
a

b

u
a
i
d
s
a
u
l
w
b
f
v
s
o
s
i

o
t

Computers & Operations Research 173 (2025) 106872 

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Stochastic bilevel interdiction for fake news control in online social networks
Kati Moug a, Siqian Shen b,∗

School of Industrial and Systems Engineering, Georgia Institute of Technology, United States of America
Department of Industrial and Operations Engineering, University of Michigan, United States of America

A R T I C L E I N F O

Keywords:
Stochastic network interdiction
Maximum flow
Influence minimization

A B S T R A C T

Social media platforms attempt to mitigate and control fake news, using interventions such as flagging posts or
adjusting newsfeed algorithms, to protect vulnerable individuals. In this paper, we consider performing inter-
vention actions on specific source nodes or user–user edges in social networks, under uncertain effectiveness
of different intervention strategies. We model misinformation from malicious users to vulnerable communities
using stochastic network interdiction formulations. Specifically, we minimize the expected number of reachable
vulnerable users via stochastic maximum flow, and develop an alternative formulation for handling large-scale
social networks based on their topological structures. We derive theoretical results for path-based networks
and develop an approximate algorithm for single-edge removal on paths. We test instances of a social network
with 23,505 nodes, based on the IMDb actors dataset, to demonstrate the scalability of the approach and its
effectiveness. Via numerical studies, we find that characteristics of removed edges change when intervention
effectiveness is stochastic. Our results suggest that intervention should target on (i) a smaller set of centrally
located edges with nodes that represent communities where regulatory actions are more effective, and (ii)
dispersed edges with nodes where intervention has a high chance of failure.
1. Introduction

Peer-to-peer networks have become a major source of news in
the contemporary age (see Manjoo, 2017). ‘‘Fake news’’, purposefully
fabricated stories meant to provoke readers, can spread quickly from
ser to user and platforms have developed strategies for their detection
nd mitigation (Allcott and Gentzkow, 2017). When misinformation
s detected on Facebook, for example, intervention actions include
ecreasing the post’s ranking in the newsfeed, to lower users’ chance of
eeing it, or attaching a ‘‘related article’’ that disputes the post (Iosifidis
nd Nicoli, 2020). Mitigation strategies like the above occur at the
ser–user links (or edges) of a social network and can affect a user’s
ikelihood of either seeing fake news from an account they follow
hen that person shares. A social media platform may also intervene
y blocking nodes in a social network, temporarily stopping misin-
ormation at the source by suspending malicious accounts. Given the
ast size of online social networks and the speed at which fake news
preads, it is crucial and challenging to quickly decide the ‘‘removal’’
f source nodes and/or user–user edges, to best control fake news
pread to vulnerable users, while considering the stochastic nature of
ntervention effectiveness.

To our best knowledge, there are two main threads of literature
n fake news mitigation: truth campaigning and influence minimiza-
ion (Saxena et al., 2022). In truth campaigning, social media networks

∗ Corresponding author.
E-mail addresses: kaitlyn.moug@isye.gatech.edu (K. Moug), siqian@umich.edu (S. Shen).

aim to mitigate the influence of fake news by encouraging the spread
of true news, countering misinformation (see, e.g., Budak et al., 2011;
He et al., 2012; Farajtabar et al., 2017). On the other hand, influence
minimization involves blocking a limited number of edges (Kimura
et al., 2009; Kuhlman et al., 2013; Tong et al., 2012) or nodes (Pham
et al., 2018; Yao et al., 2015) in a network to minimize the spread
of fake news – or other contagions – under a diffusion model, such
as the linear threshold or independent cascade model (Kempe et al.,
2003). Because we consider direct interventions to stop the spread, the
research question in this paper falls into the latter category.

Prior work using influence minimization generally assumes that
the effects of regulatory actions are deterministic and fully effective.
However, interventions, such as flagging news as ‘‘disputed’’, may
not have the intended effects but sometimes the opposite in practical
situations (see, e.g., Saxena et al., 2022). In this paper, we propose
a network-interdiction formulation to interrupt the flow of misinfor-
mation through a network that has uncertainty in the intervention
effectiveness.

Network interdiction is considered as a Stackelberg game (Von
Stackelberg and Peacock, 1952) that involves a leader and a follower,
where the leader is a player who pays a cost to alter structures of a
network, e.g., reducing its arc capacities or blocking its nodes, and the
follower is another player who acts after the leader and optimizes their
https://doi.org/10.1016/j.cor.2024.106872
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ecisions on the resulting network. The leader aims to alter the network
n such a way that the follower’s best performance is compromised
nd thus they ‘‘interdict’’ edges or nodes in the network. Network
nterdiction examples include maximizing the shortest path (see,e.g.,
sraeli and Wood, 2002; Song and Shen, 2016) and minimizing the
aximum flow of a smuggler who travels from a source node to a
estination node, by placing checkpoints on certain arcs (see, e.g., Lei
t al., 2018). We refer interested readers to Smith and Song (2020)
nd Shen (2011) for comprehensive reviews of methods, algorithms,
nd applications of various network interdiction problems.

In the classical network interdiction setting, the leader and follower
oth have full knowledge about the problem data and inputs – includ-
ng the structure of the network and the outcomes of interdiction. As
e consider the flow of fake news through a social media network,
owever, there exist several forms of uncertainty. For instance, if a
ser sees a piece of information from a malicious source, they may or
ay not believe it or share it; if the social media network intervenes

nd attaches a warning to a post, the action may or may not be able
o prevent the user from sharing it. With a sufficiently large set of
istorical data about user behavior, user actions can be modeled by
robability distributions. This characteristic of the fake news mitigation
roblem makes it amenable to the use of stochastic network interdiction
or modeling (Cormican et al., 1998).

In this paper, we consider a social media network with vulnerable,
alicious, and general users. Our goal is to minimize the expected num-

er of vulnerable users who receive information from malicious users,
y removing malicious accounts or intervening on certain user–user
dges. (Example actions in practice include, e.g., adapting newsfeed
lgorithms or adding flags to posts.) We assume that the interventions
ave a certain user-specific probability of preventing an individual
rom sharing the information. The distinction of vulnerable users from
eneral users allows us to model the spread of targeted negative infor-
ation, such as hate speech or content inappropriate for minors. The
roblem also generalizes to mitigate the flow of fake news to all users
n a network if all non-malicious nodes are labeled vulnerable target
odes.

To model this problem, we define and construct a specific super-
raph from a given social media network. (We describe the procedures
or constructing such a supergraph and provide an illustrative example
n Fig. 1 in detail later.) The graph structure allows us to consider
oth node and edge removal interventions, and also to model the
umber of vulnerable users reached using a mathematical program. We
pply stochastic network interdiction methods (see, e.g., Janjarassuk
nd Linderoth, 2008) to this graph to minimize the expected number
f vulnerable users reached. We also introduce an adaptation of the
odel for networks with community structures (Girvan and Newman,
002) to enhance the scalability of our solution approaches.

.1. Literature review

Wang et al. (2018) consider influence minimization in the context
of vulnerable populations, aiming to protect specific target users from
fake news with edge blocking. They formulate the problem as an
instance of minimum cut-maximum flow when the number of inter-
dicted edges is unrestricted, and utilize greedy algorithms to approach
the problem under budget constraints. They only obtain an optimal
solution for the unconstrained budget problem, however, while our
models optimize a related problem for given budget and under the
uncertainty in intervention effectiveness. He et al. (2011) consider
both node and edge blocking, and minimize a multi-criteria objective
of infection cost and immunization cost. They assume that diffusion
is deterministic and takes place in 1 ≤ 𝑑 ≤ ∞ hops, and then
provide approximate algorithms for finite and infinite cases. Similarly,
their work does not consider stochasticity in information diffusion or
ntervention effectiveness.
2 
A few prior studies also use a Stackelberg game in constructing
models for fake news mitigation. Tanınmış et al. (2020) consider a
problem where the leader blocks a set of nodes to minimize influence
pread, and then the follower activates nodes to maximize it, following
he linear threshold model. They use Sample Average Approximation
SAA) and live-arc representation of the linear threshold model to

estimate the solution to the follower’s problem, and a greedy heuris-
ic for the leader’s problem. Tanınmış et al. (2022) later generalize
he problem and develop an improved x-space algorithm for solving
in–max bilevel programs that can be used for minimizing misin-

ormation spread. Hemmati et al. (2014) examine a game in which
the leader blocks nodes and follower chooses nodes to activate, but
follow a deterministic threshold model. They formulate the problem
as a two-stage integer program and develop a cutting plane algorithm
to solve it. Different from these studies, our paper assumes that the
malicious source nodes are known, includes interventions at both the
source nodes and user–user edges, and also incorporates uncertain
intervention outcomes.

