝑁𝑓

𝑠=1
, where 𝐙𝑄(𝑠)

𝑖𝑠

epresents the local field values needed for computing the thermodynamic force 𝑄(𝐙𝑄(𝑠);𝜽 ) at point 𝑥 through NN , and 𝛥𝐙𝑄(𝑠)

𝑖𝑠 𝑓 𝑖𝑠 𝑓 𝑖𝑠
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represents the time increments of these field values during the time interval 𝛥𝑡. We remark that both the local field values and
their time increments are averaged from 𝑅 realizations of macroscopically equivalent particle simulation. Here, the time interval 𝛥𝑡
hould be macroscopically small, but still much longer than the infinitesimal timestep ℎ used for calculating the operator entries.
ince the deterministic increment in Eq. (6) is proportional to 𝛥𝑡 and the stochastic noise is proportional to

√

𝛥𝑡, 𝛥𝑧 will in general
be noisy. We should therefore construct the loss function not only based on the deterministic Eq. (8) as Physics-Informed Neural

etworks (PINNs) but also taking into account the effect of the stochastic noise term as (Dietrich et al., 2023)

𝑓 = 1
2𝑁𝑓

𝑁𝑓
∑

𝑠=1

‖

‖

‖

∑

𝑖⟨𝛾𝑗𝑠 , 𝛾𝑖⟩𝛥𝑧(𝑠)𝑖 ∕𝛥𝑡 +
∑

𝑖⟨𝛾𝑗𝑠 ,𝑧(𝑠)𝛾𝑖⟩𝑄(𝐙𝑄(𝑠)
𝑖 ;𝜽𝑓 )

‖

‖

‖

2

(

𝜎(𝑠)𝐸 𝑞 ,𝑗𝑠
)2

. (17)

Here, ⟨𝛾𝑗𝑠 ,𝑧(𝑠)𝛾𝑖⟩ is calculated from the trained neural network NN𝐾1
and the local field values, the thermodynamic forces 𝑄𝑖

re parameterized by the neural network NN𝑓 according to the discussion in Section 3.2, and 𝜎2𝐸 𝑞 ,𝑗 represents the variance of the
stochastic noise at point 𝑥𝑗 , which is equal to 2𝜖⟨𝛾𝑗𝑠 ,𝑧(𝑠)𝛾𝑗𝑠 ⟩∕(𝑅𝛥𝑡) (see Appendix F for further details). This denominator can
ormalize the noise at different points to a standard Gaussian distribution and is crucial for the training process. This is particularly
he case when the noise is comparable to or dominant over the deterministic term and when the variance of noise varies among

different data points.
In summary, the coarse-grained dissipative evolution equation can be learned by the sequential training processes of two neural

networks NN𝐾1
and NN𝑓 . First, the dissipative operator is learned from NN𝐾1

by minimizing the loss function  (Eq. (16)). Then,
the free energy is learned from NN𝑓 by minimizing the loss function 𝑓 (Eq. (17)) based on the knowledge of learned operator.
Notice that we here apply fully-connected feed-forward neural networks for both NN𝐾1

and NN𝑓 .

4. Example: Arrhenius interacting particles processes

4.1. Particle process and existing macroscopic model for Arrhenius diffusion

Arrhenius-type dynamics are characterized by an exponential dependence on an activation energy 𝐸̂𝑑 and inverse temperature
𝛽 = 1∕(𝑘𝐵𝑇 ), i.e., 𝑒−𝛽𝐸̂𝑑 , and arise in a wide range of phenomena, such as surface absorption, chemical reactions, or vacancies and
intersticials in solids (Gibbs, 1972; Linderoth et al., 1997; Gilmer and Bennema, 1972; Laidler, 1984; Zhdanov, 1991; Dewey, 1994).

As an illustrative example of such type of dynamics, we here consider a stochastic jumping process for interacting particles
on a one-dimensional lattice (Vlachos and Katsoulakis, 2000; Katsoulakis and Vlachos, 2003), where each lattice site can only be
occupied by at most one particle, i.e., the occupation number is 𝜂(𝑥) = 1 if site 𝑥 is occupied and 𝜂(𝑥) = 0 if it is empty. The
probability of a particle jumping event from site 𝑥 to its nearest-neighbor 𝑦 (left or right in 1D) is of Arrhenius type and given by
𝑝(𝑥 → 𝑦) = 𝑑 𝜂(𝑥) (1 − 𝜂(𝑦)) 𝑒−𝛽𝑈̂ (𝑥). Here, 𝑑 is the jumping frequency, and 𝑈̂ (𝑥) = 𝑈̂0 +

∑

𝜉≠𝑥 𝐽 (𝑥 − 𝜉)𝜂(𝜉), where 𝑈̂0 is the binding
energy, and 𝐽 (⋅) describes the interaction energy between particles, which is attractive for 𝐽 > 0 and repulsive for 𝐽 < 0. Despite the
apparent simplicity of this Arrhenius diffusion model, its analytic macroscopic description only exists for limited cases. Particularly,
when the interaction between the particles is long range (compared to the lattice size), the macroscopic evolution for the particle
density 𝜌 is given by Vlachos and Katsoulakis (2000)

𝜕 𝜌
𝜕 𝑡 = ∇ ⋅

(

𝑚 [𝜌] ∇
𝛿 𝐹 [𝜌]
𝛿 𝜌

)

and 𝑚 [𝜌] = 𝐷 𝜌(1 − 𝜌)𝑒−𝐽∗𝜌, (18)

where 𝐷 = 𝑑 𝑒−𝛽𝑈̂0 , 𝐽 (⋅) = 𝛽𝐽 (⋅) is the dimensionless interaction energy, and 𝐽 ∗ 𝜌 = ∫ 𝐽 (𝑥 − 𝜉)𝜌(𝜉)d𝜉 denotes the convolution
between 𝐽 and 𝜌. Furthermore, 𝐹 is the (dimensionless) Helmholtz free energy given by

𝐹 [𝜌] = −∫
1
2
𝜌 (𝐽 ∗ 𝜌)d𝑥 + ∫ [𝜌 ln 𝜌 + (1 − 𝜌) ln (1 − 𝜌)]d𝑥, (19)

which consists of a nonlocal energy term and a cross entropy term. When the interaction potential is symmetric, i.e., 𝐽 (𝑥) = 𝐽 (−𝑥),
the thermodynamic driving force can be written as,

𝑄 = 𝛿 𝐹
𝛿 𝜌 = −𝐽 ∗ 𝜌 − ln

(

1
𝜌
− 1

)

. (20)

Moreover, the fluctuations of the particle jumping process can be accounted for by adding the stochastic noise term ∇⋅
(

√

2𝜖 𝑚 [𝜌]𝑊̇𝑥,𝑡

)

to Eq. (18) (Vlachos and Katsoulakis, 2000). That is, the macroscopic description and its stochastic counterpart are of the form of
Eq. (2) and (6), respectively, with the following dissipative operator

𝜌 = −∇ ⋅ (𝑚 [𝜌] ∇) = −∇ ⋅
[

𝐷 𝜌(1 − 𝜌)𝑒−𝐽∗𝜌∇
]

. (21)

urther details for the weak form of this long-range model can be found in Appendix G.
A specific case of the above dynamics is that of no interaction between the particles, i.e., 𝑈̂ (𝑥) = 0. Such particle dynamics is

known as the symmetric simple exclusion process (SSEP) (Embacher et al., 2018; Adams et al., 2013; Huang et al., 2020). Even
though this ‘‘interaction’’ is not long-range, its coarse-grained evolution (both the PDE and its stochastic version) can also be given
by the equations above with 𝐽 = 0 and 𝑈̃ = 0.
0
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Beyond this long-range model described by Eqs. (18)–(19), our understanding of the macroscopic evolution equations for the
case with short-range interactions is still limited. The coarse-grained free energy expression has only been obtained from statistical
mechanics for the case of nearest-neighbor interactions (Katsoulakis and Vlachos, 2003), whilst the analytical expression for the
dissipative operator, or the full dynamics, for such nearest-neighbor interaction case is still unknown. We will thus aim to capture
the full dynamics of the Arrhenius process with different interactions by the proposed Stat-PINNs framework in the following section.

4.2. Results

We consider the Arrhenius particle process just described with 𝑑 = 1, 𝑈0 = 0 and a symmetric step function interaction defined
s 𝐽 (𝑥) = 𝐽0 for 0 < |𝑥| ≤ 𝐿 and 𝐽 (𝑥) = 0 otherwise. Here, we will test our Stat-PINNs framework for three different cases of the

Arrhenius diffusion process. The first one is chosen to have long-range interactions between the particles, so as to enable a direct
comparison with the known analytic solution. The other two cases will correspond to weak and strong short-range interactions, and
are aimed at testing the capability of the method to discover their continuum thermodynamic model, previously unknown, to the
best of the authors’ knowledge. In all cases, the results will be directly compared to the results from traditional PINNs, where no
ecourse is made to statistical mechanics. To perform a fair comparison and isolate the contribution from statistical mechanics, the

same thermodynamic structure and parameterization will be used. Specifically, two neural networks for 1 and 𝑓 will be jointly
trained using the loss function given by Eq. (17), but without normalizing the residuals with the equation variance (i.e., setting
the denominator 𝜎2𝐸 𝑞 = 1). This is analogous to previous integrations of PINNs with GENERIC, in the sense that the operator and
thermodynamic potential are jointly trained.

