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Abstract. We present an algorithm to solve the dispersive depth-averaged Serre--Green--Naghdi
equations using patch-based adaptive mesh refinement. These equations require adding additional
higher derivative terms to the nonlinear shallow water equations. This has been implemented as a
new component of the open source GeoClaw software that is widely used for modeling tsunamis,
storm surge, and related hazards, improving its accuracy on shorter wavelength phenomena. We
use a formulation that requires solving an elliptic system of equations at each time step, making the
method implicit. The adaptive algorithm allows different time steps on different refinement levels
and solves the implicit equations level by level. Computational examples are presented to illustrate
the stability and accuracy on a radially symmetric test case and two realistic tsunami modeling
problems, including a hypothetical asteroid impact creating a short wavelength tsunami for which
dispersive terms are necessary.
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1. Introduction. Tsunami propagation and inundation is frequently modeled
using the depth-averaged nonlinear shallow water equations (SWE). The use of adap-
tive mesh refinement (AMR) is often crucial for realistic problems, since cell sizes of
several km can often be used in the deep ocean, while inundation of coastal regions
generally requires a horizontal resolution of 10 m or less. In our version of patch-
based mesh refinement, a nested set of finer patches is created and superimposed on
the original coarse domain, time-stepping occurs with an appropriate time step for
each level patch, and regridding occurs every few time steps so that the finer level
patches can track the phenomena of interest in a wave-propagation problem. Several
figures in this paper show outlines of the refined patches, providing a better idea of
the how the algorithm works. The use of patch-based AMR in computational fluid
dynamics has been well documented in [9, 11, 46, 24, 11]; see also [49] for an extensive
list of software packages and applications. Our implementation for the SWE is called
GeoClaw and is distributed as part of the open source Clawpack software [15, 44].
It uses high-resolution Godunov-type explicit finite volume methods with AMR, as
described in detail in [10, 20, 34]. This software is widely used for tsunami modeling
(among other applications; see [19]) and has been accepted as a validated model by
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IMPLICIT AMR FOR DISPERSIVE TSUNAMIS B555

the U.S. National Tsunami Hazard Mitigation Program (NTHMP) after conducting
multiple benchmark tests as part of an NTHMP benchmarking workshop [53].

The SWE are a hyperbolic system of equations, for which explicit methods work
very well. These equations are a long wavelength approximation, where the underlying
assumption is that the water depth is much smaller than the horizontal length scale.
This is generally suitable for large-scale earthquake-generated tsunamis, for which the
wavelength can be 50 to 100s of km, whereas the typical ocean depth is 4 km. But for
some earthquake-generated tsunamis dispersive equations are more appropriate, and
this is almost always true when modeling phenomena with smaller length scales, such
as tsunamis generated by landslides or asteroid impacts. This has been discussed in
great detail in previous papers on this topic, several of which show comparisons be-
tween simulations with SWE and dispersive models, e.g., [4, 12, 21, 28, 30, 31, 38, 40,
37, 45, 52, 54, 57, 59]. A depth-averaged system of equations is still important for effi-
cient transoceanic propagation. But instead of the SWE we turn to a Boussinesq-type
equation, which retains more terms from depth-averaging the three-dimensional (3D)
fluid dynamics. These equations, described in more detail below, involve second- and
third-order derivatives, and stability constraints typically require solving an implicit
system of equations each time step. As a result, solving them can be much more ex-
pensive than solving SWE, for which explicit time-stepping can be efficiently used. As
with SWE, the use of AMR can dramatically decrease the computational expense, and
becomes even more important when solving problems with short wavelength waves,
since much higher resolution may be required in some regions to capture these waves
accurately. But AMR also becomes much more complex to implement when implicit
systems must be solved on the hierarchy of grids that do not cover the full domain at
most refinement levels.