Two-stage stochastic programs are widely used for finding optimal
solutions to the influence spread problem. Wu and Küçükyavuz (2018)
consider the problem of activating certain nodes in social networks to
maximize the number influenced, following independent cascade and
linear threshold models, and show that it is a special case of a more gen-
eral class of two-stage stochastic submodular optimization problems.
They develop a delayed constraint generation algorithm for solving
the problems optimally when the number of samples is finite. Güney
(2019) examines the budgeted influence maximization problem, in
which each node has a unique cost to be activated, and develops
an integer programming model based on a live-arc representation of
the independent cascade model. Güney et al. (2021) later improve
the computational efficiency of large-scale influence maximization via
maximal covering location design. Song and Dinh (2014) consider the
problem of targeting certain edges to minimize misinformation spread
given live-arc representations of generic information diffusion cascades.
They formulate the problem as a mixed-integer program and solve
it with a branch-and-bound algorithm. However, their work does not
consider uncertainty in intervention effectiveness.

We also adapt our models for scalability for networks with commu-
nity structures. A few works consider problems where rumors originate
in a particular community. Fan et al. (2013) study the Least Cost Rumor
Blocking problem, to protect nodes in communities that neighbor the
rumor community. They use a set cover based greedy algorithm in
their solution approach. Zheng and Pan (2018) study an extension of
the problem, both containing a rumor to a particular community in
the graph where it first begins, and constraining its spread within the
community itself. They develop a minimum vertex cover based greedy
algorithm for the problem. Each of these works mainly focuses on
containing the spread within a community and its neighbors, while our
daptation assumes that misinformation spreads quickly through the
ommunity. Our interventions instead target spread from a community

to another involved in a social network.

1.2. Contributions of the paper

To the best of our knowledge, our work is among the first to utilize
stochastic network interdiction models for fake news mitigation. This
first allows us to incorporate potential uncertain effects of network
intervention actions, as opposed to other studies that assume determin-
istic interdiction. Second, we adapt the model for scalability, taking
advantage of community structure that exists in many social networks.
Third, we develop theoretical results about the nature of fake news
mitigation with stochastic intervention on single-source paths and use
these results to develop an approximation algorithm for our problem
on these networks. Finally, we illustrate the use of our model and

approaches on a real-world social network data.
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Fig. 1. The graph 𝐺 = (𝑁 , 𝐴) built from a social network 𝐺𝑈 . The number along side each edge (𝑖, 𝑗) is the amount flows on the edge, representing information passed from user
𝑖 to user 𝑗, and edges with no labels have zero flows. Here, system-initiated interdiction is indicated by a large X, and user-initiated interdiction is indicated by a small x.
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1.3. Structure of the paper

The remainder of the paper is organized as follows. In Section 2,
we discuss detailed notation and problem setup, and then present the
mathematical interdiction models for the stochastic fake news control
problem. In Section 3, we link our interdiction models to the Inde-
pendent Cascade Model used in the influence maximization studies. In
Section 4, we provide an alternative formulation using a community-
based transformation of a social media network, for improving the
scalability of our approaches. In Section 5, we focus on path networks
and derive insights about solution features and an approximate al-
gorithm for specially structured networks. In Section 6, we conduct
extensive numerical studies and present the results. Lastly, in Section 7,
we conclude the paper and discuss future research directions.

2. Mathematical models

2.1. Parameters and problem setup

Consider a social network 𝐺𝑈 with a set 𝑈 of users, divided into a set
𝑆 of malicious source nodes where 𝑆 = {𝑠𝑖 ∶ 𝑖 = 1,… , |𝑆|}, a set 𝑇 of
arget nodes where 𝑇 = {𝑡𝑖 ∶ 𝑖 = 1,… , |𝑇 |}, and a set 𝑅 of intermediary
odes where 𝑅 = {𝑟𝑖 ∶ 𝑖 = 1,… , |𝑅|}. The set 𝑆 represents a group of
ndividuals, each of whom independently shares a piece of fake news
ith their followers, while 𝑇 represents the set of their target nodes.
his can be a specific group, such as particular targets of hate speech
r minor children. The set 𝑅 = 𝑈⧵(𝑆∪𝑇 ), which may be empty, includes
sers who are neither targets nor sources of misinformation, but who

may inadvertently spread misinformation through the network. User
odes are connected in the graph by edges in set 𝐴𝑈 . If user 𝑗 follows
ser 𝑖, then edge 𝑒 = (𝑖, 𝑗) ∈ 𝐴𝑈 . Together, these nodes and edges
onstitute the graph 𝐺𝑈 = (𝑈 , 𝐴𝑈 ).

The objective is to minimize the expected number of target nodes
hat receive the fake news, by interdicting edges or nodes subject
o respective budgets. To do so, we formulate the number of target
odes reached as a maximum flow problem on a reconstructed network
= (𝑁 , 𝐴) built based on the social network 𝐺𝑈 . Here, 𝑁 = 𝑈 ∪ {𝑠̄, 𝑡}

s the set of nodes, consisting of a dummy ‘‘origin’’ node 𝑠̄, a dummy
‘destination’’ node 𝑡 and all the original nodes in 𝑈 , and the edge set is
= 𝐴𝑈 ∪ 𝛿+(𝑠̄) ∪ 𝛿−(𝑡), where 𝛿+(𝑠̄) = {(𝑠̄, 𝑠) ∶ 𝑠 ∈ 𝑆} is the set of edges

ointing from 𝑠̄ to each source node in 𝑆 and 𝛿−(𝑡) = {(𝑡, 𝑡) ∶ 𝑡 ∈ 𝑇 } is
he set of edges pointing from each target node in 𝑇 to 𝑡. An example
an be seen in Fig. 1. In our maximum flow model, arcs in 𝛿−(𝑡) each
ave capacity 1, while all other arcs are not capacitated. When we
aximize the total amount of flows through 𝐺, the bottlenecks are the

n-arcs of the destination node 𝑡. Due to flow balance constraints, a
ositive flow on arc (𝑡, 𝑡) ∈ 𝛿−(𝑡) implies that fake news eventually
eaches target node user 𝑡 ∈ 𝑇 . By constraining flow variables to integer
alues, we have that a particular target user node is reached if and only
f the flow from that node to 𝑡 is 1. Note that the predecessors of 𝑡 in

are precisely 𝑇 , by definition. Thus, optimizing the maximum flow
roblem yields the number of target nodes reached by fake news.
 𝑡

3 
We assume that fake news flows freely through the network unless
nterdiction occurs at particular arcs, where the interdiction of arc (𝑖, 𝑗)
ndicates user 𝑗 not seeing or believing the information shared by user 𝑖.
n this paper, we differentiate two types of interdictions as the system-
nitiated interdiction versus user-initiated interdiction, such that the former
efers to actions that the leader takes to stop the spread of fake news,
nd the latter refers to stopping of the fake news due to users not
elieving the information but not because of the leader’s interdiction.
ater, we model the former as decision variables by the leader and
odel the latter as input parameters indicating the likelihood of users

elieving fake news from those they follow. Moreover, there are two
ypes of system-initiated interdiction actions that the leader can take
o interrupt the flow of fake news. First, the network can remove a
ertain number of malicious users; by assumption, this is a deterministic
ction that completely removes targeted users. Second, the network
an attempt to ‘‘remove’’ a certain number of user–user edges. The
emoval of 𝑒 = (𝑖, 𝑗) ∈ 𝐴𝑈 represents an intervention that prevents
from either seeing the news from 𝑖, believing the news from 𝑖, or
anting to share the news from 𝑖. The success of this intervention on
rc 𝑒 = (𝑖, 𝑗) is characterized by a Bernoulli random variable 𝜉𝑒 with a
uccess probability 𝑝𝜉𝑒 . For user-initiated interdiction, a user may choose
ot to believe another user with probability 𝑝𝛼𝑒 , which is characterized
y a Bernoulli random variable 𝛼̃𝑒, independent of system-initiated
nterdiction, and is an exogenous parameter only depending on specific
dge 𝑒 = (𝑖, 𝑗) and thus the characteristics of users 𝑖 and 𝑗. Note that
he random variables involved in our model are 𝜉 = (𝜉𝑒)𝖳 ∈ {0, 1}|𝐴𝑈 |

nd 𝛼̃ = (𝛼̃𝑒)𝖳 ∈ {0, 1}|𝐴𝑈 |. We can enumerate the support of the joint
ncertainty as a finite set 𝛺 of scenarios. Each scenario 𝜔 ∈ 𝛺 has an
ssociated realization 𝜉𝜔 and 𝛼𝜔, and probability 𝑝𝜔.

Next, for each scenario 𝜔 ∈ 𝛺 and edge (𝑖, 𝑗) ∈ 𝐴, we define flow
ariable 𝑦𝑖𝑗 𝜔 ∈ Z+. For target node 𝑡 ∈ 𝑇 , 𝑦𝑡𝑡𝜔 ≥ 1 if misinformation

reaches target node 𝑡. For user arcs (𝑖, 𝑗) ∈ 𝐴𝑈 , 𝑦𝑖𝑗 𝜔 ≥ 1 if 𝑖 shares the
misinformation and 𝑗 receives it, on a directed path to a target node.
Finally, for 𝑠 ∈ 𝑆, 𝑦𝑠̄𝑠𝜔 ≥ 1 if 𝑠 shares the fake news with their followers,
on a directed path to a target node. Otherwise, 𝑦𝑖𝑗 𝜔 = 0. Then, for each
arc (𝑖, 𝑗) ∈ 𝐴𝑈 ∪ 𝛿+(𝑠̄), we define system-initiated interdiction variable
𝑥𝑖𝑗 ∈ {0, 1}. For arcs in 𝐴𝑈 , this interdiction represents a user–user link
intervention. For user source node 𝑠 ∈ 𝑆, 𝑥𝑠̄𝑠 = 1 if the social media
network suspends the user.

