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more information on the uncertainty is revealed. Specifically, in each stage, a decision maker
optimizes capacity acquisition and resource allocation to minimize certain risk measures of
maintenance and operational cost. We compare it with a two-stage approach that determines
the capacity acquisition for all the periods up front. Using expected conditional risk mea-
https://doi.org/10.1287/ijoc.2023.0396 sures, we derive a tight lower bound and an upper bound for the gaps between the optimal
objective values of risk-averse multistage models and their two-stage counterparts. Based on
these derived bounds, we present general guidelines on when to solve risk-averse two-stage
or multistage models. Furthermore, we propose approximation algorithms to solve the two
models more efficiently, which are asymptotically optimal under an expanding market
assumption. We conduct numerical studies using randomly generated and real-world
instances with diverse sizes, to demonstrate the tightness of the analytical bounds and effi-
cacy of the approximation algorithms. We find that the gaps between risk-averse multistage
and two-stage models increase as the variability of the uncertain parameters increases and
decrease as the decision maker becomes more risk averse. Moreover, a stagewise-dependent
scenario tree attains much higher gaps than a stagewise-independent counterpart, whereas
the latter produces tighter analytical bounds.
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1. Introduction

The capacity planning problem, aiming to determine the optimal level of capacity acquisition and allocation, is a
classic optimization problem solved in a broad spectrum of applications, including capacity expansion in supply
chains (Aghezzaf 2005), production capacity planning for semiconductor manufacturing (Swaminathan 2000,
Hood et al. 2003), electric vehicle (EV) charging station expansion (Bayram et al. 2015), and so on. In these appli-
cations, demand fluctuates spatially and temporally, and as the cost of resource allocation in each stage depends
on the demand input, it is also random depending on the distribution of demand over time. To adapt to new
demand, service providers need to expand the existing capacities in an efficient way. Therefore, estimating and
utilizing uncertain demand in the decision processes of capacity planning is crucial for cost reduction and
quality-of-service improvement.

In this paper, we focus on a finite time horizon, in which the uncertain demand in each period is modeled by a
random vector. A decision maker optimizes when and how to expand the capacity and how to allocate resources
to meet the demand to minimize a certain risk measure of the maintenance and operational cost over multiple
periods. We compare two modeling frameworks: two-stage (TS) stochastic programming and multistage (MS)
stochastic programming. In the two-stage model, we determine capacity acquisition for all time periods up front
as here-and-now decisions and decide optimal resource allocation as wait-and-see recourse decisions based on
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realized demand and acquired capacities. In the multistage model, the uncertain demand values are revealed
gradually over time and the capacity-acquisition decisions are adapted to this process.

Both two-stage and multistage decision frameworks are commonly used in the stochastic capacity planning lit-
erature. We refer interested readers to Luss (1982), Davis et al. (1987), and Sabet et al. (2020) for comprehensive
reviews on capacity planning problems under uncertainty. To handle general parameter uncertainty, robust opti-
mization and stochastic programming are two of the popular approaches. Paraskevopoulos et al. (1991) and
Aghezzaf (2005) discuss robust capacity planning problems, and Eppen et al. (1989), Fine and Freund (1990), and
Berman et al. (1994) consider stochastic programming approaches using scenarios to model the uncertain para-
meters. Most of these approaches are based on the two-stage decision-making framework. There is a limited
number of papers considering multistage stochastic capacity planning problems. Both Ahmed and Sahinidis
(2003) and Singh et al. (2009) formulate a multistage stochastic mixed-integer programming model for capacity-
planning problems, for which Ahmed and Sahinidis (2003) propose a linear programming (LP) relaxation-based
approximation scheme with asymptotic optimality and Singh et al. (2009) apply variable splitting and Dantzig—-Wolfe
decomposition to tackle the problem.

Stochastic programming approaches mainly focus on minimizing the total cost on average. However, minimiz-
ing the expected cost does not necessarily avoid the rare occurrences of undesirably high cost, and in a situation
in which it is important to maintain reliable performance, we aim to evaluate and control the risk. In particular,
coherent risk measures (Artzner et al. 1999) have been used in many risk-averse stochastic programs as they sat-
isfy several natural and desirable properties. Schultz and Tiedemann (2006), Shapiro et al. (2009), Ahmed (2006),
and Miller and Ruszczynski (2011) extend two-stage stochastic programs with risk-neutral, expectation-based
objective functions to risk-averse ones. It becomes nontrivial to model multistage risk-averse stochastic programs
because the risk can be measured based on the cumulative cost, a total sum of the individual risk from each
stage, or the conditional risk in a nested way. When the risk is calculated in a nested way via dynamic risk mea-
sures, a desirable property is called time consistency (Ruszczynski 2010), which ensures consistent risk prefer-
ences over time.

Pflug and Ruszczynski (2005) propose a class of multiperiod risk measures, which can be calculated by solving
a stochastic dynamic linear optimization problem, and they analyze its convexity and duality structure. Homem-
de Mello and Pagnoncelli (2016) extend the above risk measures to expected conditional risk measures (ECRMs)
and prove some appealing properties. First, ECRMs, originally defined for each stage separately, can be rewritten
in a nested form. Second, any risk-averse multistage stochastic programs with ECRMs using a conditional value
at risk (CVaR) measure can be recast as a risk-neutral multistage stochastic program with additional variables
and constraints that can be efficiently solved using existing decomposition algorithms. Third, ECRMs are time
consistent following the inherited optimality property proposed in Homem-de Mello and Pagnoncelli (2016).
In this paper, we show that ECRMs also follow the definition of time consistency proposed in Ruszczynski
(2010) in Online Appendix A. Because of these properties, we base our analysis on the dynamic time-consistent
ECRMs using the CVaR measure, but we note that all the analysis and results derived in this paper also can be
applied to other CVaR-based risk measures, such as static CVaR or period-wise CVaR, which are not time
consistent.

A natural question is then about the performance of the risk-averse two-stage and multistage stochastic pro-
grams. Specifically, we are interested in comparing the optimal objective values and computational effort
between solving risk-averse two-stage and multistage models for stochastic capacity planning problems. Noting
that the multistage models have larger feasible regions and, thus, will always have lower costs, we aim to bound
the gap between optimal objective values of the two-stage and multistage models given specific risk measures of
the cost and characteristics of the uncertainty. Huang and Ahmed (2009) are the first to show analytical lower
bounds for the value of multistage stochastic programming (VMS) compared with the two-stage approach for
capacity planning problems with an expectation-based objective function. They developed an asymptotically
optimal approximation algorithm (AA) by exploiting a decomposable substructure in the problem. Our work dif-
fers from Huang and Ahmed (2009) in the following aspects. First, instead of using expectation as the objective
function, we consider a dynamic time-consistent risk measure (i.e., ECRMs). Although the resulting risk-averse
problem can be reformulated as a risk-neutral counterpart, the risk-neutral results derived from Huang and
Ahmed (2009) cannot be directly applied here because of a new structure induced by ECRM-related decision
variables and constraints. Instead, we derive new bounds on the VMS under this risk-averse setting. Second, we
propose both lower and upper bounds to the gaps between ECRM-based optimal objective values of two-stage
and multistage models and provide an example to illustrate the tightness of the lower bound, whereas Huang
and Ahmed (2009) only provided lower bounds without a tightness guarantee. Third, our approximation algo-
rithms improve the one developed in Huang and Ahmed (2009) by deriving closed-form solutions of the
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substructure problem in the risk-averse setting and strengthening the upper bound iteratively, whereas the one
in Huang and Ahmed (2009) relies on solving the substructure problem in each time. We further prove that the
approximation schemes are asymptotically optimal when the demand increases over time.

