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Shape Control of Concentric Tube Robots via
Approximate Follow-the-Leader Motion

Yunti Xu“”, Connor Watson ", Jui-Te Lin

Abstract—Concentric tube robots (CTRs) are miniaturized con-
tinuum robots that are promising for robotic minimally invasive
surgeries. Control methods to date have primarily focused on con-
trolling the robot tip. However, small changes in the tip position can
result in large deviations in the shape of the robot body, motivating
the need for shape control to ensure safe navigation in constrained
environments. One proposed method for shape control, known as
follow-the-leader (FTL) motion, allows the robot to deploy while
occupying minimal volume but is limited to specific CTR designs
and deployment sequences. In this letter, we propose a shape control
method that approximates FTL motion and is applicable to arbi-
trary tip navigation tasks without requiring a predefined trajectory
or specific tube design. This shape control method is framed as a
nonlinear optimization problem, and through linearization of the
CTR’s kinematics, we turn it into a quadratic program solved
by a shape controller that requires minimal knowledge of the
robot’s shape. Simulations show that our method enables better
approximate FTL motion compared to a state-of-the-art Jacobian-
based tip controller across different tube sets and tip paths while
remaining computationally comparable. Furthermore, a hardware
demonstration validates the effectiveness of the shape controller on
a physical system during teleoperation.

Index Terms—Surgical robotics: steerable catheters/needles,
modeling, control, and learning for soft robots, medical robots and
systems.

I. INTRODUCTION

OBOTIC minimally invasive surgery (RMIS) has the po-
Rtential to improve patient outcomes by minimizing neg-
ative surgical impacts [1]. However, these procedures often re-
quire navigation through winding, tortuous anatomy. Continuum
robots, characterized by their continuously bending structure,
offer high dexterity and the ability to maneuver around obstacles,
making them promising for use in RMIS [2].

The concentric tube robot (CTR) represents a subset of contin-
uum robots, consisting of pre-curved, elastic, telescoping tubes
typically with diameters around 1 mm [3], [4]. The tubes are
externally actuated at their base in translation and rotation,
enabling the overall shape of the robot to change. Due to their
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compact size, CTRs have been considered for various minimally
invasive surgeries, such as ENT [5], [6], transnasal [7], and
intracerebral hemorrhage evacuation surgeries [2]. However,
small changes in the tip position can result in large changes in the
robot’s backbone shape, making deployment through sensitive
environments challenging [8], particularly during teleoperation
where the deployment sequence is not known a priori. This
challenge is especially relevant for needle steering applica-
tions through hollow lumens, where avoiding large motions
of the backbone is crucial. In response, we propose a shape
control method that minimizes shape changes to the robot’s
backbone, allowing the user to focus solely on teleoperating the
tip (Fig. 1).

A. Control of CTRs

State-of-the-art control methods for CTRs primarily focus
on controlling the CTR tip [9]. Typically these tip navigation
tasks can be categorized as either autonomous tracking of a
predefined tip path [10], [11], or as teleoperation, where the
tip path is not defined a priori [7], [12]. A common approach
is to use Jacobian-based methods, such as the damped-least-
squares (DLS) method, originally developed for serial manipu-
lators [13]. These methods have been applied for real-time CTR
tip control by using efficient Jacobian computation methods
based either on solving an initial value problem [14] or through
approximation via Fourier series [15].

Beyond tip control, alternative Jacobian-based control strate-
gies for CTRs use redundancy resolution to integrate additional
kinematic tasks alongside tip navigation. One such strategy is
the generalized damped-least-squares method, which employs
weighting matrices to create a control scheme balancing multiple
tasks [16]. This approach has been employed in CTRs to account
for joint constraints and prevent instabilities [17]. Another strat-
egy is to use nullspace projections to create a hierarchical control
structure that integrates both higher and lower-priority tasks.
Iterative nullspace projections of the Jacobians related to higher-
priority tasks are used to also achieve secondary tasks, such as
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avoiding instabilities and enhancing manipulability [18], as well
as preventing collisions in dual arm CTR configurations [19].
Despite the wide adoption of Jacobian-based methods for
CTR control, a limitation of this approach is that constraints may
still be violated since they are accommodated implicitly using
suitable penalty functions [17], rather than enforced as explicit
mathematical constraints within an optimization program. To
this end, an alternative approach is to formulate the control
problem as a constrained nonlinear optimization problem, where
constraints, such as joint limits, are enforced explicitly [10], [12].
This approach balances tip control with additional objectives, in-
cluding avoiding collision with the anatomy [12] or avoiding un-
desirable robot configurations [10]. Nevertheless, this approach
requires a highly complex parallel system architecture to achieve
computation times fast enough for teleoperation scenarios [12].