An illustrative example. We illustrate an interdiction solution and its
impacts on graph 𝐺 in Fig. 1 as an example. The corresponding social
media network 𝐺𝑈 consists of source users 𝑆 = {𝑠1, 𝑠2, 𝑠3}, target users

= {𝑡1, 𝑡2, 𝑡3}, and general users 𝑅 = {𝑟1, 𝑟2}, and social network
elationship arcs 𝐴𝑈 are drawn with solid lines. The supergraph arcs
+(𝑠̄) and 𝛿−(𝑡) are drawn with dashed and dotted lines, respectively.
ystem-initiated interdiction, illustrated by a large X, occurs on arc
𝑠̄, 𝑠2) ∈ 𝛿+(𝑠̄), representing removal of malicious source node 𝑠2. In the

scenario 𝜔 depicted, user-initiated interdiction occurs on (𝑠3, 𝑡3) ∈ 𝐴𝑈 ,
shown with a small x, i.e., 𝛼𝑠3𝑡3𝜔 = 1. This represents 𝑡3 not believing
fake news from malicious source 𝑠3. Note that user-initiated interdiction
does not occur on (𝑟2, 𝑡3), which means 𝑡3 remains willing to believe fake
ews from general user 𝑟2. For this reason, news flows from 𝑠3 to 𝑟2 to
to 𝑡 , as well as from 𝑠 to 𝑡 .
3 1 1 1
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.2. Stochastic network interdiction formulation

For each scenario 𝜔 ∈ 𝛺, we denote 𝑓 (𝑥, 𝜉𝜔, 𝛼𝜔) as the number
f nodes who receive fake news, given system-initiated interdiction
ecision 𝑥 ∈ {0, 1}|𝐴𝑈∪𝛿+(𝑠̄)| and realizations 𝜉𝜔, 𝛼𝜔 ∈ {0, 1}|𝐴𝑈 |. We

formulate the stochastic network interdiction model for mitigating fake
news as follows.

min
𝑥

∑

𝜔∈𝛺
𝑝𝜔𝑓 (𝑥, 𝜉𝜔, 𝛼𝜔) (1a)

s.t.
∑

(𝑖,𝑗)∈𝐴𝑈

𝑥𝑖𝑗 ≤ 𝐵𝑈 , (1b)

∑

(𝑖,𝑗)∈𝛿+(𝑠̄)
𝑥𝑖𝑗 ≤ 𝐵𝑆 , (1c)

𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐴 ⧵ 𝛿−(𝑡), (1d)
where constraints (1b) and (1c) impose budgets 𝐵𝑈 and 𝐵𝑆 , on

the number of edges in 𝐴𝑈 and source nodes in 𝛿+(𝑠̄) that one can
interdict, respectively, with the overall objective being minimizing the
expected number of target nodes reached. The inner problem, to solve
for 𝑓 (𝑥, 𝜉𝜔, 𝛼𝜔) in each scenario 𝜔, is presented as follows.

𝑓 (𝑥, 𝜉𝜔, 𝛼𝜔) = max
𝑦,𝑣

𝑣𝜔 (2a)

s.t.
∑

𝑗∈𝛿−(𝑖)
𝑦𝑗 𝑖𝜔 −

∑

𝑗∈𝛿+(𝑖)
𝑦𝑖𝑗 𝜔 =

⎧

⎪

⎨

⎪

⎩

−𝑣𝜔, 𝑖 = 𝑠̄
0, 𝑖 ∈ 𝑈
𝑣𝜔, 𝑖 = 𝑡,

(2b)

𝑦𝑖𝑗 𝜔 ≤
⎧

⎪

⎨

⎪

⎩

|𝑇 |(1 − 𝑥𝑖𝑗 ), (𝑖, 𝑗) ∈ 𝛿+(𝑠̄)
|𝑇 |(1 − 𝑥𝑖𝑗𝜉𝑖𝑗 𝜔)(1 − 𝛼𝑖𝑗 𝜔), (𝑖, 𝑗) ∈ 𝐴𝑈

1, (𝑖, 𝑗) ∈ 𝛿−(𝑡),
(2c)

𝑦𝑖𝑗 𝜔 ∈ Z+, (𝑖, 𝑗) ∈ 𝐴, (2d)

𝑣𝜔 ∈ Z+. (2e)
Constraints (2b) ensure flow balance at each node in 𝐺. Constraints

2c) ensure zero flow on any successfully system- or user-interdicted
rcs. These constraints also ensure that the flow from each target node
o the sink node is 0 or 1. Note that these bottlenecks ensure that flow
s no more than |𝑇 | on any particular arc. Thus, our infinite capacity
rcs technically have an upper bound |𝑇 | on flow.

If the target to sink node flow 𝑦𝑡𝑡𝜔 is 1 for a particular optimal
olution to (2), the flow balance constraints imply that the target node
is reached in that solution. If the target to sink node flow 𝑦𝑡𝑡𝜔 is 0
nd 𝑡 can be reached, then there is a path from the source node to 𝑡
ith infinite capacity arcs (and flow at most |𝑇 |− 1), and we can add 1

o that path flow, increasing the objective value, a contradiction. Thus,
e have that the objective (2a) yields the number of reachable target
odes.

Note that we can omit the integrality constraints in Model (2), and
nstead only require 𝑦𝑖𝑗 𝜔 ≥ 0 for (𝑖, 𝑗) ∈ 𝐴 and 𝑣𝜔 ≥ 0 if all arc capacities
re integer (see Ahuja et al., 1993). For each scenario 𝜔 ∈ 𝛺, we define
ual variables ℎ𝜔 ∈ 𝐑|𝐴| and 𝑤𝜔 ∈ 𝐑|𝑈 |. We present the equivalent dual
eformulation of (2) as below, for which we define 𝜉𝑠̄𝑠 = 1 and 𝛼𝑠̄𝑠𝜔 = 0
or all 𝑠 ∈ 𝑆 to unify notation for arcs 𝐴𝑈 and 𝛿+(𝑠̄) in constraints (2c)
efore taking the dual.

(𝑥, 𝜉𝜔, 𝛼𝜔) = min
𝑤,ℎ

∑

(𝑖,𝑗)∈𝛿−(𝑡)
ℎ𝑖𝑗 𝜔 +

∑

(𝑖,𝑗)∈𝐴𝑈∪𝛿+(𝑠̄)
|𝑇 |(1 − 𝑥𝑖𝑗𝜉𝑖𝑗 𝜔)

× (1 − 𝛼𝑖𝑗 𝜔)ℎ𝑖𝑗 𝜔 (3a)

s.t. 𝑤𝑠̄𝜔 −𝑤𝑡𝜔 ≥ 1, (3b)

ℎ𝑖𝑗 𝜔 −𝑤𝑖𝜔 +𝑤𝑗 𝜔 ≥ 0, (𝑖, 𝑗) ∈ 𝐴, (3c)

ℎ𝑖𝑗 𝜔 ≥ 0, (𝑖, 𝑗) ∈ 𝐴. (3d)

Putting together models (1) and (3), we have an outer and inner
minimization problem, that allows us to find the system-initiated inter-
diction decisions that yield the lowest expected number of vulnerable
target users that receive fake news.
4 
min
𝑥

∑

𝜔
𝑝𝜔

⎛

⎜

⎜

⎝

∑

(𝑖,𝑗)∈𝛿−(𝑡)
ℎ𝑖𝑗 𝜔 +

∑

(𝑖,𝑗)∈𝐴𝑈∪𝛿+(𝑠̄)
|𝑇 |(1 − 𝑥𝑖𝑗𝜉𝑖𝑗 𝜔)(1 − 𝛼𝑖𝑗 𝜔)ℎ𝑖𝑗 𝜔

⎞

⎟

⎟

⎠

(4)

s.t. (1b)–(1d),
(3b)–(3d), ∀𝜔 ∈ 𝛺 .

