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A B S T R A C T

This work presents a morpho-hydrodynamic model and a numerical approximation designed for the fast and accurate simulation of sediment movement associated
with extreme events, such as tsunamis. The model integrates the well-established hydrostatic shallow-water equations with a transport equation for the moving
bathymetry that relies on a bedload transport function. Subsequently, this model is discretized using the path-conservative finite volume framework to yield
a numerical scheme that is not only fast but also second-order accurate and well-balanced for the lake-at-rest solution. The numerical discretization separates
the hydrodynamic and morphodynamic components of the model but leverages the eigenstructure information to evolve the morphologic part in an upwind
fashion, preventing spurious oscillations. The study includes various numerical experiments, incorporating comparisons with laboratory experimental data and
field surveys.
1. Introduction

Sediment transport and deposition is a field of great importance in
the geophysical sciences. The natural behavior of the sediment bed is
of significant importance for the general hydrodynamics of the fluid,
especially in shallow areas (see Tang and Weiss, 2016). In general,
he literature agrees on splitting the problem into its hydrodynamics
nd morphodynamical components, that are then coupled through
n evolution variable, in general the moving bed function (see Cas-
ro Díaz et al., 2008, for instance). This means that the usual challenges
hat can be found in standard geophysical flow simulations are also
resent in the case of the sediment transport problem. This includes the
reat complexity associated with sophisticated models, including non-
onservative products terms, or significant numerical challenges when
esigning accurate and robust numerical schemes.
Sediment transport is often divided in three types: bedload, saltation

nd suspension. Bedload transport is produced when the sediment rolls
r slides along the bed. In saltation transport, the grain jumps over
he bed over a total length that is proportional to its diameter. Finally,
uspension involves the entrainment of the sediment into the fluid. It is
oteworthy that the suspension transport may change the surrounding
luid density significantly, which may in turn increase the total pressure
nd therefore modify the global hydrodynamic and morphodynamic
ehavior.

∗ Corresponding author at: National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE Seattle, WA
98115, US.

E-mail address: ernesto.g.fernandez@noaa.gov (E. Guerrero Fernández).

Existing literature for sediment transport includes (Tang and Weiss,
2016; Castro Díaz et al., 2008; Li and Duffy, 2011; Teeter et al.,
2001; Castro Díaz et al., 2009; Kurkina et al., 2011). While they
all differ in the choice of the sediment flux and/or the numerical
treatment of the model, they all agree on the underlying model for
the hydrodynamic part of the problem: the shallow-water equations
(also known as Saint-Venant equations) (De St Venant, 1871). These
equations are derived by vertically averaging the Euler equations such
that the vertical component of the velocity is neglected while the
horizontal ones are depth-averaged. Although the lack of information
in the vertical direction is a potential drawback of this technique, it is
counterbalanced by much less computational effort compared to fully
three-dimensional models, which is essential for efficient simulations
of geophysical flows. Indeed, it reduces the dimension of the problem
by one, making it more affordable to simulate large domains with a
high horizontal resolution. Adding sediment transport to the shallow-
water equations involves the expansion of the original equations with a
transport equation for the morphodynamical components that depends
on a time-dependent varying bed.

Sediment transport depends heavily on the choice of the model for
the solid transport of the sediment flux. These equations are often based
on empirical methods and include either deterministic or probabilistic
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terms. Consequentially, an integral part of the problem resides in the
correct choice of the sediment flux equation. Between the existing
formulations, we highlight the Grass equation (Grass, 1981), the Meyer-
Peter and Müeller’s equation (Meyer-Peter and Müller, 1948), Van
Rijn’s equation (Rijn, 1984,a,b), Nielsen’s equation (Nielsen, 1992),
Kalinske’s equation (Kalinske, 1942, 1947) or Einstein’s equation (Zee
and Zee, 2017; Einstein, 1950; Julien, 2010; Yalin and Karahan, 1979).

Most physical models and their numerical discretization result from
compromise between physically rich models that are more expensive
o resolve compared with simpler, less physical models. This is specially
rue for sediment transport models. Indeed, these models depend on a
orrect description of the sediment characteristics, including relative
ensity, friction coefficient, porosity, etc. The difficulty to measure
orrectly all these parameters constitute an important source of uncer-
ainties. As a consequence, it may be the case that physically complex
odels yield comparable results to simpler ones, but with much higher
omputational cost. This effect amplifies when the model is applied
n conjunction with large oceanographic phenomena, such as tsunami
aves, that have their own sources of uncertainty. For this reason, and
ince the final goal of this work is to provide a research tool for the
OAA (National Oceanic and Atmospheric Administration) Center for
sunami Research (NCTR), in this paper we have opted for a simpler
et of governing equations.
The resulting set of equations have a set of stationary solutions, or

quilibrium solutions. These solutions often express a physical reality
bout the model and its behavior. In this sense, it is very important that
ny numerical discretization is also able to preserve these solutions.
model that is able to solve stationary solutions exactly is called
ell-balanced. Otherwise, the numerical noise of a non well-balanced
ethod could significantly alter the final result or even destroy the
olution. Therefore, the design of numerical methods must take into
ccount this property, as discussed in Castro Díaz et al. (2008). Other
elevant bibliography includes (Audusse et al., 2004; Castro and Parés,
020; Bermúdez et al., 2017; Canestrelli et al., 2009; Castro Díaz
et al., 2007; Guerrero Fernández et al., 2020; Fernández et al., 2021;
Guerrero Fernández et al., 2022).

The coupled morpho-hydrodynamic model is a hyperbolic system of
conservation laws with non-conservative products and source terms. As
discussed in Castro et al. (2006) or Castro et al. (2017), the presence
of non-conservative products adds more complexity to the numerical
discretization, since its definition in the presence of discontinuities
is not unique. In these cases, the non-conservative products can be
interpreted as Borel measures (introduced in Dal Maso et al., 1995).
In this way, the numerical flux associated with the Riemann problem
can be expressed in terms of a free-chosen path linking two states. This
is a fundamental result of the path-conservative methods introduced by
Parés in Parés (2006).

Furthermore, shallow-water type models with sediment transport
present some unique numerical challenges. For instance, in Cordier
et al. (2011) the authors prove that splitting techniques that separate
the hydrodynamic and morphodynamic part of the model, as is com-
mon in the treatment of these kind of systems, may in fact develop
spurious oscillations related with a wrong discretization of the flux
terms or with a loss of hyperbolicity. Moreover, the authors defend
that this unwanted behavior can be avoided by considering a three-
wave Riemann solver (in other words, a complete solver for the system)
that takes into account the flow of the information associated with the
moving bed eigenvalue. Therefore, some authors consider only fully
coupled Riemann solvers for these kind of models. Doing so, however,
has additional drawbacks. The numerical model is more complex, and
the complex eigenstructure of the full model has to be computed at
each time step.

To compensate these disadvantages, in this work we propose a
novel, weakly-coupled numerical discretization that only uses two
waves: an approximation of the maximum and minimum wave speeds.

This HLL type numerical discretization evolves the hydrodynamic part b

2 
independently and then uses this information to evolve the bottom in
a upwind fashion. In this way, we avoid increasing the cost of the
numerical method while also preventing spurious oscillation like the
one discussed in Cordier et al. (2011).

The model presented in this paper is not unique in its ability to
simulate sediment transport. Other models, such as SCHISM, MOM6,
and Delft3D, offer similar capabilities but with a broader scope. These
models are designed as general tools for ocean modeling, covering
everything from ocean circulation to tides and biogeochemistry. Some
notable differences between these models and the one described in
this paper include the use of unstructured mesh simulations, less ef-
ficient parallelization with CPU or MPI (Message Passing Interface),
the Boussinesq approximation, and the inclusion of vertical effects. It
is important to note that not all models share these characteristics, and
this list is not exhaustive.