The goal of this work is to extend patch-based mesh refinement, as implemented
in GeoClaw, to incorporate the solution of an elliptic system each time step. By using
highly efficient algebraic multigrid methods and the MPI implementation of PETSc,
we have achieved an implementation that can still solve large-scale realistic tsunami
modeling problems on a laptop.

We implement a form of the Serre--Green--Naghdi (SGN) equations developed
by Tissier et al. [56], which is presented in the next section. In a previous paper
[8], we developed a similar implementation for another Boussinesq-type system, the
Madsen--Sorensen [43] equations (denoted MS below), but the SGN equations give
a more stable and robust computational method with similar results. The elliptic
system is formulated and solved separately on each refinement level, but includes all
patches at that level. We do this by including the solution variables of the elliptic
equation in the vector of state variables, so that they can be used as patch bound-
ary conditions (ghost cells) on finer level patches in the same way as the conserved
variables. This allows the AMR procedure to incorporate subcycling in time, so that
smaller time steps can be taken on the finer grid patches. We compare results to those
obtained with a composite solver that does not involve subcycling, in order to verify
the accuracy of our procedure.

There are other Boussinesq solvers that are adaptive in space, including the work
by Popinet [52], implemented in the Basilisk software [6]. Our work follows his ap-
proach, but with the added component of refinement in time. Other open source
tsunami modeling codes that implement dispersive terms (e.g., [1, 16, 18, 48]) do not
support general AMR, although many are based on unstructured grids so that much
finer grids are used near coastal regions of interest, or they allow static nested levels
of refinement. There is also previous work on incompressible flow that uses AMR and
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B556 MARSHA J. BERGER AND RANDALL J. LEVEQUE

includes subcycling in time. The first such work that we are aware of is the method
of Almgren et al. [2] for variable density incompressible flow. Their algorithm used
an explicit upwind method for the convective terms, with the viscous term handled
implicitly, and the incompressibility constraint imposed by solving an elliptic system.
Subsequent recent work by Zeng et al. [58] is of the same nature. Our problem is eas-
ier, since our method is less tightly coupled and does not involve an incompressibility
constraint, but it still requires solving an elliptic system each time step. We propose
a different algorithm that also allows for refinement in time.

Near shore it is necessary to switch from the dispersive SGN equations back to
SWE in order to better model wave breaking in very shallow water and to robustly
handle wetting and drying during coastal inundation. A variety of criteria have been
explored in the literature for optimizing this transition to best capture wave breaking,
e.g., [25, 32, 33, 56]. Here we follow [26, 28] and adopt the simplest approach that is
widely used, consisting of using SWE in any grid cell where the initial water depth in
the ocean at rest for that cell or any of its nearest neighbors is less than some specified
tolerance, typically 5 or 10 m depth.

The grid adaptation and placement are handled automatically in GeoClaw using
a variety of options, such as wave height, adjoint-based error estimation, or simply
forcing a high level of refinement around particular coastal regions of interest. The
GeoClaw software incorporates OpenMP for the hyperbolic step by parallelizing over
grid patches. The implicit system arising in the Boussinesq equations is solved using
an algebraic multigrid preconditioned Krylov solver in PETSc [5]. We use the recently
introduced PETSc version 3.20 that allows the use of MPI for the linear solver in
combination with the OpenMP parallelization used by GeoClaw.

This paper is organized as follows. Section 2 introduces the depth-averaged SGN
equations that have been incorporated into GeoClaw. We also include the radially
symmetric 1D version of these equations used to compute a fine grid reference solution
for some of our 2D test problems. Section 3 contains a description of the single grid
SGN solver, and then the block-structured AMR strategy to solve the implicit system
of equations required by the SGN solver. Section 4 contains three computational
examples chosen to validate the stability and accuracy of the implementation and to
illustrate its effectiveness for realistic problems. We discuss the run times of the new
dispersive AMR code and compare them to similarly refined computations using only
the SWE.