Notice the second summation in the objective includes terms of the
orm 𝑥𝑖𝑗ℎ𝑖𝑗 𝜔, the product of two variables. Letting 𝑧𝑖𝑗 𝜔 = 𝑥𝑖𝑗ℎ𝑖𝑗 𝜔, after
pplying McCormick inequalities (McCormick, 1976), one can easily
how that model (4) is equivalent to the following linear program,
hich we can directly solve to obtain optimal system-interdiction
ecisions.

in
𝑥

∑

𝜔
𝑝𝜔

⎛

⎜

⎜

⎝

∑

(𝑖,𝑗)∈𝛿−(𝑡)
ℎ𝑖𝑗 𝜔 +

∑

(𝑖,𝑗)∈𝐴𝑈∪𝛿+(𝑠̄)
|𝑇 |(ℎ𝑖𝑗 𝜔 − 𝑧𝑖𝑗𝜉𝑖𝑗 𝜔)(1 − 𝛼𝑖𝑗 𝜔)

⎞

⎟

⎟

⎠

(5a)

s.t. (1b)–(1d),
(3b)–(3d), 𝜔 ∈ 𝛺 ,
𝑧𝑖𝑗 𝜔 ≤ 𝑥𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴 ⧵ 𝛿−(𝑡), 𝜔 ∈ 𝛺 , (5b)

𝑧𝑖𝑗 𝜔 ≤ ℎ𝑖𝑗 𝜔, (𝑖, 𝑗) ∈ 𝐴 ⧵ 𝛿−(𝑡), 𝜔 ∈ 𝛺 , (5c)

𝑧𝑖𝑗 𝜔 ≥ 0, (𝑖, 𝑗) ∈ 𝐴 ⧵ 𝛿−(𝑡), 𝜔 ∈ 𝛺 . (5d)

3. Connections to independent cascade model

In the stochastic network interdiction-based formulation, we assume
that misinformation flows through the network freely unless inter-
rupted by user-initiated or system-initiated interdiction. Our goal is
to choose the system-initiated interventions to minimize the expected
number of vulnerable users reached under these diffusion assumptions.
Note that our models can be viewed and related to the information
diffusion model known as the independent cascade model.

3.1. Independent cascade model

Within the independent cascade model, a set of nodes are initially
‘‘activated’’, or infected with misinformation. Then, each infected node
attempts to infect a neighbor, and is successful with an arc-specific
probability. If they are unsuccessful, they do not attempt to infect that
neighbor again. This process repeats with the newly infected nodes
attempting to infect their neighbors. The propagation continues until
no new nodes are infected.

Formally, suppose we have social media network 𝐺𝑈 = (𝑈 , 𝐴𝑈 )
described in Section 2.1. Let each edge (𝑖, 𝑗) ∈ 𝐴𝑈 have probability pa-
rameter 𝑝f low𝑖𝑗 . Let 𝑊𝜏 be the set of nodes infected with misinformation
at time step 𝜏 = 0,… , |𝑈 |. The set of source nodes 𝑆 ⊂ 𝑈 are initially
infected with misinformation, i.e., 𝑊0 = 𝑆. For 𝜏 = 0,… , |𝑈 | − 1, each
newly infected node 𝑖 ∈ 𝑊𝜏 attempts to infect uninfected neighbor
𝑗 ∈ {𝑘 ∶ (𝑖, 𝑘) ∈ 𝐴𝑈 } ⧵ (∪𝑧≤𝜏𝑊𝑧), and is successful with probability
𝑝f low𝑖𝑗 . If successful, 𝑗 ∈ 𝑊𝜏+1. This iterative process completes when 𝑊𝜏
is empty for some 𝜏 = 1,… , |𝑈 |.

3.2. Source-aware targeted influence minimization with stochastic interven-
tion

Suppose that we have social media network 𝐺𝑈 = (𝑈 , 𝐴𝑈 ) described
in Section 2.1, and fake news propagates through 𝐺𝑈 according to the
independent cascade model, where probability of information flow 𝑝f low𝑖𝑗
is defined to be 1 −𝑝𝛼𝑖𝑗 , for (𝑖, 𝑗) ∈ 𝐴𝑈 . Suppose that a certain number of
source nodes, 𝐵𝑆 , can be removed and a certain number of edges, 𝐵𝑈 ,
can be targeted for removal. The success of attempted removal of edge
(𝑖, 𝑗) ∈ 𝐴𝑈 is a binomial random variable 𝜉𝑖𝑗 with probability 𝑝𝜉𝑖𝑗 . The
Source-Aware Targeted Influence Minimization with Stochastic Intervention
problem is defined as: How we choose a set of source nodes 𝑆̄ ⊂ 𝑆 with
|𝑆̄| ≤ 𝐵𝑆 and a set of edges 𝐴𝑈 ⊂ 𝐴𝑈 with |𝐴𝑈 | ≤ 𝐵𝑈 to remove, so

that we minimize the expected number of vulnerable users 𝑇 infected?
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heorem 1. The optimal solution to Source-Aware Targeted Influence
Minimization with Stochastic Intervention is given by (1) and therefore, (5).

Proof. Models (1) and (5) find the system-initiated interdiction actions
hat minimize the expected number of vulnerable nodes 𝑇 reached over
he support 𝛺. We will show that each scenario 𝜔 ∈ 𝛺 corresponds

to a live arc representation of the independent cascade model with an
adaptation to include stochastic interventions.

We first fix the system-initiated interdiction decision 𝑥 and 𝜔 ∈ 𝛺
and have realizations 𝛼𝜔 and 𝜉𝜔. The function 𝑓 (𝑥, 𝜉𝜔, 𝛼𝜔) finds the
number of target nodes 𝑇 reachable from 𝑆 ⧵ {𝑠 ∈ 𝑆 ∶ 𝑥𝑠̄𝑠 = 1}
given source node deletions, successful system edge deletions, and
user-initiated edge deletions in scenario 𝜔, within the social media
network 𝐺𝑈 . We then construct a subgraph 𝐺𝜔

𝑈 (𝑥) = (𝑈𝜔(𝑥), 𝐴𝜔
𝑈 (𝑥))

that incorporates these source node and edge removals. Arc (𝑖, 𝑗) ∈ 𝐴𝑈
is included in 𝐴𝜔

𝑈 (𝑥) if 𝑖 is not a deleted source node under 𝑥 and
(1 − 𝛼𝑖𝑗 𝜔)(1 − 𝜉𝑖𝑗 𝜔𝑥𝑖𝑗 ) = 1 under 𝑥 and 𝜔.

Graph 𝐺𝜔
𝑈 (𝑥) corresponds to a live-arc representation of the indepen-

dent cascade model that includes uncertainty in edge removal success.
To see this, we follow the arguments given by Kempe et al. (2003).
Imagine that at some step in the independent cascade model informa-
tion propagation process, that node 𝑖 attempts to infect node 𝑗. This
takes place if information flows and the edge is not removed. Whether
information flows is a random event that can be seen as a weighted coin
flip with probability 𝑝f low𝑖𝑗 . Whether the edge is removed is a two-part
question that includes (i) whether the edge is targeted and (ii) whether
the targeting is successful, and thus is a random event that can be seen
as a weighted coin flip with probability 𝑝𝜉𝑖𝑗 . Note that due to the law of
total expectation, we can flip this coin even if the edge in question is
not targeted by 𝑥. Whether we flip these coins at the moment 𝑖 attempts
to infect 𝑗 or before the process occurs, does not affect the values. Thus,
these coin flips, on all edges of 𝐺𝑈 , can be seen as static. The number of
infected vulnerable nodes in a scenario of a particular set of coin flips
can be determined by making a live-arc representation of the graph.
An arc is included in this representation if its coin flips and the system-
initiated interdiction decision indicate information would propagate,
and excluded otherwise. If a path exists in the live-arc representation
from a source node to a vulnerable node, then that set of dynamic
coin flips would lead to the infection of the vulnerable node. Thus,
the expected number of vulnerable nodes can be found by enumerating
all coin flip scenarios, finding the probability of each and number of
reachable vulnerable nodes for each, and calculating the expectation.

Each scenario 𝜔 ∈ 𝛺 and associated graph 𝐺𝜔
𝑈 (𝑥) corresponds

to a particular set of coin flips — where the arc (𝑖, 𝑗) ∈ 𝐴𝜔
𝑈 (𝑥) if

and only if the coin flips and system-initiated interdiction for that
arc would lead to information propagating. Thus, the objective func-
tion ∑

𝜔∈𝛺 𝑝𝜔𝑓 (𝑥, 𝜉𝜔, 𝛼𝜔), that finds the expected number of reachable
nodes over graphs equivalent to the live-arc representations, finds the
expected number of infected vulnerable nodes under the information
cascade model, and Models (1) (5), find the optimal solution. This
completes the proof. □

4. Adaptation for scalability

Implementation of our combined minimization model can be com-
putationally expensive for large social media networks. In this section,

e give an alternative formulation of the stochastic network interdic-
ion model for a community-based transformation of a social media

network.
Suppose that the set 𝑈 of user nodes in a large social media network

𝐺𝑈 are partitioned into 𝑘 communities, 𝐶1,… , 𝐶𝑘, using a cluster
analysis or hierarchical clustering method. We define the community
graph of the social network 𝐺𝑐

𝑈 = (𝑈 𝑐 , 𝐴𝑐) as follows. The set of nodes
𝑐 = {1,… , 𝑘} each represents a community. For 𝑖 ≠ 𝑗 ∈ 𝑈 𝑐 , there is

n arc (𝑖, 𝑗) ∈ 𝐴𝑐 if and only if an arc exists from a user in community
5 
𝐶𝑖 to a user in community 𝐶𝑗 in 𝐴𝑈 . We label the set of all arcs from
sers in community 𝐶𝑖 to users in community 𝐶𝑗 as 𝐸𝑖𝑗 . Note that 𝐸𝑖𝑗 is
 subset of 𝐴𝑈 . We assume that 𝑝𝛼𝑒 and 𝑝𝜉𝑒 are the same for all 𝑒 ∈ 𝐸𝑖𝑗 ,
nd re-define these probabilities 𝑝𝛼𝑖𝑗 and 𝑝𝜉𝑖𝑗 , respectively.