Choosing the appropriate model should then be aligned with the
specific problem the user aims to solve. As discussed earlier, incor-
porating more physical processes does not always lead to greater
accuracy due to inherent uncertainties in the source data but it does
impact global efficiency and computational times. Moreover, additional
physics often require more sophisticated numerical solvers, which can
become unstable more easily. To counteract this, many mathematical
models and numerical discretizations include a diffusion parameter that
must be fine-tuned by the user. However, we completely avoid this
approach, as it contradicts our goal of reducing diffusivity by increasing
the order of accuracy of the numerical scheme.

In this work we develop a long wave mathematical model that is
able to incorporate both, complex hydrodynamics and sophisticated
morphodynamics. This combination allows to simulate the sediment
behavior associated with extreme flooding events such as tsunamis.
Moreover, both the modeling and the numerical method are currently
in use at the NCTR, and they are complying with the tools, standards
and formats observed at NCTR.

The structure of this article is as follows: in Section 2 we present the
governing equations and discuss important aspects of their behavior,
including its hyperbolicity. Section 3 presents the novel numerical
discretization of the model, including its high order approximation and
the two-dimensional extension. Next, Section 4 offers several numerical
experiments, including a well-balanced test, an order test and a com-
parison with laboratory and field data results. Finally, Section 5 gives
some conclusions.

2. Model derivation

Let us first consider the shallow-water equations with a moving
bed equation. This system consists of a hydrodynamic component that
governs the behavior of the fluid, and a morphodynamical component
that transports the sediment. Since these equations are well-known in
the literature, we will omit a rigorous derivation. The interested reader
can refer to Exner (1925) for more details on this. In this way, the two
dimensional, 𝒙 = (𝑥, 𝑦), system of partial differential equations evolving
in time 𝑡 reads,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡ℎ + ∇𝒙 ⋅ (ℎ𝒖) = 0,

𝜕𝑡(ℎ𝒖) + ∇𝒙 ⋅
(

ℎ𝒖⊗ 𝒖 + 𝑔 ℎ
2

2

)

= 𝑔ℎ∇𝒙𝐻 − 𝑔ℎ𝑺𝑓 ,

𝜕𝑡𝐻 − ∇𝒙 ⋅ 𝒒𝒃 = 0.

(1)

ere, ℎ is the total water column, 𝒖 = (𝑢𝑥, 𝑢𝑦) is the horizontal velocity
ector, 𝑔 stands for the gravity, 𝐻 is the bathymetry function and 𝑺𝑓
epresents the friction terms. Of particular interest is 𝒒𝒃, that controls
edload sediment transport rate per unit time. Finally, ∇𝒙 = (𝜕𝑥, 𝜕𝑦)
epresents the two dimensional spatial derivative operator.
In this way, the partial difference system (1) assumes that the
orphodynamical components in the form of sediment transport can
e modeled by a transport equation that depends fundamentally on the
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sediment flux 𝒒𝒃. This transport equation is often denominated as the
Exner equation. Note that morphology changes influence the general
hydrodynamics of the model by modifying the bathymetry function 𝐻 ,
hat is present as a source term in the momentum equation.
The system (1) is invariant under rotation if 𝒒𝒃 verifies that

𝒒𝒃 = |

|

𝑞𝑏(ℎ, ‖𝒖‖)||
𝒖

‖𝒖‖
, (2)

with 𝑞𝑏 representing the transport discharge for the sediment in the
one-dimensional model. In this way, system (1) is invariant under
otation and we can study, without loss of generality, the simpler,
ne-dimensional version of system (1) written in non-conservative
orm:
⎧

⎪

⎨

⎪

⎩

𝜕𝑡ℎ + 𝜕𝑥(ℎ𝑢) = 0,

𝜕𝑡(ℎ𝑢) + 𝜕𝑥
(

ℎ𝑢2
)

+ 𝑔ℎ𝜕𝑥𝜂 = −𝑔ℎ𝑆𝑓 ,

𝜕𝑡𝐻 − 𝜕𝑥𝑞𝑏 = 0.

(3)

where 𝜂 = ℎ −𝐻 is the free surface.
The bedload sediment transport term 𝑞𝑏 is responsible for control-

ling the total sediment movement and behavior. There are many differ-
ent definitions for this term, most based on empirical descriptions for
granular, non-cohesive sediment composition. In the existing literature
we can find, among other, the Grass equation (Grass, 1981), the Meyer-
Peter and Müeller’s equation (Meyer-Peter and Müller, 1948), Van
Rijn’s equation (Rijn, 1984,a,b), Nielsen’s equation (Nielsen, 1992),
alinske’s equation (Kalinske, 1942, 1947) or Einstein’s equation (Zee
nd Zee, 2017; Einstein, 1950; Julien, 2010; Yalin and Karahan, 1979).
These formulations have several common elements. One of them is

heir dependency of the shear stress with the bottom, defined by:

𝑏 = 𝜌𝑔ℎ𝑆𝑓 . (4)

ere, 𝜌 is the fluid density. Note that the shear stress is simply defined
y the total weight of the fluid at the bottom times a friction parameter
𝑓 . This friction term is quantified by empirical laws such as Darcy–
eisbach (Darcy, 1857) or Manning (Manning et al., 1890) formula.
hey are, respectively,

𝑓 =
𝑓𝑢|𝑢|
8𝑔ℎ

, (5)

𝑓 =
𝑛2𝑢|𝑢|
ℎ4∕3

,

here 𝑓 and 𝑛 are friction coefficient parameters that depend on
the different bathymetry composition and which the user must set
appropriately.

It is common to define the bottom shear stress in a dimensionless
quantity, 𝜃, known as the Shields parameter. It is defined in terms of
the ratio between drag forces and the submerged weight,

𝜃 =
|𝜏𝑏|

(𝜌𝑠 − 𝜌)𝑔𝑑𝑠
,

where 𝜌𝑠 is the sediment density and 𝑑𝑠 is the mean diameter of the
sediment.

In fact, the Shields parameter is used to control the threshold value
at which the movement starts to takes place. In this way, the Shield
parameter 𝜃 must exceed some pre-set value 𝜃𝑐𝑟𝑖𝑡 so the motion can
take place. This threshold 𝜃𝑐𝑟𝑖𝑡 must be also set by the modeler taking
into account the physical properties of the sediment.

Finally, in Castro Díaz et al. (2008) the authors derive a useful
general formula for bed transport discharge,

𝑞𝑏 =
𝑄

1 − 𝜙
𝜏𝑏
|𝜏𝑏|

𝑘1𝜃
𝑚1

(

𝜃 − 𝜃𝑐𝑟𝑖𝑡
)𝑚2
+

(
√

𝜃 −
√

𝜃𝑐𝑟𝑖𝑡
)𝑚3

+
. (6)

In this formula, 𝑄 represents the characteristic discharge,

𝑄 =

√

(

𝜌𝑠 − 1
)

𝑔𝑑3𝑠 ,
𝜌 o

3 
where (𝑣)+ is the positive part of 𝑣 and 𝜙 is the porosity of the sediment.
Finally, 𝑘1, 𝑚1, 𝑚2 and 𝑚3 are positive real numbers such that

𝑘1 ≥ 0, 𝑚1 ≥ 0, 𝑚2 ≥ 1, 𝑚3 ≥ 0.

y choosing different values for these coefficients, we can discriminate
etween different bedload transport formulations. In particular, we
ave:

• Meyer-Peter and Müller (1948): 𝑘1 = 8, 𝑚1 = 0, 𝑚2 = 3∕2 and
𝑚3 = 0.