For each case, the data is collected from a one-dimensional particle system with 𝑁𝑏 = 2000 bins and 25 shape functions using
MC particle simulations starting from 28 different cosine initial profiles. This particle system is then rescaled to the macroscopic

range 𝑥 ∈ [0, 0.5], indicating a lattice size 𝜖 = 2.5 × 10−4 and a spatial discretization 𝛥𝑥𝛾 = 0.02. The restriction to the domain [0, 0.5]
s motivated by symmetry considerations to facilitate the particle simulations used for comparison, see Appendix H. Each data point
or the operator entries is calculated from 10 sequential ℎ intervals in 𝑅 = 104 realizations, i.e., expectations are approximated by
erforming averages over 𝑅𝐾 = 105 realizations for each initial profile, where the small time interval ℎ is taken as ℎ = 0.01𝜖2𝜏,
ith 𝜏 = exp (2𝐽0𝐿𝜌max

)

a factor that depends on the maximum density 𝜌max of each simulated profile. Each data point for learning
he free energy is generated from these same 𝑅 = 104 realizations for each initial profile, within a short time interval 𝛥𝑡 ≫ ℎ,
hosen to be about 20𝜖2𝜏 ∼ 40𝜖2𝜏 depending on each case. More details about the particle simulations and corresponding parameter
ettings can be found in Appendix H. In all three cases below, we set the off-diagonal entry 𝐾1 as a function of two local points, or
quivalently as 𝐾̃1(𝜌,∇𝜌), with 𝜌 and ∇𝜌 evaluated at the middle point of the support, and the free energy density as 𝑓 (𝜌), indicating
hat the input of the first neural network NN𝐾1

has a dimension of two and that of the second neural network NN𝑓 has a dimension
f one. Furthermore, all neural networks are chosen to have two hidden layers with 20 neurons per layer. More training details
re included in Appendix J. Using the learned operator and free energy, Eq. (8) is then solved using a forward Euler scheme and
he results are compared to those stemming from the long-range analytical model (Eqs. (18) and (19)) together with the average

of 600 realizations from direct KMC simulations using the Bortz–Kalos–Lebowitz (BKL) algorithm (Bortz and Lebowitz, 1975). The
macroscopic predictions are solved on 𝑥 ∈ [0, 1] with spatial discretization 𝛥𝑥𝛾 = 0.02 and periodic boundary conditions. The initial
condition chosen to test the predictive capability of Stat-PINNs is a triangular profile, and hence distinct from the training profiles.
We remark that while the training profiles are simulated only for a 𝛥𝑡 time interval, the macroscopic simulations can be performed
over an arbitrary large time interval, as well as arbitrary initial conditions, without needing to perform extrapolations, as long as the
macroscopic evolution lies within the trained phase space, e.g., range of 𝜌 and ∇𝜌 explored within the profiles used in the training
process.

All KMC particle simulations are coded in C++ and run on Intel(R) Xeon(R) CPUs E5-2683 v4 @ 2.10 GHz. Stat-PINNs and the
corresponding continuum predictions are coded in Python. JAX is the main Python library for implementing neural networks. Other
standard libraries such as Numpy, JAX Numpy, Scipy, and Matplotlib are used for data pre- and post-processing.

Fig. 3 shows the coarse-grained results from a particle system with long-range interactions with 𝐽0𝐿 = 0.9 and 𝐿 = 40𝜖, i.e., each
particle interacts with other particles within 40 neighboring lattice sites on each side. Given that the interaction is weak, we regard
the dynamics as local within numerical accuracy even though the interaction range 𝐿 = 𝛥𝑥𝛾∕2 is long from a particle perspective.
Figs. 3a-3c show the comparison between the Stat-PINNs result (blue) and long-range analytic model (yellow) for the off-diagonal
entry 𝐾̃1, shown for two different ranges, and the free energy density. The latter is calibrated by setting its value and that of its
derivative to zero at 𝜌 = 0.5 in order to cancel the non-uniqueness due to the structure of the operator and the thermodynamic force
𝑄 (see Appendix K for details), and it is denoted as 𝑓 (𝜌) after calibration. We see that the prediction of Stat-PINNs (blue) has an
excellent agreement with the long-range analytic model (yellow), exhibiting a relative 𝐿2 error of 0.59% for 𝐾̃1 and 2.56% for 𝑓 .
In contrast, PINNs (orange) cannot uniquely identify the true operator and free energy. Furthermore, the operator entry identified
by PINNs differs in magnitude for low and high densities, exhibits an opposite trend, and is non-smooth. The learned free energy
rom PINNs even lacks symmetry. The learned operator and free energy from both Stat-PINNs and PINNs are used to solve Eq. (8)

for a triangular wave initial profile with average density 𝜌𝑎𝑣𝑒 = 0.5, amplitude 𝐴 = 0.45 and frequency 𝑓 = 2, and the results are
ompared to that of the analytical long-range evolution equation as well as direct particle simulations. The total time simulated is
𝑡𝑡𝑜𝑡 = 0.08, and the timestep used in the discretization is 𝛥𝑡𝑠𝑖𝑚 = 𝛥𝑥2𝛾∕5 = 8 × 10−5. Figs. 3d-3f show the results for the macroscopic
volution. Both the prediction from Stat-PINNs (blue solid line) and the solution from the long-range analytic model (yellow dotted
line) agree with the KMC particle simulation (purple dots). In contrast, there exists a noticeable error in the prediction from PINNs
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Fig. 3. Results for the Arrhenius process with 𝐽 𝐿 = 0.9, 𝐿 = 40𝜖, including (a, b) the dissipative operator entry 𝐾̃1 plotted in two different ranges, (c) the calibrated
ree energy density 𝑓 , and (d-f) snapshots of the macroscopic evolution starting from a triangular wave initial profile (black dash-dotted line). Predictions from

Stat-PINNs (blue surfaces or blue solid lines), PINNs (orange surfaces or orange dashed lines), and a long-range analytic model (yellow surfaces or yellow dotted
ines) are shown. Results from KMC particle simulations (purple dots) are used as the true macroscopic evolution for comparison.

Fig. 4. Results for Arrhenius process with 𝐽 𝐿 = 0.9, 𝐿 = 2𝜖, including (a, b) dissipative operator entry 𝐾̃1 plotted in two different ranges, (c) calibrated free
nergy density 𝑓 , and (d-f) snapshots of macroscopic evolution starting from a triangular wave initial profile (black dash-dotted line). Predicting methods include

Stat-PINNs (blue surfaces or blue solid lines), PINNs (orange surfaces or orange dashed lines), and a long-range analytic model (yellow surfaces or yellow dotted
ines). Results from KMC particle simulation (purple dots) are used as true macroscopic evolution for comparison.
10 
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Fig. 5. Results for Arrhenius process with 𝐽 𝐿 = 2.2, 𝐿 = 2𝜖, including (a, b) dissipative operator entry 𝐾̃1 plotted in two different ranges, (c) calibrated free
nergy density 𝑓 , and (d-f) snapshots of macroscopic evolution starting from a triangular wave initial profile (black dash-dotted line). Predicting methods include

Stat-PINNs (blue surfaces or blue solid lines), PINNs (orange surfaces or orange dashed lines), and a long-range analytic model (yellow surfaces or yellow dotted
ines). Results from KMC particle simulation (purple dots) are used as true macroscopic evolution for comparison.

orange dashed line) at the beginning of the evolution. These results therefore show that Stat-PINNs can not only predict the correct
oarse-grained macroscopic evolution but also learn the true thermodynamics and kinetics of the system.

Fig. 4 shows the results from a short-range weakly interacting Arrhenius process with 𝐽0𝐿 = 0.9 and 𝐿 = 2𝜖, where the long-
ange analytic model is not expected to work and no analytic solution is known, to the best of the authors’ knowledge. Figs. 4a-4c

show the comparison between the results from PINNs (orange), Stat-PINNs (blue) and the long-range analytical model (yellow)
for the off-diagonal entry 𝐾̃1, shown for two different ranges, and the calibrated free energy density 𝑓 (𝜌), respectively. While the
predicted free energy from Stat-PINNs agrees with Eq. (19) with a 1.85% relative 𝐿2 error, the predicted operator is different from
he long-range model as could be expected (there is a 13.83% 𝐿2 relative difference). Predictions for the macroscopic evolution of
 triangular wave initial profile with average density 𝜌𝑎𝑣𝑒 = 0.5, amplitude 𝐴 = 0.45 and frequency 𝑓 = 2 are shown in Figs. 4d-4f.
hese are solved for a total time 𝑡𝑡𝑜𝑡 = 0.08 using a timestep 𝛥𝑡𝑠𝑖𝑚 = 𝛥𝑥2𝛾∕5 = 8 × 10−5. While the Stat-PINNs’ prediction perfectly
grees with the true evolution from KMC simulations, the results from PINNs exhibit a noticeable error and so does as well the
ong-range analytical model (particularly in the higher density range). In particular, the long-range analytical prediction appears to
ag behind the true evolution (which coincides with that of Stat-PINNs). This difference can be explained from the predicted operator
ntry shown in Fig. 4a, which can be physically interpreted as a mobility coefficient. The value of 𝐾1 predicted with Stat-PINNs has
 larger absolute value compared to the long-range model, and this difference is more significant in the higher density range.

Fig. 5 shows the results from a short-range strongly interacting Arrhenius particle process with 𝐽0𝐿 = 2.2 and 𝐿 = 2𝜖. As shown in
igs. 5a-5c, the predictions for both the off-diagonal operator entry 𝐾̃1 and the free energy 𝑓 are very different from the long-range
odel, as could be anticipated. Particularly, while the long-range model has a double-well free energy, which suggests that the

ystem may exhibit phase separation, the predicted free energy is clearly single-welled and is not suggestive of phase separation.
his observation is in agreement with the macroscopic evolution shown in Figs. 5d-5f. Here the initial profile is chosen as a triangular
ave with average density 𝜌𝑎𝑣𝑒 = 0.5, amplitude 𝐴 = 0.4 and frequency 𝑓 = 3 and the simulation is run for a total time of 𝑡𝑡𝑜𝑡 = 0.2
nd a timestep of 𝛥𝑡𝑠𝑖𝑚 = 𝛥𝑥2𝛾∕2 = 2 × 10−4. While the long-range model reached a steady-state with a bistable profile, the Stat-PINNs’
rediction decays to the average value, in agreement with the particle simulations. Although the results from PINNs capture the
verall trend of the macroscopic evolution, noticeable errors exist at the beginning of the simulations.