We assume that once a densely connected community becomes
‘infected’’ with misinformation, the misinformation spreads quickly
hroughout that group, with no user-initiated interdiction. Because of
he speed of infection in the community, we assume system-initiated
nterdiction does not take place within communities either. The em-
hasis of this scalable model is mitigation of fake news spread between

communities.
Within the community graph, each community node is labeled as

 source, target, or general node, analogously to the social media
network. Source community nodes, labeled 𝑆𝑐 , are communities that
ontain malicious source nodes. Target community nodes, 𝑇 𝑐 , are com-
unities that contain target nodes and no source nodes. We label the set

f target nodes contained in community 𝐶𝑖 as 𝑇𝑖, for each community
arget node 𝑖 ∈ 𝑇 𝑐 . General community nodes 𝑅𝑐 are communities

that contain only general nodes. The community supergraph 𝐺𝑐 =
(𝑁𝑐 , 𝐴𝑐 ) is defined analogously to the social network supergraph 𝐺 =
(𝑁 , 𝐴), with 𝑁𝑐 = 𝑈 𝑐 ∪ {𝑠̄, 𝑡} and 𝐴𝑐 = 𝐴𝑐

𝑈 ∪ 𝛿+(𝑠̄) ∪ 𝛿−(𝑡). The
ne change we make when we define 𝐺𝑐 is the capacity of the in-
rcs of the dummy target node. Rather than making each capacity 1,

the capacity of arc (𝑖, 𝑡) ∈ 𝐴𝑐 becomes the number |𝑇𝑖| of vulnerable
target nodes in community 𝐶𝑖. Because other arcs in the supergraph
remain infinite capacity, if community 𝐶𝑖 that contains target nodes
is reachable in the community graph, maximum flow will saturate the
capacity of the arc (𝑖, 𝑡). Thus, maximizing flow over this supergraph
is equivalent to determining the number of target nodes outside of
communities with source nodes that receive fake news. Because we
assume misinformation spreads within a community immediately, we
can add the number of target nodes in communities with source nodes
to this objective to get the total number of target nodes reached.

When the system performs interdictions on nodes or edges in the
community supergraph, the corresponding action on the original so-
ial media supergraph is much larger. System-initiated interdiction of
ommunity source node 𝑖 implies interdiction of |𝐶𝑖| nodes in the
ommunity. Similarly, system-initiated interdiction of edge (𝑖, 𝑗) in the
ommunity supergraph corresponds to interdiction of |𝐸𝑖𝑗 | edges in the
riginal social media supergraph. We adapt the budget constraints on
ystem-initiation interdiction to reflect this. Overall, the minimization
roblem is adapted as follows.

in
𝑥

∑

𝜔
𝑝𝜔

⎛

⎜

⎜

⎝

∑

(𝑖,𝑗)∈𝛿−(𝑡)
|𝑇𝑖|ℎ𝑖𝑗 𝜔 +

∑

(𝑖,𝑗)∈𝐴𝑐
𝑈∪𝛿+(𝑠̄)

|𝑇 |(ℎ𝑖𝑗 𝜔 − 𝑧𝑖𝑗𝜉𝑖𝑗 𝜔)(1 − 𝛼𝑖𝑗 𝜔)
⎞

⎟

⎟

⎠

(6a)

s.t.
∑

(𝑖,𝑗)∈𝐴𝑐
𝑈

|𝐸𝑖𝑗 |𝑥𝑖𝑗 ≤ 𝐵𝑈 , (6b)

∑

(𝑖,𝑗)∈𝛿+(𝑠̄)
|𝐶𝑗 |𝑥𝑖𝑗 ≤ 𝐵𝑆 , (6c)

𝑧𝑖𝑗 𝜔 ≤ 𝑥𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴𝑐 ⧵ 𝛿−(𝑡), 𝜔 ∈ 𝛺 , (6d)

𝑧𝑖𝑗 𝜔 ≤ ℎ𝑖𝑗 𝜔, (𝑖, 𝑗) ∈ 𝐴𝑐 ⧵ 𝛿−(𝑡), 𝜔 ∈ 𝛺 , (6e)

𝑤𝑠̄𝜔 −𝑤𝑡𝜔 ≥ 1, 𝜔 ∈ 𝛺 , (6f)

ℎ𝑖𝑗 𝜔 −𝑤𝑖𝜔 +𝑤𝑗 𝜔 ≥ 0, (𝑖, 𝑗) ∈ 𝐴𝑐 , 𝜔 ∈ 𝛺 , (6g)

ℎ𝑖𝑗 𝜔 ≥ 0, (𝑖, 𝑗) ∈ 𝐴𝑐 , 𝜔 ∈ 𝛺 , (6h)

𝑧𝑖𝑗 𝜔 ≥ 0, (𝑖, 𝑗) ∈ 𝐴𝑐 ⧵ 𝛿−(𝑡), 𝜔 ∈ 𝛺 , (6i)

𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐴𝑐 ⧵ 𝛿−(𝑡). (6j)

As the size of the community graph grows, the number of calcu-
lations required to enumerate the stochastic distribution of scenarios
grows exponentially. In our computational studies, for instance, the
community graph has 189 nodes. While this is much reduced from the
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Fig. 2. An illustration of special-structured social media path 𝑛.

original social network, with 23,505 nodes, enumerating all scenarios
s computationally infeasible.

For this reason, we use SAA (Kleywegt et al., 2002) and solve
Model (6) 𝑀 times, each with an independent Monte Carlo sample
𝛺𝑚 of size 𝑛, yielding a candidate solution 𝑥̂𝑚. Then, using a large
independent Monte Carlo sample 𝛺̄1 of size 𝑁 > 𝑛, we solve the
maximum flow problem for each scenario 𝜔 ∈ 𝛺̄1, estimating the
objective value for each candidate solution 𝑥̂𝑚. We then choose the
candidate solution with lowest objective value, 𝑥̄, and perform one
final test, with a second independent sample, 𝛺̄2 of size 𝑁 , to estimate
the mean number of target nodes reached. We obtain statistical upper
bound and lower bound of the true optimal objective value through the
above procedures.

5. Path networks with stochastic system interdiction

In fake news mitigation, intuition suggests to interdict arcs as close
to source nodes as possible — curbing the spread of misinformation
before it gains momentum. When does it make sense to delay system-
nitiated interdiction? To examine this problem more closely, we look
t social media networks that can be represented as paths, 𝑛 = (𝑈 , 𝐴𝑈 ),
∈ N, with one malicious source node, 𝑠1, and 𝑛 target nodes,

𝑡1,… , 𝑡𝑛} and user arcs 𝐴𝑈 = {(𝑠1, 𝑡1)} ∪ {(𝑡𝑖, 𝑡𝑖+1) ∶ 𝑖 = 1,… , 𝑛 − 1},
s depicted in Fig. 2. Denote each arc (⋅, 𝑡𝑖) ∈ 𝐴𝑈 as 𝑒𝑖. For conciseness,
enote 𝑝𝛼𝑒𝑖 as 𝑝𝛼𝑖 and 𝑝𝜉𝑒𝑖 as 𝑝𝜉𝑖 . Denote the probabilities of failure to
nterdict as 𝑞𝛼𝑖 and 𝑞𝜉𝑖 , respectively. This network type, while simple,
s a subgraph of most real social media networks. Its simplicity helps
s gain insight into when delaying system-initiated interdiction makes
ense.

First, we assume precisely one arc 𝑒𝑖 ∈ 𝐴𝑈 is permitted to be
nterdicted by the system. When system-initiated interdiction is de-
erministic, regardless of user-initiated interdiction scenario, earlier
nterdiction is always better. The first arc in the path whose cost is
ithin budget should be chosen, to minimize the expected number of

arget nodes reached. If system-initiated interdiction is stochastic, on
he other hand, when does it make sense to delay interdiction?

