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Keywords:
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Social media platforms attempt to mitigate and control fake news, using interventions such as flagging posts or
adjusting newsfeed algorithms, to protect vulnerable individuals. In this paper, we consider performing inter-
vention actions on specific source nodes or user-user edges in social networks, under uncertain effectiveness
of different intervention strategies. We model misinformation from malicious users to vulnerable communities
using stochastic network interdiction formulations. Specifically, we minimize the expected number of reachable
vulnerable users via stochastic maximum flow, and develop an alternative formulation for handling large-scale
social networks based on their topological structures. We derive theoretical results for path-based networks
and develop an approximate algorithm for single-edge removal on paths. We test instances of a social network
with 23,505 nodes, based on the IMDb actors dataset, to demonstrate the scalability of the approach and its
effectiveness. Via numerical studies, we find that characteristics of removed edges change when intervention
effectiveness is stochastic. Our results suggest that intervention should target on (i) a smaller set of centrally
located edges with nodes that represent communities where regulatory actions are more effective, and (ii)
dispersed edges with nodes where intervention has a high chance of failure.

Maximum flow
Influence minimization

1. Introduction

Peer-to-peer networks have become a major source of news in
the contemporary age (see Manjoo, 2017). “Fake news”, purposefully
fabricated stories meant to provoke readers, can spread quickly from
user to user and platforms have developed strategies for their detection
and mitigation (Allcott and Gentzkow, 2017). When misinformation
is detected on Facebook, for example, intervention actions include
decreasing the post’s ranking in the newsfeed, to lower users’ chance of
seeing it, or attaching a “related article” that disputes the post (Iosifidis
and Nicoli, 2020). Mitigation strategies like the above occur at the
user-user links (or edges) of a social network and can affect a user’s
likelihood of either seeing fake news from an account they follow
when that person shares. A social media platform may also intervene
by blocking nodes in a social network, temporarily stopping misin-
formation at the source by suspending malicious accounts. Given the
vast size of online social networks and the speed at which fake news
spreads, it is crucial and challenging to quickly decide the “removal”
of source nodes and/or user-user edges, to best control fake news
spread to vulnerable users, while considering the stochastic nature of
intervention effectiveness.

To our best knowledge, there are two main threads of literature
on fake news mitigation: truth campaigning and influence minimiza-
tion (Saxena et al., 2022). In truth campaigning, social media networks
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aim to mitigate the influence of fake news by encouraging the spread
of true news, countering misinformation (see, e.g., Budak et al., 2011;
He et al., 2012; Farajtabar et al., 2017). On the other hand, influence
minimization involves blocking a limited number of edges (Kimura
et al., 2009; Kuhlman et al., 2013; Tong et al., 2012) or nodes (Pham
et al.,, 2018; Yao et al., 2015) in a network to minimize the spread
of fake news - or other contagions — under a diffusion model, such
as the linear threshold or independent cascade model (Kempe et al.,
2003). Because we consider direct interventions to stop the spread, the
research question in this paper falls into the latter category.

Prior work using influence minimization generally assumes that
the effects of regulatory actions are deterministic and fully effective.
However, interventions, such as flagging news as “disputed”, may
not have the intended effects but sometimes the opposite in practical
situations (see, e.g., Saxena et al., 2022). In this paper, we propose
a network-interdiction formulation to interrupt the flow of misinfor-
mation through a network that has uncertainty in the intervention
effectiveness.

Network interdiction is considered as a Stackelberg game (Von
Stackelberg and Peacock, 1952) that involves a leader and a follower,
where the leader is a player who pays a cost to alter structures of a
network, e.g., reducing its arc capacities or blocking its nodes, and the
follower is another player who acts after the leader and optimizes their
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decisions on the resulting network. The leader aims to alter the network
in such a way that the follower’s best performance is compromised
and thus they “interdict” edges or nodes in the network. Network
interdiction examples include maximizing the shortest path (see,e.g.,
Israeli and Wood, 2002; Song and Shen, 2016) and minimizing the
maximum flow of a smuggler who travels from a source node to a
destination node, by placing checkpoints on certain arcs (see, e.g., Lei
et al.,, 2018). We refer interested readers to Smith and Song (2020)
and Shen (2011) for comprehensive reviews of methods, algorithms,
and applications of various network interdiction problems.

In the classical network interdiction setting, the leader and follower
both have full knowledge about the problem data and inputs - includ-
ing the structure of the network and the outcomes of interdiction. As
we consider the flow of fake news through a social media network,
however, there exist several forms of uncertainty. For instance, if a
user sees a piece of information from a malicious source, they may or
may not believe it or share it; if the social media network intervenes
and attaches a warning to a post, the action may or may not be able
to prevent the user from sharing it. With a sufficiently large set of
historical data about user behavior, user actions can be modeled by
probability distributions. This characteristic of the fake news mitigation
problem makes it amenable to the use of stochastic network interdiction
for modeling (Cormican et al., 1998).

In this paper, we consider a social media network with vulnerable,
malicious, and general users. Our goal is to minimize the expected num-
ber of vulnerable users who receive information from malicious users,
by removing malicious accounts or intervening on certain user—user
edges. (Example actions in practice include, e.g., adapting newsfeed
algorithms or adding flags to posts.) We assume that the interventions
have a certain user-specific probability of preventing an individual
from sharing the information. The distinction of vulnerable users from
general users allows us to model the spread of targeted negative infor-
mation, such as hate speech or content inappropriate for minors. The
problem also generalizes to mitigate the flow of fake news to all users
in a network if all non-malicious nodes are labeled vulnerable target
nodes.

To model this problem, we define and construct a specific super-
graph from a given social media network. (We describe the procedures
for constructing such a supergraph and provide an illustrative example
in Fig. 1 in detail later.) The graph structure allows us to consider
both node and edge removal interventions, and also to model the
number of vulnerable users reached using a mathematical program. We
apply stochastic network interdiction methods (see, e.g., Janjarassuk
and Linderoth, 2008) to this graph to minimize the expected number
of vulnerable users reached. We also introduce an adaptation of the
model for networks with community structures (Girvan and Newman,
2002) to enhance the scalability of our solution approaches.