There is rich literature on proposing decomposition algorithms to solve risk-neutral and risk-averse multistage
stochastic programs. Pereira and Pinto (1991) are the first to develop stochastic dual dynamic programming
(SDDP) algorithms for efficiently computing multistage stochastic linear programs under stagewise-independent
scenario trees, which construct an under-approximation for the value function in each stage iteratively. We refer
interested readers to Philpott and Guan (2008), Girardeau et al. (2014), Shapiro (2011), Shapiro et al. (2013), and
Guigues (2016) for studies on the convergence of the SDDP algorithm under different problem settings. Among
them, Shapiro et al. (2013) and Guigues (2016) extend the SDDP algorithm to solve a risk-averse multistage
stochastic program. Stochastic dual dynamic integer programming (SDDiP), first proposed by Zou et al. (2019),
is an extension of SDDP to handle the nonconvexity arising in multistage stochastic integer programs based on a
similar computational framework. The main goal of this paper is to bound the gap between two-stage and multi-
stage stochastic programs and provide general guidelines on model choices. Using the substructure explored
when deriving the bounds, we also propose approximation algorithms to solve risk-averse two-stage and multi-
stage stochastic capacity planning problems more efficiently. Note that a common assumption made in the afore-
mentioned SDDP-type algorithms is that the underlying stochastic process is stagewise independent. However,
our analysis and proposed approximation algorithms are not restricted by this stagewise independence assump-
tion. Whereas our analytical results can be applied to a more general stochastic process, using a stage-wise inde-
pendent scenario tree, we compare the performance of our approximation algorithm with the SDDiP algorithm
in Section 5.1.5.

The remainder of the paper is organized as follows. In Section 2, we present the formulations of risk-averse
two-stage and multistage capacity planning problems under ECRM. In Section 3, we derive two lower bounds
and an upper bound for the gaps between the optimal ECRM-based objective values of two-stage and multistage
stochastic capacity planning models. In Section 4, we propose approximation algorithms with performance
guarantees. In Section 5, we conduct numerical studies using instances with diverse uncertainty patterns to
demonstrate the tightness of our bounds and the performance of the approximation algorithms. Section 6 con-
cludes the paper and states future research directions. Throughout the paper, we use bold symbols to denote
vectors/matrices and use [#] to denote the set {1,2,...,n}.

2. Problem Formulations
Consider a general class of capacity planning problems, in which we have 1,...,T time periods; 1,..., M facilities;
and 1,...,N customer sites. Let c;; be the cost of serving one unit of demand from customer site j in facility i at
period t; f;; be the cost of maintaining one unit of resources in facility i at period t; h;; be the number of customers
that one unit of resources can serve in facility i at period t; and dj; be the demand at customer site j at period ¢ for
allie [M],je[N],and t € [T].

Define decision variables x; € Z,. as the units of resources we invest in facility i at period ¢, and decision vari-
ables y;; € Ry as the amount of demand from customer site j served by facility i at period ¢. The deterministic
capacity planning problem is given by

t

T M T M N
min sz Doxut Y DD (la)

t=1 i=1 =1 t=1 i=1 j=1
M

st. > yy=dy, Vj=1,..,N, t=1,.,T, (1b)
i=1
N
> Ty < hann, Vi=1,...,Mt=1,...,T, (1c)
j=1
xi €., Vi=1,... M, t=1,...,T, (1d)
v €Rs, Vi=1,...,M,j=1,...,N,t=1,...,T. (1e)

The objective function (la) minimizes the total maintenance and operational cost over all time periods, where
S _, X represents the number of units of resources available in facility i at period t. Constraints (1b) require all
the demands to be satisfied in each period. Constraints (1c) indicate that, in each period, we can only serve cus-
tomer demand within the current capacity of each facility.
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In the remainder of this paper, we work with a generic capacity planning model in vector forms below:

T t T
min Z fIZ X + Z cly, (2a)
=1 =1 t=1

X1,...,XT
Y-y Yr
st. Aw,=d, Vt=1,...,T, (2b)
t
By, <) x, Vt=1,...,T, (20)
=1

x€ZM y, e RN wr=1,..,T,

where x; € ZM represents the capacity acquisition decisions (in number of units) for the resources and y, € R¥N*!

represents the operational-level allocation of resources in period t. Matrices A; € RNMN and B; € R™MN corre-
spond to the coefficients in Constraints (1b) and (1c), respectively (i.e., A; is a 0-1 matrix corresponding to Con-
straints (1b), and By is a matrix with entries 0 or 1/hy; corresponding to Constraints (1c)). Note that the difference
between Model (2) and models (7)—-(10) in Huang and Ahmed (2009) is that, instead of considering one-time
acquisition costs of resources, we take into account the period-wise maintenance costs for all acquired resources,
which is more realistic in applications such as EV charging station maintenance (Caldwell 2022), power system
equipment maintenance (Rehman 2020), etc.

2.1. Scenario Tree Representation
In Model (2), the data we acquire at each period t is the demand d; € RY for all t=1,...,T. We consider that the
data series {d>,...,dr} evolve according to a known probability distribution, and d; € Rf is deterministic (see
similar assumptions made in, e.g., Huang and Ahmed 2009, Shapiro et al. 2009, Zou et al. 2019). In practice, d;
can be derived and forecasted as the average of historical demand. Consider a discrete distribution and assume
that the number of realizations is finite, where such an approximation can be constructed by Monte Carlo sam-
pling if the probability distribution is instead continuous and the resultant problem is called sample average
approximation (Kleywegt et al. 2002).

In a multistage stochastic setting, the uncertain demand is revealed gradually, where we need to decide both
capacity acquisition x; and resource allocation y, in each stage t based on the currently realized demand d;. Cor-
respondingly, the decision-making process can be described as follows:

decision (x1,y,) — observation (d,) — decision (x2,y,) — observation (d3) —

Stage 1 Stage 2

.-+ — decision (x7_1,y;_;) — observation (dr) — decision (xr,y;) .

Stage T

To facilitate formulating the stochastic programs, we introduce a scenario tree representation of the uncertainty
and decision variables (Shapiro et al. 2009). Let 7 be the set of all nodes in the scenario tree associated with the
underlying stochastic process (see Figure 1). Each node 7 in period t > 1 has a unique parent node a(n) in period
t —1, and the set of children nodes of node # is denoted by C(1). The set 7 denotes all the nodes corresponding
to time period ¢, and ¢, is the time period corresponding to node n. Specifically, all nodes in the last period 7
are referred to as leaf nodes and denoted by L. The set of all nodes on the path from the root node to node 7 is
denoted by P(n). Each node 7 is associated with a (unconditional) probability p,, which is the probability of the
realization of the t,-period data sequence {d},,cp(,)- The probabilities of the nodes in each period sum up to one,
thatis, >, .7 pn =1, Vt=1,...,T, and the probabilities of all children nodes sum up to the probability of the par-
ent node, that is, Zmec(n)pm =pn, VYn ¢ L. 1f nisaleaf node, that is, n € £, then P(n) corresponds to a scenario that
represents a joint realization of the problem parameters over all periods. For each leaf node 1 € £, we denote the
probability of the scenario P(n) as p,. We denote the capacity acquisition decision variable at node 1 by x,, and
the resource allocation decision variable at node n by y,. Figure 1 depicts a scenario tree representation of
T-period uncertainty and its related notation.

2.2. ECRMs
Next, we introduce the definition and key properties of coherent risk measures. Consider a probability space
(E,F,P) and let 1 C F; C --- C Fr be sub-sigma-algebras of F such that each F, corresponds to the information
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Figure 1. Tllustration of a Scenario Tree and Its Related Notation

t=1 .. t=tym t=t, .. t=T

available up to (and including) period t with 71 ={0,E}, Fr = F. Let Z; denote a space of F;-measurable func-
tions from E to R, for example d; € Z;, Vt=1,...,T,and let Z:= Z; X --- X Z7.