Our integer programming Model (5) provides us one way to deter-
mine which arc 𝑒𝑖 ∈ 𝐴𝑈 minimizes expected target nodes reached.
Another approach involves calculating the expected value, given a
particular edge is interdicted by the system. We can repeat this process
or all edges in 𝐴𝑈 or some subset, if we reduce the size of the search

space.
We develop solution methods that utilize this second approach in

his section. We start by deriving the explicit form of the expected value
or this problem in the following theorem.

heorem 2. Suppose that a social media network is described by graph 𝑛
in Fig. 2, and 𝑗 ∈ {1,… , 𝑛}. The expected number of target nodes reached
hen edge 𝑒𝑗 is interdicted by the system, denoted 𝑣̄(𝑥𝑒𝑗 ), is given by
𝑛
∑

=1
𝑘𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑗 = 1), (7)

here for 𝑘 ∈ {1,… , 𝑛},

(𝑣̃ = 𝑘|𝑥𝑒𝑗 = 1) = 𝑝𝑘+1
𝑘
∏

𝑖=1
𝑞𝑖. (8)

Here, the probability of failure to interdict arc 𝑖 = 1,… , 𝑛 is given by

𝑖 =

{

𝑞𝛼𝑖 , 𝑖 ≠ 𝑗 ,
𝛼 𝜉 (9)

𝑞𝑖 𝑞𝑖 , 𝑖 = 𝑗 ,

6 
Fig. 3. The threshold multiplier in the delayed system-initiated interdiction threshold,
1 + 1∕𝑞𝛼2 , as a function of user-initiated interdiction probability 𝑝𝛼2 .

and the probability of successful interdiction of arc 𝑖 = 1,… , 𝑛 is given by

𝑖 =

{

𝑝𝛼𝑖 , 𝑖 ≠ 𝑗 ,
𝑝𝛼𝑖 + 𝑝𝜉𝑖 − 𝑝𝛼𝑖 𝑝

𝜉
𝑖 , 𝑖 = 𝑗 , (10)

while 𝑝𝑛+1 = 1.

Proof. The number of target nodes reached is 𝑘 ∈ {1,… , 𝑛} when
edges 𝑒1,… , 𝑒𝑘 are not interdicted by system or user, and edge 𝑒𝑘+1
s. When 𝑣̃ = 𝑛, interdiction along all arcs has failed. These facts are
eflected in Eq. (8) and 𝑝𝑛+1 = 1. For 𝑖 ≠ 𝑗, the success or failure to
nterdict comes just from the user, which leads to probabilities 𝑝𝛼𝑖 and
𝛼
𝑖 , respectively. On the other hand, when 𝑖 = 𝑗, failure to interdict
mplies both system and user failed, while success implies either system
r user failed. The probabilities in (9)–(10) reflect this, which completes
he proof. □

.1. Two target nodes

Suppose the number of target nodes 𝑛 = 2. In this section, we show
hat delayed interdiction is optimal when the probability of the second
rc’s success, 𝑝𝜉2, exceeds a particular threshold, which is the product
f the first arc’s probability of success, 𝑝𝜉1, and a threshold multiplier,
ased on the second arc’s user-initiated interdiction probability, 𝑝𝛼2 .
n illustration of the threshold multiplier, as a function of 𝑝𝛼2 , can be
een in Fig. 3. Notice as the probability of successful user interdiction
n the second arc increases, the required size of successful system
nterdiction probability in the second arc in relation to the first arc
rows very quickly. In most cases, early interdiction is preferred over

later interdiction.

Theorem 3. Consider graph 𝑛 in Fig. 2 with 𝑛 = 2. Suppose the budget
allows system-initiated interdiction of either 𝑒1 or 𝑒2. Assume user-initiated
interdiction is not deterministic (i.e., 𝑝𝛼𝑖 < 1 for 𝑖 = 1, 2). Interdicting arc 𝑒2
minimizes the expected number of target nodes reached if and only if
𝑝𝜉2 ≥ (1 + 1∕𝑞𝛼2 )𝑝

𝜉
1. (11)

Proof. We prove the result by showing that (11) holds if and only if
𝑣̄(𝑥𝑒1 ) − 𝑣̄(𝑥𝑒2 ) ≥ 0. First, we use Theorem 2 to calculate 𝑣̄(𝑥𝑒1 ) − 𝑣̄(𝑥𝑒2 ).

ote that we have the following probability distributions.

(𝑣̃ = 𝑘|𝑥𝑒1 = 1) =
{

𝑝𝛼2𝑞
𝛼
1 𝑞

𝜉
1 , 𝑘 = 1,

𝑞𝛼1 𝑞
𝜉
1𝑞

𝛼
2 , 𝑘 = 2. (12)

𝑃 (𝑣̃ = 𝑘|𝑥𝑒2 = 1) =
{

(𝑝𝛼2 + 𝑝𝜉2 − 𝑝𝛼2𝑝
𝜉
2)𝑞

𝛼
1 , 𝑘 = 1,

𝛼 𝛼 𝜉 (13)

𝑞1 𝑞2 𝑞2 , 𝑘 = 2.
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ecause 𝑞𝛼1 is a positive common factor in all the terms in 𝑣̄(𝑥𝑒1 ) −𝑣̄(𝑥𝑒2 ),
the expression is nonnegative if and only if 𝑣̄(𝑥𝑒1 ) − 𝑣̄(𝑥𝑒2 )∕𝑞

𝛼
1 ≥ 0. Thus,

̄(𝑥𝑒1 ) − 𝑣̄(𝑥𝑒2 ) ≥ 0 if and only if
(𝑝𝛼2𝑞

𝜉
1 − 𝑝𝛼2 + 𝑝𝜉2 − 𝑝𝛼2𝑝

𝜉
2) + 2(𝑞𝜉1𝑞𝛼2 − 𝑞𝛼2 𝑞

𝜉
2) ≥ 0 (14)

⟺ (𝑝𝛼2 − 𝑝𝛼2𝑝
𝜉
1 − 𝑝𝛼2 + 𝑝𝜉2 − 𝑝𝛼2𝑝

𝜉
2) + 2𝑞𝛼2 (𝑝

𝜉
2 − 𝑝𝜉1) ≥ 0 (15)

⟺ 𝑝𝛼2 (𝑝
𝜉
2 − 𝑝𝜉1) + 𝑝𝜉2 + 2𝑞𝛼2 (𝑝

𝜉
2 − 𝑝𝜉1) ≥ 0 (16)

⟺ (1 + 𝑞𝛼2 )(𝑝
𝜉
2 − 𝑝𝜉1) + 𝑝𝜉2 ≥ 0 (17)

⟺ − 𝑝𝜉1 + 𝑞𝛼2 𝑝
𝜉
2 − 𝑞 𝑝𝜉1 ≥ 0 (18)

⟺ 𝑝𝜉2 ≥ (1 + 1∕𝑞𝛼2 )𝑝
𝜉
1. (19)

Note that the last line holds because 𝑞𝛼2 = 1 − 𝑝𝛼2 > 0. This completes
the proof. □

Theorem 3 has a few immediate corollaries.

orollary 1. For graph 2, if 𝑝𝜉1 = 𝑝𝜉2, then interdiction of arc 𝑒1 is
preferred over interdiction of arc 𝑒2, regardless of user-initiated interdiction
probabilities.

Corollary 2. For graph 2, the preferred interdiction decision depends on
system-initiated interdiction and 𝑒2 user-initiated interdiction probabilities.
The decision is independent of the 𝑒1 user-initiated interdiction probability.

5.2. 𝜖-optimal approximation algorithm for path networks

When we consider whether to delay system-initiated interdiction
along a path 𝑛, we compare the expected number of target nodes
reached if an edge is interdicted to earlier edges in the path. In-
dependent of system-initiated interdiction, we have user-initiated in-
terdiction. Intuitively, the further we move along the path, delaying
system-initiated interdiction, the more likely we are to reach a point
where user-initiated interdiction plays the greater role in expected
number of target nodes reached. In this section, we show a theoreti-
cal proof supports this intuition. The distance between values in the
sequence {𝑣̄(𝑥𝑒𝑖 )}

𝑛
𝑖=1 decreases as the index increases. We describe this

phenomenon in more detail in the theorem below, and follow with an
algorithm that uses the result to produce 𝜖-optimal solutions to the
minimum expected target nodes reached problem for paths of the form
𝑛.

Theorem 4. Consider graph 𝑛 in Fig. 2. For this graph, expected number
of nodes reached

|𝑣̄(𝑥𝑒𝑖 ) − 𝑣̄(𝑥𝑒𝑖+1 )| ≤
𝑖−1
∏

𝑗=1
𝑞𝛼𝑒𝑗

𝑛
∑

𝑗=𝑖−1
𝑗 (20)

for 𝑖 = 2,… , 𝑛 − 1. The sequence
{ 𝑘

∏

𝑗=1
𝑞𝛼𝑒𝑗

𝑛
∑

𝑗=𝑘
𝑗

}𝑛−2

𝑘=1

(21)

is monotone decreasing.

Proof. First, note that for 𝑘 = 1,… , 𝑖 − 2, 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖 = 1) = 𝑃 (𝑣̃ =
𝑘|𝑥𝑒𝑖+1 = 1) = 𝑝𝛼𝑘+1

∏𝑘
𝑗=1 𝑞

𝛼
𝑗 , since no system-initiated interdiction is

involved. This implies

|𝑣̄(𝑥𝑒𝑖 ) − 𝑣̄(𝑥𝑒𝑖+1 )| =
|

|

|

|

|

𝑛
∑

𝑘=𝑖−1
𝑘(𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖 = 1) − 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖+1 = 1))

|

|

|

|

|

(22)

≤
𝑛
∑

𝑘=𝑖−1
𝑘 ||
|

𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖 = 1) − 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖+1 = 1)||
|

. (23)

Now, note two cases for the value 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑗 = 1). If 𝑗 < 𝑘 + 1, we

have that system-initiated interdiction failed, and 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑗 = 1) =

7 
𝑝𝑘+1
∏𝑘

𝑙=1 𝑞
𝛼
𝑙 𝑞

𝜉
𝑗 . Otherwise, 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑗 = 1) = 𝑝𝑘+1

∏𝑘
𝑙=1 𝑞

𝛼
𝑙 . In either

case, for 𝑘 ≥ 𝑖 − 1, we have
𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑗 = 1)

∏𝑖−1
𝑙=1 𝑞

𝛼
𝑙

∈ (0, 1), (24)

which implies
𝑖−1
∏

𝑗=1
𝑞𝛼𝑒𝑗

|

|

|

𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖 = 1) − 𝑃 (𝑣̃ = 𝑘|𝑥𝑒𝑖+1 = 1)||
|

∏𝑖−1
𝑗=1 𝑞𝛼𝑒𝑗

≤
𝑖−1
∏

𝑗=1
𝑞𝛼𝑒𝑗 . (25)

This, along with (23), yields the result. □

We utilize Theorem 4 to develop the following 𝜖-optimal algorithm.