2. Equations. The 2D nonlinear SWE can be written as

ht + (hu)x + (hv)y = 0,

(hu)t +
\bigl( 
hu2

\bigr) 
x
+ (huv)y + gh\eta x = 0,

(hv)t + (huv)x +
\bigl( 
hv2
\bigr) 
y
+ gh\eta y = 0,

(2.1)

where the surface elevation \eta (x, y, t) = h(x, y, t) +B(x, y), with h the fluid depth and
B(x, y) the bottom topography. These are the equations solved in GeoClaw in a
manner that handles the nonlinearity of wave breaking and on-shore inundation very
robustly. However, these equations are nondispersive; the linearized equations have
the dispersion relation \omega (k) = k

\surd 
gh0 and hence constant wave speed \omega (k)/k=

\surd 
gh0

for all wave numbers k.
The equations (2.1) are written in Cartesian (planar) coordinates and additional

terms need to be added for solving real-world problems on the sphere. Coriolis terms
can also be added on the sphere, and GeoClaw supports this option, but many ex-
periments both with GeoClaw and by other researchers have concluded that Coriolis
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IMPLICIT AMR FOR DISPERSIVE TSUNAMIS B557

terms have little effect on global tsunami propagation due to the very small fluid
velocities in the deep ocean [21, 29]. Friction terms are also added to the momen-
tum equations to model bottom friction based on a tunable Manning coefficient, as
described in [34] and used by many standard tsunami modeling codes. We omit all
these complications in this paper since they are all handled in the same manner as
for SWE in the GeoClaw code.

A number of depth-averaged Boussinesq-type equations have been developed over
the past several decades to model dispersive wave propagation; see [42] for one review.
These are generally derived by keeping the next order terms in asymptotic expansions
in powers of the ratio of water depth to wavelength. Different variants are often com-
pared by computing the dispersion relation for the linearized version of the equations
and seeing how well it models that of the Airy solution, which is derived based on the
assumption of an incompressible and irrotational flow, allowing the full 3D velocity
to vary with depth. The dispersion relation for the Airy solution is

\omega (k) = k
\sqrt{} 
gh0 tanh(kh0)/kh0,(2.2)

where k is the wavenumber for a wave with spatial wavelength 2\pi /k and \omega is the
temporal frequency.

In the previous work of Kim et al. [26, 28], GeoClaw was extended to solve the MS
equations introduced by Madsen and S{\e}renson [43] by introducing an implicit solver
for an elliptic equation at each time step. The resulting code, BoussClaw, has been
used for solving several dispersive landslide-generated tsunami modeling problems
(e.g., [23, 26, 36, 27, 35]). However, that extension was implemented only for a single
grid patch at a fixed resolution and did not use the AMR aspects of GeoClaw.

In our work on extending the AMR algorithms to work for Boussinesq equations,
we started with the BoussClaw code and our first AMR implementation again solved
the MS equations. The algorithms and some sample results were presented in [8].
However, these algorithms exhibited poor stability properties at patch interfaces and
nonreflecting boundaries, and numerous attempts to make them more stable have not
resulted in a sufficiently robust code. We now believe there are inherent stability
issues with these equations, which will be explored further elsewhere. L{\e}vholt and
Pedersen [39] also observed instabilities for similar equations when modeling flow over
topography.

We have switched to using a different form of Boussinesq equations, an improved
form of the SGN equations developed in [56], which includes a parameter \alpha that can
be tuned to match the Airy dispersion relation quite well. The dispersion relation for
this improved SGN equation is

\omega (k) = k

\sqrt{} 
gh0(1 + (\alpha  - 1)(kh0)2/3)

1 + \alpha (kh0)2/3
.(2.3)

Using \alpha = 1 gives the original SGN equations, but following the choice made by
Popinet in the Basilisk code we use \alpha = 1.153 (which gives an imperceptible change
in practice from the value 1.159 originally suggested in [56]).