B. Follow-the-Leader (FTL) Motion

One approach to controlling the shape of a CTR is to use
follow-the-leader (FTL) motion, where the robot’s body pre-
cisely traces the path traversed by its tip. Originally introduced
by Choset et al. [20] for hyper-redundant robots, FTL motion
allows the robot to occupy a minimal volume during deployment,
which is beneficial for navigating confined spaces. For CTRs,
achieving perfect FTL motion is feasible only for specific com-
binations of tube geometries and sequences of joint values, as
highlighted by Gilbert et al. [21]. Near-perfect FTL motion, al-
ternatively, can be achieved by CTRs that have minimal torsional
interaction—as demonstrated in Casanovas et al. [22]—Dbut these
results do not hold for more general CTR designs. To address a
wider range of robot designs and joint motions, we consider
the problem of approximate FTL motion, which attempts to
minimize the occupied volume of a general CTR design during
its deployment. Approximate FTL motion can be useful in
applications such as navigation through a hollow lumen, where
a tolerance exists between the robot and surrounding walls [21].
To the best of our knowledge, this problem has previously only
been analyzed offline. Our work is the first to propose a method
for shape control via approximating FTL motion while following
any tip path for an arbitrary tube set.

C. Contributions

The contributions of this letter are as follows. First, we intro-
duce a formulation of CTR shape control to approximate FTL
motion as a constrained nonlinear optimization problem. This
approach applies to arbitrary tip navigation tasks, focusing on
cases where the tip path is not predefined, and is not limited to
specific tube designs. Second, we propose a shape controller that
solves an approximated version of the nonlinear optimization
problem via quadratic programming (QP), assuming minimal
knowledge of the robot’s shape. We note that the proposed
algorithm is agnostic to how the desired robot shape is con-
structed, but here we focus specifically on the desired robot
shape being the history of past tip position commands (i.e.
approximate FTL motion). Then, we present simulation results
that show that indeed our QP-based shape controller produces
better approximate FTL motion compared to a state-of-the-art
Jacobian-based tip controller across different tube sets and tip
paths, while remaining computationally comparable. Finally,
we demonstrate the effectiveness of our shape controller on a
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Fig. 2. Actuation parameters for a 3-tube CTR. The insertion point, s = 0,
separates the actuation section from the active section of the CTR.

hardware system during teleoperation. Overall, by enabling ap-
proximate FTL motion, our proposed approach can help enhance
the capabilities and safety of CTRs within narrow environments.

II. CTR KINEMATICS

CTRs consist of n concentrically nested tubes that can be
rotated and translated at the base (see Fig. 2). Their actuation is
represented by the joint values q = [l1, ..., Iy, a1, ..., an]T €
R2", where [; and a; denote the deployment length and tube
rotation at the base of tube i, respectively. The transmission
length of tube i is given by, 8; = I; — L;, where L; is the length
of tube 7. Each tube can be characterized by its geometric and
material properties. Specifically, L, ; and L. ; are the lengths of
the straight and curved sections of each tube, respectively, and
L; = L, ; + L. . The fixed pre-curvature of the curved section
is denoted by x;. The inner and outer diameters of the tube are
given as I D; and O D, respectively, while F; and GG; denote the
elastic modulus and shear modulus.

The mapping from joint values to the CTR shape in 3D can
be described by the forward kinematics model. In the absence
of friction, external loads, and pre-torsion of the tubes, this
mapping is governed by a set of differential equations with
respect to the arclength variable s, and is subject to boundary
conditions as follows [23]:

. kip — )
%‘ = kltkb ; kjb"fi"ﬁj sm(wi — ’l/JJ)
¥i(0) = o — Byahi(0)
(D
{wz(lz) =
E;(OD}-1DH)7 Gi(OD}—1DHw

where k;, = and k;; = are the
bending and torsional stiffnesses, respectively. The total bending
stiffness is k, = Y-, k;p, where n is the number of tubes in the
considered CTR link. The term ¢); denotes the axial rotation of
the 7th tube. The first boundary condition considers known tube
angles grasped by the actuator at the proximal end, while the
second boundary condition accounts for no torsion at the free
end of each tube. The centerline position (i.e. shape) of the CTR,
£(s) € R3, is defined by a set of ODEs with respect to s [23],
R =Ru
¢ e ®

where eg is the unit vector in the z—direction tangent to the
robot backbone, 11 is the skew-symmetric matrix of u, which is
the robot curvature vector computed using the solution of (1),
and R € SO(3) is the backbone orientation. This integration
is solved with the initial conditions R(0) = R, (1(0)) and
£(0) = 0341. The shape of the CTR, £(s), along with the tip
position, p = £(11), are used to formulate the cost functions in
the proposed shape control method.
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III. SHAPE CONTROL METHOD

In this section, we detail how to approximate FTL motion
by formulating a nonlinear optimization problem and pro-
pose an algorithm for its solution. We explain the choice of
objective function and propose a shape controller that solves the
optimization via quadratic programming.

A. Problem Formulation

We propose framing the approximate FTL problem as an
optimization problem thatinvolves arobot design and a sequence
of desired waypoints for the robot tip to reach. At each step
k, a new waypoint, p;, € R3, is given, and the objective is to
determine a local optimal change in joint values, Aqj, € R?",
from the current joint values, q; € R2", that minimizes both
the tip error with respect to the new waypoint and the shape
error between the backbone centerline and the desired tip path
commanded so far, &; = [p},...,p}] € R®*. To generalize
this formulation, we consider only change in joint values, Aqy,
as a design variable, and treat each new waypoint (p}), the
tube set, and robot base pose as user-defined values for the
optimization.

The proposed algorithm (Algorithm 1) starts with fixed initial
joint values (q;y;¢) and for each waypoint, it calls a shape control
scheme (see Section III-C) that solves the optimization problem.
The tip error, e, ;;—defined as the 2-norm between the current
tip position and current waypoint—is computed. If this tip error
exceeds a predefined threshold, €, the algorithm reverts to a
Jacobian-based tip controller to lower the error. Finally, the joint
values are updated.

B. Objective Function

The objective function consists of four subfunctions: fi;,,
fshapes fdeploy, and fr.or. Note that the following derivations
consider the kth step without loss of generality, thus for no-
tational brevity, the subscript k is dropped. The tip objective
function, fi;,, aims to navigate the robot’s tip to the desired
waypoint by minimizing the error between the current tip
position, p(q + Aq), and the current waypoint, p*:

_ 1 /|lpla+Aq) - p’|\?
e e ) R

where it is scaled by ||po|| for length-scale correction, which
improves the generalizability by reducing manual tuning effort
and normalizing the units. We selected || po|| to be the initial tip
error at the kth step prior to any optimization.

Next, fshape. aims to align the robot’s backbone shape, £(q +
Aq), with the desired tip path, £*, by minimizing the following
shape error cost:

fshape (:E) =

“am2

m * 2
1 (ii(Q+Aq)—£ill) —
€0l

where the discretized shape error is defined as the mean Eu-
clidean distance between the backbone and the tip path at m
corresponding points, which exist at equal arclength s in the
interval [0, {1] [24]. We note that the maximum m value, denoted
by M, is the number of points discretizing /,, which depends on
the step size used in solving (1) and (2). This term is scaled by
[1€0ll-

Since a large number of solutions may exist for the optimiza-
tion problem, we introduce a regularizing heuristic term that se-
lects a solution where the tubes are deployed evenly. Assuming a
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Algorithm 1: Pseudocode for shape control algorithm.

Input:
pj;: desired tip waypoint
Qinit: initial joint values
Aqp;e: initial change in joint values
Output:
qx: joint values for each waypoint
1: q1 < Qinat
2: for each waypoint, p; do
& < & prl
Aqk — Aqinit
Aqj, < ShapeControl(qy, Adg, P, &)
eipk < |[Pe(ar + Ady) — Pl
if Ctip,k > étip then
Aqj, < TipPositionControl(qy, pj,)
end if
10:  que1 < g + Aqj,
11: end for

R A A

3-tube CTR, this term penalizes significant differences between
the tube deployment lengths since extreme tube configurations
may affect the effectiveness of the shape control method:

fdeploy (55) = %
((Ii+AlL) = (la+Al)) 2+ ((I1 +Aly) — (I3 +Alg)))?
12 '