1.1. Literature review

Wang et al. (2018) consider influence minimization in the context
of vulnerable populations, aiming to protect specific target users from
fake news with edge blocking. They formulate the problem as an
instance of minimum cut-maximum flow when the number of inter-
dicted edges is unrestricted, and utilize greedy algorithms to approach
the problem under budget constraints. They only obtain an optimal
solution for the unconstrained budget problem, however, while our
models optimize a related problem for given budget and under the
uncertainty in intervention effectiveness. He et al. (2011) consider
both node and edge blocking, and minimize a multi-criteria objective
of infection cost and immunization cost. They assume that diffusion
is deterministic and takes place in 1 < d < oo hops, and then
provide approximate algorithms for finite and infinite cases. Similarly,
their work does not consider stochasticity in information diffusion or
intervention effectiveness.
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A few prior studies also use a Stackelberg game in constructing
models for fake news mitigation. Taninmis et al. (2020) consider a
problem where the leader blocks a set of nodes to minimize influence
spread, and then the follower activates nodes to maximize it, following
the linear threshold model. They use Sample Average Approximation
(SAA) and live-arc representation of the linear threshold model to
estimate the solution to the follower’s problem, and a greedy heuris-
tic for the leader’s problem. Taninmis et al. (2022) later generalize
the problem and develop an improved x-space algorithm for solving
min-max bilevel programs that can be used for minimizing misin-
formation spread. Hemmati et al. (2014) examine a game in which
the leader blocks nodes and follower chooses nodes to activate, but
follow a deterministic threshold model. They formulate the problem
as a two-stage integer program and develop a cutting plane algorithm
to solve it. Different from these studies, our paper assumes that the
malicious source nodes are known, includes interventions at both the
source nodes and user-user edges, and also incorporates uncertain
intervention outcomes.

Two-stage stochastic programs are widely used for finding optimal
solutions to the influence spread problem. Wu and Kiiciikyavuz (2018)
consider the problem of activating certain nodes in social networks to
maximize the number influenced, following independent cascade and
linear threshold models, and show that it is a special case of a more gen-
eral class of two-stage stochastic submodular optimization problems.
They develop a delayed constraint generation algorithm for solving
the problems optimally when the number of samples is finite. Giiney
(2019) examines the budgeted influence maximization problem, in
which each node has a unique cost to be activated, and develops
an integer programming model based on a live-arc representation of
the independent cascade model. Giiney et al. (2021) later improve
the computational efficiency of large-scale influence maximization via
maximal covering location design. Song and Dinh (2014) consider the
problem of targeting certain edges to minimize misinformation spread
given live-arc representations of generic information diffusion cascades.
They formulate the problem as a mixed-integer program and solve
it with a branch-and-bound algorithm. However, their work does not
consider uncertainty in intervention effectiveness.

We also adapt our models for scalability for networks with commu-
nity structures. A few works consider problems where rumors originate
in a particular community. Fan et al. (2013) study the Least Cost Rumor
Blocking problem, to protect nodes in communities that neighbor the
rumor community. They use a set cover based greedy algorithm in
their solution approach. Zheng and Pan (2018) study an extension of
the problem, both containing a rumor to a particular community in
the graph where it first begins, and constraining its spread within the
community itself. They develop a minimum vertex cover based greedy
algorithm for the problem. Each of these works mainly focuses on
containing the spread within a community and its neighbors, while our
adaptation assumes that misinformation spreads quickly through the
community. Our interventions instead target spread from a community
to another involved in a social network.

1.2. Contributions of the paper

To the best of our knowledge, our work is among the first to utilize
stochastic network interdiction models for fake news mitigation. This
first allows us to incorporate potential uncertain effects of network
intervention actions, as opposed to other studies that assume determin-
istic interdiction. Second, we adapt the model for scalability, taking
advantage of community structure that exists in many social networks.
Third, we develop theoretical results about the nature of fake news
mitigation with stochastic intervention on single-source paths and use
these results to develop an approximation algorithm for our problem
on these networks. Finally, we illustrate the use of our model and
approaches on a real-world social network data.
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Fig. 1. The graph G = (N, A) built from a social network G,. The number along side each edge (i, ) is the amount flows on the edge, representing information passed from user
i to user j, and edges with no labels have zero flows. Here, system-initiated interdiction is indicated by a large X, and user-initiated interdiction is indicated by a small x.

1.3. Structure of the paper

The remainder of the paper is organized as follows. In Section 2,
we discuss detailed notation and problem setup, and then present the
mathematical interdiction models for the stochastic fake news control
problem. In Section 3, we link our interdiction models to the Inde-
pendent Cascade Model used in the influence maximization studies. In
Section 4, we provide an alternative formulation using a community-
based transformation of a social media network, for improving the
scalability of our approaches. In Section 5, we focus on path networks
and derive insights about solution features and an approximate al-
gorithm for specially structured networks. In Section 6, we conduct
extensive numerical studies and present the results. Lastly, in Section 7,
we conclude the paper and discuss future research directions.

2. Mathematical models
2.1. Parameters and problem setup

Consider a social network Gy, with a set U of users, divided into a set
S of malicious source nodes where .S = {s; : i =1,...,|S|}, aset T of
target nodes where T'= {r; : i = 1,...,|T|}, and a set R of intermediary
nodes where R = {r; : i = 1,...,|R|}. The set S represents a group of
individuals, each of whom independently shares a piece of fake news
with their followers, while T represents the set of their target nodes.
This can be a specific group, such as particular targets of hate speech
or minor children. The set R = U\(SUT), which may be empty, includes
users who are neither targets nor sources of misinformation, but who
may inadvertently spread misinformation through the network. User
nodes are connected in the graph by edges in set A;,. If user j follows
user i, then edge e = (i,j) € Ay. Together, these nodes and edges
constitute the graph Gy = (U, Ay).

The objective is to minimize the expected number of target nodes
that receive the fake news, by interdicting edges or nodes subject
to respective budgets. To do so, we formulate the number of target
nodes reached as a maximum flow problem on a reconstructed network
G = (N, A) built based on the social network Gy,. Here, N = U U {5, 7}
is the set of nodes, consisting of a dummy “origin” node 5, a dummy
“destination” node 7 and all the original nodes in U, and the edge set is
A=Ay Ust(5) U s (1), where 5%(35) = {(5,5) : s € S} is the set of edges
pointing from 5 to each source node in S and 6~(7) = {(1,7) : t € T} is
the set of edges pointing from each target node in 7' to 7. An example
can be seen in Fig. 1. In our maximum flow model, arcs in 6 (7) each
have capacity 1, while all other arcs are not capacitated. When we
maximize the total amount of flows through G, the bottlenecks are the
in-arcs of the destination node 7. Due to flow balance constraints, a
positive flow on arc (¢t,7) € 67 (f) implies that fake news eventually
reaches target node user ¢ € T. By constraining flow variables to integer
values, we have that a particular target user node is reached if and only
if the flow from that node to 7 is 1. Note that the predecessors of 7 in
G are precisely T, by definition. Thus, optimizing the maximum flow
problem yields the number of target nodes reached by fake news.