• Luque and Beek (1976): 𝑘1 = 5.7, 𝑚1 = 0, 𝑚2 = 3∕2 and 𝑚3 = 0.
• Nielsen (1992): 𝑘1 = 12, 𝑚1 = 1∕2, 𝑚2 = 1 and 𝑚3 = 0.
• Ribberink (1987): 𝑘1 = 11, 𝑚1 = 0, 𝑚2 = 1.65 and 𝑚3 = 0.
• Ashida and Michiue (1972): 𝑘1 = 17, 𝑚1 = 0, 𝑚2 = 1 and 𝑚3 = 1.

ote that if 𝑘1 = 0, then 𝑞𝑏 = 0, and the transport equation simplifies
rivially to 𝜕𝑡𝐻 = 0 and the standard shallow-water equations are
ecovered.
All these formulas were designed for granular and non-cohesive

ediments, mainly for quasi-stationary fluxes in rivers, tides or other
henomena where the time response of the sediment is small compared
ith fluid velocity. Another limitation of the formulas is given by the
xclusion of gradient pressure effect to model grain falling when the
elocity of the fluid is zero.
In general, these formulations were designed and benchmarked for
number of applications that are suited for a range of sediment size
r channel slope. For instance, for Meyer-Peter and Müller formula,
he slopes range from 0.04 to 2%, sediment particle size from 0.4 to
0 mm, flow depth of 0.01 to 1.20 m, water discharge of 0.002 to 2
2∕s and relative density from 0.25 to 3.2. These data is taken from
he comprehensive study of the Meyer-Peter and Müller formula by
ager and Boes in Hager and Boes (2018), and illustrate the difficulty

to model sediment transport effects for physical phenomena that are
far different from any laboratory setup, such as a tsunami. Therefore,
some modifications have to be considered in order to simulate these
effects.

2.1. Hyperbolicity

To end this section, let us discuss the hyperbolicity of system (3).
In Castro Díaz et al. (2008), the full eigenstructure of system (3) is
erived. In particular, it is given by,

1 = 2
√

𝑆 𝑐𝑜𝑠(𝜑∕3) − 𝑎1∕3,

𝜆2 = 2
√

𝑆 𝑐𝑜𝑠((𝜑 + 2𝜋)∕3) − 𝑎1∕3, (7)

𝜆2 = 2
√

𝑆 𝑐𝑜𝑠((𝜑 + 4𝜋)∕3) − 𝑎1∕3,

with 𝑆 = −(3𝑎2 − 𝑎21)∕9, 𝜑 = 𝑎𝑟𝑐𝑜𝑠(𝑅∕
√

−𝑆3) and 𝑅 = (9𝑎1𝑎2 − 27𝑎3 +
𝑎31)∕54. Also,

1 = −2
𝑞
ℎ
, 𝑎2 =

𝑞2

ℎ2
− 𝑔ℎ

(

1 +
𝜕𝑞𝑏
𝜕𝑞

)

, 𝑎3 = −𝑔ℎ
𝜕𝑞𝑏
𝜕ℎ

,

with 𝑞 being the total flow rate defined by 𝑞 = ℎ𝑢. Note that, if 𝑞𝑏 = 0,
then the bottom is fixed and we recover the well-known shallow-water
eigenstructure:

𝜆1 = 𝑢 +
√

𝑔ℎ, 𝜆2 = 𝑢 −
√

𝑔ℎ. (8)

Furthermore, in Cordier et al. (2011) a thorough discussion about
he hyperbolicity of this model can be found. One of their main results
as the demonstration that system (3) remains unconditionally hyper-
olic if Darcy–Weisbach friction formula (5) is chosen. Unfortunately,
he same cannot be said of the Manning friction formula. For this
eason, in this work we have chosen to use the Darcy friction formula
ver that of Manning.



E. Guerrero Fernández et al.

u
s
b

A

𝒘

(

(

(

U

(

H

𝛼

𝜆

e
w
i
d
p

f
n
p
w
c
t
p

(

Ocean Modelling 192 (2024) 102445 
3. Numerical discretization

In this section, we detail the numerical discretization performed to
approximate system (3). Our discretization is based on the Finite Vol-
me Method. To make sense of the non-conservative product present in
ystem (1), we make use of the path-conservative framework developed
y Parés in Parés (2006).
System (3) can be written in the form of a general hyperbolic system

of conservation laws, with conservative fluxes and non-conservative
products as follows:

𝜕𝒘 + 𝜕𝑥𝑭 𝐶 (𝒘) + 𝑷 (𝒘, 𝜕𝑥𝜂) = 𝑺(𝒘),

where 𝒘 is the state vector of conserved variables defined by:

𝒘 = (ℎ, ℎ𝑢,𝐻)𝑇 .

Likewise, the conservative flux 𝑭 𝐶 is given by:

𝑭 𝐶 =
(

ℎ𝑢, ℎ𝑢2,−𝑞𝑏
)𝑇 ,

while the pressure term 𝑷 and the source term 𝑺 are given by the
following expressions respectively,

𝑷 = (0, 𝑔ℎ𝜕𝑥𝜂, 0)𝑇 ,

𝑺 = (0,−𝑔ℎ𝑆𝑓 , 0)𝑇 .

s commented before, the bottom friction 𝑆𝑓 is given by the Darcy–
Weisbach formula (5).

Since the friction term will be taken into account at a later point,
the actual system we solve at this stage is given by:

𝜕𝒘 + 𝜕𝑥𝑭 𝐶 (𝒘) + 𝑷 (𝒘, 𝜕𝑥𝜂) = 𝟎.

We will now derive the second-order accurate path-conservative
finite volume method, based on a hydrostatic reconstruction technique
and able to preserve lake-at-rest type stationary solutions.

Let us consider a uniform grid discretization of the computational
domain 𝛺 in cells 𝛺𝑖 = [𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2
] of a constant length 𝛥𝑥 = 𝑥𝑖+ 1

2
−

𝑥𝑖− 1
2
. As usual, the approximation of the solution at time 𝑡𝑛 = 𝑛𝛥𝑡 is

averaged across the cell, and denoted by 𝒘𝑛
𝑖 ,

𝑛
𝑖 ≈

1
𝛥𝑥 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝒘(𝑥, 𝑡𝑛) 𝑑𝑥.

Additionally, from now on we will denote the cell average at the cell
interface for any variable 𝑓 as

𝑓 ≡ 𝑓𝑖+ 1
2
= 1

2
(𝑓𝑖 + 𝑓𝑖+1). (9)

Likewise, the difference at the intercell is denoted as,

𝛥𝑓 ≡ 𝛥𝑓𝑖+ 1
2
= 𝑓𝑖+1 − 𝑓𝑖 (10)

3.1. First order HLL scheme

As discussed in the introduction, a careless numerical discretization
that address the hydrodynamic and morphodynamic part separately
can develop spurious oscillations. This is the reason why some authors
consider complete Riemann solvers for the system (3). However, doing
so forces the computation of the full eigenstructure (7) at each time
step, introducing a significant computational overhead.

To address these drawbacks, our approach introduces a weakly
coupled numerical discretization that employs only two waves, repre-
senting approximations of the maximum and minimum wave speeds
(8). This HLL-type numerical discretization independently evolves the
hydrodynamic component and subsequently utilizes this information to
evolve the bottom in an upwind fashion.