For comparison, we also note that the MS equations have a tunable parameter \beta 
and dispersion relation

\omega (k) = k

\sqrt{} 
gh0(1 + \beta (kh0)2)

1 + (\beta + 1/3)(kh0)2
(2.4)
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B558 MARSHA J. BERGER AND RANDALL J. LEVEQUE

Fig. 1. The scaled group velocity \omega \prime (k)/
\surd 
gh0 for the dispersion relations shown in the text,

plotted versus 2\pi /(kh0), the wavelength relative to the undisturbed fluid depth. In this work we
implement SGN with \alpha = 1.153. (Color figures are online.)

with the value \beta = 1/15 giving the best agreement with the Airy solution. Setting
\beta = 0 in (2.4) or \alpha = 1 in (2.3) gives the dispersion relation of the original SGN
equations. Figure 1 shows the group velocity \omega \prime (k) plotted versus 2\pi /(kh0) (the
wavelength divided by the fluid depth) for each set of equations, scaled by

\surd 
gh0.

Note that for wavelengths greater than approximately twice the fluid depth, the SGN
equations with \alpha = 1.153 give a very good approximation to the Airy solution in
the linearized case. In the long-wave limit all of the models asymptote toward the
linearized shallow water limit. For very short wavelengths the Airy group velocity
approaches 0. So does the group velocity for SGN with \alpha = 1, but much too slowly,
often resulting in highly oscillatory waves that trail far behind the main wave in
an unrealistic manner. By contrast, SGN with the value of \alpha = 1.153 has group
velocities bounded away from zero. This is evident in some of the examples of section
4, where radially expanding waves leave a quiescent central zone in their wake, which
is generally preferable to highly oscillatory waves that are not physically meaningful.

The SGN system of equations has the form of the SWE (2.1) with the addition
of source terms:

ht + (hu)x + (hv)y = 0,

(hu)t +
\bigl( 
hu2

\bigr) 
x
+ (huv)y + gh\eta x = h

\Bigl( g
\alpha 
\eta x  - \psi 1

\Bigr) 
,

(hv)t + (huv)x +
\bigl( 
hv2
\bigr) 
y
+ gh\eta y = h

\Bigl( g
\alpha 
\eta y  - \psi 2

\Bigr) 
.

(2.5)

The vector \vec{}\psi = [\psi 1, \psi 2] satisfies an elliptic equation of the form

(I + \alpha \scrT )\vec{}\psi = b,(2.6)

where \vec{}u = [u, v] is the velocity vector. These equations agree with equation (4) of
[52], but with a typo corrected (there is no h on the left-hand side). The second-
order elliptic operator \scrT and right-hand-side b are written in vector notation in [52].
Here we write them out in component form to clarify the derivatives that must be
approximated in the finite difference implementation of these equations.
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IMPLICIT AMR FOR DISPERSIVE TSUNAMIS B559

The components of the differential operator

\scrT =

\biggl[ 
\scrT 11 \scrT 12
\scrT 21 \scrT 22

\biggr] 
are given by

\scrT 11 = - h
2

3
\partial 2x  - hhx\partial x +

\biggl( 
h

2
Bxx +Bx\eta x

\biggr) 
,

\scrT 12 = - h
2

3
\partial x\partial y +

h

2
By\partial x  - h

\biggl( 
hx +

1

2
Bx

\biggr) 
\partial y +

\biggl( 
h

2
Bxy +By\eta x

\biggr) 
,

\scrT 21 = - h
2

3
\partial x\partial y  - h

\biggl( 
hy +

1

2
By

\biggr) 
\partial x +

h

2
Bx\partial y +

\biggl( 
h

2
Bxy +Bx\eta y

\biggr) 
,

\scrT 22 = - h
2

3
\partial 2y  - hhy\partial y +

\biggl( 
h

2
Byy +By\eta y

\biggr) 
.