We assume that fake news flows freely through the network unless
interdiction occurs at particular arcs, where the interdiction of arc (i, j)
indicates user j not seeing or believing the information shared by user i.
In this paper, we differentiate two types of interdictions as the system-
initiated interdiction versus user-initiated interdiction, such that the former
refers to actions that the leader takes to stop the spread of fake news,
and the latter refers to stopping of the fake news due to users not
believing the information but not because of the leader’s interdiction.
Later, we model the former as decision variables by the leader and
model the latter as input parameters indicating the likelihood of users
believing fake news from those they follow. Moreover, there are two
types of system-initiated interdiction actions that the leader can take
to interrupt the flow of fake news. First, the network can remove a
certain number of malicious users; by assumption, this is a deterministic
action that completely removes targeted users. Second, the network
can attempt to “remove” a certain number of user-user edges. The
removal of e = (i,j) € Ay represents an intervention that prevents
j from either seeing the news from i, believing the news from i, or
wanting to share the news from i. The success of this intervention on
arc e = (i, j) is characterized by a Bernoulli random variable &, with a
success probability pf. For user-initiated interdiction, a user may choose
not to believe another user with probability p%, which is characterized
by a Bernoulli random variable &,, independent of system-initiated
interdiction, and is an exogenous parameter only depending on specific
edge e = (i, j) and thus the characteristics of users i and j. Note that
the random variables involved in our model are & = (&,)T € {0, 1}4v!
and @ = (@,)" € {0,1}4v]. We can enumerate the support of the joint
uncertainty as a finite set £ of scenarios. Each scenario @ € 2 has an
associated realization £, and «, and probability p,,.

Next, for each scenario w € Q and edge (i,j) € A, we define flow
variable y;;, € Z,. For target node ¢ € T, y;, > 1 if misinformation
reaches target node . For user arcs (i, j) € Ay, y;, > 1 if i shares the
misinformation and j receives it, on a directed path to a target node.
Finally, for s € S, y;, > 1 if s shares the fake news with their followers,
on a directed path to a target node. Otherwise, y;;,, = 0. Then, for each
arc (i, j) € Ay U 8%(3), we define system-initiated interdiction variable
x;; € {0,1}. For arcs in Ay, this interdiction represents a user-user link
intervention. For user source node s € S, x5, = 1 if the social media
network suspends the user.

An illustrative example. We illustrate an interdiction solution and its
impacts on graph G in Fig. 1 as an example. The corresponding social
media network G, consists of source users .S = {s;, s,, 53}, target users
T = {t;,t5,13}, and general users R = {r,r,}, and social network
relationship arcs A, are drawn with solid lines. The supergraph arcs
5%(5) and 67 (7) are drawn with dashed and dotted lines, respectively.
System-initiated interdiction, illustrated by a large X, occurs on arc
(5, 5,) € 67(5), representing removal of malicious source node s,. In the
scenario w depicted, user-initiated interdiction occurs on (s3,13) € Ay,
shown with a small x, i.e., ay,,, = 1. This represents f; not believing
fake news from malicious source s5. Note that user-initiated interdiction
does not occur on (r,, 13), which means #; remains willing to believe fake
news from general user r,. For this reason, news flows from s; to r, to
13 to t, as well as from s, to ;.
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2.2. Stochastic network interdiction formulation

For each scenario w € 2, we denote f(x,¢,,qa,) as the number
of nodes who receive fake news, given system-initiated interdiction
decision x € {0, 1}140%*®! and realizations &,, a, € {0,1}4v]. We
formulate the stochastic network interdiction model for mitigating fake
news as follows.

min D p,f (% s 4) (a)
* weN
s.t. Z x;; < By, (1b)
(i.j))EAY
Z x;; < Bg, (1)
(i./)E6*(5)
x; €10.1), (L)) € A\ &~ (D), ad

where constraints (1b) and (1c) impose budgets B;; and Bg, on
the number of edges in A; and source nodes in §*(5) that one can
interdict, respectively, with the overall objective being minimizing the
expected number of target nodes reached. The inner problem, to solve
for f(x,&,.a,) in each scenario w, is presented as follows.

S8, 00) = max v, (2a)
Uy, I =5
s.t. Z Vjio = Z Yijw=y 0, i€U (2b)
JjE€S(0) JEST (D) Uy i =T,
|T|(l - xl-j), (i,j) € 5+(§)
Vijo < IT)(1 = x[jgija))(l - a[jw)s (i,)) € Ay (20)
1, (i,)) € 6~(D),
yijw € Z+’ (isj) € A, (Zd)
v, EZT. (2¢)

Constraints (2b) ensure flow balance at each node in G. Constraints
(2c) ensure zero flow on any successfully system- or user-interdicted
arcs. These constraints also ensure that the flow from each target node
to the sink node is 0 or 1. Note that these bottlenecks ensure that flow
is no more than |T| on any particular arc. Thus, our infinite capacity
arcs technically have an upper bound |T'| on flow.

If the target to sink node flow y,;, is 1 for a particular optimal
solution to (2), the flow balance constraints imply that the target node
¢ is reached in that solution. If the target to sink node flow y;;, is O
and ¢ can be reached, then there is a path from the source node to ¢
with infinite capacity arcs (and flow at most |T'| — 1), and we can add 1
to that path flow, increasing the objective value, a contradiction. Thus,
we have that the objective (2a) yields the number of reachable target
nodes.

Note that we can omit the integrality constraints in Model (2), and
instead only require y;;,, > 0 for (i, /) € A and v,, > 0 if all arc capacities
are integer (see Ahuja et al., 1993). For each scenario w € 2, we define
dual variables &, € Rl and w,, € RIV!. We present the equivalent dual
reformulation of (2) as below, for which we define & =1 and a;,,, =0
for all s € .S to unify notation for arcs Ay and 6%(5) in constraints (2c)
before taking the dual.

f(x,&,,a,) = min Z hijw + ITI(1 = x;58i50)

(ij)es (D (1.)EAY UG (3)
X (1= a;)h0 (3a)
st wg, — Wiy > 1, (3b)
Rijo = Wig + Wiy 2 0, (i, )) € A, (30)
hije 20, (,)) € A. (B3d)

Putting together models (1) and (3), we have an outer and inner
minimization problem, that allows us to find the system-initiated inter-
diction decisions that yield the lowest expected number of vulnerable
target users that receive fake news.
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2 Rijoy +

(i,))€6~ (D)

mxin pr 2 ITI(1 = x;5&50)(1 = agjp)hije | (4
2] (i,))EAy VST (5)
s.t. (1b)-(1d),
(3b)-(3d), Yw € Q.