A1 cZp— Zt 1 is Coherent if it satisfies the follow—

dp1

Definition 1 (Artzner et al. 1999). A conditional risk measure p,
ing four properties: (1) monotonicity: if Zl,Zz € Zy and Z; > Z,, then p{!""1(Zy) = p(Z,); (ii) convexity: p|
(YZi+ (1 —y)Z2) < ypy -1 (Zl) +(1=y)p; -1y (Zz) for all Zy, Z> € Zy and all y € [0,1]; (iii) translation invariance: if
W €Z; 1 and Z € Z;, then p, -l (Z+W)= o (Z)+ W; and (iv) positive homogeneity: if )/ >0 and Z € Z;, then
“ (yZ) =yp; i1 (Z). Here, Z1 > Z, if and only if Z1(&) > Z»(&) for almost everywhere Eer.
For notational simplicity, denote the period-wise cost g;(x1.,y,) ft S x+cf y, by g;. We consider a multi-
period risk function F as a mapping from Z to R below:

F(g1,...,87) = &1 + P5(82) + Eay [052 (g3)] + By [p47 (€)1 + - + B, [0F7 " (g1)], 3)

where pf is a conditional risk measure mapping from Z; to Z;_; to represent the risk given the information
available up to (including) period t — 1, that is, dj;_1) = (d1,...,d;_1). This class of multiperiod risk measures is
called ECRMs, first introduced by Homem-de Mello and Pagnoncelli (2016). We show that the ECRMs (3) are
time-consistent following the definition in Ruszczynski (2010) in Online Appendix A.

Using the tower property of expectations (Wasserman 2004), the multiperiod risk function ECRM (3) can be
written in a nested form below:

F(g1,---,87) = &1 + po(82) + Ea [p57(83) + Eat i[04 (§)+ -+ +Eaty y 1ar o[0T " (g1)] 11, 4)

where Eg, 4, ,, represents the expectation with respect to the conditional probability distribution of d; given reali-
zation d[t—l]-

For our problem, we consider a special class of single-period coherent risk measures—a convex combination
of conditional expectation and CVaR (for the definition of CVaR, please refer to Rockafellar and Uryasev 2000),
thatis, fort=2,...,T,

[t-1]

P (gr) = (1= ADE[ge|dpy_1y] + ACVaR3 " [gi], ©)

where A; € [0,1] is a parameter that adjusts between optimizing on average and risk control and «; € (0,1) is the
confidence level. Notice that this risk measure is more general than CVaR, and it includes CVaR as a special case
when A; =1.

Following the results by Rockafellar and Uryasev (2002), CVaR can be expressed as the following optimization
problem:

dy . 1
CVaRY g = inf {n, + 1 Bllgs ~ LIl ©
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where [a], := max{a,0}, and 7, is an auxiliary variable. The minimum of the right-hand side of Equation (6) is
attained at 1} = VaR,,[g] := inf{v : P(¢; < v) > a4}, and thus, CVaR is the mean of the upper (1 — a;)-tail distribu-
tion of g, that is, E[g;|g: > n;]. Selecting a large a; value makes CVaR sensitive to rare but very high costs (we fix
a; = 0.95 and vary A, to reflect different risk attitudes in our numerical experiments). To linearize [g; — n,], in (6),
we replace it by a variable u; with two additional constraints: u; > 0, u; > g — 1,.

2.3. Risk-Averse Two-Stage and Multistage Stochastic Programs
Combining (4)—(6), the objective function of our risk-averse multistage capacity planning model is specified as

MS _ : . A
Zno = min X1, + An, + E min 2
(e, g1(x1, 1) 21 d, [(xz,yz,uz)eXz(xmz,dz)/ {—1 s up + (1 = A2)g2(x12,y,) + Azny+ -
n,ER NSIS

+E min Ar_1
dr_1|dp, -2 [ (er—1, Yp_q, ur—1)EXT_1(X1:7-2, 71, AT1), { 1—ar Ur—1 + (1 — /\T—l)gT—l(xlzT—lr yt) + /\TUT

nr€R

ur + (1 — Ar)gr(xir, yT)}] H , )

+Egz 4, . min
T‘ (T (xT/ Yrs MT)EXT(xl:Tfll Nrs dr) 1 — ar

where the auxiliary variable n, € R is a function of dy, ..., d;_1, that is, 1, is a (t — 1)-stage variable similar to x;_4
for all t=2,...,T and the auxiliary variable u; € R is a t-stage variable to represent the excess t-stage cost of
the above 7,. Sets Xi(di) = {(x1,y,) € Zﬂ\f X RTN“ 1Ay, =di, Biy, < x1} and Xe(xi4-1,1,, de) = {(x¢, y,, 1) € Zﬁd X
R]J:AN“ xRy : Ay, =d;, By, < Zizl Xo, U+ 1, > ge(x1,y,)}, Vt=2,...,T are the feasible regions in each stage.

Plugging g:(x14+,y,) = fIthl x; + ¢y, into Equation (7) and using scenario node-based notation, the risk-
averse multistage model (7) can be written in the following extensive form:

. =T . < -

zII\{/IS - mmET an f. Z Xy + clyn +Ann, + iy (8a)
n,fl;l;%z,lbzun#:l neT meP(n)
st. Ayy,=d,, VneT, (8b)
By, < Y xu VneT, (8¢)
meP(n)
U + Ty Zfll Z X+ ctTnyn, Vn #1, (8d)
meP(n)

x, €2,y e RN wneT, u, >0, Vn#1,

where f, =f, ifn=1and f,=0- Ay, )f, otherwise, &, = ¢, if n=1and &, = (1 — A, )c;, otherwise, Ap=0ifne
Land A, = Ay, +1 otherwise, and @, =0ifn=1and &, = 11\’;“1 otherwise.

Note that, in the above multistage stochastic program, we have both capacity expansion x, and allocation y,
decisions corresponding to each node 7 in the scenario tree, 17, -variables are defined for all nodes 7 except for the
leaf nodes £, and u,-variables are defined for nonroot nodes n # 1. When A; =0, Vt=2,...,T, the risk measure
p, becomes the expectation and (8) reduces to a risk-neutral multistage stochastic program.

In a two-stage stochastic program, we decide the capacity expansion plan for all time periods in the first
stage regardless of the parameter realizations, and in the second stage, we decide the capacity allocation
plan based on the realized demand in each period. Thus, we do not allow any flexibility in the capacity-
acquisition plan with respect to the demand realizations; that is, x,, should take the same values for all the
nodes in the same stage. This gives us the following extensive formulation of the two-stage capacity
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planning model:

~T ~
TS _ . ~T ~
zg = . r;unnef[ E pul fo E X+ €Y, + Ann, + ity (9a)
qn,neﬁn, 1y 11 nel meP(n)

s.t. (8b)=(8d)

Xu=Xn, Ym,neT:,t=1,...,T,

(9b)

x, €2y, e RN YneT,u,>0, Vn#1.
In the following proposition, we first show that the optimal objective values of Models (8) and (9) both increase
as the decision maker becomes more risk averse. All the proofs throughout this paper are presented in Online
Appendix B.

Proposition 1. Both z¥° and z1® increase as A increases.

We define the difference between the optimal objective values of the risk-averse two-stage and multistage for-
mulations as the value of risk-averse multistage stochastic programming: VMSg = zF° — z¥5. From the extensive for-
mulations, we observe that the risk-averse two-stage Model (9) is the multistage Model (8) with additional
Constraints (9b). We, thus, conclude that VMSg >0 as the multistage model provides more flexibility in the
capacity acquisition decisions with respect to the uncertain parameter realizations. Because of Constraints (9b),
x,, variables can be indexed by the time stage t instead, and the two-stage Model (9) involves M x T integer vari-
ables, whereas the multistage Model (8) involves M x |7 | integer variables (|7 | is the total number of nodes in
the scenario tree 7). For any nontrivial scenario tree, |7|> T, and thus, solving the multistage Model (8)
requires much more computational effort than solving the two-stage counterpart (9). If VMSg is high, then it
may be worth solving a more computationally expensive multistage model; otherwise, a two-stage model is suf-
ficient to provide a good enough solution.