We remark that in the three particle processes discussed, the errors observed in the macroscopic dynamics predicted by PINNs
an be eliminated by increasing the number of time intervals 𝛥𝑡 used for training the networks (see Appendix L), although this
ill naturally entail an increased computational cost. This therefore indicates that statistical mechanics relations can increase the

obustness of Stat-PINNs, particularly when the amount of data is limited and the noise is not negligible. In any case, macroscopic
ata, regardless of how extensive this is, is insufficient to characterize the physical free energy and dissipative operator in the
xamples considered.
11 



S. Huang et al. Journal of the Mechanics and Physics of Solids 194 (2025) 105908 
Table 1
Computational costs for Stat-PINNs compared with KMC particle simulations. Here the numbers with units of days represent the
total cost for all realizations as if they were performed in the absence of any parallelization and the number in the following
parenthesis denotes the maximum factor for increasing computational efficiency by parallelizing all realizations.
Case Stat-PINNs

Data Collection
Stat-PINNs
Training

Stat-PINNs
Prediction

KMC for
Full Model

𝐽0𝐿 = 0.9
𝐿 = 40𝜖

55 days (÷28 ÷ 104) ∼ 20 min < 5 min 3500 days (÷600)

𝐽0𝐿 = 0.9
𝐿 = 2𝜖

19 days (÷28 ÷ 104) ∼ 20 min < 5 min 875 days (÷600)

𝐽0𝐿 = 2.2
𝐿 = 2𝜖

39 days (÷28 ÷ 104) ∼ 20 min < 5 min 625 days (÷600)

Finally, we would like to comment on the computational cost for Stat-PINNs and the KMC particle simulations, highlighted in
Table 1. As is to be expected, direct particle simulations of long-time macroscopic evolutions are extremely costly, even for the
one-dimensional example chosen. Here, parallelization is only done for independent realizations (600 in this case), as causality
severely hinders parallelizations in time. For the specific particle systems chosen, the long-time KMC simulations performed took
of the order of 1 to 6 days at full parallelization (or 1 to 10 years without any parallelization). With the Stat-PINNs strategy,
the training and macroscopic prediction can all be done within 30 min. Here, the computational cost is dominated by the data
collection process, which consists of a large number (28 profiles times 𝑅 = 104 realizations) of independent short-time trajectories.
For the most ideal case, where independent trajectories are fully parallelized, data collection can be done within a minute. And
even in the most undesired case, where no parallelization is available, the computational cost of Stat-PINNs is still at least one
to two orders of magnitude faster than particle simulations. Furthermore, Stat-PINNs can be applied to predict the evolution of
different initial profiles and different boundary conditions, at minimal cost. Finally, we want to comment that although all particle
simulations mentioned above are performed using the BKL algorithm, other algorithms with more efficient searching (Schulze,
2008) or parallelization strategies (Arampatzis et al., 2011) could be applied to further reduce the computational cost for the data
collection in Stat-PINNs.

5. Conclusions and discussions

In this work, we proposed a machine learning architecture called Statistical-Physics-Informed Neural Networks (Stat-PINNs) for
learning purely dissipative evolution equations of GENERIC type from short-time particle simulations. It consists of two neural
networks that are sequentially trained to learn the unique discretized dissipative operator and free energy density of the system,
through a carefully designed structure-preserving parameterization method. More specifically, the proposed strategy strongly ensures
that the dissipative operator is symmetric (as required by Onsager’s reciprocity relations), positive semi-definite (in accordance
with the second law of thermodynamics), and that the ensuing dynamics are conserved, when applicable, as is the case of diffusive
phenomena. The key idea behind the proposed framework is that field fluctuations, in addition to the average particle dynamics,
contain crucial information for tackling the inverse problem of thermodynamic model discovery from data. Such fluctuations are
leveraged in two ways. First, the fluctuation–dissipation relation is used to uniquely determine the dissipative operator. Second, the
evolution equation is treated as a stochastic differential equation when defining the loss function used for learning the free energy.
That is, in contrast to traditional PINNs, the loss function contains a denominator that is related to the stochastic noise estimated
from statistical physics to normalize the equation’s residue. The Stat-PINNs architecture is demonstrated over a particle process
with three different Arrhenius-type interactions, of which only one has an analytically known macroscopic evolution equation. The
predicted continuum evolution from Stat-PINNs perfectly agrees with the true particle dynamics in all cases, while PINNs exhibit
noticeable deviations from the true evolution. Although such deviations can be reduced by increasing the length of the particle
simulations and gathering more training data along the particle trajectories (see Appendix L), the unique free energy and operator
of the system cannot be learned by PINNs. Stat-PINNs may thus be regarded as more physically interpretable and also more robust
when temporal data from particle simulations is limited.
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Appendix A. Discussion on the nonlocal operator beyond the tri-diagonal form

When the dissipative operator 𝑧 is nonlocal in the thermodynamic force 𝑄, the discretized operator is no longer a tri-diagonal
matrix and more non-zero off-diagonal entries need to be considered. In this case, the parameterization method introduced in
Section 3.1 may still be utilized. In general, we can assume that the operator entry

⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

≠ 0 only when 𝑗 ∈ {𝑖, 𝑖± 1,… , 𝑖± 𝑛𝐾}
with 𝑛𝐾 being a positive integer. Then, all non-zeros operator entries can be written as

𝐾𝑝(𝐙
𝑝
𝑖 ) =

⟨

𝛾𝑖+𝑝,𝑧𝛾𝑖
⟩

=
⟨

𝛾𝑖,𝑧𝛾𝑖+𝑝
⟩

, (A.1)

where 𝑝 = 0, 1,… , 𝑛𝐾 and 𝐙𝑝
𝑖 represents the profile 𝑧 at multiple local points within the non-local dependence on 𝑧 for calculating

the integral.
Furthermore, when 𝑧 satisfies a conservation law, 𝐾0 can be expressed as

𝐾0(𝐙0
𝑖 ) = −

𝑛𝐾
∑

𝑝=1

[

𝐾𝑝(𝐙
𝑝
𝑖−𝑝) +𝐾𝑝(𝐙

𝑝
𝑖 )
]

, (A.2)

analogously to Eq. (11) for the fully local case. Then, 𝑛𝐾 neural networks, representing the 𝑛𝐾 off-diagonal entries would be required
to learn the operator.

As mentioned in Section 3.1, when 𝑧 obeys a conservation law and 𝑧 is local on 𝑄 (indicating a tri-diagonal form), the weak
form of the evolution equation can be written as Eq. (12), indicating a diffusive equation. In comparison, when 𝑧 is nonlocal on
𝑄, the evolution equation (Eq. (8)) can be re-written as

∑

𝑎
⟨𝛾𝑏, 𝛾𝑎⟩

𝜕 𝑧𝑎
𝜕 𝑡 = −

𝑛𝐾
∑

𝑝=1

⟨

𝛾𝑏+𝑝,𝑧𝛾𝑏
⟩ (

𝑄𝑏+𝑝 −𝑄𝑏
)

+
𝑛𝐾
∑

𝑝=1

⟨

𝛾𝑏,𝑧𝛾𝑏−𝑝
⟩ (

𝑄𝑏 −𝑄𝑏−𝑝
)

= −
𝑛𝐾
∑

𝑝=1
𝛥(𝑝)
𝑏

[

⟨

𝛾𝑏+𝑝,𝑧𝛾𝑏
⟩

𝛥(𝑝)
𝑓 𝑄𝑏

]

,

(A.3)

where 𝛥(𝑝)
𝑓 𝐵𝑖 = 𝐵𝑖+𝑝 − 𝐵𝑖 is the 𝑝-step forward finite difference for an arbitrary variable 𝐵 and 𝛥(𝑝)

𝑏 𝐵𝑖 = 𝐵𝑖 − 𝐵𝑖−𝑝 is the 𝑝-step
backward finite difference. Eq. (A.3) can be viewed as a generalized version of Eq. (12) with nonlocal diffusion behavior, where
different off-diagonal entries serve as mobility functions corresponding to different nonlocal spatial derivatives. Eq. (A.3) can also
be written in matrix form as

𝐌𝐳̇ = −
𝑛𝐾
∑

𝑝=1

[

𝐃(𝑝)Λ(𝑝) (−𝐃(𝑝)𝐓)]𝐐, (A.4)

where

𝐳 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑧1
𝑧2
⋮

𝑧𝑁𝛾

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐐 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑄1
𝑄2
⋮

𝑄𝑁𝛾

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐌 =

⎛

⎜

⎜

⎜

⎜

⎝

⟨𝛾1, 𝛾1⟩ ⟨𝛾1, 𝛾2⟩ ⋯ ⟨𝛾1, 𝛾𝑁𝛾
⟩

⟨𝛾2, 𝛾1⟩ ⟨𝛾2, 𝛾2⟩ ⋯ ⟨𝛾2, 𝛾𝑁𝛾
⟩

⋮ ⋮ ⋱ ⋮
⟨𝛾𝑁𝛾

, 𝛾1⟩ ⟨𝛾𝑁𝛾
, 𝛾2⟩ ⋯ ⟨𝛾𝑁𝛾

, 𝛾𝑁𝛾
⟩

⎞

⎟

⎟

⎟

⎟

⎠

,

Λ(𝑝) =

⎛

⎜

⎜

⎜

⎜

⎝

𝐾1+𝑝,1 0 ⋯ 0
0 𝐾2+𝑝,2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐾𝑝𝑁𝛾

⎞

⎟

⎟

⎟

⎟

⎠

with 𝐾𝑗 𝑖 =
⟨

𝛾𝑗 ,𝑧𝛾𝑖
⟩

,

and 𝐃(𝑝) =
(

𝐷(𝑝)
𝑖𝑗

)

𝑁𝛾×𝑁𝛾
with 𝐷(𝑝)

𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1, 𝑖 = 𝑗

− 1, 𝑖 = 𝑗 + 𝑝 or 𝑖 = 𝑗 + 𝑝 −𝑁𝛾

0 otherwise

Here 𝐃(𝑝) and −𝐃(𝑝)𝐓 represent the 𝑝-step backward and forward finite difference matrices, respectively. We note that we have
pplied periodic boundary conditions here for simplicity.