For the description of the numerical discretization we distinguish
between the hydrostatic and the morphological part. We use (𝑓 )
[ℎ,ℎ𝑢]

4 
when variable 𝑓 refers to the hydrostatic part, corresponding to the
mass and momentum equations in system (3). Following Castro and
Fernández-Nieto (2012), we define a Polynomial Viscosity Matrix
(PVM) HLL-type scheme for the hydrostatic part of (3) by

(𝒘𝑛+1
𝑖 )[ℎ,ℎ𝑢] = (𝒘𝑛

𝑖 )[ℎ,ℎ𝑢] −
𝛥𝑡
𝛥𝑥

(

(𝑫+
𝑖− 1

2

(𝒘𝑛
𝑖−1,𝒘

𝑛
𝑖 ))[ℎ,ℎ𝑢]

+(𝑫−
𝑖+ 1

2
(𝒘𝑛

𝑖 ,𝒘
𝑛
𝑖+1))[ℎ,ℎ𝑢]

)

, (11)

where (𝑫∓
𝑖± 1

2

)[ℎ,ℎ𝑢], the numerical fluxes, are defined by,

𝑫−
𝑖+ 1

2
)[ℎ,ℎ𝑢] =

1
2

(

(1 − 𝛼1,𝑖+ 1
2
)𝑬𝑖+ 1

2
− 𝛼0,𝑖+ 1

2
((𝒘𝑖+1)[ℎ,ℎ𝑢] − (𝒘𝑖)[ℎ,ℎ𝑢])

)

+ (𝑭 𝐶 (𝒘𝑖))[ℎ,ℎ𝑢], (12)

(𝑫+
𝑖+ 1

2

)[ℎ,ℎ𝑢] =
1
2

(

(1 + 𝛼1,𝑖+ 1
2
)𝑬𝑖+ 1

2
+ 𝛼0,𝑖+ 1

2
((𝒘𝑖+1)[ℎ,ℎ𝑢] − (𝒘𝑖)[ℎ,ℎ𝑢])

)

− (𝑭 𝐶 (𝒘𝑖+1))[ℎ,ℎ𝑢], (13)

and

𝑬𝑖+ 1
2
= (𝑭 𝐶 (𝒘𝑖+1))[ℎ,ℎ𝑢] − (𝑭 𝐶 (𝒘𝑖))[ℎ,ℎ𝑢] + (𝑷 𝑖+ 1

2
)[ℎ,ℎ𝑢]. (14)

𝑷 𝑖+ 1
2
)[ℎ,ℎ𝑢] is a simple discretization of the pressure terms, given by

𝑷 𝑖+ 1
2
)[ℎ,ℎ𝑢] = (0, 𝑔ℎ̄𝛥𝜂)𝑇 .

sing (9) and (10), a full version of the pressure terms are given by,

𝑷 𝑖+ 1
2
)[ℎ,ℎ𝑢] =

(

0, 𝑔 1
2
(ℎ𝑖 + ℎ𝑖+1)(𝜂𝑖+1 − 𝜂𝑖)

)𝑇
. (15)

Note that by discretizing the free surface term instead of the water
depth, we are able to preserve stationary solutions corresponding with
constant free surface, 𝜂 = 𝑐𝑠𝑡.

The coefficients 𝛼0,𝑖+ 1
2
and 𝛼1,𝑖+ 1

2
are related with the viscosity of

the scheme. According to Castro and Fernández-Nieto (2012), for the
LL scheme these coefficients take the following form,

0,𝑖+ 1
2
=

𝜆+
𝑖+ 1

2

|𝜆−
𝑖+ 1

2

| − 𝜆−
𝑖+ 1

2

|𝜆+
𝑖+ 1

2

|

𝜆+
𝑖+ 1

2

− 𝜆−
𝑖+ 1

2

, 𝛼1,𝑖+ 1
2
=

|𝜆+
𝑖+ 1

2

| − |𝜆−
𝑖+ 1

2

|

𝜆+
𝑖+ 1

2

− 𝜆−
𝑖+ 1

2

, (16)

where 𝜆±
𝑖+ 1

2

are an approximation of the minimum and maximum

wave speeds. Note that in those coefficients the influence of the sed-
iment layer should be considered. Nevertheless, we propose to use the
shallow-water eigenvalues (8),

±
𝑖+ 1

2

= 𝑢̄ ±
√

𝑔ℎ̄. (17)

Remark 1. As discussed in Section 2.1, eigenvalues (17) are not the
igenvalues of the full system (3), which are given by (7). But in this
ork we propose to use (17) as an approximation to wave speed, since
t is easier and faster to evaluate. In the following paragraphs we will
iscuss how to apply this approximations to evolve the morphological
art of system (3) in a weakly-coupled fashion without instabilities.

This completes the description of the first order numerical scheme
or the hydrodynamic part of (3). In order to evolve the morphody-
amical part, an upwind scheme is used in the morphodynamical com-
onent. In the oncoming description of the morphodynamical scheme
e denote by (𝑓 )[𝐻] when variable 𝑓 refers to the morphological part,
orresponding to the bedload transport equation in system (3). Then,
he following numerical scheme for the morphological part of (3) is
roposed:

𝒘𝑛+1)[𝐻] = (𝒘𝑛)[𝐻] −
𝛥𝑡

(

(𝑫+
1 (𝒘𝑛 ,𝒘𝑛))[𝐻] + (𝑫−

1 (𝒘𝑛,𝒘𝑛 ))[𝐻]

)

. (18)
𝑖 𝑖 𝛥𝑥 𝑖−
2

𝑖−1 𝑖 𝑖+
2

𝑖 𝑖+1
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On this occasion, (𝑫∓
𝑖± 1

2

)[𝐻], the numerical fluxes, are defined by,

(𝑫−
𝑖+ 1

2
)[𝐻] =

1
2
(1 − 𝛽𝑖+ 1

2
)𝑬𝑖+ 1

2
+ (𝑭 𝐶 (𝒘𝑖))[𝐻], (19)

𝑫+
𝑖+ 1

2

)[𝐻] =
1
2
(1 + 𝛽𝑖+ 1

2
)𝑬𝑖+ 1

2
− (𝑭 𝐶 (𝒘𝑖+1))[𝐻], (20)

nd

𝑖+ 1
2
= (𝑭 𝐶 (𝒘𝑖+1))[𝐻] − (𝑭 𝐶 (𝒘𝑖))[𝐻]. (21)

Here, 𝛽𝑖+ 1
2
is given by

𝛽𝑖+ 1
2
=

⎧

⎪

⎨

⎪

⎩

𝛼1,𝑖+ 1
2

if 𝑠𝑔𝑛(𝛼1,𝑖+ 1
2
) = 𝑠𝑔𝑛(𝐹𝐶 ((𝒘𝑖+1)[𝐻])−𝐹𝐶 ((𝒘𝑖)[𝐻]))

𝑠𝑔𝑛(𝐻𝑖+1−𝐻𝑖)
,

−𝛼1,𝑖+ 1
2

otherwise.
(22)

n this way, the morphodynamical part of (3) is evolved using the wave
speed information of the hydrodynamic part but taking into account if
the hydrodynamics’s flux direction is the same as the morphodynamical
one. Note that if the physical flux difference of the hydrodynamic part
of the scheme has the same sign (i.e. the same direction) that the flux
difference of the morphological part, then we use 𝛼1,𝑖+ 1

2
to evolve the

orphological part. Note that 𝛼1,𝑖+ 1
2
comes from the hydrodynamic

art.

emark 2. Under the PVM theory, the numerical scheme (18)–(22)
s not exactly the HLL scheme. In fact, this scheme could be seen as
modification of the HLL scheme for the complete system, where the
ydrodynamical component is discretized using the HLL scheme and
he morphodynamical one is treated like an upwind-type discretization
sing the information of the hydrodynamical component (𝛼1,𝑖+1∕2),
ut with the sign of the approximation of the wave speed for the
orphodynamical component, that ensures the stability of the proposed
cheme.

emark 3. In the case of flat bathymetry in (22), then only the
onservative flux is considered, i.e,

𝑖+ 1
2
=

⎧

⎪

⎨

⎪

⎩

𝛼1,𝑖+ 1
2

if 𝑠𝑔𝑛(𝛼1,𝑖+ 1
2
) = 𝑠𝑔𝑛(𝐹𝐶 ((𝒘𝑖+1)[𝐻]) − 𝐹𝐶 ((𝒘𝑖)[𝐻])),

−𝛼1,𝑖+ 1
2

otherwise.