X

®)
We normalize by the length of tube 1 to ensure the term remains
bounded. Lastly, we add another regularizing heuristic term that
penalizes large changes in tube rotations, Ac;, which could
cause undesired oscillations during deployment,
1 (Aa% + Aad + Aa%)

frot(x) = 5 Aa%

Overall, the objective function to minimize at the kth step is
expressed as,

f(JC) = letip(x) + CQfshape(x) + CSfdeploy(I) + C4frot(a7)7
(N
where the relative importance of each sub-objective is deter-
mined by the coefficients ¢;, ¢ = 1, 2, 3, 4. To ensure the outputs
of the optimization, Aq, are physically feasible, we enforce limit
bounds on the deployment lengths,
and linear inequality constraints to ensure that the tubes are at
least € > 0 mm apart,

11§12+6§13+6 (9)

(6)

C. Shape Controller

The computation time required to solve this nonlinear op-
timization problem would be too long for online control ap-
plications. We therefore transform the problem into a convex
quadratic program (QP), which belongs to a special class of op-
timization problems that allows for online solvability and avoids
local minima [25]. The standard convex quadratic program has
the form: h(z) = $x"Hx + g x, where x and g belong to R™,
and H is an n x n symmetric, positive semidefinite matrix [25].

To reformulate, we first take a linear approximation of the
CTR forward kinematics by deriving the first-order Taylor
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expansion of the kinematic model around the tip,

0
p(a+Aa)~p(a) + 5oAa=pla) +JAq,  (10)
and around m points along the robot backbone,
9%,
€(a+ Aa) ~ €(q) + EAq = &(a) + Tida. (1D

dq
Here, J and J; are 3 x 6 matrices representing the Jacobians
associated with the robot’s tip and each point ¢ = 1 through m,
respectively. These Jacobians can be computed using various
methods [12], [14]. For simplicity, we estimate them through a
forward finite difference scheme using a step size of 0.1 mm
for translation and 0.1 rd for rotation. By substituting (10)
and (11) into (3) and (4), respectively, frp and fshape can
be approximated in a (constrained) least-squares sense and
expanded as:

1 1
frip(2) ~ ~13Aq — Ap|?
tp( ) ||p0||22|| ||
1A A N | ApTJ 1 ApTAp
= - q —_ 77’
2 [Pol|? [[Pol[? 2 poll?
——— ——— —_——
Hyip g;fip Ctip
(12)
fope(@) ~ LS 3,80 - Ag
P S g am 2
1A (1 Jry, AETT;
== SAQ" o Aq-—5 Agq
m Z <2 1€l 1€0l1
N—— ——
Hahape gz_;‘apc
1 AeTAg,
- E'L QEZ , (13)
2 ||l
—_———
Cshape

where Ap:=p*—p(q) and AE,:=¢&; —€&,(q). Both
quadratic weight matrices, Hy;, and Hgpape, are symmetric
and positive semidefinite. When we compare these quadratic
objective terms to the standard form for convex QP, we observe
that they are the same up to a constant, which can be disregarded
as it does not affect the optimization process.

We rewrite fgepioy in quadratic form,

1
fdeploy (.13) = iAqTHdeployAq + ggeployAq + Cdeploy

2 -1 -1

11 1 0 |0s.
Hd&ploy = l% 1 0 1 3x3 ,
033 | 033
1
ggeploy = 2 20—l =13 lo—11 l3—11 O1x3]
1(L —1)%2 4 (1, —13)?
Cdeploy = 5( 1=l E (h —s) (14)

Again, we note that Hgepio, is symmetric and positive semidef-
inite and the constant term can be neglected. The objective f;;
can be directly written in quadratic form,
0
3x3 ) (15)

1 1 /0
ro =_-A THro A Hro = 5 Sx3
Jrot(@) 24 129 Hrot o (03><3 I3
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TABLE I
TUBE SET PARAMETERS

Tube no. K; [Ls,ia Lc,i] ID, OD.L E

[1/mm] [mm)] [mm ] [mm] [GPa]
Tube set 1
1 [0 0.0061] [162 15] 0.650 0.880 80
2 [0 0.0131] [71 50] 1.076 1.296 80
3 [0 0.0021]  [15 50] 1.470 2.180 80
Tube set 2
1 [0 0.0030] [12025]  0.50 1 80
[0 0.0090] [65 50] 1.20 1.60 80
3 [0 0.0160] [15 50] 1.80 250 80