Notice the second summation in the objective includes terms of the
form x;;h;;,, the product of two variables. Letting z;;,, = x;;h;;,, after
applying McCormick inequalities (McCormick, 1976), one can easily
show that model (4) is equivalent to the following linear program,
which we can directly solve to obtain optimal system-interdiction
decisions.

H&in pr Z B hijw +
@ (i.j)es (D)
s.t. (1b)-(1d),
(3b)—(3d), w € 2,

> Ty, -

(i,j))EAY VST (5)

zii8ij)(1 — &) | (52)

Zijw <X (i) EANS™(D), w € 2, (5b)
Zijo S Rijgs (1,)) EANG™ (D), @ € Q, (5¢)
Zijw 20, (,J)) € A\~ (F), w € Q. (5d)

3. Connections to independent cascade model

In the stochastic network interdiction-based formulation, we assume
that misinformation flows through the network freely unless inter-
rupted by user-initiated or system-initiated interdiction. Our goal is
to choose the system-initiated interventions to minimize the expected
number of vulnerable users reached under these diffusion assumptions.
Note that our models can be viewed and related to the information
diffusion model known as the independent cascade model.

3.1. Independent cascade model

Within the independent cascade model, a set of nodes are initially
“activated”, or infected with misinformation. Then, each infected node
attempts to infect a neighbor, and is successful with an arc-specific
probability. If they are unsuccessful, they do not attempt to infect that
neighbor again. This process repeats with the newly infected nodes
attempting to infect their neighbors. The propagation continues until
no new nodes are infected.

Formally, suppose we have social media network G, = (U, Ay)
described in Section 2.1. Let each edge (i, j) € Ay have probability pa-
rameter p'°". Let W, be the set of nodes infected with misinformation
at time step 7 = 0, ..., |U|. The set of source nodes S C U are initially
infected with misinformation, i.e., W, = S. For r =0, ..., |U| — 1, each
newly infected node i € W, attempts to infect uninfected neighbor
Jj € {k : (i.,k) € Ay} \ (U,,W,), and is successful with probability
pf}"w. If successful, j € W, . This iterative process completes when W,
is empty for some 7 =1, ...,|U|.

3.2. Source-aware targeted influence minimization with stochastic interven-
tion

Suppose that we have social media network G, = (U, Ay) described
in Section 2.1, and fake news propagates through G, according to the
independent cascade model, where probability of information flow p; ™
is defined to be 1— p;.’;, for (i, j) € Ay. Suppose that a certain number of
source nodes, Bg, can be removed and a certain number of edges, By,
can be targeted for removal. The success of attempted removal of edge
(i,j) € Ay is a binomial random variable & ; with probability pi The
Source-Aware Targeted Influence Minimization with Stochastic Intervention
problem is defined as: How we choose a set of source nodes S C .S with
|S| < Bg and a set of edges Ay C Ay with |Ay| < By to remove, so
that we minimize the expected number of vulnerable users T infected?



K. Moug and S. Shen

Theorem 1. The optimal solution to Source-Aware Targeted Influence
Minimization with Stochastic Intervention is given by (1) and therefore, (5).

Proof. Models (1) and (5) find the system-initiated interdiction actions
that minimize the expected number of vulnerable nodes T reached over
the support Q2. We will show that each scenario w € 2 corresponds
to a live arc representation of the independent cascade model with an
adaptation to include stochastic interventions.

We first fix the system-initiated interdiction decision x and w € Q2
and have realizations «, and £,. The function f(x,¢,,«,) finds the
number of target nodes T reachable from S\ {s € S : x5 = 1}
given source node deletions, successful system edge deletions, and
user-initiated edge deletions in scenario , within the social media
network G;. We then construct a subgraph Gy(x) = (U®(x), A (x))
that incorporates these source node and edge removals. Arc (i, j) € Ay
is included in AP (x) if i is not a deleted source node under x and
(1 = &;6,)(1 = &;;,%;;) = 1 under x and o.

Graph G{;(x) corresponds to a live-arc representation of the indepen-
dent cascade model that includes uncertainty in edge removal success.
To see this, we follow the arguments given by Kempe et al. (2003).
Imagine that at some step in the independent cascade model informa-
tion propagation process, that node i attempts to infect node j. This
takes place if information flows and the edge is not removed. Whether
information flows is a random event that can be seen as a weighted coin
flip with probability pf}"w. Whether the edge is removed is a two-part
question that includes (i) whether the edge is targeted and (ii) whether
the targeting is successful, and thus is a random event that can be seen
as a weighted coin flip with probability pfj. Note that due to the law of
total expectation, we can flip this coin even if the edge in question is
not targeted by x. Whether we flip these coins at the moment i attempts
to infect j or before the process occurs, does not affect the values. Thus,
these coin flips, on all edges of Gy, can be seen as static. The number of
infected vulnerable nodes in a scenario of a particular set of coin flips
can be determined by making a live-arc representation of the graph.
An arc is included in this representation if its coin flips and the system-
initiated interdiction decision indicate information would propagate,
and excluded otherwise. If a path exists in the live-arc representation
from a source node to a vulnerable node, then that set of dynamic
coin flips would lead to the infection of the vulnerable node. Thus,
the expected number of vulnerable nodes can be found by enumerating
all coin flip scenarios, finding the probability of each and number of
reachable vulnerable nodes for each, and calculating the expectation.

Each scenario o € Q and associated graph G{j(x) corresponds
to a particular set of coin flips — where the arc (i,j) € A (%) if
and only if the coin flips and system-initiated interdiction for that
arc would lead to information propagating. Thus, the objective func-
tion Y cq Puf(x, &, a,), that finds the expected number of reachable
nodes over graphs equivalent to the live-arc representations, finds the
expected number of infected vulnerable nodes under the information
cascade model, and Models (1) (5), find the optimal solution. This
completes the proof. []

4. Adaptation for scalability

Implementation of our combined minimization model can be com-
putationally expensive for large social media networks. In this section,
we give an alternative formulation of the stochastic network interdic-
tion model for a community-based transformation of a social media
network.