Finally, the discretized operator should be positive semi-definite. If the operator is local on 𝑄, (being a tridiagonal form), a
positive semi-definite 𝑧 requires

𝐓 (1) (1) ( (1)𝐓) ( (1)𝐓 )𝐓 (1) ( (1)𝐓 )
𝐮 𝐃 Λ −𝐃 𝐮 = − 𝐃 𝐮 Λ 𝐃 𝐮 ≥ 0, (A.5)
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for an arbitrary vector 𝐮. This can be simplified to 𝐾1(𝐙1
𝑖 ) ≤ 0 when 𝑧 is local on the thermodynamic force 𝑄. Such a practical

strategy to encode the positive semi-definiteness when 𝑧 is nonlocal on 𝑄 has not yet been discovered.

Appendix B. Multi-point expansion and middle-point expansion for the discretized operator

In Section 3.1, we introduced the multi-point expansion method to parameterize the discrete operator entry as 𝐾𝑝(𝐙
𝑝
𝑖 ) =

𝛾𝑖+𝑝,𝑧𝛾𝑖
⟩

=
⟨

𝛾𝑖,𝑧𝛾𝑖+𝑝
⟩

. This method is also mathematically equivalent to expanding the same entry at the middle point
𝑖+ 𝑝

2
= (𝑥𝑖 + 𝑥𝑖+𝑝)∕2,

𝐾𝑝(𝐙
𝑝
𝑖 ) = 𝐾̃𝑝(𝐙̃

𝑝
𝑖+ 𝑝

2
), (B.1)

where 𝐾̃𝑝 represents the middle-point expansion form of 𝐾𝑝, and 𝐙̃𝑝
𝑖+ 𝑝

2
represents the corresponding values of the local profile and

its derivatives. For example, when 𝑧 is local on both 𝑧 and 𝑄, the two operator entries 𝐾0 and 𝐾1 can be equivalently written as

𝐾0(𝑧𝑖−1, 𝑧𝑖, 𝑧𝑖+1) = 𝐾̃0(𝑧𝑖, ∇𝑧|𝑖 , ∇2𝑧||
|𝑖
),

𝐾1(𝑧𝑖, 𝑧𝑖+1) = 𝐾̃1(𝑧𝑖+ 1
2
, ∇𝑧|𝑖+ 1

2
),

with ∇𝑧|𝑖 =
𝑧𝑖+1 − 𝑧𝑖−1

2𝛥𝑥𝛾
, ∇2𝑧||

|𝑖
=

𝑧𝑖+1 − 2𝑧𝑖 + 𝑧𝑖−1
𝛥𝑥2𝛾

,

and 𝑧𝑖+ 1
2
=

𝑧𝑖 + 𝑧𝑖+1
2

, ∇𝑧|𝑖+ 1
2
=

𝑧𝑖+1 − 𝑧𝑖
𝛥𝑥𝛾

.

(B.2)

Appendix C. Numerical schemes for the free energy and thermodynamic force

In Section 3.2, we introduced the expression of the thermodynamic force 𝑄 when the free energy has different functional
dependencies. In this section, we will discuss the expression of 𝑓 and 𝑄 in the discrete setting.

Here we assume that the free energy density can be written as 𝑓 = 𝑓 (𝑧,∇𝑧,∇2𝑧). If we use a backward scheme for the gradient,
∇𝑧|𝑖 = (𝑧𝑖 − 𝑧𝑖−1)∕𝛥𝑥𝛾 , and a central scheme for the Laplacian, ∇2𝑧||

|𝑖
= (𝑧𝑖−1 − 2𝑧𝑖 + 𝑧𝑖+1)∕𝛥𝑥2𝛾 , and denote 𝑓𝑖 = 𝑓 (𝑧𝑖, ∇𝑧|𝑖 , ∇2𝑧||

|𝑖
), the

variation of the total free energy functional can be given by

𝛿 𝐹 =
𝑁𝛾
∑

𝑖=1

(

𝑓𝑖,𝑧𝛿 𝑧𝑖 + 𝑓𝑖,∇𝑧
𝛿 𝑧𝑖 − 𝛿 𝑧𝑖−1

𝛥𝑥𝛾
+ 𝑓𝑖,∇2𝑧

𝛿 𝑧𝑖+1 − 2𝛿 𝑧𝑖 + 𝛿 𝑧𝑖−1
𝛥𝑥2𝛾

)

𝛥𝑥𝛾

=
𝑁𝛾
∑

𝑖=1

[

𝑓𝑖,𝑧𝛿 𝑧𝑖 +
(

𝑓𝑖,∇𝑧 −
𝑓𝑖,∇2𝑧

𝛥𝑥𝛾

)

𝛿 𝑧𝑖 − 𝛿 𝑧𝑖−1
𝛥𝑥𝛾

+
𝑓𝑖,∇2𝑧

𝛥𝑥𝛾

𝛿 𝑧𝑖+1 − 𝛿 𝑧𝑖
𝛥𝑥𝛾

]

𝛥𝑥𝛾 ,

(C.1)

where 𝑓𝑖,𝑧 = 𝜕 𝑓𝑖∕𝜕 𝑧 and similarly for 𝑓𝑖,∇𝑧 and 𝑓𝑖,∇2𝑧. For simplicity, we denote 𝑟𝑖 = 𝑓𝑖,∇𝑧 − 𝑓𝑖,∇2𝑧∕𝛥𝑥𝛾 . Then, the summation of the
second term in the square bracket above can be given by

𝑁𝛾
∑

𝑖=1

(

𝑟𝑖
𝛿 𝑧𝑖 − 𝛿 𝑧𝑖−1

𝛥𝑥𝛾

)

𝛥𝑥𝛾 =
𝑁𝛾
∑

𝑖=1

(

𝑟𝑖𝛿 𝑧𝑖 − 𝑟𝑖−1𝛿 𝑧𝑖−1
𝛥𝑥𝛾

+
𝑟𝑖−1𝛿 𝑧𝑖−1 − 𝑟𝑖𝛿 𝑧𝑖−1

𝛥𝑥𝛾

)

𝛥𝑥𝛾

=
𝑟𝑁𝛾

𝛿 𝑧𝑁𝛾
− 𝑟0𝛿 𝑧0

𝛥𝑥𝛾
+

𝑁𝛾
∑

𝑖=1

(

𝑟𝑖−1𝛿 𝑧𝑖−1 − 𝑟𝑖𝛿 𝑧𝑖−1
𝛥𝑥𝛾

)

𝛥𝑥𝛾

= −
𝑁𝛾
∑

𝑖=1

(

𝑟𝑖+1 − 𝑟𝑖
𝛥𝑥𝛾

)

𝛿 𝑧𝑖𝛥𝑥𝛾 ,

(C.2)

where the first term in the second line is cancelled out when applying periodic boundary conditions for 𝑧. Similarly, the third term
in the square bracket of Eq. (C.1) can be expressed as

𝑁𝛾
∑

𝑖=1

(𝑓𝑖,∇2𝑧

𝛥𝑥𝛾

𝛿 𝑧𝑖+1 − 𝛿 𝑧𝑖
𝛥𝑥𝛾

)

𝛥𝑥𝛾 = −
𝑁𝛾
∑

𝑖=1

(

𝑓𝑖,∇2𝑧 − 𝑓𝑖−1,∇2𝑧

𝛥𝑥2𝛾

)

𝛿 𝑧𝑖𝛥𝑥𝛾 . (C.3)

Combining the above results, Eq. (C.1) can be simplified as

𝛿 𝐹 =
𝑁𝛾
∑

𝑖=1

(

𝑓𝑖,𝑧 −
𝑟𝑖+1 − 𝑟𝑖
𝛥𝑥𝛾

−
𝑓𝑖,∇2𝑧 − 𝑓𝑖−1,∇2𝑧

𝛥𝑥2𝛾

)

𝛿 𝑧𝑖𝛥𝑥𝛾

=
𝑁𝛾
∑

𝑖=1

(

𝑓𝑖,𝑧 −
𝑓𝑖+1,∇𝑧 − 𝑓𝑖,∇𝑧

𝛥𝑥𝛾
+

𝑓𝑖+1,∇2𝑧 − 𝑓𝑖,∇2𝑧

𝛥𝑥2𝛾
−

𝑓𝑖,∇2𝑧 − 𝑓𝑖−1,∇2𝑧

𝛥𝑥2𝛾

)

𝛿 𝑧𝑖𝛥𝑥𝛾

=
𝑁𝛾
∑

(

𝑓𝑖,𝑧 −
𝑓𝑖+1,∇𝑧 − 𝑓𝑖,∇𝑧 +

𝑓𝑖+1,∇2𝑧 − 2𝑓𝑖,∇2𝑧 + 𝑓𝑖−1,∇2𝑧
2

)

𝛿 𝑧𝑖𝛥𝑥𝛾 .