Finally, we combine (12), (13), (14), and (15) to form an overall
quadratic objective function,

h(Aq)

1
= iAqT (ClHtip + CQHshape + C3Hdeploy + C4H7'ot) Aq

H

+ (Clggp + Cng;lape + 03956;1)[()1;) Aqa (16)

gT

subjected to (8) and (9). Since we consider a linearized, local
kinematics relationship, the bounds on both the deployment
lengths and tube rotations are adjusted as follows: —2 mm <
Al; <2mmand —7/4 < a; < 7/4. The selection of these nu-
merical values is based on the proximity of sequential waypoints.
The goal is to ensure that each waypoint can be reached through
a feasible change in joint values, denoted as Aq. The solution to
the convex quadratic program is then used in the shape control
scheme on line 5 in Algorithm 1. In our QP formulation, the robot
kinematics are linearized, resulting in significant computational
savings compared to solving the nonlinear kinematics at each
iteration of the optimization process. We further note that a single
evaluation of the kinematic model is sufficient to determine the
tip and shape position errors, while an additional 6 evaluations
are adequate to compute Jacobians (via finite difference).

IV. SIMULATION EXPERIMENTS AND RESULTS

In this section, we conduct numerical experiments to assess
how the tip and shape errors vary across different CTR de-
signs and tip paths. We compare the performance of our shape
controller with a standard tip controller.

A. Selection of Tube Sets and Tip Paths

To evaluate our QP-based shape control algorithm, we se-
lect two CTR tube sets (Table I), where each tube has one
straight and one curved section. Specifically, tube set 1 is
adopted from [26]. We generate a set of B-splines for each
tube set by first sampling B total path points denoted as v} €
R3,b =0, ..., B, from the robot’s workspace, with increasing
z-values, starting from an initial point v§. We construct the
set V* = {v{,Vv],...,V},..., vz} such that the difference in
z-values between successive path points v;, and vy, randomly
varies within a specified lower and upper bound, which we set
to be [| ZmaxzZmin | | Zmax—tmin |1 where Ziyax and zpi, are the
maximum and minimum z values in the robot’s workspace, and
B = 3. Next, we fit a smoothing cubic B-spline [27] through
this set of path points V*. In the case of a smoothing B-spline,
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Fig. 3. (a) A subset of general B-spline paths generated for tube set 1 and

(b) tube set 2. The inner and outer boundaries of the robot workspace are also
shown. These paths are then discretized to form waypoints.

f,, its control points are computed by minimizing the functional
L:

B
Lim i) el =il + (1= [
b=0
where the parameters p € [0, 1] trade-off between fitting the
spline close to each path point and the overall smoothness of
the spline, and wy, determines the local importance of each path
point [27]. For our simulations, we set p = 6(10,714)4_1 and set

2
du (17)

d?
d 2

wp = [V} 4y — Cayl|??, such that it is the Euclidean distance in
the x-y plane of point v}, from the center of the robot’s workspace
raised to the power of p, = —1, for all points except v, where
PB = —0.5.

The B-spline path must then be checked to ensure it re-
mains contained within the CTR workspace. We calculate
the workspace boundaries of the CTR following the method
in [26], and discard any B-spline paths that do not lie inside
these boundaries. We note that this approach is independent of
tube design parameters, such as tube curvatures. Furthermore,
there is no guarantee that the shape of the CTR can feasibly
follow the B-spline paths in a perfect FTL manner. Finally, to
create waypoints from B-spline path samples, we discretize the
path such that the Euclidean distance between two successive
waypoints is 0.9 £ 0.1 mm. Examples of the generated sample
paths are presented in Fig. 3.

B. Evaluation Parameters and Metrics

We compare our shape controller to the Newton-Raphson
tip control algorithm using the damped-least-squares (DLS)
method, represented in the general form as in [13]:

Aq=—TJ"WoJ + W) ' IJ"Wy(p(q) —p*).  (18)

Here, Aq is the change in joint values, p(q) — p* is the tip

position error vector, J = g—g is the CTR’s tip Jacobian, and

W, and W; are positive definite matrices whose values are
tuned to balance error tracking and damping. We use Wy =
diag{1, 1,1} for all tube sets, Wy = AI, » = 0.1 for tube set
1, and W, = diag{0.25, 0.25,0.25,0.98,0.98,0.98} for tube
set 2. We define the termination condition as either reaching a
maximum of 50 iterations or achieving a tip error less than or
equal to 0.1 mm.