Algorithm 1 PathInterdict
1: Input: Optimal value tolerance 𝜖. Path graph 𝑛.
2: Output: 𝜖-optimal interdiction solution.
3: Initialize 𝑞 ∶= 𝑞𝛼𝑒1 and 𝐶 ∶= 𝑛(𝑛 + 1)∕2.
4: for 𝑘 = 1,… , 𝑛 − 2 do
5: if 𝑞 𝐶 < 𝜖∕(𝑛 − 𝑘) then
6: break
7: end if
8: Update 𝑞 ∶= 𝑞 ∗ 𝑞𝛼𝑘+1 and 𝐶 ∶= 𝐶 − 𝑘.
9: end for
0: Find expected number of target nodes reached 𝑣̄(𝑥𝑒𝑗 ) for 𝑗 =

1,… , 𝑘 + 1.
11: return argmin𝑗=1,…,𝑘+1 𝑣̄(𝑥𝑒𝑗 ).

Note that Algorithm 1 checks if the RHS of (20) is less than the
tolerance 𝜖 divided by an upper bound on the remaining number of
edges, 𝑛− 𝑘. Because sequence (21) is monotone decreasing, when this
line is satisfied for some 𝑘, the difference between 𝑣̄(𝑥𝑒𝑘+1 ) and 𝑣̄(𝑥𝑒𝑗 ) is
less than 𝜖 for all 𝑗 ≥ 𝑘 + 2.

6. Computational results

In Section 4, we develop an adaptation of the stochastic network
interdiction model by taking the advantage of the community structure
that exists in many social networks and discuss the use of SAA to
further reduce computational time. To test the effectiveness of these ap-
proaches, we conduct numerical studies in this section by constructing a
social network with 23,505 nodes using a subset of the actors born 1990
or later in the IMDb dataset (IMDb, 2023). In the graph, an edge exists
between two actors if they have worked on a project (e.g., a movie)
together. We use the largest connected component, containing about
90% of original nodes, to construct the social network. To construct
the corresponding community graph, we use Clauset-Newman-Moore
greedy modularity maximization (Clauset et al., 2004), implemented
by NetworkX (Hagberg et al., 2008), partitioning the nodes into 189
communities.

We test different values for the following parameters: number of
community source nodes, budget for interdicting edges, budget for
interdicting source nodes, and type of random behavior. Specifically,
we consider 1, 2, or 3 community source nodes, selecting the largest
communities, and test 𝐵𝑈 = 100, 200, 300,… , 1500 for edge interdiction
(with 𝐵𝑆 = +∞), and then 𝐵𝑆 = 100, 150, 200, 250, 300 for source node
interdiction (with 𝐵𝑈 = +∞). For the user or system behavior types,
we assume three general cases, being ‘‘Stochastic User’’ (with 𝑝𝜉 = 1),
‘‘Stochastic System’’ (with 𝑝𝛼 = 0), and ‘‘Both Stochastic’’ (with both
0 < 𝑝𝜉 < 1 and 0 < 𝑝𝛼 < 1), respectively. We summarize the specific
choices of 𝑝𝜉 - and 𝑝𝛼-values in Table 1 for each case. Note that each
probability combination will affect the scenarios in the Monte Carlo
sampling and the SAA model later. Here, 𝑝𝛼 being larger indicates that
users in the system have more variability believing fake news, and 𝑝𝜉

being larger indicates that interdicting edges/source nodes has more

uncertainty in its effects.
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Fig. 4. Community graph with |𝑆𝑐
| = 1 and stochastic users.
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Table 1
User and system behavior parameters.

𝑝𝛼 𝑝𝜉

Stochastic user 0.1, 0.2, . . . , 0.5 1
Stochastic system 0 0.5, 0.6 . . . , 1
Both stochastic 0.1, 0.2, . . . , 0.5 0.5, 0.6 . . . , 1

To solve the optimal solution of the community structure model (6),
e perform SAA with 𝑀 = 5 random trials of Monte Carlo samples and
00 scenarios in each trial of samples to yield five candidate solutions.
e then estimate the objective value of each candidate solution with

n independent Monte Carlo sample with 1000 scenarios, solving the
aximum flow problem for each scenario and taking the average. We

hoose the candidate solution with minimum expected number of target
odes reached. Finally, with the chosen candidate solution, we perform
hese second-phase SAA tests again with a second independent Monte
arlo sample, also with 1000 scenarios, solving the maximum flow
roblem for each scenario and taking the average, to estimate the
bjective value of the chosen candidate solution.

All the computational tests were conducted on a computer with
n Intel Core E5-2630 v4 CPU 2.20 GHz and 128 GB of RAM. We
se Python and Gurobi 8.1 for solving all the optimization models.
or clarity and conciseness, we only present results of representative
ombinations of parameter settings in the main paper.
c

8 
6.1. Performance of the solution methods

For all test instances, we find the SAA optimality gap is between
−0.5% and 2.5%. We give the final objective value and various char-
cteristics of interdicted edges for the test instances with |𝑆𝑐

| = 1 in
Table 2. (We exclude those with |𝑆𝑐

| = 2 and 3 for conciseness because
the result patterns are similar.)

In Table 2, we report instances with 𝐵𝑈 = 100, 200, 500, 1000, 1500
and three combinations of stochastic behavior instances (𝑝𝛼 = 0, 𝑝𝜉 =
0.5), (𝑝𝛼 = 0.5, 𝑝𝜉 = 0.5), (𝑝𝛼 = 0.5, 𝑝𝜉 = 1), each representing ‘‘Stochastic
ystem’’, ‘‘Both Stochastic’’, and ‘‘Stochastic User’’, respectively. This
s because the small increments of 𝐵𝑈 (i.e., from 100 to 200) do not
ead to significant result changes (as shown in Table 2), which are also
bserved for all 𝐵𝑈 = 100, 200,… , 1500, and thus we only show the
epresentative cases with 𝐵𝑈 = 100, 200, 500, 1000, 1500. The patterns of
olutions are similar for different (𝑝𝛼 , 𝑝𝜉 ) combinations in between the
alues 0 and 1, and thus we only present results associated with the
hree general cases described in Table 1 and use 0.5 as the probability
alue.

From Table 2, the expected number of target nodes reached is
he highest when system-initiated interdiction is stochastic and user-
nitiated interdiction is deterministically zero, and the lowest when the
ystem is deterministically effective and users are stochastically partic-
pating in self-interdiction, for fixed budget. Increasing the budget has
he greatest effect on the stochastic users case, where system-initiated
nterdiction is deterministically effective.

Next we investigate what types of edges the mixed-integer program
hooses and the properties of these edges. Recall that each node in 𝑈 𝑐
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Fig. 5. Community graph with |𝑆𝑐
| = 1 and both stochastic users and system.
w
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Table 2
Objective values and interdicted edge characteristics for instances with |𝑆𝑐

| = 1.
Budget 𝐵𝑈 Stoch. Behavior Obj. Val. Interdicted edges

Median
comm nodes

Mean
cost

Total
number

100 𝑝𝛼 = 0, 𝑝𝜉 = 0.5 15 218.3 3 1.8 132
𝑝𝛼 = 0.5, 𝑝𝜉 = 0.5 13 925.5 293 4.1 58
𝑝𝛼 = 0.5, 𝑝𝜉 = 1 12 149.2 573 6.9 42

200 𝑝𝛼 = 0, 𝑝𝜉 = 0.5 15 191.7 3 1.8 138
𝑝𝛼 = 0.5, 𝑝𝜉 = 0.5 13 892.1 271 4.2 62
𝑝𝛼 = 0.5, 𝑝𝜉 = 1 11 167.8 599 7.0 43

500 𝑝𝛼 = 0, 𝑝𝜉 = 0.5 14 912.6 6 3.2 154
𝑝𝛼 = 0.5, 𝑝𝜉 = 0.5 13 784.8 229 4.7 106
𝑝𝛼 = 0.5, 𝑝𝜉 = 1 8905.6 690 7.4 68

1000 𝑝𝛼 = 0, 𝑝𝜉 = 0.5 14 774.6 6 5.5 182
𝑝𝛼 = 0.5, 𝑝𝜉 = 0.5 13 465.2 140 5 200
𝑝𝛼 = 0.5, 𝑝𝜉 = 1 5737.8 779 7.8 129