The final solution 𝒘𝑛+1
𝑖 results from the concatenation of the hydro-

dynamic and morphodynamic parts,

𝒘𝑛+1
𝑖 =

[

(𝒘𝑛+1
𝑖 )[ℎ,ℎ𝑢], (𝒘𝑛+1

𝑖 )[𝐻]
]𝑇 .

Likewise, the final numerical scheme concatenates numerical fluxes as
well, resulting in the following expression,

𝒘𝑛+1
𝑖 = 𝒘𝑛

𝑖 −
𝛥𝑡
𝛥𝑥

(

𝑫+
𝑖− 1

2

(𝒘𝑛
𝑖−1,𝒘

𝑛
𝑖 ) +𝑫−

𝑖+ 1
2
(𝒘𝑛

𝑖 ,𝒘
𝑛
𝑖+1)

)

, (23)

with

𝑫+
𝑖− 1

2

(𝒘𝑛
𝑖−1,𝒘

𝑛
𝑖 ) =

[

(𝑫+
𝑖− 1

2

(𝒘𝑛
𝑖−1,𝒘

𝑛
𝑖 ))[ℎ,ℎ𝑢], (𝑫

+
𝑖− 1

2

(𝒘𝑛
𝑖−1,𝒘

𝑛
𝑖 ))[𝐻]

]𝑇
, (24)

−
𝑖+ 1

2
(𝒘𝑛

𝑖 ,𝒘
𝑛
𝑖+1) =

[

(𝑫−
𝑖+ 1

2
(𝒘𝑛

𝑖 ,𝒘
𝑛
𝑖+1))[ℎ,ℎ𝑢], (𝑫

−
𝑖+ 1

2
(𝒘𝑛

𝑖 ,𝒘
𝑛
𝑖+1))[𝐻]

]𝑇
. (25)

.2. Hydrostatic reconstruction

In this section, we describe the hydrostatic reconstruction technique
Audusse et al., 2004; Castro et al., 2007) applied to the numerical
cheme (23). Given two states 𝒘𝑖+1 and 𝒘𝑖, we defined two recon-
tructed states for the Riemann solver at the cell interfaces 𝒘±

𝑖+ 1
2

in the
following way:

𝐻𝐻𝑅
1 = 𝑚𝑖𝑛(𝐻𝑖,𝐻𝑖+1) (26)
𝑖+ 2

5 
and

ℎ𝐻𝑅,−
𝑖+ 1

2

=
(

ℎ𝑛𝑖 −𝐻𝑖 +𝐻𝐻𝑅
𝑖+ 1

2

)

+
, ℎ𝐻𝑅,+

𝑖+ 1
2

=
(

ℎ𝑛𝑖+1 −𝐻𝑖+1 +𝐻𝐻𝑅
𝑖+ 1

2

)

+
.

(27)

Here (𝑓 )+ denotes the positive part of 𝑓 . Using (27) we define the new
state values as:

𝒘𝐻𝑅,±
𝑖+ 1

2

=
(

ℎ𝐻𝑅,±
𝑖+ 1

2

, ℎ𝐻𝑅,±
𝑖+ 1

2

𝑢,𝐻𝐻𝑅
𝑖+ 1

2

)𝑇
. (28)

Note that 𝑢 remains unchanged, that is, the velocity is the one corre-
sponding to the original state.

Observe that the states defined at the cell interface (9)–(10) are now
efined in terms of the hydrostatic reconstructed states (28). The first
rder HLL numerical scheme (23) now reads,

𝑛+1
𝑖 = 𝒘𝑛

𝑖 −
𝛥𝑡
𝛥𝑥

(

𝑫+
𝑖− 1

2

(𝒘𝐻𝑅,−
𝑖− 1

2

,𝒘𝐻𝑅,+
𝑖− 1

2

) +𝑫−
𝑖+ 1

2
(𝒘𝐻𝑅,−

𝑖+ 1
2

,𝒘𝐻𝑅,+
𝑖+ 1

2

)
)

. (29)

The definition of the numerical fluxes (24)–(25) remains the same but,
since the hydrostatic reconstruction keeps the bottom variable constant,
the pressure terms is now simplified as follows:

𝑷 𝑖+ 1
2
= (0, 𝑔ℎ̄𝛥ℎ, 0)𝑇 .

Remark 4. In the generalized hydrostatic reconstruction presented
in Castro et al. (2007), the numerical scheme (29) should include a
correction due to the hydrostatic reconstruction that guarantees the
consistency of the scheme. This term arises from the evaluation of the
integral of the pressure terms along the path that links the cell states
at the center with their hydrostatic reconstructed counterparts (28).
However, since the hydrostatic reconstruction within a cell keeps the
free surface constant, this evaluation is zero (29).

Corollary 5. The resulting numerical scheme (29) is positive preserving for
the total water column ℎ under the standard CFL-1/2 condition, since the
hydrostatic reconstruction maintains this well-known property of the HLL
numerical schemes (see Audusse et al., 2004, for instance). Additionally,
the scheme is able to preserve stationary solutions corresponding to constant
total free surface and zero velocity.

Remark 6. As already mentioned, in order for the scheme to ensure
positivity, the CFL condition must be CFL ≤ 0.5.

3.3. Second order extension

So far, the numerical scheme (29) is first order in space and time. As
proved in Cordier et al. (2011), low diffusion schemes are essential to
apture complex morphodynamical behaviors. To reach second order
n space, we define a reconstruction operator that provides a second
rder approximation of the state values 𝒘𝑛

𝑖 . In this way, at each cell
𝑖 and at each time 𝑡𝑛, we define the reconstruction function 𝑹𝑡

𝑖(𝑥) =
(𝑥, 𝑡) + (𝛥𝑥2), ∀ 𝑥 ∈ 𝛺𝑖. In order to define 𝑹𝑡

𝑖(𝑥), both the cell value
𝑛
𝑖 and its immediate neighbors are used. Additionally, we will use the
tandard notation for reconstruction operators:

lim
𝑥→𝑥+

𝑖− 1
2

𝑹𝑡
𝑖(𝑥) = 𝒘+

𝑖− 1
2

(𝑡), lim
𝑥→𝑥−

𝑖+ 1
2

𝑹𝑡
𝑖(𝑥) = 𝒘−

𝑖+ 1
2
(𝑡). (30)

In Castro et al. (2017), it was shown that the semidiscrete extension
of the first order numerical scheme (29) is:

𝒘′
𝑖(𝑡) = − 1

𝛥𝑥

(

𝑫+
𝑖− 1

2

(𝑡) +𝑫−
𝑖+ 1

2
(𝑡)
)

− 1
𝛥𝑥 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑷 (𝑹𝑡
𝑖, 𝜕𝑥𝑅

𝜂,𝑡
𝑖 ) 𝑑𝑥. (31)

Here, 𝑅𝜂,𝑡
𝑖 denotes the reconstruction operator applied to the free sur-

face 𝜂. In general, we denote 𝑅𝑓,𝑡 as the reconstruction of the variable
𝑖
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𝑓 . In this way, the components of 𝑹𝑡
𝑖 are 𝑹𝑡

𝑖 = (𝑅ℎ, 𝑅ℎ𝑢, 𝑅𝐻 ). Note that
he numerical fluxes 𝑫∓

𝑖± 1
2

are computed using the reconstructed states:

+
𝑖− 1

2

(𝑡) = 𝑫+
𝑖− 1

2

(𝑡)(𝒘−
𝑖− 1

2
(𝑡),𝒘+

𝑖− 1
2

(𝑡)),

𝑫−
𝑖+ 1

2
(𝑡) = 𝑫−

𝑖+ 1
2
(𝑡)(𝒘−

𝑖+ 1
2
(𝑡),𝒘+

𝑖+ 1
2

(𝑡)).