To evaluate these control approaches, we use the follow-
ing error metrics defined per sampled path: maximum tip
error, €, and maximum shape error, €g,pe, representing
the largest tip error and shape error encountered during the
entire tip path traveled [24], respectively. A low maximum
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Fig. 4. The maximum tip error and shape error obtained from using the QP

shape controller, as well as QP and DLS tip controllers for 20 sampled paths
for two different CTRs. The top row ((a), (b)) shows maximum tip error and the
bottom row ((c), (d)) shows maximum shape error.

shape error indicates good approximate FTL motion, since this
measure would be zero for perfect FTL. To maintain consis-
tency across paths, we initialize the joint values as q;pi =
[15 mm; 10 mm; 5 mm; O rad; Orad; Orad], and set AQini to
zero. We implement all algorithms in MATLAB on an Intel
Core 17-800 K Processor. For the QP implementation, we set
the quadratic objective term coefficients c¢; 23 to 1 and ¢4 to
0.05 (unless otherwise specified) and use the quadprog solver
with the active set algorithm.

C. Effects of Incorporating the Shape Objective

The goal of this experiment is to determine how the QP shape
controller compares to a standard tip controller and a QP-based
controller without the shape error objective. We randomly select
20 sample tip paths generated via the procedure from Sec-
tion I'V-A for each tube set. To simulate a teleoperation scenario,
we provide one waypoint from the sample path at a time to the
three control algorithms: shape control via QP (referred to as the
QP shape controller), tip control with QP (referred to as the QP
tip controller, where oy = 0 and the shape error term is ignored),
and tip control via DLS (referred to as the DLS tip controller).

In general, we see from the top row of Fig. 4 that the DLS
tip controller outperforms our QP-based controllers in terms of
maximum tip error most of the time. This outcome aligns with
our expectations, as our QP approach addresses a multiobjective
optimization problem, which may not always converge to the
lowest possible tip error due to the need to balance additional,
potentially conflicting costs. Despite this tradeoff, even the
resulting maximum tip errors, which represent the worst-case
scenario, remain low. Specifically, they remain below the thresh-
old of €;;, = 3 mm, indicating the effectiveness of falling back
to the DLS tip controller.

Importantly, we see from the bottom row of Fig. 4 that the QP
shape controller consistently reduces the maximum shape error
for the large majority of paths across different tube sets compared
to both the DLS and QP tip controllers. These results indicate
that incorporating the proposed shape objective improves the
approximation of FTL motion in scenarios where perfect FTL
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Fig. 5. Time evolution of the shape of tube set 2 for a B-spline path, resulting
from using the DLS tip controller (left) and QP shape controller (right). Previous
robot shapes are shown in gray and the shape at the current timestep is in color.
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TABLE I
STATISTICS SUMMARY OF THE MAXIMUM TIP AND SHAPE ERRORS ACROSS 100
B-SPLINE PATHS

Controller ~ Tube set Mean Tip Error Mean Shape Error ~ Avg. Shape Reduction
[mm] [mm] %
QP Shape 1 1.86 +0.89 1.93+£1.28 68.6
2 2.24 4+ 0.67 3.84 + 2.76 44.0
DLS Tip 1 0.10 £ 0.002 6.25 £2.25 0
2 0.12£0.03 6.40 £2.84 0
Tube Set 1 [EEIDLS tip CJQP shape]  Type Set 2
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P P
23 v
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Fig. 6. Distributions of the maximum tip and shape error for tube sets 1 (left)
and 2(right) across 100 B-spline paths.

motion may not be achievable, particularly for general tube sets
following B-spline paths. Although the shape error is not zero,
we see a visible reduction of shape error when the QP shape
controller is used. Fig. 5 depicts the evolution of the centerline
of the robot across multiple waypoints, along with the final con-
figuration of the robot. It is evident that the robot’s shape, under
the influence of tip control, can occupy a substantial volume in
task space when navigating between waypoints. In contrast, the
robot’s shape resulting from shape control is observed to occupy
a significantly smaller volume.