(2.7)

The right-hand-side b in (2.6) has components

b1 =
g

\alpha 
\eta x + 2h

\biggl( 
h

3
\phi x + \phi 

\biggl( 
hx +

1

2
Bx

\biggr) \biggr) 
+
h

2
wx +w\eta x,

b2 =
g

\alpha 
\eta y + 2h

\biggl( 
h

3
\phi y + \phi 

\biggl( 
hy +

1

2
By

\biggr) \biggr) 
+
h

2
wy +w\eta y,

(2.8)

where

\phi = \partial x\vec{}u \cdot \partial y\vec{}u\bot + (\nabla \cdot \vec{}u)2

= vxuy  - uxvy + (ux + vy)
2,

w= \vec{}u \cdot (\vec{}u \cdot \nabla )\nabla B
= u2Bxx + 2uvBxy + v2Byy.

(2.9)

2.1. Radial symmetry. For testing purposes it is very convenient to consider
problems in which the initial data and bathymetry are radially symmetric, in which
case the Boussinesq equations reduce to equations in one space dimension r and time.
Numerical solutions obtained with the 2D code can then be compared with fine grid
solutions of the radial equations to verify that the complicated matrix equations have
been properly implemented. This is done in subsection 4.1 below.

We use \^h(r, t) to denote the depth in radial coordinates and similarly for other
variables. The radial velocity \^u(r, t) corresponds to the 2D velocity field u(x, y, t) =
\^u(r, t) cos(\theta ), v(x, y, t) = \^v(r, t) sin(\theta ). Converting the Boussinesq system to polar coor-
dinates and assuming there is no variation in the \theta direction, we obtain the equations

\^ht +
1

r

\Bigl( 
r\^h\^u

\Bigr) 
r
= 0,

(\^h\^u)t +
1

r

\Bigl( 
r\^h\^u2

\Bigr) 
r
+ g\^h\^\eta r = \^h

\Bigl( g
\alpha 
\^\eta r  - \^\psi 

\Bigr) 
,

(2.10)

where \^\psi satisfies the 1D elliptic equation

(1 + \alpha \^\scrT ) \^\psi =\^b.(2.11)

In this case the second-order scalar differential operater \^\scrT is given by

\^\scrT = - 
\^h2

3

\biggl( 
\partial 2r +

1

r
\partial r  - 

1

r2

\biggr) 
 - \^h\^hr

\biggl( 
\partial r +

1

r

\biggr) 
+

1

2
\^h

\biggl( 
\^Brr  - 

1

r
\^Br

\biggr) 
+ \^Br\^\eta r.(2.12)
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B560 MARSHA J. BERGER AND RANDALL J. LEVEQUE

The right-hand side of (2.11) is

\^b=
g

\alpha 
\^\eta r + 2\^h

\Biggl( 
\^h

3
\^\phi r + \^\phi 

\biggl( 
\^hr +

1

2
\^Br

\biggr) \Biggr) 
+

\^h

2
\^wr + \^w\^\eta r,(2.13)

where, analogous to (2.9), \^\phi and \^w are given by

\^\phi = (\^ur)
2 +

1

r
\^ur\^u+

1

r2
\^u2,

\^w= \^u2 \^Brr.
(2.14)

Note that far from the origin the radial waves should behave like plane waves,
and dropping the terms that depend on 1/r from these equations reduces them to the
plane wave case. This consists of the 1D SWE with a source term \psi 1 in the momentum
equation that comes from solving the 1D elliptic equation (I + \alpha \scrT 11)\psi 1 = b1, where
\scrT 11 and b1 are given by (2.7) and (2.8), respectively.