Remark 7. The hydrostatic reconstruction presented in Section 3.2 is
pplied using the second order approximation of the states (30). In this
ay, the hydrostatic reconstructed states (26)–(27) now reads:

𝐻𝐻𝑅
𝑖+ 1

2
= 𝑚𝑖𝑛(𝐻−

𝑖+ 1
2
,𝐻+

𝑖+ 1
2

)

nd

𝐻𝑅,−
𝑖+ 1

2

=
(

ℎ−
𝑖+ 1

2
−𝐻−

𝑖+ 1
2
+𝐻𝐻𝑅

𝑖+ 1
2

)

+
,

𝐻𝑅,+
𝑖+ 1

2

=
(

ℎ𝑛𝑖+1 −𝐻𝑖+1 +𝐻𝐻𝑅
𝑖+ 1

2

)

+
.

As it was discussed in Castro et al. (2017), to preserve the global
well-balanced property of the first order numerical scheme (29), the
reconstruction operators must also be well-balanced. This means that
the reconstruction operator should provide the exact value when en-
countering the kind of stationary solution that we are interested in
preserving, i.e., the lake-at-rest type of stationary solutions:

𝑅𝜂
𝑖 = 𝑅ℎ

𝑖 − 𝑅𝐻
𝑖 = 𝑐𝑠𝑡. (32)

To achieve this, the well-known procedure include reconstructing the
free surface 𝜂 and the total water depth ℎ, and obtaining the bathymetry
reconstruction as a subproduct of (32),

𝑅𝐻
𝑖 = 𝑅ℎ

𝑖 − 𝑅𝜂
𝑖 .

The reason why this procedure preserves the lake-at-rest stationary so-
lution is because the reconstruction operator depends on the first order
approximation of the derivative of the solution at the cell interfaces,
which are exact for the constant operator.

In particular, for this work we will use the MUSCL reconstruction
operator (Leer, 1979). In this way, the reconstruction operator 𝑹𝑡

𝑖 is
defined as follows:

𝑹𝑡
𝑖(𝑥) = 𝒘𝑖 + 𝝈(𝑥 − 𝑥𝑖). (33)

Here, 𝝈𝑖 denotes the slope of the reconstruction for each variable and
𝑥𝑖 is the center of the cell 𝛺𝑖. As usual, some kind of slope limiter is
necessary in order to prevent spurious oscillation near strong gradients
or discontinuities. To achieve this, we consider an average limiter (avg),
defined by

𝑎𝑣𝑔(𝑎, 𝑏) =

{

|𝑎|𝑏+𝑎|𝑏|
|𝑎|+|𝑏| |𝑎| + |𝑏| > 0,

0 otherwise.

sing this average limiter, the slope for the 𝑘th component of the vector
s defined by,

𝝈𝒊]𝑘 = 𝑎𝑣𝑔
( [𝒘𝑖+1 −𝒘𝑖]𝑘

𝛥𝑥
,
[𝒘𝑖 −𝒘𝑖−1]𝑘

𝛥𝑥

)

.

In this way, we can summarize the reconstruction procedure as
ollows:

• In the first place, the total water depth ℎ and the free surface 𝜂 are
reconstructed and then the bathymetry variable 𝐻 is recovered
with 𝑅𝐻

𝑖 = 𝑅ℎ
𝑖 − 𝑅𝜂

𝑖 .
• Secondly, the primitive variable 𝑢 is reconstructed using 𝑅𝑢

𝑖 (𝑥) =
𝑢𝑖 + 𝜎𝑢(𝑥− 𝑥𝑖). The high order approximation of the conservation
variable ℎ𝑢 is performed taking into account the following,

𝜎ℎ𝑢 = 𝜕 𝑅ℎ𝑢 = 𝑅ℎ(𝑥 )𝜕 𝑅𝑢 + 𝑅𝑢(𝑥 )𝜕 𝑅ℎ

𝑖 𝑥 𝑖 𝑖 𝑖 𝑥 𝑖 𝑖 𝑖 𝑥 𝑖

6 
Next, the integral term in (31) can be approximated by a middle
oint quadrature rule,

1
𝛥𝑥 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑷 (𝑹𝑡
𝑖, 𝜕𝑥𝑅

𝜂,𝑡
𝑖 ) 𝑑𝑥 ≈ 𝑷 𝑖.

Note that, since the middle point rule is a second-order approximation
of the integral operator, it preserves the total order of accuracy of the
scheme.

Finally, the second order in time is achieved using to a total vari-
ation diminish (TVD) Runge–Kutta method (see Gottlieb and Shu,
1996).

The numerical scheme thus defined is second-order accurate in
space and time. Additionally, it is able to preserve stationary solutions
corresponding to constant water surface and it is positive preserving
with a suitable CFL condition.

3.4. Friction terms

As already discussed, the friction term is split and taken into account
at a later stage. For the case of the first order numerical scheme, the
numerical solution described in Sections 3.1 to 3.3 is now renamed
from 𝒘𝑛+1

𝑖 to 𝒘𝑛+1∕2
𝑖 . Next, the final solution at time 𝑡𝑛+1 is given by

the following semi-implicit update:

𝒘𝑛+1
𝑖 = 𝒘𝑛+1∕2

𝑖 + 𝛥𝑡𝑺(𝒘𝑛
𝑖 ,𝒘

𝑛+1
𝑖 ),

with

𝑺(𝒘𝑛
𝑖 ,𝒘

𝑛+1
𝑖 ) = (0,−

𝑓𝑞𝑛+1𝑖

8ℎ𝑛+1𝑖

|𝑢𝑛𝑖 |, 0)

for the Darcy friction law. Note that this update is performed for both
stages of the Runge–Kutta method when the second order approach is
used.

Finally, we can see a flow chart of the complete numerical approach
in Fig. 1.

3.5. Two-dimensional extension

In this subsection, we will discuss the two dimensional extension of
the shallow-water system (3) and the numerical scheme discussed so far
in this section. The two-dimensional set of equations was previously
written in (1). We can write this system using its vector components
𝒙 = (𝑥, 𝑦) as follows,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡ℎ + 𝜕𝑥(ℎ𝑢𝑥) + 𝜕𝑦(ℎ𝑢𝑦) = 0,

𝜕𝑡(ℎ𝑢𝑥) + 𝜕𝑥
(

ℎ𝑢2𝑥
)

+ 𝜕𝑦(ℎ𝑢𝑥𝑢𝑦) + 𝑔ℎ𝜕𝑥𝜂 = −𝑔ℎ𝑆𝑥,𝑓 ,

𝜕𝑡(ℎ𝑢𝑥) + 𝜕𝑦
(

ℎ𝑢2𝑦
)

+ 𝜕𝑥(ℎ𝑢𝑦𝑢𝑥) + 𝑔ℎ𝜕𝑦𝜂 = −𝑔ℎ𝑆𝑦,𝑓 ,

𝜕𝑡𝐻 − 𝜕𝑥𝑞𝑥,𝑏 − 𝜕𝑦𝑞𝑦,𝑏 = 0.

(34)

Here, 𝑞𝑥,𝑏 and 𝑞𝑦,𝑏 are defined using (2),

𝑞𝑥,𝑏 = |

|

𝑞𝑏(ℎ, ‖𝒖‖)||
𝑢𝑥
‖𝒖‖

, 𝑞𝑦,𝑏 = |

|

𝑞𝑏(ℎ, ‖𝒖‖)||
𝑢𝑦
‖𝒖‖

.