D. Effect of Limited Shape Error Information

This experiment assesses how reducing m, the number of
points on the robot backbone where the shape error is calculated,
impacts the performance of the shape control method. Using the
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Fig. 7. The experimental setup for the hardware demonstration. Users teleop-
erate the CTR’s tip with an input stylus toward a target.
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Fig. 8. 3D plot of the recorded user-commanded tip positions, the smoothed
desired shape, the starting tip position, and the target locations.

same 20 B-spline paths as the previous experiment, we run the
QP shape controller on these paths for m = 3,6,9, 12,15, M.
The distribution of these points along the robot’s backbone is
as follows: at a minimum, | point is placed at the end of each
tube, followed by locations at the midpoint of each tube, and
then at regular intervals along the tube’s length. We observed
that neither the maximum tip nor shape error showed a dis-
cernible trend as m decreased, indicating that although a larger
m may give more accurate shape error estimation, it does not
necessarily enhance the shape control performance. We found
that the maximum tip error for tube set 1 atm = 3and m = M
is 1.79 £ 0.86 mm and 1.60 4 0.84 mm, respectively, and for
tube set 2 they are 2.27 4+ 0.70 mm and 2.46 £ 0.48 mm. The
maximum shape error for tube set 1 at m =3 and m = M is
1.75 &+ 1.15mm and 1.15 + 1.55 mm, respectively, and for tube
set 2 they are 3.01 &£ 1.70 mm and 3.23 £ 1.48 mm. Thus, for
the following experiment, we set m = 3.

E. Validation of Shape Control Method Across Paths

Finally, we compare the performance of the QP shape con-
troller with limited shape error information to the DLS tip con-
troller for a larger set of general B-spline paths. We randomly se-
lect 100 paths generated using the procedure from Section [V-A
and apply both controllers. In terms of maximum tip errors,
Fig. 6(a) and (b) indicate that using the DLS tip controller
results in a right-skewed error distribution for both tube sets
that is shifted left compared to the left-skewed error distribution
of using the QP shape controller. This trend reiterates the idea
that the shape control method sacrifices tip error performance
to accommodate conflicting objectives. For maximum shape
errors, Fig. 6(c) and (d) show that using the QP shape controller
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Fig. 9. Time evolution of the robot shape for target 1 using DLS tip (top, in purple) and QP shape (bottom, in mint), during navigation (a) and manipulation (b)

captured in the yz plane. Time evolution of the robot shape for target 2 using DLS tip (top, in purple) and QP shape (bottom, in mint), during navigation (c) and

manipulation (d) captured in the xz plane.

leads to a right-skewed error distribution that is shifted left
compared to a more symmetric distribution achieved by the DLS
tip controller. The form of the shape error distribution highlights
the potential of the shape control method to reduce shape errors
across different tube sets and tip paths, enabling an improvement
of approximate FTL motion.

A summary of error statistics is provided in Table II. To
quantify the shape error reduction between DLS tip control
and shape control per sampled path, we define the shape er-
ror reduction ratio (in %): r = e”'ha"ee;?hlie_iﬁi‘;‘pe"gp x 100, and
average it across 100 paths. The average reduction ratios are
68.6% and 44.0% for tube set 1 and 2, respectively. Furthermore,
we hypothesize that a lower shape reduction ratio is associated
with an increased frequency of fallbacks, or instances where the
shape control algorithm reverts to using the DLS tip controller
solution, since a 100% fallback rate would yield a shape reduc-
tion ratio of 0. Indeed, we find that on average, tube set 1 and
2 experience fallbacks of 1.67% versus 6.29% of the time per
path, respectively.

Finally, we measured the average computation time per way-
point over the 100 paths. For the DLS tip controller, the compu-
tation times were 1.61 and 2.55 seconds for tube sets 1 and 2,
respectively, and for the QP shape controller they were 1.64
and 1.62 seconds for tube sets 1 and 2, respectively. These
results demonstrate that our QP shape controller can solve a
multi-objective optimization problem with explicitly enforced
constraints while its computational time remains comparable to
that of a standard tip-only control strategy. We note that sub-
stantial improvements in computation time can be achieved by
optimizing the kinematic model and Jacobian implementations
for speed. For example, speeds up to 200 — 400 Hz have been
demonstrated for implementations in C++ [7]. Alternatively,
computation speed-ups can also be obtained by employing an-
alytical approximations of the torsionally compliant model to
compute the kinematics and Jacobian, such as approaches where
the torsional interactions between tubes are neglected [3], [28],
or where the kinematics is approximated by multidimensional
Fourier series [15].