(C.4)
𝑖=1 𝛥𝑥𝛾 𝛥𝑥𝛾
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Fig. D.6. Solution of a 4th-order Cahn-Hilliard equation using a finite difference scheme (yellow solid) and the proposed weak-GENERIC method with linear
shape functions (blue dashed). (a-f) Different snapshots for the evolution of 𝑧(𝑥, 𝑡) at 𝑡 = 0.001, 0.002, 0.004, 0.008, 0.012 and 0.02. The black dash dotted lines
indicate the sinusoidal initial profile at 𝑡 = 0.

herefore, the discrete thermodynamic force at 𝑥𝑖 is given by

𝑄𝑖 = 𝑓𝑖,𝑧 −
𝑓𝑖+1,∇𝑧 − 𝑓𝑖,∇𝑧

𝛥𝑥𝛾
+

𝑓𝑖+1,∇2𝑧 − 2𝑓𝑖,∇2𝑧 + 𝑓𝑖−1,∇2𝑧

𝛥𝑥2𝛾
= 𝑓𝑖,𝑧 −

𝛥𝑓𝑓𝑖,∇𝑧
𝛥𝑥𝛾

+
𝛥𝑓𝛥𝑏𝑓𝑖,∇2𝑧

𝛥𝑥2𝛾
. (C.5)

Here, we want to emphasize that assuming that the free energy has a functional dependence on a backward scheme gradient will
lead to a forward scheme spatial derivative of 𝑓𝑖,∇𝑧 in the expression of 𝑄. Similarly, a forward scheme for ∇𝑧 will lead to a backward
scheme for ∇𝑓,∇𝑧, and a central scheme for ∇𝑧 will lead to a central scheme for ∇𝑓,∇𝑧.

Appendix D. Solving higher-order PDEs with linear shape functions

In Section 3.2, we have theoretically shown the possibility of solving PDEs with order higher than two only using linear shape
functions (as long as the operator is second order). In this appendix, we will numerically verify such claim.

Consider a one-dimensional diffusion problem for field 𝑧(𝑥, 𝑡) described by a Laplacian dissipative operator  = −∇2 and the
following free energy density,

𝑓 (𝑧,∇𝑧,∇2𝑧) = 1
4
(

𝑧2 − 1)2 + 𝛼1
2

(∇𝑧)2 +
𝛼2
2

(

∇2𝑧
)2 , (D.1)

which includes a quartic double-well term, a quadratic gradient term, and a quadratic term for the Laplacian of 𝑧, where 𝛼1 and 𝛼2
are two coefficients. The evolution equation, Eq. (2), for 𝑧 can be written as the following 6th-order equation

𝜕 𝑧
𝜕 𝑡 = ∇2 (𝑧3 − 𝑧 − 𝛼1∇2𝑧 + 𝛼2∇4𝑧

)

. (D.2)

Here we solve Eq. (D.2) by two methods. The first is the standard finite difference method, which we will here take as the ground
truth solution. The second corresponds to the weak form of the GENERIC formalism using linear shape functions as in Eq. (8), which
we denote as weak-GENERIC. In both cases, a simple forward Euler scheme is used for the time derivative and a 2nd-order central
scheme is used for the Laplacian. The 4th-order gradient ∇4 is obtained by applying the Laplacian twice.

Figs. D.6 and D.7 depict the numerical results from two examples using different coefficients 𝛼1 and 𝛼2. In Fig. D.6, we choose
1 = 10−4 and 𝛼2 = 0, indicating a 4th-order Cahn-Hilliard equation. The equation is discretized using 200 spatial nodes and solved
ith a timestep 𝛥𝑡 = 2.5 × 10−8. In Fig. D.7, we choose 𝛼1 = 10−4 and 𝛼2 = 10−5, indicating a 6th-order diffusion equation. The
quation is discretized using 200 spatial nodes and solved with a timestep 𝛥𝑡 = 10−9. In both examples, the equations are solved
rom the same sinusoidal initial condition 𝑧 = 0.5 sin(2𝜋 𝑥), plotted as a black dash dotted line. In both examples, the solution obtained
sing the weak-GENERIC method (blue dashed lines) agree very well with that obtained using a finite difference scheme (yellow
olid lines). This indicates that the proposed approach utilizing linear shape functions can be used to solve PDEs with order higher
han two, as long as the dissipative operator is at most of second order.
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Fig. D.7. Solution of a 6th-order evolution equation using a finite difference scheme (yellow solid) and the proposed weak-GENERIC method with linear shape
functions (blue dashed). (a-f) Different snapshots for the evolution of 𝑧(𝑥, 𝑡) at 𝑡 = 0.001, 0.002, 0.004, 0.008, 0.012 and 0.02. The black dash dotted lines indicate
the sinusoidal initial profile at 𝑡 = 0.

Appendix E. Structure details for Stat-PINNs

When learning the off-diagonal entry 𝐾1 from neural network NN𝐾1
, a normalization of the input data is needed. First, the local

field values 𝐙1 at multiple points are transformed into 𝐙̃1, which consists of local field values and its derivatives at the middle point
as discussed in Appendix B. Then, each component of 𝐙̃1 is subtracted by the mean and then divided by the standard deviation
f that component within all training data to obtain the normalized input 𝐙̃1∗ for NN𝐾1

. This normalization process can decouple
he dependence that naturally exists between sequential points (e.g., between 𝑧𝑖 and 𝑧𝑖+1), increasing the training robustness, and
aking it easier to understand and manipulate practically. The off-diagonal entry 𝐾1 can then by parameterized by

𝐾1
(

𝐙1;𝜃𝜃𝜃1
)

= |

|

|

𝜇𝐾1
|

|

|

𝑔
(

NN𝐾1

(

𝐙̃1∗;𝜃𝜃𝜃1
)

)

, (E.1)

here 𝜇𝐾1
is the mean of all measured off-diagonal entry data for ensuring that the output of NN𝐾1

is of scale one, and 𝑔(⋅) is a
on-positive function to encode the positive semi-definiteness of the operator 𝑧. Here, we choose 𝑔(𝑦) = −𝑦 − 𝑒−5 if 𝑦 ≥ 0 and
(𝑦) = −𝑒𝑦−5 if 𝑦 < 0 (Sivaprasad et al., 2021; Huang et al., 2022).

A similar normalization process is applied to the second neural network NN𝑓 . Each component of 𝐙̃𝑓 , the local profile and its
erivatives for expressing the free energy, is subtracted by the mean and then divided by the standard deviation of that component
ithin all training data to obtain the normalized input 𝐙̃𝑓∗. The free energy density can then by represented by

𝑓
(

𝐙̃𝑓 ;𝜃𝜃𝜃𝑓
)

= 𝑓 †NN𝑓
(

𝐙̃𝑓∗;𝜃𝜃𝜃𝑓
)

, (E.2)

here 𝑓 † is an estimated scale for the free energy density based on the evolution equation in order to control that the output of
N𝑓 is of scale one. For the case of 𝑓 = 𝑓 (𝑧), we use 𝑓 † = 𝜇𝐌𝜇

|𝑧̇|𝜇|𝑧|∕𝜇𝐾1
, where 𝜇𝐌 =

(

⟨𝛾𝑖−1, 𝛾𝑖⟩ + ⟨𝛾𝑖, 𝛾𝑖⟩ + ⟨𝛾𝑖+1, 𝛾𝑖⟩
)

∕3, 𝜇
|𝑧̇| is the

ean of the absolute value of the profile time rate, |𝛥𝑧∕𝛥𝑡|, within all the training data, and 𝜇
|𝑧| is the mean of the absolute value of

ll the profile data. For the case of 𝑓 = 𝑓 (𝑧,∇𝑧), we use 𝑓 † = 𝜇𝐌𝜇
|𝑧̇|

(

𝜇
|𝑧| + 𝜇

|∇𝑧|𝛥𝑥𝛾
)

∕𝜇𝐾1
, where 𝜇

|∇𝑧| is the mean of the absolute
alue of all ∇𝑧. For the case of 𝑓 = 𝑓 (𝑧,∇2𝑧), we use 𝑓 † = 𝜇𝐌𝜇

|𝑧̇|

(

𝜇
|𝑧| + 𝜇

|∇2𝑧|𝛥𝑥
2
𝛾

)

∕𝜇𝐾1
, where 𝜇

|∇2𝑧| is the mean of the absolute
alue of all ∇2𝑧. Finally, we want to emphasize that the training data for NN𝑓 are 𝐙𝑄 and 𝛥𝐙𝑄 with superscript 𝑄. This is due to
he fact that 𝑄 is directly involved in the loss function Eq. (17) instead of 𝑓 and calculating 𝑄 may require information from more
ocal points. Therefore, a transformation from 𝐙𝑄 to 𝐙̃𝑓 is also required at the beginning of training procedure.

ppendix F. Variance estimation for the weak form of the evolution equation

As mentioned in Section 2.1, the added stochastic noise term for Eq. (8) is
⟨

𝛾𝑗 ,
√

2𝜖𝑧𝑊̇𝑥,𝑡

⟩

. We note that we are here omitting
the subscript 𝜖 that emphasizes the dependence on the lattice size, for simplicity. Given that  is a linear, symmetric, positive
𝑧
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semi-definite operator and 𝑊̇𝑥,𝑡 is a Gaussian process in space and time, the random variable
⟨

𝛾𝑗 ,
√

2𝜖𝑧𝑑 𝑊𝑥,𝑡

⟩

during a time
nterval 𝑑 𝑡 has a (multivariate) Gaussian distribution. The corresponding mean and variance, conditioned on the profile 𝑧 at time 𝑡,
re given by

E

[

⟨

𝛾𝑗 ,
√

2𝜖𝑧𝑑 𝑊𝑥,𝑡

⟩ |

|

|

|

|

𝑧

]

=
⟨

𝛾𝑗 ,
√

2𝜖𝑧E
[

𝑑 𝑊𝑥,𝑡
]

⟩

= 0, (F.1)

Var
[⟨

𝛾𝑗 ,
√

2𝜖𝑧𝑑 𝑊𝑥,𝑡

|

|

|

|

|

𝑧

⟩]

= E

[

⟨

𝛾𝑗 ,
√

2𝜖𝑧𝑑 𝑊𝑥,𝑡

⟩2 |
|

|

|

|

𝑧

]

= 2𝜖 ∫𝑥 ∫𝑦
√

𝑧𝛾𝑗 (𝑥)
√

𝑧𝛾𝑗 (𝑦)E
[

𝑑 𝑊𝑥,𝑡𝑑 𝑊𝑦,𝑡
]

𝑑 𝑥 𝑑 𝑦

= ∫𝑥 ∫𝑦
2𝜖
√

𝑧𝛾𝑗 (𝑥)
√

𝑧𝛾𝑗 (𝑦)𝛿(𝑥 − 𝑦)𝑑 𝑡 𝑑 𝑥 𝑑 𝑦

= 2𝜖
⟨

√

𝑧𝛾𝑗 ,
√

𝑧𝛾𝑏
⟩

𝑑 𝑡
= 2𝜖 ⟨𝛾𝑗 ,𝑧𝛾𝑗

⟩

𝑑 𝑡,

(F.2)

where we have used E
[

𝑑 𝑊𝑥,𝑡𝑑 𝑊𝑦,𝑡
]

= 𝛿(𝑥− 𝑦)𝑑 𝑡. Therefore, considering the average evolution of 𝑅 realizations of particle dynamics
during a short time interval 𝛥𝑡, the variance for the residue of Eq. (8) can be given by 𝜎2𝐸 𝑞 ,𝑗 = 2𝜖⟨𝛾𝑗 ,𝑧𝛾𝑗⟩∕ (𝑅𝛥𝑡).