The PDE system (34) can be written in the compact form,

𝜕𝒘 + 𝜕𝑥𝑭 𝐶 (𝒘) + 𝜕𝑦𝑮𝐶 (𝒘) + 𝑷 𝑥(𝒘, 𝜕𝑥𝜂) + 𝑷 𝑦(𝒘, 𝜕𝑦𝜂) = 𝑺𝑥(𝒘) + 𝑺𝑦(𝒘).

In this occasion, the new state variables are,

𝒘 =
(

ℎ, ℎ𝑢𝑥, ℎ𝑢𝑦,𝐻
)𝑇 ,

while the physical fluxes are given by,

𝑭 𝐶 (𝒘) =
(

ℎ𝑢𝑥, ℎ𝑢
2
𝑥, ℎ𝑢𝑦𝑢𝑥, 𝑞𝑥,𝑏

)

, 𝑮𝐶 (𝒘) =
(

ℎ𝑢𝑦, ℎ𝑢
2
𝑦, ℎ𝑢𝑥𝑢𝑦, 𝑞𝑦,𝑏

)

.

Likewise, the pressure terms are defined as follows,

𝑷 (𝒘, 𝜕 𝜂) = (0, 𝑔ℎ𝜕 𝜂, 0, 0), 𝑷 (𝒘, 𝜕 𝜂) = (0, 0, 𝑔ℎ𝜕 𝜂, 0).
𝑥 𝑥 𝑥 𝑦 𝑦 𝑦
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Fig. 1. Flow chart of the numerical approach.
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inally, the friction terms are defined in a similar fashion,

𝑥(𝒘) = (0, 𝑔ℎ𝑆𝑥,𝑓 , 0, 0), 𝑺𝑦(𝒘) = (0, 0, 𝑔ℎ𝑆𝑦,𝑓 , 0).

Note that system (34) can be written in a dimension-by-dimension
ashion, resulting in the same one dimensional system (3) with the
ddition of a transport equation. Therefore, the same numerical scheme
an be applied and the numerical properties are kept intact. The
nterested reader can refer to De la Asunción et al. (2013) for more
etails.

. Numerical results and discussions

In this section, we perform several numerical simulations in order
o show the capacity and the global accuracy of the model. A total
f six different experiments are considered. The first experiment is an
rder test to show that we reach the desired convergence order of
ccuracy. Additionally, a well-balanced test is also included. We also
onsider two laboratory experiments where empirical data is available
or comparison purposes. The final two simulations include compar-
sons of the sediment distribution after the 2011 Tōhoku tsunami
vent, both for Crescent City harbor (California, U.S.) and for Hirota
7 
ay (Rikuzentakata City, Japan). In general, the comparisons show
xcellent data agreement between the empirical data and the numerical
imulations.
For all tests in this section, the CFL condition is set to 0.9 and,

nless stated otherwise, we use Meyer-Peter and Müller formula for the
ransport discharge (6).

.1. Order test

The first test seeks to prove numerically the global order of accuracy
f the numerical scheme. In order to do that, we consider a one
imensional simulation with an increasing grid discretization of 50,
00, 200 and 400 points, that are compared with a reference solution
omputed with 4800 discretization points. The simulation domain is
iven by 𝛺 = [−5, 5]. The initial condition is given by the following
ree surface and bathymetry function:

= 1 + 1
10

𝑒−5𝑥
2
, 𝐻 = −1

2
𝑒−5𝑥

2
.

Likewise, the ratio of density for the sediment is 2.7 kg∕cm3, the mean
diameter of sediment grain is 0.2 mm, the friction coefficient 𝑓 = 0.01
while the porosity is 𝜙 = 0.43 and 𝜃 = 0.047.
𝑐𝑟𝑖𝑡
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Fig. 2. Free surface and bathymetry (left) and velocities (right) at time 𝑡 = 0.5 s for the second order scheme.
Fig. 3. Cut at the plane 𝑥 = 0 depicting the free surface and bathymetry initial condition (left) and velocities at time 𝑡 = 100 s (right).
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Table 1
Order of accuracy for the second order scheme.
N. cells ℎ ℎ𝑢 𝐻

Error Order Error Order Error Order

50 2.22e−02 – 5.23e−02 – 6.09e−03 –
100 6.29e−03 1.82 1.56e−02 1.75 1.61e−03 1.92
200 1.56e−03 2.02 3.97e−03 1.97 4.00e−04 2.01
400 4.41e−04 1.82 9.90e−04 2.00 1.02e−04 1.97

The simulation is computed for a total of 𝑡 = 0.5 s, with periodic
oundary conditions everywhere. Fig. 2 shows the simulation at final
ime for the reference solution. The results can be consulted in Table 1,
where the error with respect to the reference solution and the global
order of accuracy is displayed for all conserved variables. As we can
see, the desired order of convergence is achieved.

4.2. Well-balanced test

For the well-balanced test, we set a stationary solution and ensure
that it remains constant as it evolves with time. In particular, the initial
condition is given by,

𝜂 = 3 𝐻 = −𝑒−5𝑥
2
.

This initial condition can be seen in Fig. 3 (left).
The computational domain 𝛺 = [−5, 5] × [−5, 5] is divided with

100 × 100 discretization points and the total simulated time is 𝑡 =
100 s. We can see that the at the free surface remains constant and the
velocities are zero up to machine precision (see Fig. 3, right). Again,
periodic boundary conditions are set.
8 
4.3. Laboratory experiment with dune and no slope

This test focuses on replicating the results of the morphology of a
test where laboratory data is available. As already discussed, Yoshii
et al. presented in Yoshii et al. (2017, 2018) a number of labora-
tory experiments where different wave profiles were tested for several
morphological distributions. These experiments are undertaken in a
wave-flume 205 m long and 3.4 m wide, with an uniformly sloping
topography (1/50) with a sand dune 0.2 m high. After the dune, the
topography becomes flat (see Fig. 4, left). Next, a wave designed to
simulate a tsunami is produced at the beginning of the channel, and
the water height and velocity are measured every 0.01 s as well as
topography change before and after the event. The data is offered at
two different locations and we use it directly as boundary conditions at
the location right before the dune. We remark that this data is publicly
available and we forward the interested readers to Yoshii et al. (2017,
018) and supplementary materials therein. The data provided includes
ree surface evolution, sediment composition and final morphological
istribution. For this test, denominated test C11 in Yoshii et al. (2018),
he authors set the following sediment distribution: sediment size of
.12 mm and relative density of the sediment of 2.84. Additionally, we
et the Darcy–Weisbach friction coefficient to 𝑓 = 4 × 10−2, porosity to
= 1

2 and 𝜃𝑐𝑟𝑖𝑡 = 0.047.
The problem is discretized in one dimension using 500 elements,

and it is run for 130 s. Note that these experiments are inherently one
dimensional, in order to minimize uncertainty of sources. Therefore,
we perform one-dimensional simulations as well. For the boundary
conditions, we simply impose the measurements provided in Yoshii

et al. (2018) thorough Dirichlet boundary conditions. These are a
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Fig. 4. Initial free surface and bathymetry (left) and free surface and bathymetry at time 𝑡 = 35 s (right).
Fig. 5. Laboratory and numerical bathymetry distribution at final time 𝑡 = 130 s (left) and zoom (right).
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well-known technique in the finite volume framework, and the inter-
ested reader can refer to Toro (2013) for more details on applying
them. Fig. 4 (left) shows the initial condition for the free surface and
bathymetry. The final results for the morphodynamic distribution are
depicted in Fig. 5. As we can see, there is a general data agreement be-
tween the laboratory data and the numerical results. The total erosion
of the dune is well captured, although the cavity formed right behind
the dune is not present. This is a known limitation of depth-averaged
models, since the phenomena involved in the creation of this depression
involves vertical forces alongside turbulence effects.