Suppose that the set U of user nodes in a large social media network
Gy are partitioned into k communities, C,,...,C,, using a cluster
analysis or hierarchical clustering method. We define the community
graph of the social network Gi, = (U¢, A°) as follows. The set of nodes
U¢ = {1,...,k} each represents a community. For i # j € U, there is
an arc (i, j) € A° if and only if an arc exists from a user in community
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C; to a user in community C; in A,. We label the set of all arcs from
users in community C; to users in community C; as E;;. Note that E;; is
a subset of A;;. We assume that p? and 75 are the same for all e € E,
and re-define these probabilities Py and pfj, respectively.

We assume that once a densely connected community becomes
“infected” with misinformation, the misinformation spreads quickly
throughout that group, with no user-initiated interdiction. Because of
the speed of infection in the community, we assume system-initiated
interdiction does not take place within communities either. The em-
phasis of this scalable model is mitigation of fake news spread between
communities.

Within the community graph, each community node is labeled as
a source, target, or general node, analogously to the social media
network. Source community nodes, labeled S¢, are communities that
contain malicious source nodes. Target community nodes, T, are com-
munities that contain target nodes and no source nodes. We label the set
of target nodes contained in community C; as 7}, for each community
target node i € T°. General community nodes R® are communities
that contain only general nodes. The community supergraph G¢ =
(N°¢, A°) is defined analogously to the social network supergraph G =
(N, A), with N¢ = U¢ U {57} and A° = A U 6%(35) U 67(7). The
one change we make when we define G¢ is the capacity of the in-
arcs of the dummy target node. Rather than making each capacity 1,
the capacity of arc (i,7) € A° becomes the number |T;| of vulnerable
target nodes in community C;. Because other arcs in the supergraph
remain infinite capacity, if community C; that contains target nodes
is reachable in the community graph, maximum flow will saturate the
capacity of the arc (i,7). Thus, maximizing flow over this supergraph
is equivalent to determining the number of target nodes outside of
communities with source nodes that receive fake news. Because we
assume misinformation spreads within a community immediately, we
can add the number of target nodes in communities with source nodes
to this objective to get the total number of target nodes reached.

When the system performs interdictions on nodes or edges in the
community supergraph, the corresponding action on the original so-
cial media supergraph is much larger. System-initiated interdiction of
community source node i implies interdiction of |C;| nodes in the
community. Similarly, system-initiated interdiction of edge (i, j) in the
community supergraph corresponds to interdiction of |E;;| edges in the
original social media supergraph. We adapt the budget constraints on
system-initiation interdiction to reflect this. Overall, the minimization
problem is adapted as follows.

n&in pr Z |Ti|hijw+ 2

@ (i.j)€s~ () (1.))EAG US* ()

j

IT(hijey — 21561 j)(1 — @)

(6a)
st 3 1Byl < By, (6b)
(i.J)EA,
2 Gl < Bs. (60)
(i,))€6*(5)
Zije < X (1,)) € A\ 67 (D), ® € Q, 6d)
Zijo < hijer (1)) €A\ 67D, w € Q, (6€)
Wy — Wi, 2 1, @ € Q, (66)
hijoy = Wiy + Wi, 20, (i,)) € A", w € 2, 6g)
hijo 20, (i,)) € A°, ® € Q, (6h)
Z0 20, (L) €A\ (), 0 € Q, D)
x; €1{0,1}, (,j) € A°\ 6~ (D). (6))

As the size of the community graph grows, the number of calcu-
lations required to enumerate the stochastic distribution of scenarios
grows exponentially. In our computational studies, for instance, the
community graph has 189 nodes. While this is much reduced from the
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Fig. 2. An illustration of special-structured social media path P,.

original social network, with 23,505 nodes, enumerating all scenarios
is computationally infeasible.

For this reason, we use SAA (Kleywegt et al., 2002) and solve
Model (6) M times, each with an independent Monte Carlo sample
Q,, of size n, yielding a candidate solution %,,. Then, using a large
independent Monte Carlo sample Q, of size N > n, we solve the
maximum flow problem for each scenario o € €, estimating the
objective value for each candidate solution %,. We then choose the
candidate solution with lowest objective value, %, and perform one
final test, with a second independent sample, 2, of size N, to estimate
the mean number of target nodes reached. We obtain statistical upper
bound and lower bound of the true optimal objective value through the
above procedures.

5. Path networks with stochastic system interdiction

In fake news mitigation, intuition suggests to interdict arcs as close
to source nodes as possible — curbing the spread of misinformation
before it gains momentum. When does it make sense to delay system-
initiated interdiction? To examine this problem more closely, we look
at social media networks that can be represented as paths, P, = (U, Ay),
n € N, with one malicious source node, s;, and n target nodes,
{t;,....1,} and user arcs Ay = {(s;, 1D} U {4 i =1,...,n—1},
as depicted in Fig. 2. Denote each arc (-,1;) € Ay as e;. For conciseness,
denote pgi as p? and pfl, as pf. Denote the probabilities of failure to
interdict as ¢ and qf, respectively. This network type, while simple,
is a subgraph of most real social media networks. Its simplicity helps
us gain insight into when delaying system-initiated interdiction makes
sense.

First, we assume precisely one arc ¢; € Ay is permitted to be
interdicted by the system. When system-initiated interdiction is de-
terministic, regardless of user-initiated interdiction scenario, earlier
interdiction is always better. The first arc in the path whose cost is
within budget should be chosen, to minimize the expected number of
target nodes reached. If system-initiated interdiction is stochastic, on
the other hand, when does it make sense to delay interdiction?

Our integer programming Model (5) provides us one way to deter-
mine which arc ¢; € Ay minimizes expected target nodes reached.
Another approach involves calculating the expected value, given a
particular edge is interdicted by the system. We can repeat this process
for all edges in Ay or some subset, if we reduce the size of the search
space.

We develop solution methods that utilize this second approach in
this section. We start by deriving the explicit form of the expected value
for this problem in the following theorem.

Theorem 2. Suppose that a social media network is described by graph P,
in Fig. 2, and j € {1, ...,n}. The expected number of target nodes reached
when edge e; is interdicted by the system, denoted z‘z(xej ), is given by

Y kP =klx,, = 1), )
k=1 !

where for k € {1,...,n},
k

P(@=klx, =1 =peyr [ [ ®

i=1
Here, the probability of failure to interdict arc i = 1, ..., n is given by

q', i #J,
G=9 b .. 9
q'q;, i=j.
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Fig. 3. The threshold multiplier in the delayed system-initiated interdiction threshold,
1+1/q5, as a function of user-initiated interdiction probability p5.

and the probability of successful interdiction of arc i = 1, ..., n is given by

pl i # ],
L T a0
p; +p; —p;p;,i=J,

while p,; = 1.