3. Value of Multistage Risk-Averse Stochastic Programming in Capacity Planning
Computing VMSg exactly requires us to solve the multistage model, which is computationally expensive. In this
section, we provide lower and upper bounds on VMSg without the need to solve the multistage model. These
bounds can serve as a priori estimates of VMSy to analyze the trade-off between risk-averse two-stage and multi-
stage models and can be used to design guidelines on model choices. Next, we first examine a substructure of
our problem and provide its analytical optimal solutions in Section 3.1. Based on that, we derive lower and upper
bounds for VMSy, in Sections 3.2 and 3.3, respectively. Using the derived bounds, we design a flowchart to help
decide which model to solve in Section 3.4.

3.1. Analytical Solutions of the Substructure Problem

We examine an important substructure of Models (8) and (9) once we fix (y,u)-variables. We denote the
resultant problems with known (y;,u;) values as SP-RMS(y;,u;,) and SP-RTS(y;,u;), which are defined as
follows:

* * . =T et
SP-RMS(y;, ;) min Sl fo D xm+Aun, (10a)
nonel €T meP(n)
st. Y xu2=B.y, VneT, (10b)
meP(n)
Na(n) Zfz1 Z Xm + ctTny*n —u;, Vn#1, (10c)
meP(n)

anZﬂ\rA, VneT,
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SP-RTS(y*,u*): mi 7! +1 11
- Yy thy) - 1IN Pn fn Xm nlly, ( )
x,,nel
Mo L neT meP(n)

s.t. (10b)—(10c)
(9b) (Two-stage constraints for x)

x, €ZY, YneT.

Here, we denote the optimal objective values of Models (10) and (11) as QM(y;,u;), Q" (y;, u},), respectively. The
next proposition demonstrates the analytical forms of the optimal solutions to SP-RMS(y,, 1) and SP-RTS(y,, 1;,),
and we present a detailed proof in Online Appendix B.

Proposition 2. Given any (y*,u") values, the optimal solutions of (10) and (11) have the following analytical forms:

XQAS = rBfly;-I/ ngS = max rBfrny:n-I — mnaxX |—Btmy;1-|r vn * 1/
meP(n) meP(a(n))

™ = max ftTm Z e +c;y*m —uy, 0, Vner,
meC(n) 1EP(m)

TS «7 TS + .
x;° =B ,x,° = max [maxB — max |[maxB , Vn#1,
17 =[Buyil x, meP(n)|-l€T[,,, Hy; | mgp(ﬂ(ﬂ))ﬂem by | *

TS _ T TS T+ *
M = max | f, > ey, i, 0, Vel
1eP(m)

: * * ~T 3 * * ~T
and correspondmgly, we  have QM(ynfun) = ZneTpn(fn Emep(n)xlr\lfs + /\n’ﬂ/fs)/ QT(ynlun) = Zne’fp”(fn ZmeP(n)szS +

Aunls).

Remark 1. From Proposition 2, one can easily verify that QT (y;,u;,) — Q" (y;, ;) 2 0 as 3, cp ¥ = MaXyep(n)
[maxier, Byy; |2 maxXyepa| By, 1= Zmep(n)xf‘,fs. Next, we use Proposition 2 to construct lower and upper
bounds on the VMSy, in Theorem 1, Corollary 1, and Theorem 2 as well as to design approximation algorithms to
solve Model (8) in Algorithm 1.

3.2. Lower Bound on VMSp, for Risk-Averse Capacity Planning

We now describe two lower bounds on the VMSg for the risk-averse multistage and two-stage capacity plan-
ning Models (8) and (9) based on the analysis of the substructure problems. Note that these lower bounds are
useful when they are sufficiently large, indicating that there is a need to solve the much harder multistage
model.

Theorem 1. Let {y, },er, {4 }ner\ 1y be the decisions in an optimal solution to the two-stage Model (9), and let M3,
0™, xT, " follow the definitions in Proposition 2, which are constructed by {y} ez, {1} }ner\1y- Then,

VMSg > VMSP := 1— AT B,y — B v 1)+ Ao oa(nTS — pMSy. 12
R R ne;\%l}Pn( t”)ft"(r?el%);)l-}?’ra,: t,]/[-l n?gg();)l- t,,,}/m-|) n;ﬁpn t”+1(T]” n, ) (12)

Later, in Example 1, we show that VMSE? (Equation (12)) is tight. Next, we derive another lower bound VMSE™
that is not necessarily tight but more computationally tractable, which utilizes the optimal solutions to the LP
relaxation of the two-stage Model (9). Because we consider the LP relaxation of the two-stage model, we do not

round up when constructing the two-stage solutions xZS .
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Corollary 1. Let {y"'"}, -, {ul*"}, e\ 11y be the decisions in an optimal solution to the LP relaxation of the two-stage
Model (9), and let

xll\/IS — {Btly{SLP'I, ngS = max rBt,nyTSLP-l — max |-Bt,,,yTSLP-|r Vn ?,: 1,

meP(n) n meP(a(n)) "

MS _ T s, .T,TISLP _  TSLP
n,° = maxq f E x! +ep, —u, , Vne¢Ll,

meC(n) "

leP(m)
XIS = BtlleSLP , xzs = max mathlleSLP — max mathIy]TSLP , Vn+#1,
meP(n) €T 4, meP(a(n)) I€T 4,

TS _ T TS , T TSLP _ TSLP
n,” = max q f, E X7 4e Y, Uy, , Vne¢ L.

mec(n) 1€P(m)
Then,
VMSg > VMSEB! .= £ (B, yTSLP _ [B, yTSLP 1 - AT B, yTSLP _ B, 1TSLP
R = R =fr,(Buy, [Byy,” " 1)+ Z Pl t,)f, | max maxByy, max [B,y,,
neT\(1} meP(n) €T, meP(n)
+ 37 pude (g — S,
neT\L

Note that, different than VMSE®, VMSZ®! is not guaranteed to be always nonnegative. When VMSE®! < 0, we can
simply replace it with a trivial lower bound zero, that is, VMSg > max{VMS;",0}. Computing VMSE® and
VMSR®! requires solving the two-stage Model (9) and its LP relaxation, respectively, both of which are more com-
putationally tractable than solving the multistage counterpart.

3.3. Upper Bound on VMSg, for Risk-Averse Capacity Planning

We now describe an upper bound on the VMSg based on the optimal solution of the LP relaxation of the multi-
stage Model (8). Because we consider the LP relaxation of the multistage model, we do not round up when con-
structing the multistage solutions ¥M°. Note that this upper bound is useful when it is small enough, indicating
that the two-stage model is sufficient to provide a good enough solution.

Theorem 2. Let {y)5LF}, r, {ulfSEP}, 1\ 1y be the decisions in an optimal solution to the LP relaxation of multistage
Model (8), and let

— MSLP _ SLP MSLP

xll\AS - Btlyl > 4 xI}’\l/IS = max Btm m — max Bfmym 4 Vn # 1’

meP(n) meP(a(n))
T S, T, MSLP _  MSLP
nMs = max fi, Z M +C Y, — Uy , Vne¢L,
meC(n) 1€P(m)
TS _ MSLP7 TS _ SLP MSLP

xS = [B,yMStP], xI5 = max [max By’ — max [maxB,y*, Vn#1,

meP(n) 1€Ty, meP(a(n)) €Ty,

TS _ T TS . T MSLP _ MSLP
n,” = max « f, E X7+ Y, U, , VnéL.

meCln) 1EP(m)
Then,
VMSg < VMS® = f] (BT~ Buyt™ )+ D= pul1 = Ay )f] ( max [maxB,y}**] — max B,y )
neT\{1} fm
+ 37 Pk —nl). (13)

neT\L
The following example illustrates the usefulness of the derived lower and upper bounds.