4.4. Laboratory experiment with dune and slope

In this subsection, we present a different laboratory experiment with
an empirical comparison. This problem is proposed in Yoshii et al.
(2018), where it is labeled as C8. The configuration for this test is
very similar to the previous one. Again, an uniform slope of 1/50 is
set right before a 0.2-m-high sand dune. Behind the dune is a slope
of 1/100. This initial condition can be seen in Fig. 6 left. As in the
previous laboratory experiment, both the evolution of the free surface
and velocities are readily available in Yoshii et al. (2018), and they are
mposed as boundary conditions here. While all sediment parameters
emain the same as in the previous experiment, the wave profile and
he initial bathymetry configuration are now different. This can be seen
n Fig. 6 right, that depicts the simulation at time 𝑡 = 30 s, when the
ave is close to impact the dune.
Again, we discretize the computational domain with 500 elements

nd we impose Dirichlet boundary conditions using the data pro-
ided in Yoshii et al. (2018). The final results, including a comparison
etween the laboratory experiments and the numerical solution are
resented in Fig. 7. Again, we can see a outstanding data agreement be-
 o

9 
tween the numerical simulation and the laboratory experiment. In par-
ticular, the dune is completely destroyed by the incoming wave. Once
again, this problem generates a depression in the surroundings of the
dune that vertically averaged models are not able to properly simulate.
However, the general morphodynamic behavior is well captured.

4.5. Impact of Tōhoku 2011 tsunami event in Crescent City harbor

This problem address morphological changes in the harbor of Cres-
cent City (California, U.S.) during the 2011 Tōhoku tsunami event. The
2011 Tōhoku tsunami struck Japan on March 11, 2011. It was triggered
y a massive undersea earthquake with a magnitude of M9.0. The epi-
enter was located approximately 70 km east of the Oshika Peninsula
f Tōhoku and inundated over 400 km2 of land. (see Hayes, 2011).
his earthquake is among the strongest ever recorded in world history
see Satake, 2014). The tsunami waves generated by the earthquake
eached astonishing heights, with some areas experiencing waves as
igh as 40.5 m (see Satake, 2014 or Titov, 2011).
Wilson et al. studied in Wilson et al. (2012) these morphology

hanges by comparing two pre- and post- event surveys conducted on
ebruary 21, 2010 and March 30, 2011 by the United States Army
orps of Engineers (USACE), the National Oceanic and Atmospheric Ad-
inistration (NOAA), The U.S. Geological Survey (USGS), and several
rivate companies and local harbor authorities.
For the boundary conditions, we use the source provided by Grilli

t al. in Grilli et al. (2013) using a sequence of nested grids described
y Tehranirad et al. in Tehranirad et al. (2020). A comparison of their
umerical results for the source from a Deep-ocean Assessment and
eporting of Tsunamis (DART) buoy can be seen in Fig. 8. As we can
ee, there is a strong correlation between the numerical results and the

bserved data.
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Fig. 6. Initial free surface and bathymetry (left) and free surface and bathymetry at time 𝑡 = 30 s (right).
Fig. 7. Laboratory and numerical bathymetry distribution at final time 𝑡 = 130 s (left) and zoom (right).
Fig. 8. Comparison of observed (black) and modeled (red) surface displacements at DART buoy 46407 during the Tōhoku event as described in Tehranirad et al. (2020).
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We discretize the domain using 501 elements in the 𝑥 direction and
61 in the 𝑦 direction. In this way, the discretization points coincide
ith those of the bathymetry source file. The sediment properties are
et with the following parameters: a relative density of 2.4 with a
ypical grain size of 0.1mm. The bottom friction parameter is 𝑓 =
× 10−2, the porosity is set to 𝜙 = 3

5 and 𝜃𝑐𝑟𝑖𝑡 = 1 × 10−3. Furthermore,
oefficients in formula (6) are adjusted with 𝑘1 = 40, 𝑚1 = 0,
2 = 3∕2 and 𝑚3 = 1. These coefficients are inspired by Ashida and
ichiue formula (although the coefficients are not exactly the same)
nd they are chosen to best fit the survey data available. As discussed
n Section 2, traditional sediment transport formulations were designed
10 
or ideal tests in channels, and they do not translate directly to more
omplex situations. With the transport formula used here, we slightly
mplify transport discharge while keeping good data agreement with
xisting survey data.
The results can be seen in Figs. 9 through 11. The numerical results

re compared with the results from Wilson et al. in Wilson et al. (2012)
n which they show the difference in bathymetry after the tsunami
vent. As we can see, there is a great correlation between the observed
ata and the numerical results. The overall morphological tendency is
aptured, including great erosion and deposition areas hotspots near
he end of the jetty structures. This scouring is likely caused by strong
urrents.
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Fig. 9. Difference in bathymetry after the tsunami event. Numerical results (left) and Wilson et al. survey results (right).
Fig. 10. Difference in bathymetry after the tsunami event. Numerical results zoom area (left) and zoom (right).
Fig. 11. Difference in bathymetry after the tsunami event. Numerical results at lower color resolution (left) and Wilson et al. survey results (right).
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4.6. Impact of Tōhoku 2011 tsunami event in Hirota Bay

The final experiment concerns the impact of the 2011 Tōhoku
sunami event in Hirota Bay, in Rikuzentakata City, Japan. This prob-
em has been thoroughly studied (see Yamashita et al., 2022 or
eiko Udo and Tanaka, 2016) due to the singular impact of the tsunami
11 
n this area, that caused great morphological changes and inundation.
n particular, Yamashita et al. provide in Yamashita et al. (2022)
rid data and an erodible surface map, alongside with tsunami source
ata. In Fig. 12 we can see the correlation between the observed
sunami elevation and the numerical results provided by Yamashita
t al. in Yamashita et al. (2022). Additionally, in Fig. 13 we can see
he original topology of the bay and an erodible map. Note that the
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Fig. 12. Comparison between observed data and numerical results of Yamashita et al. in Yamashita et al. (2022).
Fig. 13. Simulation grid (left) and erodible map (right) in Hirota Bay, provided by Yamashita et al. A description of the color maps can be found in Yamashita et al. (2022).
erodible map contains three non-erodible submerged breakwaters that
play a significant role in the morphodynamic behavior.

The domain is discretized with 1537 elements in the 𝑥 direction and
1387 elements in the 𝑦 direction. Meanwhile, the sediment properties
are the same as in the previous benchmark 4.5, except the friction
coefficient, which is now 𝑓 = 1×10−2. Additionally, the same coefficient
as in the previous simulation 4.5 for formula (6) are used.

The numerical results can be seen in Fig. 14. These Figures show
a comparison with a survey published in Yamashita et al. (2022).
They depict the bathymetry changes before and after the tsunami
event, including a zoom of the area covering the breakwaters. We have
included a Figure with lower color resolution for an easier comparison
with the survey data. Again, we can see an outstanding correlation
between field data and the numerical results. Global tendencies, and
broad erosion and deposition areas are captured. Note that the sub-
merged breakwater structures play an important role in the global
morphodynamic behavior.

5. Conclusion

We have presented a shallow-water model with bedload sediment
transport and we have discussed its main properties and characteristics.
We propose a numerical scheme that is second-order accurate and able
to preserve lake-at-rest type of stationary solutions. This numerical dis-
cretization features a splitting technique that uses information obtained
from the hydrodynamic computation to approximate the solution of
the morphodynamic evolution in a weakly-coupled fashion. The nu-
merical experiments discussed illustrate the properties of the numerical
approximation, and they also provide great data agreement with both
the laboratory experiments and data field surveys. The proposed model
12 
and discretization will help us to better understand sediment behavior
and phenomena where these effects are relevant.
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Fig. 14. Numerical results for Hirota Bay simulation. Top-left shows the general domain with the zoom area marked in a black box. Top-right depicts the zoomed area. Down-left
is the same zoom area with lower color resolution while down-right shows the field survey results.
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