Proof. The number of target nodes reached is k € {1,...,n} when
edges ey, ...,e; are not interdicted by system or user, and edge e,
is. When & = n, interdiction along all arcs has failed. These facts are
reflected in Eq. (8) and p,,; = 1. For i # j, the success or failure to
interdict comes just from the user, which leads to probabilities pf and
qf, respectively. On the other hand, when i = j, failure to interdict
implies both system and user failed, while success implies either system
or user failed. The probabilities in (9)-(10) reflect this, which completes
the proof. []

5.1. Two target nodes

Suppose the number of target nodes n = 2. In this section, we show
that delayed interdiction is optimal when the probability of the second
arc’s success, pi, exceeds a particular threshold, which is the product
of the first arc’s probability of success, pf, and a threshold multiplier,
based on the second arc’s user-initiated interdiction probability, pS.
An illustration of the threshold multiplier, as a function of p5, can be
seen in Fig. 3. Notice as the probability of successful user interdiction
in the second arc increases, the required size of successful system
interdiction probability in the second arc in relation to the first arc
grows very quickly. In most cases, early interdiction is preferred over
later interdiction.

Theorem 3. Consider graph P, in Fig. 2 with n = 2. Suppose the budget
allows system-initiated interdiction of either e, or e,. Assume user-initiated
interdiction is not deterministic (i.e., Py <1 for i = 1,2). Interdicting arc e,
minimizes the expected number of target nodes reached if and only if

P> (1 +1/g)p. an

Proof. We prove the result by showing that (11) holds if and only if
B(x,,) — D(x,,) 2 0. First, we use Theorem 2 to calculate 0(xg,) — D(x,,).
Note that we have the following probability distributions.

&
N pyata;, k=1,
P = klx, =1)= 27171 12
974745, k=2.
L aEa
N @5 +p5 —pipaf, k=1,
P = klx,, = 1) = 2 st T2 (13)
414595, k=2.
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Because g is a positive common factor in all the terms in 0(xe, )= 0(xe,),
the expression is nonnegative if and only if 0(x,,) = D(x,,) /af = 0. Thus,
0(x,,) — 0(x,,) 2 0 if and only if

(g5 = p% + P — pop5) + 20 a% — 4%45) 2 0 14)
= (= pipk — p% + 05— p2p5) + 24205 — p5) 2 0 (15)
= pE05 - P + 05 + 24505 — ) 2 0 (16)
= (1+¢)05 - p)+05 20 a7)
= -+ —ap 20 18
e pi > (1+1/¢)p5. 19)

Note that the last line holds because ¢ = 1 — pj > 0. This completes
the proof. []

Theorem 3 has a few immediate corollaries.

Corollary 1. For graph P,, if p‘f = pi, then interdiction of arc e, is
preferred over interdiction of arc e,, regardless of user-initiated interdiction
probabilities.

Corollary 2. For graph P,, the preferred interdiction decision depends on
system-initiated interdiction and e, user-initiated interdiction probabilities.
The decision is independent of the e, user-initiated interdiction probability.

5.2. e-optimal approximation algorithm for path networks

When we consider whether to delay system-initiated interdiction
along a path P,, we compare the expected number of target nodes
reached if an edge is interdicted to earlier edges in the path. In-
dependent of system-initiated interdiction, we have user-initiated in-
terdiction. Intuitively, the further we move along the path, delaying
system-initiated interdiction, the more likely we are to reach a point
where user-initiated interdiction plays the greater role in expected
number of target nodes reached. In this section, we show a theoreti-
cal proof supports this intuition. The distance between values in the
sequence {zi(xe‘_)}f':1 decreases as the index increases. We describe this
phenomenon in more detail in the theorem below, and follow with an
algorithm that uses the result to produce e-optimal solutions to the
minimum expected target nodes reached problem for paths of the form
P,.
Theorem 4. Consider graph P, in Fig. 2. For this graph, expected number
of nodes reached

i-1

EERELCHNIES | AV (20)
Jj=1

j=i-1

fori=2,...,n— 1. The sequence
n=2

k n
{]‘[q;j, Zj} @D
j=t =k J ey

is monotone decreasing.

Proof. First, note that for k = 1,...,i =2, P(d = klx,, = 1) = P(§ =
klx,,, =1 = p,, Hle 4j, since no system-initiated interdiction is
involved. This implies

(22)

)] =1)

n

> k(P06 =kKlx, =1)— P(® = k|x
k=i—1

n
>k ‘P(D = klx, = 1)~ P(0 = klx
k=i—-1

lo(x,,) = Bx

Cit1 Citl

IA

= 1)). 23)

Cit1

Now, note two cases for the value P(& = k|x, = 1). If j < k+ 1, we
have that system-initiated interdiction failed, and P(5 = klxej =1)=
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k . ~ k .
Piy1 [1j=, 47 ¢;- Otherwise, P(5 = klxe, = 1) = Py I, ¢ In either
case, for k > i — 1, we have
P(0 = klx,, = 1)

— €1, 24)
=19
which implies
i-1 |P(o=klx, =1)- P(6=kl|x, = 1)) -1
« i i+1 o
[14 T < H g - (25)
j=1 j=19; j=1

This, along with (23), yields the result. []

We utilize Theorem 4 to develop the following e-optimal algorithm.

Algorithm 1 PathInterdict

1: Input: Optimal value tolerance e. Path graph P,.

2: Output: e-optimal interdiction solution.

3: Initialize q := qg’] and C :=n(n+1)/2.

4: fork=1,...,n—2do

5: if ¢C < ¢/(n— k) then

6: break

7: end if

8: Updateq:=q*q,’j+] and C :=C —k.

9: end for

10: Find expected number of target nodes reached o(x,;) for j =
1,...,k+1.

11: return argmin;_; o(x,,)-

Note that Algorithm 1 checks if the RHS of (20) is less than the
tolerance ¢ divided by an upper bound on the remaining number of
edges, n— k. Because sequence (21) is monotone decreasing, when this
line is satisfied for some k, the difference between E(xekﬂ) and L_J(xej) is
less than € for all j > k + 2.

6. Computational results

In Section 4, we develop an adaptation of the stochastic network
interdiction model by taking the advantage of the community structure
that exists in many social networks and discuss the use of SAA to
further reduce computational time. To test the effectiveness of these ap-
proaches, we conduct numerical studies in this section by constructing a
social network with 23,505 nodes using a subset of the actors born 1990
or later in the IMDb dataset (IMDb, 2023). In the graph, an edge exists
between two actors if they have worked on a project (e.g., a movie)
together. We use the largest connected component, containing about
90% of original nodes, to construct the social network. To construct
the corresponding community graph, we use Clauset-Newman-Moore
greedy modularity maximization (Clauset et al., 2004), implemented
by NetworkX (Hagberg et al., 2008), partitioning the nodes into 189
communities.