Appendix G. Long-range analytic model for Arrhenius process

The long-range analytic model is introduced in Section 4.1 with Eqs. (18)–(21). Given that Eq. (18) is a diffusion equation, the
following numerical scheme is used for solving the continuum evolution

𝜌𝑛+1𝑖 = 𝜌𝑛𝑖 +
𝑚𝑛
𝑖+ 1

2

(𝑄𝑛
𝑖+1 −𝑄𝑛

𝑖 ) − 𝑚𝑛
𝑖− 1

2

(𝑄𝑛
𝑖 −𝑄𝑛

𝑖−1)

𝛥𝑥2𝛾
𝛥𝑡, (G.1)

where 𝜌𝑛𝑖 = 𝜌(𝑥𝑖, 𝑡𝑛) with 𝑡𝑛 = 𝑛𝛥𝑡 and similarly for 𝑄. We note that the mobility is evaluated at the mid-point to preserve the
conservation of 𝜌 and that the density profiles at mid-points are defined as 𝜌𝑛

𝑖+ 1
2

= (𝜌𝑛𝑖 + 𝜌𝑛𝑖+1)∕2.

The discrete operator entries for the long-range Arrhenius analytic expression can be evaluated by the following calculation
⟨

𝛾𝑖,𝜌𝛾𝑖
⟩

= ⟨∇𝛾𝑖, ⋅𝑚 [𝜌] ∇𝛾𝑖⟩

= ∫

𝑥𝑖+1

𝑥𝑖−1
𝑚[𝜌(𝑥)]

(

∇𝛾𝑖(𝑥)
)2 𝑑 𝑥

= 1
𝛥𝑥2𝛾 ∫

𝑥𝑖+1

𝑥𝑖−1

[

𝑚𝑖 + ∇𝑚|𝑖
(

𝑥 − 𝑥𝑖
)

+ 1
2
∇2 𝑚||

|𝑖

(

𝑥 − 𝑥𝑖
)2 + 𝑂

(

𝛥𝑥3𝛾
)]

𝑑 𝑥

=
2𝑚𝑖
𝛥𝑥𝛾

+ 1
3
∇2𝑚||

|𝑖
𝛥𝑥𝛾 + 𝑂

(

𝛥𝑥3𝛾
)

,

(G.2)

and
⟨

𝛾𝑖+1,𝜌𝛾𝑖
⟩

=
⟨

∇𝛾𝑖+1, ⋅𝑚 [𝜌] ∇𝛾𝑖
⟩

= − 1
𝛥𝑥2𝛾 ∫

𝑥𝑖+1

𝑥𝑖

[

𝑚𝑖+ 1
2
+ ∇𝑚|𝑖+ 1

2

(

𝑥 − 𝑥𝑖+ 1
2

)

+ 1
2
∇2 𝑚||

|𝑖+ 1
2

(

𝑥 − 𝑥𝑖+ 1
2

)2
+ 𝑂

(

𝛥𝑥3𝛾
)

]

𝑑 𝑥

= −
𝑚𝑖+ 1

2

𝛥𝑥𝛾
− 1

6
∇2𝑚||

|𝑖+ 1
2
𝛥𝑥𝛾 + 𝑂

(

𝛥𝑥3𝛾
)

.

(G.3)

We note that all diagonal entries are expanded at the middle point as described in Appendix B. Furthermore, if we denote 𝑉 = 𝐽 ∗ 𝜌,
the nonlocal mobility functional can be simplified into a local mobility function, i.e., 𝑚[𝜌] = 𝑚̃(𝜌, 𝑉 ) = 𝐷 𝜌(1 −𝜌)𝑒−𝑉 . Given that 𝑚̃(𝜌, 𝑉 )
and its higher order derivatives are now local, the first two spatial gradients of 𝑚 can be given by

∇𝑚 = 𝑚̃,𝜌∇𝜌 + 𝑚̃,𝑉 ∇𝑉 = 𝑚̃,𝜌∇𝜌 − 𝑚̃∇𝑉 , (G.4)

∇2 𝑚 = 𝑚̃,𝜌𝜌 (∇𝜌)2 + 2𝑚̃,𝜌𝑉 ∇𝜌∇𝑉 + 𝑚̃,𝜌∇2𝜌 + 𝑚̃,𝑉 𝑉 (∇𝑉 )2 + 𝑚̃,𝑉 ∇2𝑉

= 𝑚̃,𝜌𝜌 (∇𝜌)2 − 2𝑚̃,𝜌∇𝜌∇𝑉 + 𝑚̃,𝜌∇2𝜌 + 𝑚̃
[

(∇𝑉 )2 − ∇2𝑉
]

,
(G.5)

where 𝑚̃,𝜌 = 𝐷(1 − 2𝜌)𝑒−𝑉 and 𝑚̃,𝜌𝜌 = −2𝐷 𝑒−𝑉 .
In practice, we choose a step function interaction 𝐽 as described in Section 4.2 and approximate 𝑉 = 𝐽 ∗ 𝜌 numerically based

on the nonlocality of the system. In all three cases considered in Section 4.2, the nonlocal effect is insignificant, which is verified
by the macroscopic evolution. Therefore we approximate the convolution by a zeroth-order expansion as 𝑉 = 𝐽 ∗ 𝜌 ≈ 2𝐽 𝐿𝜌.
0
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Table H.2
Parameters used for the 28 initial cosine profiles, 𝜌(𝑥) = 𝜌𝑎𝑣𝑒 − 𝐴 cos(4𝜋 𝑓 𝑥), used in the KMC particle simulation.
Label 𝑓 𝐴 𝜌𝑎𝑣𝑒
1–7 1 0.05 + 0.03𝑖 with 𝑖 = 1,… , 7 0.5 − (−1)𝑖 × 0.6 (0.5 − 𝐴) with 𝑖 = 1,… , 7

8–14 1 0.31 0.272 + 0.057𝑖 with 𝑖 = 1,… , 7

15–21 2 0.04 + 0.03𝑖 with 𝑖 = 1,… , 7 0.5 + (−1)𝑖 × 0.84 (0.5 − 𝐴) with 𝑖 = 1,… , 7

21–28 2 0.29 0.272 + 0.057𝑖 with 𝑖 = 1,… , 7

Fig. H.8. Distribution of the training data in the space of
(

𝜌𝑖+ 1
2
, ∇𝜌|𝑖+ 1

2

)

generated from the 28 initial profiles.

Appendix H. Settings for the particle simulation

The particle simulations performed for the Arrhenius process are run using the Kinetic Monte Carlo (KMC) method. Such
imulations were used to (1) generate the training data for Stat-PINNs and (2) validate the long-time continuum evolution equations.
ll particle simulations are coded in C++.

During data generation for Stat-PINNs, the initial profiles should be carefully chosen according to two criteria. First, we would
like to avoid an initial profile with a too-wide density range. This is because the jumping probability in the Arrhenius process
has an exponential factor to local interaction. Then the corresponding time scale is approximately proportional to 𝑒𝐽0𝐿𝜌, which
indicates that the time scale at different points in the same profile can be exponentially different which may lead to practical
issues. Second, the generated data should be relatively uniform and dense in the input space for training purposes and avoid
extrapolation during the prediction stage. Particularly, here we targeted the space of

(

𝜌𝑖+ 1
2
, ∇𝜌|𝑖+ 1

2

)

for learning the off-diagonal

ntry 𝐾̃1

(

𝜌𝑖+ 1
2
, ∇𝜌|𝑖+ 1

2

)

= 𝐾(𝜌𝑖, 𝜌𝑖+1) of a local operator.
For the three cases shown in Section 4.2, all particle simulations used for data generation are run on a one dimensional system