Example 1. We consider a special example with one facility (; = 50) and one customer site (see Figure 2). The
underlying scenario tree has two periods, and the root node has two branches with equal probability. Let the cus-
tomer demand be d; = 0 in node 1 (stage 1), d> = 50 in node 2 (stage 2), and d; = 150 in node 3 (stage 2). Denote f
as the unit maintenance cost for one stage and c as the operational cost, respectively. Solving a two-stage model
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Figure 2. An Instance to Illustrate the Gap Between Multistage and Two-Stage Capacity Planning Models

Customer Facility
— 111

Ill

a@a
d uncertain hy =50

t=1 2
d, =50
Scenarios Multistage Two-stage
d; =0 d, =50 x;=1

X, =%3 =3
d; = 150 x3=3
3) d; =150

yields a total cost of z° = 3f +100c +50A¢, and a multistage model gives a total cost of z¥° =2f +100c + Af +
50Ac. Thus, VMSg = zES —zM5 = (1 — A)f. Accordmg to Equations (12) and (13), we have VMSLB =(1-A)f,
VMSR® = (1 + A)f, where the lower bound VMSEP is actually tight. We refer interested readers to Online Appen-
dix C for detailed computations of these costs and bounds.

3.4. General Guidelines on Model Choices

The bounds in Theorems 1 and 2 are dependent on the input data and optimal solutions to the two-stage model
and LP relaxation of the multistage model. Once the decision maker computes these bounds, they can compare
the relative bounds with some pregiven thresholds 6; and 0, (e.g., 01 = 10%, 6, =30%) and then decide if the
two-stage optimal solutlon Is good enough. We outline a general procedure in Figure 3. If the relative VMSE" is

sufficiently large (i.e., VM R > 01), then it indicates that the multistage model can reduce the optimal objective
value by at least 6; comﬁared with the two-stage model, and thus one should solve the multistage model. On
the other hand, if the relative VMS® is sufficiently small (i.e., - < 65), then we suggest adopting the optimal

solutions to the two-stage model without bearing the addltlonal computatlonal effort of solving the multistage
model. In the third case, if the lower bound VMSEP is not large enough and the upper bound VMSR® is not small
enough, then there is no definite recommendation. Later, in Section 5, we show that most of our instances fall
into either case (i) or case (ii). Note that these two parameters 6; and 0, are user-defined and can represent the
decision maker’s trade-off between optimality and tractability.

Example 2. Using the same setting in Example 1 and letting A = 0.5, 61 = 10%, 0, = 30%, f = 1,000, ¢ = 10, we have

218 = 4,250 and VMSE® = 500. Because VMSR = 20> 61 = 10%, we solve the risk-averse multistage model. In this

case, the unit capacity expansion cost f is relatlvely high and the true VMSg = (1 — A)f is also high, indicating the
value of the multistage model. On the other hand, if the unit capacity expansion cost is relatively low, for example,

Figure 3. (Color online) A Flowchart to Decide Which Model to Solve

Solve Risk-Averse Two-Stage Model (9)

v

Construct VMS's LB using (12)

B
YES [ vmsy 5 \ .

1 N, v

Solve Risk-Averse Multistage Model (8) Solve LP relaxation of Multistage Model (8)

Case (i) v
Construct VMS's UB using (13)

YES { VMJ?;RJ,B <52 ) NO.
{ L il v

No need to solve Risk-Averse Multistage Model (8) No definite recommendation

Case (ii) Case (iii)
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1,550 1,550
02 = 30%, we use the optimal solution of the two-stage model without solvmg the multistage model.

f=100, then zf¥=1,550 and VMS{? =50, VMS{” =150 Because “3-= 1% < 61 =10% and YMS - 150 <
R

4. Approximation Algorithms

Up to this point, we have discussed how to bound the gap between risk-averse two-stage and multistage models
based on their optimal objective values. However, when we enter case (i), it is inherently hard to solve a risk-
averse multistage model as we show in Theorem 3. In this section, we propose approximation algorithms to
solve the risk-averse multistage Model (8) more efficiently, which can be also applied to solve the risk-averse
two-stage Model (9).

Theorem 3. The deterministic capacity planning problem (1) and its risk-averse multistage and two-stage counterparts (8)
and (9) are NP-hard.

Motivated by the computational intractability of Models (8) and (9), we proceed to introduce approximation
algorithms that can solve the risk-averse multistage and two-stage models efficiently by utilizing the decomposi-
tion structure we investigate in Section 3.1. Next, we describe the main idea of the algorithm for the risk-averse
multistage Model (8) as follows: we first solve the LP relaxation of Model (8) to obtain a feasible solution
(yMSEP yMSLP) “which is fed into the substructure problem SP-RMS(yM5P, 4/MSLP) to obtain an optimal solution
(xL,nl). Note that we can always find a feasible solution after plugging (yM*L”, uM5P) into SP-RMS because we
can make x and 7 sufficiently large to satisfy Constraints (10b) and (10c). We then solve Model (8) with fixed
(x4,1,) = (x},1}) to derive an optimal solution (y!, 1), which together with (x},7!), constitutes a feasible solution
and, thus, an upper bound to Model (8). This upper bound can be strengthened iteratively by repeating the pro-
cess, and we denote the feasible solution produced at the end of Algorithm 1 by (xf, 0!, 41, ufl). The detailed
steps are described in Algorithm 1. We show the monotonicity of the upper bounds derived in Algorithm 1 in
Proposition 3 and show that the optimality gap of Algorithm 1 can be upper bounded in Proposition 4, which
eventually leads to an approximation ratio stated in Theorem 4.

Algorithm 1 (Approximation Algorithm for Risk-Averse Multistage Capacity Planning)
1: Solve the LP relaxation of the risk-averse multistage capacity planning problem (8) and let (xMSLP, nMSLP,

MSLP MSLP) MSLP MSLP ,MSLP , MSLP
Yu Uy 4

<7 be an optimal solution. If x,>"" is integral for all n € 7, stop and return (x,/>*", """, y,
MSLP
1wy o)

2: InitialiZGeTk =0and (x2,n%, 9% ud),cr = (aISEP ML 4

while [ — x| > ¢, 1 =0 2 €, [ly* — y* 1|| > e, |[uf — 1| > e do

4:  Solve problem SP-RMS(y*,u¥) and let x*1, n*1 denote the corresponding optimal solutions. We have the
analytical form of the optimal solutions as kar1 =[By yl] xfHl = MaXuep(n) [Btmym] MaXyeP(a(n)) [B,gmym],
Vi # 1, 1 = maxeem){ ftTm Zzep(m)xz Tl gk —ub}, Vne L

5:  Solve the following problem for each n € 7, n # 1 independently

MSLP , MSLP
Ju )nET'

@

min cny +a,uy,

Y, rtn
st. By, < Y (14a)
meP(n)
Ay, =d,, (14b)
=y, 2f} Y 6" =, (140)
meP(n)

y,€R, u, 20,

and when n =1, we solve Problem (14) without the variables u, and Constraints (14c). Let yﬁ”, ut*1 be
the optimal solutions.

6: Updatek=k+1.

7: end while

k+1 k+1 k+1 k+1
8: Return (], Tyl ull), .1 == (xk YWy et

Throughout this section, we use z{}; to denote the objective value of the multistage model (8) with the total
number of stages being T. With some abuse of notation, we use (x},7;,y;,u;) to denote an optimal solution to
the multistage model (8) and use zj}/flsz(xn, 1, Y, Un) to denote the objective value of Model (8) with decision vari-
able values (x,,1,,, Y, Un)-
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Proposition 3. The objective value at the end of each iteration in Algorithm 1 provides an upper bound to the optimal objec-
tive value of Model (8), and it satisfies 5 (x5, 15,y 105) < 25 (ekr 1, mfrt, yf bty < 208 (o o,y ub), Vie> 1.
Proposition 4. The optimality gap can be bounded above by a quantity only dependent on the maintenance cost, that is,
ARyt ) = R, m ) < S0 S f

Theorem 4. Algorithm 1 has an approximation ratio of

. MSL fomen
7
MminZZﬂft, min T Zz;l Ct, min minne’ft{zj]\; dn,j}
N
Z/‘:l Ay —‘ mea-

- M - M = minM = mi -
where hmax - maxi:l{hli}/ft,max = max;Z; {fti}/ft,min - mlnizl{fti}l Ct,min = mlnz’e[M],jE[N]Ctij/ and Mmin - ’V Tomax
sures at least how many units of resources we need to cover the first stage demand.