We test different values for the following parameters: number of
community source nodes, budget for interdicting edges, budget for
interdicting source nodes, and type of random behavior. Specifically,
we consider 1, 2, or 3 community source nodes, selecting the largest
communities, and test By, = 100,200, 300, ..., 1500 for edge interdiction
(with Bg = +), and then Bg = 100, 150, 200, 250, 300 for source node
interdiction (with B;; = +0). For the user or system behavior types,
we assume three general cases, being “Stochastic User” (with p¢ = 1),
“Stochastic System” (with p* = 0), and “Both Stochastic” (with both
0 < pf < 1and 0 < p* < 1), respectively. We summarize the specific
choices of p¢- and p?-values in Table 1 for each case. Note that each
probability combination will affect the scenarios in the Monte Carlo
sampling and the SAA model later. Here, p* being larger indicates that
users in the system have more variability believing fake news, and p*
being larger indicates that interdicting edges/source nodes has more
uncertainty in its effects.
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Fig. 4. Community graph with |.S¢| =1 and stochastic users.

Table 1
User and system behavior parameters.
" »”
Stochastic user 0.1, 0.2, ..., 0.5 1

Stochastic system 0
Both stochastic 0.1, 0.2, ..., 0.5

0.5,06...,1
05,06 ...,1

To solve the optimal solution of the community structure model (6),
we perform SAA with M =5 random trials of Monte Carlo samples and
100 scenarios in each trial of samples to yield five candidate solutions.
We then estimate the objective value of each candidate solution with
an independent Monte Carlo sample with 1000 scenarios, solving the
maximum flow problem for each scenario and taking the average. We
choose the candidate solution with minimum expected number of target
nodes reached. Finally, with the chosen candidate solution, we perform
these second-phase SAA tests again with a second independent Monte
Carlo sample, also with 1000 scenarios, solving the maximum flow
problem for each scenario and taking the average, to estimate the
objective value of the chosen candidate solution.

All the computational tests were conducted on a computer with
an Intel Core E5-2630 v4 CPU 2.20 GHz and 128 GB of RAM. We
use Python and Gurobi 8.1 for solving all the optimization models.
For clarity and conciseness, we only present results of representative
combinations of parameter settings in the main paper.

6.1. Performance of the solution methods

For all test instances, we find the SAA optimality gap is between
—0.5% and 2.5%. We give the final objective value and various char-
acteristics of interdicted edges for the test instances with |S¢| = 1 in
Table 2. (We exclude those with |.S¢| = 2 and 3 for conciseness because
the result patterns are similar.)

In Table 2, we report instances with B = 100,200, 500, 1000, 1500
and three combinations of stochastic behavior instances (p* = 0, p* =
0.5), (p* = 0.5,p* = 0.5), (p* = 0.5, p* = 1), each representing “Stochastic
System”, “Both Stochastic”, and “Stochastic User”, respectively. This
is because the small increments of B, (i.e., from 100 to 200) do not
lead to significant result changes (as shown in Table 2), which are also
observed for all B; = 100,200, ...,1500, and thus we only show the
representative cases with By = 100, 200, 500, 1000, 1500. The patterns of
solutions are similar for different (p®, p%) combinations in between the
values 0 and 1, and thus we only present results associated with the
three general cases described in Table 1 and use 0.5 as the probability
value.

From Table 2, the expected number of target nodes reached is
the highest when system-initiated interdiction is stochastic and user-
initiated interdiction is deterministically zero, and the lowest when the
system is deterministically effective and users are stochastically partic-
ipating in self-interdiction, for fixed budget. Increasing the budget has
the greatest effect on the stochastic users case, where system-initiated
interdiction is deterministically effective.

Next we investigate what types of edges the mixed-integer program
chooses and the properties of these edges. Recall that each node in U¢
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(d) Interdicted edges, budget 1500.

Fig. 5. Community graph with || = 1 and both stochastic users and system.

Table 2
Objective values and interdicted edge characteristics for instances with |S¢| = 1.

Budget B, Stoch. Behavior Obj. Val. Interdicted edges
Median Mean Total
comm nodes  cost number
100 p*=0, p* =05 152183 3 1.8 132
p*=05,p°=05 139255 293 4.1 58
p* =05, pF=1 12149.2 573 6.9 42
200 p*=0, pf =05 15191.7 3 1.8 138
p*=05,p°=05 138921 271 4.2 62
p* =05, pf = 11167.8 599 7.0 43
500 p*=0, pf =05 149126 6 3.2 154
p* =05, pF =05 13784.8 229 4.7 106
p* =05, pf = 8905.6 690 7.4 68
1000 p*=0, pf =05 147746 6 5.5 182
p*=05, pf =05 13465.2 140 5 200
P =05, pf = 5737.8 779 7.8 129
1500 p*=0, pf =05 14717.4 11 6.4 230
p* =05, pf =05 13346.2 97 6 250
p* =05, pF=1 3704.8 490 12.4 121

represents a community of nodes in U, whereas each arc (i, j) in Ay
represents a set of edges E;; C Ay. In Table 2, in the “Median Comm
Nodes” column, we examine the size of community nodes involved in
interdicted edges for each test instance. To do so, we take the median
of a vector having two components for each interdicted arc, (i, j), with
values |C;| and |C;], respectively, and exclude any components associ-
ated with S¢. Notice that a similar pattern exists for each budget. For
all cases with enough interdiction budget (e.g., By = 500, 1000, 1500),

when only the system is stochastic and users deterministically do
not self-interdict, the median community size is very low — ranging
from 6 to 11. Here, interdiction targets a larger number of smaller
communities. On the other hand when only users are stochastic, and
system-initiated interdiction is deterministically effective, the median
community size is high — ranging from 490 to 779. Here, interdiction
tends to target larger communities. When both are stochastic, we see
a median between these two. This pattern suggests that centralized,
directed action is more effective when users are stochastic, while
widespread interdiction has better performance when the system is
stochastic.