𝑥 ∈ [0, 0.5] with 2000 lattice sites, 25 shape functions and periodic boundary conditions, indicating a lattice size of 𝜖 = 2.5 × 10−4
nd a spatial discretization of 𝛥𝑥𝛾 = 0.02. We use 28 different cosine functions 𝜌(𝑥) = 𝜌𝑎𝑣𝑒 − 𝐴 cos(4𝜋 𝑓 𝑥) as initial profiles (see
able H.2 for the choice of parameters 𝜌𝑎𝑣𝑒, 𝐴 and 𝑓 ). The corresponding data distribution can found in Fig. H.8 , which consists of
𝐾 = 28 × 25 = 700 data points. A schematic for the KMC simulation can be found in Fig. H.9. During the simulation, each profile

s run for 𝑅 = 104 realizations. Note that in each realization, since each lattice site can have at most one particle, the initial profile
annot match the targeted profile. The initial profile for each realization is generated according to the sample probability distribution
uch that the corresponding ensemble average over all realizations has the targeted cosine profile. Each realization is first run for

time 𝑡𝑒𝑞 = 50𝜖2𝜏 to achieve local equilibration, then following by 𝑁𝛥𝑡 number of time intervals 𝛥𝑡. Here we choose 𝑁𝛥𝑡 = 1 for all
hree cases in Section 4.2 and set 𝛥𝑡 as 20𝜖2𝜏, 40𝜖2𝜏 and 20𝜖2𝜏 for each case, respectively. The factor 𝜏 is used for compensating
he timescale difference among different profiles. It is profile-related and is defined as 𝜏 = 𝑒2𝐽0𝐿𝜌max with 𝜌max = 𝜌𝑎𝑣𝑒 + 𝐴 the
aximum density in each profile. For each initial profile, the weak-form of the density for all 𝑅 realizations, ⟨𝜌𝜖 , 𝛾𝑖⟩, are outputted

t time 𝑡 = 𝑡𝑒𝑞 + 𝑛ℎ with 𝑛 = 0, 1,… , 𝑁ℎ. Here we choose 𝑁ℎ = 10, ℎ = 0.01𝜖2𝜏. Then, profiles 𝜌𝜖 ,𝑖 for all spatial indices 𝑖 are
calculated by solving equations ⟨𝜌𝜖 , 𝛾𝑖(𝑥)⟩ =

∑

𝑗 𝜌𝜖 ,𝑗⟨𝛾𝑗 , 𝛾𝑖⟩. Given that 𝑁ℎℎ is extremely small from a macroscopic perspective such
hat the average profile barely changes during this interval, we regard these 𝑅𝐾 = 𝑁ℎ𝑅 = 105 tiny time intervals ℎ as independent
ealizations (Embacher et al., 2018). Next, Eq. (9) is applied to calculate the discrete operator entries ⟨𝛾𝑖,𝑧𝛾𝑖⟩ and

⟨

𝛾𝑖+1,𝑧𝛾𝑖
⟩

at all
patial points over 𝑅𝐾 realizations. This forms 𝑁𝐾 = 700 number of training data points for both 𝐾0 and 𝐾1. Furthermore, the weak-
orm average profiles over 𝑅 realizations, ⟨𝜌, 𝛾𝑖⟩, at time 𝑡 = 𝑡𝑒𝑞 + 𝑛𝛥𝑡 with 𝑛 = 0, 1,… , 𝑁𝛥𝑡 are outputted, where 𝑖 = 0, 1,… , 𝑁𝛾 − 1,
nd the average profiles 𝜌𝑖 for all 𝑖 are obtained. This forms 𝑁𝑓 = 𝑁𝐾𝑁𝛥𝑡 = 700 number of training data for learning the free energy
ccording to the coarse-grained evolution equation during the short time interval 𝛥𝑡.
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Fig. H.9. Schematic for the data collection using Kinetic Monte-Carlo (KMC) simulations. For all cases in Section 4.2, we run 𝑅 = 104 realizations (five are
shown in figure) for a given profile. In each realization, we first run a time interval 𝑡𝑒𝑞 for achieving local equilibrium. The following 10 tiny timesteps ℎ are
used for calculating the operator entries, and the density values at 𝑡 = 𝑡𝑒𝑞 and 𝑡 = 𝑡𝑒𝑞 + 𝛥𝑡 are used for learning the free energy.

The particle simulations used for validation purposes are necessarily long in macroscopic time scales and thus extremely time-
consuming even after calculating each trajectory in parallel. In order to save computational cost, we choose to run the continuum
evolution with initial profiles that include multiple periods under a periodic boundary condition but only run the simulation on a
single period instead of the whole system. Here we use the triangular wave 𝜌(𝑥) = 𝜌𝑎𝑣𝑒 − 𝐴 (|𝑓 𝑥 − ⌊𝑓 𝑥 + 0.5⌋| − 1) as initial profile,
where 𝜌𝑎𝑣𝑒, 𝐴 and 𝑓 represent the average density, amplitude and frequency, respectively, and ⌊𝑎⌋ is the floor function that outputs
the greatest integer less or equal to 𝑎. The evolution within one period is duplicated to the full system ranging in 𝑥 ∈ [0, 1]. For
example, for the two cases with 𝐽0𝐿 = 0.9 in Section 4.2, initial profiles with 𝑓 = 2 are used. Here particle simulations are run
on 𝑥 ∈ [0, 0.5] with 2000 lattice sites and 25 shape functions, which have the same spatial discretization at both the macroscopic
cale 𝛥𝑥𝛾 = 0.02 and the microscopic scale 𝜖 = 2.5 × 10−4 as the predictions from Stat-PINNs and PINNs. For the two cases with
0𝐿 = 2.2, initial profiles with 𝑓 = 3 are used. The corresponding particle simulations are run on 𝑥 ∈ [0, 1∕3] with 1333 lattice sites
nd 17 shape functions, indicating 𝛥𝑥𝛾 ≈ 0.0196 and 𝜖 ≈ 2.5006 × 10−4, which is a good approximation of the spatial discretization of
tat-PINNs and PINNs. Notice that another rescaling trick is applied here for obtaining particle simulations within a spacial range
ifferent from 𝑥 ∈ [0, 1] in order to reduce the complexity of the code. See Appendix I for more details.

ppendix I. Rescaling for the particle simulations

When bridging scales, a rescaling of length and time scales is usually required between the microscopic particle scale and the
acroscopic continuum scale (Embacher et al., 2018). In this section, we will introduce a rescaling trick for learning and predicting

the dissipative evolution for systems with the same physics at the particle level but different spatial descriptions at the macroscale.
First, we consider a target particle process on 𝑥 ∈ [0, 𝛼] that has 𝑁𝑏 bins and 𝑁𝛾 shape functions 𝛾𝑖(𝑥). The Arrhenius process

has an interaction strength of 𝐽 and an interaction range within 𝐿𝑏 neighbors on each side, indicating a length of interaction
range of 𝐿 = 𝛼 𝐿𝑏∕𝑁𝑏. In the target process, the macroscopic times include 𝑡𝑒𝑞 , ℎ and 𝛥𝑡. The corresponding microscopic times are
calculated by multiplying the macroscopic times by a factor 𝑁2

𝑏 ∕𝛼
2 (Embacher et al., 2018). During postprocessing, the operator

entries 𝐾𝑖𝑗 = ⟨𝛾𝑗 ,𝜌𝛾𝑖⟩ are calculated according to Eq. (9), where 𝑌𝛾𝑖 is calculated as 𝑌𝛾𝑖 = ⟨𝜌 − 𝜌̄, 𝛾𝑖⟩∕
√

𝛥𝑥𝛾 with 𝛥𝑥𝛾 = 𝛼∕𝑁𝛾 and 𝜌̄
s the average of 𝜌 over all realizations. Furthermore, using Eq. (8), we can obtain the free energy 𝑓 (𝜌) or 𝑓 (𝜌,∇𝜌).

Next, we consider a different system, which we will call the simulated system. This system also has 𝑁𝑏 bins and 𝑁𝛾 shape
functions but ranges between 𝑥 ∈ [0, 1]. We denote such shape functions as 𝛾𝑠𝑖 (𝑥) with a superscript 𝑠 to indicate that they refer to
he simulated system. Although 𝛾𝑠𝑖 (𝑥) is squeezed by a factor 𝛼 with respect to 𝛾𝑖(𝑥), it covers the same amount of bins as 𝛾𝑖(𝑥) in the
arget system. Furthermore, the interaction strength 𝐽 and interaction range 𝐿𝑏 (in unit of bins) are the same as the ones in the target
ystem, indicating the same Arrhenius process at the particle level. We note that the microscopic times for this simulated system
hould be calculated by multiplying the macroscopic times by a factor of 𝑁2

𝑏 . Therefore, in order to keep the particle dynamics
he same as that of the target system, all macroscopic times should be rescaled by multiplying by a factor 1∕𝛼2 from the target
ystem, i.e., ℎ𝑠 = ℎ∕𝛼2 and 𝛥𝑡𝑠 = 𝛥𝑡∕𝛼2. Given the same microscopic local dynamics, 𝜌𝑠 remains the same as 𝜌 since both are defined
ithin the range [0, 1]. Then, based on the rescaling of length and time scales, the following rescalings can be found, 𝜌̇ = 𝜌̇𝑠∕𝛼2,
𝜌 = (∇𝜌)𝑠∕𝛼, 𝑀 = 𝛼 𝑀𝑠 and 𝑌𝛾𝑖 =

√

𝛼 𝑌 𝑠
𝛾𝑠𝑖

. Therefore, the dissipative operator entries and free energy density for target system can
be rescaled from the simulated system by 𝐾 = 𝐾𝑠 ∕𝛼, 𝑓 (𝜌) = 𝑓 𝑠(𝜌) and 𝑓 (𝜌,∇𝜌) = 𝑓 𝑠(𝜌, 𝛼∇𝜌).
𝑖𝑗 𝑖𝑗
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Appendix J. Settings for Stat-PINNs and PINNs training

Stat-PINNs involve two sequential training processes for NN𝐾1
and NN𝑓 . All neural networks are fully-connected feed-forward

etworks with SoftPlus activation functions and are implemented in Python using JAX as the main library. Adam optimizer (Kingma
nd Ba, 2014) with a learning rate of 10−2 is used for all cases in Stat-PINNs. For all cases in Section 4.2, NN𝐾1

has 2 hidden layers
with 20 neurons per layer and is trained for 6000 epochs. NN𝑓 has 2 hidden layers with 20 neurons per layer and is trained for
2000 epochs.