Corollary 2. Assume that f, max = O(1), fymin = O(1), ¢t min = O(1), minyer, > 1Y, dy j = O(t) when t — co. Then, Algo-
e, mhylwh

e =1,
2 1 Y 1)

rithm 1 is asymptotically optimal, that is, imr_,c

Note that the assumptions in Corollary 2 are not particularly restrictive. They only require that the unit main-
tenance and operational costs can be bounded above by a value that does not depend on the time stage, and the
demand grows at least linearly when time increases (the result still holds when the demand grows faster than

linearly, e.g., when min,er, Z]I\il dnj= O(#?)). The last condition can be achieved if we have an expanding market
and the minimum of the demand is increased for each subsequent year (e.g., min,cr, Z]I\il dy;=d(1+2(t—1))

with d being the nominal demand in the first stage). We test different demand patterns in Section 5.2. Detailed
proofs of Propositions 3 and 4, Theorem 4, and Corollary 2 are given in Online Appendix B.

One can also tailor Algorithm 1 to solve the risk-averse two-stage Model (9) by modifying step 4 to use the ana-
lytical solutions of SP-RTS(y*, u¥) as we discuss in Proposition 2. We omit the details in the interest of brevity.

5. Computational Results

We test the risk-averse two-stage and multistage models on two types of networks: a randomly generated grid net-
work in which we vary the parameter settings extensively and a real-world network based on the U.S. map with 49
candidate facilities and 88 customer sites (Daskin 2011). Specifically, we conduct sensitivity analysis and report
results based on the synthetic data to illustrate the tightness of the analytical bounds and the efficacy and efficiency
of the proposed approximation algorithms in Section 5.1. We also conduct a case study on EV charging station
capacity planning based on the U.S. map to display the solution patterns under different settings of uncertainties in
Section 5.2. We use Gurobi 10.0.0 coded in Python 3.11.0 for solving all mixed-integer programming models, and
the computational time limit is set to one hour. Our numerical tests are conducted on a Macbook Pro with 8 GB
RAM and an Apple M1 Pro chip. The source code and data files can be found in Yu and Shen (2024).

5.1. Result Analysis on Synthetic Data

We first introduce the experimental design and setup in Section 5.1.1 and report sensitivity analysis results in
Section 5.1.2. Then, we examine the tightness of the analytical bounds in Section 5.1.3 and the performance of the
approximation algorithms in Section 5.1.4, respectively. Finally, in Section 5.1.5, we report the computational
time for solving the two risk-averse models.

5.1.1. Experimental Design and Setup. We randomly sample M potential facilities and N customer sites on a
100 x 100 grid, and in the default setting, we have the number of stages (T) being 3, the number of facilities (M)
being 5, the number of customer sites (N) being 10, and the number of branches in each nonleaf node (C) being 2.
The risk attitude parameters are set to A; =0.5, a; =0.95, Vt=2,...,T at default. The operational costs between
facilities and customer sites are calculated by their Manhattan distances times the unit travel cost. We set the per
stage maintenance costs f; =6 X 10*, and all the facilities have the same unit capacity hy=h= 10° for all
t=1,...,T,i=1,...,M. For each customer site j=1,...,N and stage t=1,...,T, we uniformly sample the
demand mean from U(1000(2¢ — 1),5000(2¢ — 1)) and then multiply each mean by a fixed number (¢ =0.8 at
default) to generate its demand standard deviation. Lastly, we sample demand data following a truncated nor-
mal distribution with the generated mean and standard deviation, whereas negative demand values are deleted.
We consider two types of scenario trees:
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e Stagewise dependent (SD): at every staget =1,...,T — 1, every node n € 7 is associated with a different set of
children nodes C(n), that is, C(n) # C(m), Vn,me T;.

e Stagewise independent (SI): at every staget=1,...,T — 1, every node n € T is associated with an identical set
of children nodes C(n), that is, C(n) = C(m), Vn,meT,.

Here, SD represents the most general case in which in each stage t, we have at most C' different realizations of
the uncertainty d;. On the other hand, SI assumes that the stochastic process (di,d>, ..., dr) is stagewise indepen-
dent, and thus, we have at most C different realizations of the uncertainty in each stage ¢.

5.1.2. Sensitivity Analysis on VMS. To compare the two-stage and multistage models, we define the relative
value of risk-ayerse multista§e stochastic programming as RVMS = & ;R and a lower bound on the RVMS as
RVMS; 5 = VI:ER using VMSE® computed by Equation (12). To illustraté what types of demand scenarios make
the multistage model more valuable, we compare the above two types of scenario trees to evaluate RVMS,
namely, SD-RVMS, and SI-RVMS, respectively. We first vary the number of branches C from 2 to 5, the number
of stages T from 3 to 6, the risk attitude A from 0 to 1, and the standard deviation ¢ from 0.2 to 0.8 to see how
RVMS changes with respect to different parameter settings.

The corresponding results are presented in Figure 4, in which we plot the mean of RVMS over 100 indepen-
dently generated instances, and RVMS; s is represented by the lower end of the error bars.

From the figure, when we increase the demand variability, such as the number of branches, the number of
stages, and the standard deviation, RVMS values with stagewise-dependent scenario trees increase drastically
(see Figure 4(a), (b), and (d)). A higher RVMS indicates that the multistage model is much more valuable than
the two-stage counterpart. Comparing different types of scenario trees, SD scenario trees always gain much
higher RVMS than the stagewise-independent ones, and adding more stages makes no significant changes in
SI-RVMS as can be seen in Figure 4(b). This is because, in SI scenario trees, the number of realizations in each
stage does not depend on the number of stages, and having a deeper scenario tree would not necessarily increase
the demand variability. Following these observations, if the stochastic capacity planning problem has a large
number of branches, stages, or high standard deviation with a stagewise-dependent scenario tree, then it is
worth solving a multistage model because the gap between a two-stage formulation and a multistage formula-
tion is very high. Notably, from Figure 4(c), RVMS decreases approximately linearly with respect to the risk

Figure 4. Statistics of RVMS over 100 Instances with Different Numbers of Branches C, Stages T, Risk Attitudes A, and Demand
Standard Deviations o

(a) (b)
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Notes. (a) Different numbers of branches C. (b) Different numbers of stages T. (c) Different risk attitudes A. (d) Different standard deviations .
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Table 1. Percentage of Instances in Different Cases with SD Scenario Trees and
Varying Numbers of Branches C When 0; = 10%, 62 = 30%

Branches C Case (i) Case (ii) Case (iii)
2 20/100 73/100 7/100

3 56/100 25/100 19/100
4 69/100 8/100 23/100
5 79/100 2/100 19/100

attitude parameter A, suggesting that, as we become more risk averse, the performances of the two models tend
to be closer. This can be understood from the following facts: (i) a two-stage model restricts all capacity-
expansion decisions to be identical in the same stage, and (ii) a risk-averse multistage model aims to reduce the
upper tail of the cost distribution in each stage. As a result, the risk-averse multistage model tends to reduce the
dispersion of capacity expansion decisions in each stage as we become more risk averse, which has similar effects
to two-stage models. Because of this, if a decision maker is extremely risk averse (e.g., A = 1), given the small
gaps between the two models, we suggest solving a risk-averse two-stage model without bearing the additional
computational effort. Moreover, the RVMS; 3 obtained by all instances are pretty close to the true RVMS, and
stagewise-independent scenario trees obtain tighter lower bounds than stagewise-dependent ones. We take a
closer look at these lower bounds in Section 5.1.3.

Following the flowchart in Figure 3 and setting 01 = 10%, 62 = 30%, we have the following three cases: case (i)
RVMS; g > 10%; case (ii) RVMS; 5 < 10% and RVMSyg < 30%; and case (iii) RVMS; 5 < 10% and RVMSyg > 30%.
We record the number of instances in each case with SD scenario trees and varying numbers of branches and
stages in Tables 1 and 2. From these tables, in most of the instances, we have either case (i) or case (ii). As we
increase the number of branches or stages, most cases shift to case (i) from case (ii), which indicates a higher
need for solving multistage models. We also present the results when we set 61 = 5%, 0, = 20%, and change other
parameters in Online Appendix D.