V. HARDWARE DEMONSTRATION

In this section, we demonstrate the effectiveness of the QP
shape controller on a physical system during a teleoperation
scenario that involves both navigation and manipulation tasks.

In the context of minimally invasive surgery, navigation refers to
moving the CTR from an initial configuration to reach a surgical
target, and manipulation involves subsequent tasks performed at
the robot’s tip (eg. ablation, suction) [29]. We represent these two
scenarios by tasking a user with teleoperating a CTR to reach two
different targets and to draw a circle once the target is reached.

A. Experimental Setup

The experimental setup is shown in Fig. 7 and uses tube set 1
from the simulation study and the CTR actuation unit developed
in [26]. A Touch Device (3D Systems) is used for teleoperation,
where the stylus position is sent to MATLAB through the Robot
Operating System (ROS) and mapped to a desired CTR tip posi-
tion, with a one-to-one scaling in the z direction and one-to-five
scaling in the x-y direction. An electromagnetic (EM) tracking
system (NDI) and associated 6 DOF EM sensing tool are used
for calibration. Two external cameras (NexiGo N1080p) placed
in the yz and xz planes are used to capture the shape of the
CTR as it deploys. To obtain sufficiently high loop rates, we
choose to compute the CTR kinematics and Jacobian via Fourier
series approximation [15]. Simulation showed that kinematic
information at the end of each tube is sufficient for the QP shape
controller, thus, we sampled 75,000 positions for each tube set
from the torsionally compliant model to construct the Fourier
coefficients.

B. Controller Comparison During Teleoperation

The user is assigned navigation and manipulation tasks em-
ploying first the QP shape controller and then the standard DLS
controller. For all trials, the CTR starts from initial joint values
[45; 35; 25; 0; 0; 0], dictated by hardware constraints. They are
tasked with teleoperating the CTR to two different targets, and
to then draw a circle at the end of their navigation trajectory.
The actual tip positions and the user-commanded tip positions
are recorded, and the motion is captured via cameras. To es-
tablish the desired shape from the commanded tip positions so
far, the user input is smoothed using a kernel estimator with
bandwidth A = 5 [30]. For each step k, & is constructed by
appending py, s to & s, where py, s is a smoothed version of the
desired waypoint p;.. The x, y coordinates of p;, s are predicted
from z;, s = zj, by using a Gaussian Kernel. Fig. 8 shows the
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user-commanded tip positions, desired shape, and target loca-
tions. For fair comparsion, the recorded user commands from
using the shape controller are then sent one by one to the DLS
controller, therefore replicating the same teleoperation input.

To experimentally assess the controller performance, we com-
pute the shape error reduction ratio as described in Section IV.
Shape reduction is quantified in 2D by measuring the maximum
shape error, which is determined as the pixel difference between
the CTR’s segmented centerline from images and the desired
shape projected onto the most relevant plane for each trajectory.
This approach is chosen to mitigate errors associated with 3D
shape reconstruction. Visual inspection of Fig. 9 reveals that
the QP shape controller aligns the CTR backbone more closely
with the desired shape compared to the DLS tip controller,
consistent with simulation results. The shape controller reduces
shape error from the tip controller by 44.2% during navigation
and 33.4% during manipulation for target 1. For target 2, the
reduction is 23.5% during navigation and 17.5% during manip-
ulation. The average computation time per waypoint is 0.0016
and 0.0070 seconds, for the DLS tip controller and QP shape
controller, respectively.

VI. CONCLUSION

This letter introduced a novel QP-based shape control method
for CTRs that approximates FTL motion. Our controller is
computationally comparable to standard tip control methods
and requires minimal shape information, making it feasible
with limited sensors. Simulation results demonstrate that our
shape control method indeed reduces shape error, enabling better
approximations of FTL motion across various CTR designs
and tip paths. These results were also confirmed in a hardware
demonstration with a physical CTR system. Future work in-
cludes considering additional kinematic tasks (e.g. instability
and singularity avoidance) or incorporating different formula-
tions of the desired shape. The method could also be extended
to optimize both joint values and the CTR’s base pose. Finally,
effects on usability and cognitive load during teleoperation can
be studied.
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