1500 𝑝𝛼 = 0, 𝑝𝜉 = 0.5 14 717.4 11 6.4 230
𝑝𝛼 = 0.5, 𝑝𝜉 = 0.5 13 346.2 97 6 250
𝑝𝛼 = 0.5, 𝑝𝜉 = 1 3704.8 490 12.4 121

represents a community of nodes in 𝑈 , whereas each arc (𝑖, 𝑗) in 𝐴𝑐
𝑈

epresents a set of edges 𝐸𝑖𝑗 ⊂ 𝐴𝑈 . In Table 2, in the ‘‘Median Comm
odes’’ column, we examine the size of community nodes involved in

nterdicted edges for each test instance. To do so, we take the median
f a vector having two components for each interdicted arc, (𝑖, 𝑗), with
alues |𝐶𝑖| and |𝐶𝑗 |, respectively, and exclude any components associ-
ted with 𝑆𝑐 . Notice that a similar pattern exists for each budget. For
ll cases with enough interdiction budget (e.g., 𝐵 = 500, 1000, 1500),
𝑈

9 
hen only the system is stochastic and users deterministically do
ot self-interdict, the median community size is very low — ranging

from 6 to 11. Here, interdiction targets a larger number of smaller
communities. On the other hand when only users are stochastic, and
system-initiated interdiction is deterministically effective, the median
community size is high — ranging from 490 to 779. Here, interdiction
ends to target larger communities. When both are stochastic, we see

a median between these two. This pattern suggests that centralized,
directed action is more effective when users are stochastic, while
widespread interdiction has better performance when the system is
stochastic.

In Table 2, we also examine the average cost of interdicted edges
in the community supergraph. Recall that the cost of edge (𝑖, 𝑗) is
|𝐸𝑖𝑗 |, the number of edges from community 𝐶𝑖 to community 𝐶𝑗 in the
original social media network. Notice that for fixed budget, no clear
pattern exists distinguishing the stochastic system and both stochastic
cases, while stochastic users generally always have a higher mean cost
and fewer interdicted edges. This suggests that the stochasticity of
system-initiated interdiction has a clearer effect on edge cost than the
stochasticity of the user. When the system is deterministically effective,
in the stochastic users case, there are fewer interdicted edges with
higher cost. When the effectiveness of the system is stochastic, regard-
less of whether users self-interdict, there tend to be more interdicted
edges with lower cost. It depends on how stochastic system and both
stochastic compare, however.

Also notice in Table 2 that no clear pattern exists for the impact
of increasing budget on number of edges interdicted and mean edge
cost. For stochastic system, increasing the budget leads to increases

in both, but not linearly. At the same time, for stochastic users with
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Fig. 6. Community graph with |𝑆𝑐
| = 1 and stochastic system.
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𝐵𝑈 = 100, 200, 500, 1000, 1500, mean edge cost is 6.9, 7.0, 7.4, 7.8, and
12.4, and mean number of edges is 68, 129, and 121. This suggests a
greedy heuristic might not perform as well as the optimization model.

We visualize interdicted edge characteristics in Figs. 4–6. In each
igure, part (a) shows the community supergraph 𝐺𝑐 with directed
dges. We exclude dummy nodes 𝑠̄ and 𝑡 to simplify the visualization.
he community source node is circled; all other nodes are community
arget nodes. Then, in parts (b)–(d) of each figure, we show the edges
hat are interdicted by the optimization model, for budgets 500, 1000,
nd 1500, respectively.

When only users are stochastic, and system-initiated interdiction
s deterministically effective, as seen in Fig. 4, the interdicted edges
re clustered in a densely connected area. When only the system is

stochastic, and users deterministically do not self-interdict, as seen in
Fig. 6, the interdicted edges are spread throughout the graph. When
both are stochastic, as seen in Fig. 5, we see a pattern between these
two extremes, with some interdicted edges in the densely connected
area and some spread throughout the graph.

When we interdict source nodes directly by varying 𝐵𝑆 = 100, 150,
00, 250, 300 instead of interdicting edges, we observe similar results
s the above ones, in terms of the interdiction effectiveness as 𝐵𝑆
ncreases, and thus we omit the detailed tables and solution patterns
or conciseness. Similarly, when 𝐵𝑆 only increases by 50, the effects
re negligible and because the number of nodes is significantly smaller
han the number of edges, we vary 𝐵𝑆 up to 300. In practice, node inter-
iction often corresponds to temporally or permanently deleting users’
ccounts, and thus will be more expensive and difficult to implement

as compared to edge interdiction.
 i

10 
6.2. Performance on original social network

In this section, we examine performance of the solution derived
from community supergraph 𝐺𝑐 , when interdiction is applied to the
riginal social network supergraph, 𝐺. While the size of 𝐺 makes the
irst stage of SAA computationally infeasible for Model (5), we can
stimate how our solution for Model (6) performs on the larger graph.

Note that the second Monte Carlo sample with 1000 scenarios
used to estimate the expected number of target nodes reached has
realizations of 𝛼 and 𝜉 based on the community supergraph 𝐺𝑐 . This
indicates that all edges in 𝐸𝑖𝑗 , with one node in community 𝐶𝑖 and
another in 𝐶𝑗 in the original graph 𝐺, have the same realization of
user-initiated interdiction and success of system-initiated interdiction
for particular scenario 𝜔. If we apply this assumption to 𝐺, and use the
same Monte Carlo sample, the expected number of target nodes reached
in 𝐺 is equal to the final objective value calculated by our solution

ethods.
If we generate a new set of samples to estimate 𝛺 for each test

nstance, where each edge in 𝐸𝑖𝑗 can have its own realization of
ser-initiated interdiction and system-initiated interdiction success in a
articular scenario, there is no guarantee that the solutions chosen by
6) lead to the same expected number of target nodes reached. Tests
ith independent Monte Carlo samples of size 20 found differences
f up to 37% from the final objective value. This indicates that our
ommunity-based model is best used in situations in which user–user
dges between communities are affected similarly by system-initiated

nterdiction and user-initiated self-interdiction.
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. Conclusion

In this paper, we considered how to mitigate the spread of misinfor-
mation or hate speech with limited resources available and uncertainty
in intervention effect. We developed a model based on stochastic
network interdiction that minimizes the expected maximum flow on
a supergraph of a social media network. This supergraph is designed
to make equivalent maximum flow and the number of vulnerable
users reached in the social media network. We derived an integer
programming formulation that uses the dual of maximum flow to
create a combined minimization problem, as well as a community-
based adaptation for scalability. We derived theoretical results about
the nature of fake news mitigation in chained social media networks,
with one source node and 𝑛 target nodes. In particular, we discovered
that a threshold exists for delaying system-initiated interdiction when
𝑛 = 2, based on the probabilities of system-initiated success and the
final arc’s probability of user self-interdiction, independent of the first
arc’s probability of user-initiated success. We also found that as system-
initiated interdiction is delayed further and further along a path of
length 𝑛, the absolute difference in expected number of target nodes
reached decreases. This allowed us to develop an 𝜖-optimal algorithm
for single-arc system interdiction of these networks.

We further applied our community-based mixed integer program
(6) to a large social network. We found that when systemic actions
are deterministically effective and users stochastically self-interdict,
solutions given by our methods tend to target centralized edges that
connect nodes representing large communities. On the other hand,
when systemic actions have some probability of failure and users
deterministically do not self-interdict, solutions tend to include arcs
spread throughout the graph that connect nodes representing smaller
communities. Interdiction actions chosen using Model (6) yield the
same expected number of targeted users reached in the original social
network supergraph as the final objective value given by the solution
methods when the edges between each pair of communities share
user-initiated interdiction and success of system-initiated interdiction
realizations. However, such a result does not generalize to the case
when each edge has an independent realization of the stochastic pa-
rameters in the original social network supergraph. Future research
can consider how to develop scalable methods based on community
structure that incorporate this characteristic. Our numerical studies
show that depending on specific probabilities of system and user be-
havior uncertainties, the interdiction results and solutions could be
very different, and thus the stochastic programming approach requires
perfect information and full knowledge of 𝑝𝛼 and 𝑝𝜉 . In practice, one
can only access the stochastic system and user behavior via historical
data, which could be limited, and thus the inferred 𝑝𝛼 and 𝑝𝜉 may not
be exact and accurate. As a result, for future research, one can explore
alternative models and algorithms to the stochastic programming ap-
proach we consider in this paper, e.g., robust or distributionally robust
optimization models, where the distribution of uncertain parameter
is ambiguously known, and we optimize the outcomes of interdiction
decisions against the worst case realization of the uncertain interdic-
tion outcome or probabilities 𝑝𝛼 , 𝑝𝜉 . For example, Sadana and Delage
(2023) study the effectiveness of randomization in interdiction games
with an interdictor who is risk and ambiguity averse, and consider a
distributionally robust network interdiction game where the interdictor
randomizes over the feasible interdiction plans in order to minimize the
worst-case conditional value-at-risk of the flow.
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