5.1.3. Tightness of the Analytical Bounds on the Synthetic Data Set. To examine the tightness of the analytical
bounds derived in Theorems 1 and 2 and Corollary 1, we define the relative gaps of the analytical bounds as
RGAPLB =RVMS — RVMSLB , RGAPLBl =RVMS — RVMSLBl , RGAPUB = RVMSUB — RVMS, respectively. A lower
RGAP means that the analytical bound recovers the true VMS better. Using the default setting and the two sce-
nario trees defined in Section 5.1.1, we plot the histograms of RGAP;5, RGAP1g1, RGAPyg over 100 indepen-
dently generated instances in Figure 5. From the figure, RGAP; g with SI scenario trees obtains the lowest RGAP
mean (0.62%), and in most instances, RGAP; g is within 1%. Stagewise-dependent scenario trees obtain a slightly
higher mean of RGAP; . This is because RVMS in stagewise-dependent scenario trees is much higher than the
stagewise-independent counterparts (see Figure 4), and as a result, the optimal solutions of the two-stage models
are farther away from the optimal ones of the multistage models. As can be seen from the proof of Theorem 1, the
tightness of the lower bounds depends on the gap between these two optimal solutions. On the other hand,
VMSEP! produces a slightly higher RGAP with a mean of 1.98% in the SD scenario trees and 1.76% in the SI sce-
nario trees. Compared with the tightness of lower bounds, VMSE® is much looser with an RGAP mean of 13.57%
in SD scenario trees and 9.82% in SI scenario trees.

5.1.4. Performance of the Approximation Algorithm on the Synthetic Data Set. Next, we vary the number of
branches C from 2 to 5, number of stages T from 3 to 6, number of facilities M from 5 to 20, and number of cus-
tomer sites N from 10 to 40 to see how the empirical approximation ratio changes with respect to different

Table 2. Percentage of Instances in Different Cases with SD Scenario Trees and
Varying Numbers of Stages T When 61 = 10%, 6, = 30%

Stages T Case (i) Case (ii) Case (iii)
3 20/100 73/100 7/100
4 40/100 35/100 25/100
5 85/100 5/100 10/100
6 95/100 0/100 5/100
7 98/100 0/100 2/100
8 100/100 0/100 0/100
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Figure 5. Tightness of Analytical Bounds with SD and SI Scenario Trees
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Figure 6. Statistics of the Approximation Ratios over 100 Instances with Different Numbers of Branches C, Stages T, Risk Atti-
tudes A, Demand Standard Deviations o, Facilities M, and Customer Sites N
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Table 3. Computational Time Comparison with SI Scenario Trees and Different Numbers of Branches C

z}S via Gurobi zMS via Gurobi ZMS via AA zMS via SDDiP
C Time (s) Ob;. ($) Time (s) Obj. ($) Time (s) Obj. ($) Gap Time (s) Obj. ($) Gap
2 1.46 13,482K 3.97 13,330K 0.13 13,592K 1.97% 90.06 13,270K —0.45%
3 6.40 21,714K 3,600 (0.02%) 20,137K 0.31 20,474K 1.67% 679.13 20,098K —0.19%
4 3.55 24,363K 3,600 (0.11%) 22,322K 0.43 22,712K 1.75% 2,102.27 22,272K —-0.22%
5 10.01 24,142K 3,600 (0.19%) 22,520K 0.66 22,907K 1.72% 3,430.90 22,467K —0.24%

Note. Bold values are the smallest values for the computational time.

parameter settings. The results are presented in Figure 6, in which we plot the mean of empirical approximation
M5ttty ult

From the figure, the approximation ratios decrease gradually when we increase the number of branches C and
the number of stages T (see Figure 6(a) and (b)). Moreover, from Figure 6(c) and (d), the approximation ratios are
clearly positively related to the number of facilities M and negatively impacted by the number of customer sites N,
which is because increasing N would increase the total demand and the number of units of resources needed in the

ratios (i.e., ) over 100 independently generated instances.

M ZtT 1f' max
= .In all of
Mmmz;rzlft,mjnJrZ;r:l Ct,minminneT,{Z;\il dn,]}
these instances, the approximation algorithm achieves an approximation ratio of at most 1.03.

first stage (Mmin) and our approximation ratio has an upper bound 1 +

5.1.5. Computational Time Comparison. We end this section by comparing the computational time of two-stage
and multistage models solved via Gurobi and multistage models solved by our AAs (Algorithm 1). We also use
the Python package (Ding et al. 2019) to solve the multistage model via SDDiP algorithm (Zou et al. 2019) and
terminate the algorithm after 10 iterations when the objective values become stable. Because the SDDiP algorithm
assumes that the underlying stochastic process is stagewise independent, we only consider SI scenario trees
when evaluating their performance in this section. We note that our approximation algorithms can be also
applied to solve SD scenario trees, and we present the computational time comparison between our approxima-
tion algorithm and directly solving the problem using Gurobi 10.0.0 under SD scenario trees in Online Appendix
D. We fix the risk parameters A =0.5, ¢ =0.95 and the standard deviation ¢ =0.8, varying the number of
branches C from 2 to 5 in Table 3, number of stages T from 3 to 6 in Table 4, respectively. The percentages shown
in parenthesis are the optimality gaps produced by Gurobi within the one-hour time limit. We also display the
gaps of the optimal objective value between our approximation algorithm /SDDiP and Gurobi in the column
“Gap.” Note that we solve step 5 for all node n € 7 as a whole in Algorithm 1, and one may further speed up the
approximation algorithms by utilizing parallel computing techniques. From the tables, we observe that the
approximation algorithms scale very well with respect to the problem size, whereas Gurobi cannot solve larger
scale risk-averse multistage models to optimality within the one-hour time limit. Compared with multistage
models, two-stage models are less computationally expensive and, therefore, can be preferred over multistage
models when their objective gaps are relatively small. Whereas our approximation algorithms provide an upper
bound on the multistage model by producing a feasible solution, the SDDIiP algorithm returns a lower bound on
the multistage model by constructing under-approximations of the value functions. As the problem size
increases, the SDDiP algorithm fails to produce a high-quality lower bound within several hours (with the high-
est gap being 17.02%), whereas our approximation algorithms can always find a high-quality upper bound
within several seconds (with all the gaps below 2%).

Table 4. Computational Time Comparison with SI Scenario Trees and Different Numbers of Stages T

z}® via Gurobi zMS via Gurobi ZMS via AA zMS via SDDiP

T Time (s) Obj. ($) Time (s) Obj. ($) Time (s) Obj. ($) Gap Time (s) Obj. (%) Gap

3 1.46 13,482K 3.97 13,330K 0.13 13,592K 1.97% 90.06 13,270K —0.45%
4 8.49 26,484K 3,600 (0.18%) 26,212K 0.67 26,568K 1.36% 847.48 26,101K —0.42%
5 3,600 (0.05%) 44,003K 3,600 (0.14%) 43,205K 1.07 43,623K 0.97% 1,028.06 43,063K —0.33%
6 83.80 63,440K 3,600 (0.17%) 62,624K 6.97 63,177K 0.88% 1,108.69 62,467K —0.25%
7 640.56 138,372K 3,600 (0.13%) 112,508K 5.80 113,207K 0.62% 5,556.12 93,360K —17.02%
8 3,600 (0.01%) 201,522K 3,600 (0.14%) 150,002K 14.64 150,718K 0.48% 13,859.29 125,095K —16.60%

Note. Bold values are the smallest values for the computational time.
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Table 5. Demand Patterns

Pattern Distribution at stage t
I. Constant mean, constant standard deviation N (&,a -0)

II. Constant mean, increasing standard deviation N(d,d-(o+2(t—1)))
III. Increasing mean, constant standard deviation N(@d-Q+2(t-1)),d-0)