All cases in Section 4.2 are also trained by PINNs as comparisons, which also consist of NN𝐾1
and NN𝑓 but are trained jointly

using the following loss function

PINNs =
1

2𝑁𝑓

𝑁𝑓
∑

𝑠=1

‖

‖

‖

‖

‖

∑

𝑖
⟨𝛾𝑗𝑠 , 𝛾𝑖⟩𝛥𝑧(𝑠)𝑖 ∕𝛥𝑡 +

∑

𝑖
⟨𝛾𝑗𝑠 ,𝑧(𝑠)𝛾𝑖⟩𝑄(𝐙𝑄(𝑠)

𝑖 ;𝜽𝑓 )
‖

‖

‖

‖

‖

2

. (J.1)

This is almost the same loss function as the one used for NN𝑓 in Stat-PINNs (Eq. (17)) but setting the variance on denominator to
one. Notice that now the operator entries ⟨𝛾𝑗𝑠 ,𝑧(𝑠)𝛾𝑖⟩ are represented by NN𝐾1

to be trained. Structures of NN𝐾1
and NN𝑓 in PINNs

are identical to those in Stat-PINNs, but parameters 𝜽1 and 𝜽𝑓 are trained simultaneously. All cases are trained for 10000 epochs
sing Adams optimizer with a learning rate of 10−3. We remark that for both Stat-PINNs and PINNs, the loss functions have reached

stable plateaus after the epochs previously mentioned, indicating the convergence of the training process, though the results from
PINNs may not be robust enough.

Appendix K. Non-uniqueness problem for the free energy

As discussed in Section 3.2, different functional dependencies of the free energy density 𝑓 lead to different forms of the driving
force and hence the evolution equations. Due to the mathematical structure of the evolution equations, 𝑓 cannot be uniquely
determined from the macroscopic evolution equation, even when the operator is uniquely identified. In this section, we will discuss
the non-uniqueness of the free energy based for the three different cases, assuming that the kernel of 𝑧 is one-dimensional and
consists of constants, which covers the cases we are interested in. For simplicity, we will use 𝜌 as the field variable in this section
to keep it the same as in the Arrhenius example.

First, we assume that the free energy density can be written as 𝑓 = 𝑓 (𝜌). This is the simplest case and also the one used in
Section 4.2. In this case, the thermodynamic force is given by Eq. (13) as 𝑄 = 𝑓 ′(𝜌) and the governing equation Eq. (12) is a
diffusion equation. By assumption, the difference of two driving forces leading to the same evolution must be constant, and hence
the difference of two free energies leading to the same evolution must be an affine function of 𝜌. We therefore define the calibrated
free energy density as

𝑓 (𝜌) = 𝑓 (𝜌) − 𝑓 (𝜌𝑟0) − 𝑓 ′(𝜌𝑟1)
(

𝜌 − 𝜌𝑟0
)

. (K.1)

This can be understood as forcing 𝑓 (𝜌𝑟0) = 0 and 𝑓 ′(𝜌𝑟1) = 0 at two reference points 𝜌𝑟0 and 𝜌𝑟1. For simplicity, we choose
𝜌𝑟0 = 𝜌𝑟1 = 0.5 as reference points. We acknowledge that defining 𝑓 (0) = 0 would be more natural from a physical standpoint
as there is no energy when no particle exists. 𝜌𝑟0 = 0.5 is chosen for practical reasons, to facilitate plotting and comparing free
energy profiles from different models in a easier and more intuitive way.

Second, when assuming 𝑓 = 𝑓 (𝜌,∇𝜌), the thermodynamic force is given by Eq. (14) as 𝑄 = 𝑓,𝜌 − ∇ ⋅ 𝑓,∇𝜌 and the governing
equation is a fourth order equation, such as the Cahn–Hilliard equation. Then the difference 𝑓 (𝜌,∇𝜌) ∶= 𝑓 (𝜌,∇𝜌) − 𝑓 (𝜌,∇𝜌) of two
free energies leading to the same evolution must satisfy the condition

𝑓,𝜌(𝜌,∇𝜌) −
(

𝑓,∇𝜌
)

,𝜌 ∇𝜌 −
(

𝑓,∇𝜌
)

,∇𝜌 ∇
2𝜌 = const.

As only the third term depends on the second derivative of the density, this term must vanish, as otherwise we can chose 𝜌 such
that its variations lead to a nonconstant term. Thus 𝑓 (𝜌,∇𝜌) has to be affine in ∇𝜌, i,e, 𝑓 (𝜌,∇𝜌) = 𝑔(𝜌) + 𝑓,∇𝜌(𝜌, 0)∇𝜌 for some 𝑔(𝜌).
Using this structure in the equation above we see that 𝑔′(𝜌) = const, and therefore 𝑔(𝜌) is affine in 𝜌. We use this structure to define
the calibrated free energy density as

𝑓 (𝜌,∇𝜌) = 𝑓 (𝜌,∇𝜌) − 𝑓 (𝜌𝑟0, 0) − 𝑓,𝜌(𝜌𝑟1, 0)
(

𝜌 − 𝜌𝑟0
)

− 𝑓,∇𝜌(𝜌, 0)∇𝜌, (K.2)

which satisfies 𝑓 (𝜌𝑟0, 0) = 0, 𝑓,𝜌(𝜌𝑟1, 0) = 0 and 𝑓,∇𝜌(𝜌, 0) = 0. Similar to the case above, we choose 𝜌𝑟0 = 𝜌𝑟1 = 0.5 as reference points.
By construction, the calibrated free energy density is unique.

The final case to discuss is 𝑓 = 𝑓 (𝜌,∇2𝜌), which corresponds to the long-range analytic model for Arrhenius process when the
convolution is approximated to second order as 𝐽 ∗ 𝜌 ≈ 2𝐽0𝐿

(

𝜌 + 𝐿2∇2𝜌∕6
)

. In this case, the thermodynamic force is given by
𝑄 = 𝑓,𝜌 + ∇2𝑓,∇2𝜌 according to Eq. (15). We define the calibrated free energy density as

𝑓 (𝜌,∇2𝜌) = 𝑓 (𝜌,∇2𝜌) − 𝑓 (𝜌𝑟0, 0) − 𝑓,𝜌(𝜌𝑟1, 0)
(

𝜌 − 𝜌𝑟0
)

− 𝑓,∇2𝜌(0, 0)∇
2𝜌, (K.3)
which satisfies 𝑓 (𝜌𝑟0, 0) = 0, 𝑓,𝜌(𝜌𝑟1, 0) = 0 and 𝑓,∇2𝜌(0, 0) = 0. Here we choose 𝜌𝑟0 = 𝜌𝑟1 = 0.5 as reference points.

20 



S. Huang et al.

d

(

(

Journal of the Mechanics and Physics of Solids 194 (2025) 105908 
Fig. L.10. Results for Arrhenius process with 𝐽 𝐿 = 0.9, 𝐿 = 40𝜖 using additional training data, including (a, b) dissipative operator entry 𝐾̃1 plotted in two
ifferent ranges, (c) calibrated free energy density 𝑓 , and (d-f) snapshots of macroscopic evolution starting from a triangular wave initial profile (black dash-dotted

line). Predicting methods include Stat-PINNs (blue surfaces or blue solid lines), PINNs (orange surfaces or orange dashed lines), and a long-range analytic model
yellow surfaces or yellow dotted lines). Results from KMC particle simulations (purple dots) are used as true macroscopic evolution for comparison.

Fig. L.11. Results for Arrhenius process with 𝐽 𝐿 = 0.9, 𝐿 = 2𝜖 using additional training data, including (a, b) dissipative operator entry 𝐾̃1 plotted in two different
ranges, (c) calibrated free energy density 𝑓 , and (d-f) snapshots of macroscopic evolution starting from a triangular wave initial profile (black dash-dotted line).
Predicting methods include Stat-PINNs (blue surfaces or blue solid lines), PINNs (orange surfaces or orange dashed lines), and a long-range analytic model
yellow surfaces or yellow dotted lines). Results from KMC particle simulations (purple dots) are used as true macroscopic evolution for comparison.
21 
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Fig. L.12. Results for Arrhenius process with 𝐽 𝐿 = 2.2, 𝐿 = 2𝜖 using sufficient training data, including (a, b) dissipative operator entry 𝐾̃1 plotted in two different
anges, (c) calibrated free energy density 𝑓 , and (d-f) snapshots of macroscopic evolution starting from a triangular wave initial profile (black dash-dotted line).
redicting methods include Stat-PINNs (blue surfaces or blue solid lines), PINNs (orange surfaces or orange dashed lines), and a long-range analytic model
yellow surfaces or yellow dotted lines). Results from KMC particle simulation (purple dots) are used as true macroscopic evolution for comparison.

ppendix L. Results with sufficient training data

While Stat-PINNs successfully predict the continuum evolution for the first three cases in Section 4.2, results from PINNs are
ot as good with the given limited data. In this section, we use almost the same parameter setting as in Appendix H, but increase
he training data for NN𝑓 by 10 times, i.e., 𝑁𝛥𝑡 = 10 and 𝑁𝑓 = 7000. Results of the off-diagonal operator entry 𝐾1, the calibrated
ree energy density 𝑓 and the continuum evolution for all three cases in Section 4.2 are shown in Figs. L.10–L.12. As we can see,
lthough PINNs cannot predict the true operator or free energy, the predicted continuum evolution from PINNs now matches the
rue results from particle simulations. This indicates that PINNs can predict the continuum evolution as long as there exists sufficient
raining data such that the noise from stochastic particle dynamics is negligible, as could be expected. However, as noted continuum
ata alone, in the absence of statistical physics, is insufficient to uniquely characterize the free energy and operator.

During the preparation of this work the authors used ChatGPT in order to check the grammatical construction of some sentences.
fter using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of

he publication.

ode availability

The data and code used in this work is available at https://github.com/celiareina/Stat-PINNs.
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