In Table 2, we also examine the average cost of interdicted edges
in the community supergraph. Recall that the cost of edge (i, /) is
|E;;|, the number of edges from community C; to community C; in the
original social media network. Notice that for fixed budget, no clear
pattern exists distinguishing the stochastic system and both stochastic
cases, while stochastic users generally always have a higher mean cost
and fewer interdicted edges. This suggests that the stochasticity of
system-initiated interdiction has a clearer effect on edge cost than the
stochasticity of the user. When the system is deterministically effective,
in the stochastic users case, there are fewer interdicted edges with
higher cost. When the effectiveness of the system is stochastic, regard-
less of whether users self-interdict, there tend to be more interdicted
edges with lower cost. It depends on how stochastic system and both
stochastic compare, however.

Also notice in Table 2 that no clear pattern exists for the impact
of increasing budget on number of edges interdicted and mean edge
cost. For stochastic system, increasing the budget leads to increases
in both, but not linearly. At the same time, for stochastic users with
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(¢) Interdicted edges, budget 1000.
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(d) Interdicted edges, budget 1500.

Fig. 6. Community graph with [.S¢| = 1 and stochastic system.

By = 100,200, 500, 1000, 1500, mean edge cost is 6.9, 7.0, 7.4, 7.8, and
12.4, and mean number of edges is 68, 129, and 121. This suggests a
greedy heuristic might not perform as well as the optimization model.

We visualize interdicted edge characteristics in Figs. 4-6. In each
figure, part (a) shows the community supergraph G°¢ with directed
edges. We exclude dummy nodes 5 and 7 to simplify the visualization.
The community source node is circled; all other nodes are community
target nodes. Then, in parts (b)-(d) of each figure, we show the edges
that are interdicted by the optimization model, for budgets 500, 1000,
and 1500, respectively.

When only users are stochastic, and system-initiated interdiction
is deterministically effective, as seen in Fig. 4, the interdicted edges
are clustered in a densely connected area. When only the system is
stochastic, and users deterministically do not self-interdict, as seen in
Fig. 6, the interdicted edges are spread throughout the graph. When
both are stochastic, as seen in Fig. 5, we see a pattern between these
two extremes, with some interdicted edges in the densely connected
area and some spread throughout the graph.

When we interdict source nodes directly by varying Bg = 100, 150,
200,250,300 instead of interdicting edges, we observe similar results
as the above ones, in terms of the interdiction effectiveness as Bg
increases, and thus we omit the detailed tables and solution patterns
for conciseness. Similarly, when Bg only increases by 50, the effects
are negligible and because the number of nodes is significantly smaller
than the number of edges, we vary Bg up to 300. In practice, node inter-
diction often corresponds to temporally or permanently deleting users’
accounts, and thus will be more expensive and difficult to implement
as compared to edge interdiction.

10

6.2. Performance on original social network

In this section, we examine performance of the solution derived
from community supergraph G¢, when interdiction is applied to the
original social network supergraph, G. While the size of G makes the
first stage of SAA computationally infeasible for Model (5), we can
estimate how our solution for Model (6) performs on the larger graph.

Note that the second Monte Carlo sample with 1000 scenarios
used to estimate the expected number of target nodes reached has
realizations of « and ¢ based on the community supergraph G¢. This
indicates that all edges in E,;, with one node in community C; and
another in C; in the original graph G, have the same realization of
user-initiated interdiction and success of system-initiated interdiction
for particular scenario w. If we apply this assumption to G, and use the
same Monte Carlo sample, the expected number of target nodes reached
in G is equal to the final objective value calculated by our solution
methods.

If we generate a new set of samples to estimate 2 for each test
instance, where each edge in E;; can have its own realization of
user-initiated interdiction and system-initiated interdiction success in a
particular scenario, there is no guarantee that the solutions chosen by
(6) lead to the same expected number of target nodes reached. Tests
with independent Monte Carlo samples of size 20 found differences
of up to 37% from the final objective value. This indicates that our
community-based model is best used in situations in which user-user
edges between communities are affected similarly by system-initiated
interdiction and user-initiated self-interdiction.
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7. Conclusion

In this paper, we considered how to mitigate the spread of misinfor-
mation or hate speech with limited resources available and uncertainty
in intervention effect. We developed a model based on stochastic
network interdiction that minimizes the expected maximum flow on
a supergraph of a social media network. This supergraph is designed
to make equivalent maximum flow and the number of vulnerable
users reached in the social media network. We derived an integer
programming formulation that uses the dual of maximum flow to
create a combined minimization problem, as well as a community-
based adaptation for scalability. We derived theoretical results about
the nature of fake news mitigation in chained social media networks,
with one source node and » target nodes. In particular, we discovered
that a threshold exists for delaying system-initiated interdiction when
n = 2, based on the probabilities of system-initiated success and the
final arc’s probability of user self-interdiction, independent of the first
arc’s probability of user-initiated success. We also found that as system-
initiated interdiction is delayed further and further along a path of
length n, the absolute difference in expected number of target nodes
reached decreases. This allowed us to develop an e-optimal algorithm
for single-arc system interdiction of these networks.

We further applied our community-based mixed integer program
(6) to a large social network. We found that when systemic actions
are deterministically effective and users stochastically self-interdict,
solutions given by our methods tend to target centralized edges that
connect nodes representing large communities. On the other hand,
when systemic actions have some probability of failure and users
deterministically do not self-interdict, solutions tend to include arcs
spread throughout the graph that connect nodes representing smaller
communities. Interdiction actions chosen using Model (6) yield the
same expected number of targeted users reached in the original social
network supergraph as the final objective value given by the solution
methods when the edges between each pair of communities share
user-initiated interdiction and success of system-initiated interdiction
realizations. However, such a result does not generalize to the case
when each edge has an independent realization of the stochastic pa-
rameters in the original social network supergraph. Future research
can consider how to develop scalable methods based on community
structure that incorporate this characteristic. Our numerical studies
show that depending on specific probabilities of system and user be-
havior uncertainties, the interdiction results and solutions could be
very different, and thus the stochastic programming approach requires
perfect information and full knowledge of p* and p?. In practice, one
can only access the stochastic system and user behavior via historical
data, which could be limited, and thus the inferred p* and p* may not
be exact and accurate. As a result, for future research, one can explore
alternative models and algorithms to the stochastic programming ap-
proach we consider in this paper, e.g., robust or distributionally robust
optimization models, where the distribution of uncertain parameter
is ambiguously known, and we optimize the outcomes of interdiction
decisions against the worst case realization of the uncertain interdic-
tion outcome or probabilities p?, pf. For example, Sadana and Delage
(2023) study the effectiveness of randomization in interdiction games
with an interdictor who is risk and ambiguity averse, and consider a
distributionally robust network interdiction game where the interdictor
randomizes over the feasible interdiction plans in order to minimize the
worst-case conditional value-at-risk of the flow.
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