IV. Increasing mean, increasing standard deviation N -(1+2(t—1)),d- (0 +2(t —1)))

5.2. Case Study on Real-World EV Charging Station Capacity Planning

5.2.1. Experimental Desigh and Setup. We consider the 49-node and 88-node data sets described in Daskin
(2011) with M =49, N =88, T =5, C =2, where each stage is one year. The maintenance cost for each charger is
set to $100 per year (EV Connect 2022). The capacity of each charger &y is set to 6 X 360, assuming that each char-
ger can charge six EVs from empty per day (U.S. Department of Transportation 2022). The resource allocation
costs are set equal to the great-circle distance times the travel cost per mile per unit of demand, that is,
c;j = dist(i,j) » 0.00001. We then collect the population data in each city and multiply them by 6% times 120days,
assuming that 6% of the population currently own EVs (Smith 2022) and charge their EVs every three days
(BloombergNEF 2021), which gives nominal demand d in each customer site in the beginning year of the plan-
ning horizon. We consider four demand patterns (described in column “Pattern” in Table 5), all of which follow
truncated normal distributions. In patterns IIl and IV, the nominal demand d is increased with a rate of 200% for
each subsequent year, which reaches 6% X (1 +2 x 4) =54% of EV market share by the end of the fifth year,
matching President Biden’s goal of having 50% of all new vehicle sales be electric (The White House 2023); in pat-
terns I and IV, the standard deviation is increased with the same rate.

5.2.2. Result Comparison with Different Demand Patterns. With the baseline setting C=2,0=0.8, 1, =0.5,
a; =0.95, and SD scenario trees, we present the optimal solutions and cost breakdown of two-stage and multi-
stage models under different demand patterns in Table 6. We use Gurobi to solve the risk-averse TS and MS
models directly, and we compare these two models with the multistage models solved via AA. Columns “|x4|,”
“Ixal,” “|x3],” “|xs],” and “|x5|” display the average number of chargers installed in each stage across all scenar-
ios. Columns “Maintenance ($)” and “Operational ($)” show the maintenance and operational cost without con-
sidering the risk parameters, and column “Obj. ($)” presents the overall risk-averse optimal objective values, in
which we mark the lowest ones among the three models in bold. The last column “RVMS/AR” shows the rela-
tive VMS or the approximation ratios. Comparing the three models, multistage models solved by Gurobi always
achieve the least maintenance cost because they have more flexibility in deciding the capacity expansion plans.
In terms of operational cost, the multistage models solved by approximation algorithms always achieve the mini-
mum among the three. In all of the cases, our approximation algorithm aligns with the optimal solutions and
objective values of the multistage models very well and achieves an approximation ratio of at most 1.00004.

We also find that the demand patterns with increasing standard deviation always obtain higher RVMSr com-
pared with the ones with constant standard deviation, which agrees with our findings in Section 5.1.2. In pattern
I, most chargers are invested in the first stage because the demand mean is constant and we do not need to build
many more chargers in later stages. Under this setting, we achieve an RVMS of 5.19%. In patterns IIl and IV in

7o

Table 6. Optimal Solutions and Costs of Two-Stage and Multistage Models Under Different Demand Patterns

Pattern Model  |x] E=Y EY EA ES Maintenance ($) Operational (§)  Obj. (§)  Time (s) RVMS/AR
1 TS 149,502 33,681 3,845 16,686 20,869 $94,801K $2,368K $97,336K 8.90 5.19%
MS 149,489 29,303 961 7,018 6,509 $88,808K $2,492K $92,284K 8.94
AA 149,489 29,315 962 7,018 6,509 $88,813K $2,491K $92,288K 58.72 1.00004
I TS 149,523 261,128 265,695 389,223 488,955 $385,661K $9,891K $396,742K 8.68 14.82%
MS 149,469 253,004 199,195 279,369 266,388 $318,207K $9,062K $337,928K 57.36
AA 149,494 252,997 199,198 279,371 266,388 $318,218K $9,062K $337,939K 56.65 1.00003
1T TS 149,531 399,975 385,524 490,802 595,216 $508,095K $12,256K $521,440K 8.81 12.02%
MS 149,469 386,866 305,341 384,100 374,120 $435,315K $11,303K $458,753K  750.35
AA 149,495 386,858 305,345 384,101 374,120 $435,326K $11,303K $458,763K 59.20 1.00002
v TS 149,528 1,082,360 2,149,745 4,075,429 6,453,154 $2,613,033K $62,620K $2,683,077K 9.00 18.61%
MS 149,470 1,057,952 1,800,916 3,158,538 3,797,729  $2,049,671K $55,468K $2,183,774K  67.52

AA 149,495 1,057,946 1,800,916 3,158,537 3,797,730  $2,049,681K $55,467K $2,183,784K  56.94 1.000005
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Figure 7. Optimal Objective Value and Stagewise Cost Comparison Between Two-Stage and Multistage Models with Varying
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Notes. (a) Optimal objective values in two models. (b) Stagewise cost in multistage models.

which the demand mean is increased at a rate of 200%, more chargers are installed in later stages, and the RVMS
increases to 12.02% and 18.61%, respectively. Note that this gap can be further increased with more branches C
and higher standard deviations o.

5.2.3. Effect of the Risk Parameter. Finally, we discuss the effect of the risk attitude on the optimal solutions. We
display the optimal objective values of two-stage and multistage models with varying risk attitude A in Figure
7(a) and the 95% percentile and mean of the stagewise cost in multistage models with varying risk attitude A in
Figure 7(b). From Figure 7(a), the optimal objective values of both two-stage and multistage models increase as
we become more risk averse, agreeing with our results in Proposition 1. Moreover, the gap between the two
models reduces as we increase A as shown in Section 5.1.2, Figure 4(c). From Figure 7(b), when we increase A,
the mean of the stagewise cost increases, whereas the 95% percentile decreases in most cases, representing a
switch from a risk-neutral to risk-averse attitude.

6. Conclusion

We consider a general class of multiperiod capacity planning problems under uncertain demand in each period.
We compare a multistage stochastic programming model in which the capacities of facilities can be determined
dynamically throughout the uncertainty realization process with a two-stage model in which decision makers
have to fix capacity acquisition at the beginning of the planning horizon. Using ECRMs, we bound the gaps
between the optimal objective values of risk-averse two-stage and multistage models from below and above and
provide an example to show that one of the lower bounds is tight. We also propose an approximation algorithm
to solve the risk-averse multistage models more efficiently, which is asymptotically optimal in an expanding
market. Our numerical tests indicate that the RVMS increases as the uncertainty variability increases and
decreases as the decision maker becomes more risk averse. Moreover, stagewise-dependent scenario trees attain
higher RVMS than the stagewise-independent counterparts. On the other hand, the analytical lower bounds can
recover the true gaps very well. Moreover, the approximation ratios are pretty close to one in the case study
based on a real-world network.

There are several interesting directions to investigate for future research. The risk measure we use in this paper
is the ECRM, of which the risk is measured separately for each stage. There are other risk measure choices that
can be applied here, such as the nested risk measures. More research can be done to explore the relationship
between these two models under different choices of risk measures. Moreover, this paper assumes that the
uncertainty has a known distribution, whereas it is more realistic to assume that the probability distribution of
the uncertainty belongs to an ambiguity set. Therefore, a distributionally robust optimization framework can be
considered for two-stage and multistage capacity planning problems. As a middle ground between two-stage
and multistage decision frameworks, Basciftci et al. (2019) study an adaptive two-stage stochastic programming
framework, in which each component of the decision policy has its own revision point, before which the deci-
sions are determined until this revision point, and after which they are revised for adjusting to the uncertainty.
They analyze this approach on a capacity expansion planning problem and derive bounds on the value of the
proposed adaptive two-stage stochastic programming. Similarly, we can obtain a relaxation of the multistage
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stochastic program by ignoring the nonanticipativity constraints at some nonroot stages, and such a relaxation
provides a lower bound to the multistage model. In this paper, we focus on the comparison between risk-averse
two-stage and multistage stochastic programs and leave the exploration of general adaptive stochastic programs
as future research.
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