3. Solution algorithm. We give a high level overview of our approach before
giving the details below. Following Popinet and others, we use a splitting method to
take a full time step. The elliptic equation (2.6) is discretized using a straightforward
second-order finite difference scheme, and the nonlinear SWE are solved in finite
volume form as implemented in GeoClaw. A time step starts by solving the elliptic
equation, which updates only the momenta. Then the SWE are solved for one time
step using the modified momenta and the original depth h to get to the next time
level. The details of this splitting method are given in subsection 3.1. In subsection 3.2
we describe the patch-based AMR version of the splitting method. This is the major
algorithmic innovation in this paper. We solve an elliptic equation one level at a time,
but including all patches at the given level. We also introduce a second ``provisional""
solve on coarser levels at the next time step. This allows linear interpolation in time to
fill in the ghost cells on finer levels, which is needed for subcycling in time. Incorporate
the elliptic solution variables from each level into the state vector made this easy to
implement in the existing AMR framework. In subsection 3.3 we describe a composite
solve of a linear system coupling all levels, and without subcycling in time, which we
use for comparison.

We use capital letters to denote the numerical solution on a single grid or the
coarse grid; below we introduce lower case for the fine grid solution. To enable the
subcycling in the AMR implementation, the vector of variables \vec{}\Psi = (\Psi 1,\Psi 2) from
the implicit solve are stored along with the conserved variables (H,HU,HV ), defining
Q= (H,HU,HV,\Psi 1,\Psi 2). The elliptic equations for the dispersive update are solved
over the entire domain except when the water depth falls below a threshold. This
allows the SWE to handle the wetting and drying on land. They are also better at
simulating wave breaking, which does not naturally occur in the dispersive equations.
For each of the examples in section 4 we specify the undisturbed water depth used as
the threshold for switching from SGN to SWE.

3.1. Splitting method for SGN. A single time step of the fractional step
algorithm on a single grid proceeds as follows. We start with (H,HU,HV )N at
time tN . On a single grid there is no need to store the \vec{}\Psi N vector, so we simplify
the description here by omitting it. The following steps advance the solution to
tN+1 = tN +\Delta t:

1. Solve the elliptic equations for \vec{}\Psi N in (2.6). The right-hand-side and matrix
coefficients are a function of (H,HU,HV ) at time tN .
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IMPLICIT AMR FOR DISPERSIVE TSUNAMIS B561

We currently use PETSc to solve the sparse system of equations. The ma-
trix elements (in compressed sparse row form) along with the right-hand-side
vector are passed to the algebraic multigrid preconditioned Krylov solver in
PETSc.
Popinet [52] and others have implemented a multigrid solver and report good
convergence results. Since they use a fixed spatial refinement of a factor of
2, the multigrid hierarchy fits nicely into their strategy. We often refine by
larger factors, and have not gone this route.

2. Advance the momentum equations using forward Euler and the right-hand
side of (2.1) to get

H\ast =HN ,

(HU)\ast = (HU)N +\Delta tHN
\Bigl( g
\alpha 
\eta Nx  - \Psi N

1

\Bigr) 
,

(HV )\ast = (HV )N +\Delta tHN
\Bigl( g
\alpha 
\eta Ny  - \Psi N

2

\Bigr) 
.

(3.1)

In these equations \eta x and \eta y now stand for centered finite difference approx-
imations to these quantities. We have also experimented with a two-stage
Runge--Kutta method but found almost no difference, so it was not worth the
computational expense. This is likely due to the first-order errors that are
introduced with limiters and the splitting error between the shallow water
and dispersive steps. Moreover the SWE already have reduced accuracy with
realistic bathymetry.

3. Take a time step \Delta t with the SWE solver, with initial data (H,HU,HV )\ast 

to obtain the values (H,HU,HV )N+1. We denote this update by (H,HU,
HV )N+1 = SW ((H,HU,HV )\ast ,\Delta t).

At domain boundaries, the conditions for \vec{}\Psi , e.g., extrapolation or wall bound-
aries, are put directly into the matrix equations. For example, the equation for a cell
(i, j) adjacent to the right edge of the computational domain would normally include
cell (i+1, j) in its stencil. To implement wall boundary conditions, we want to specify
\Psi 1,i+1,j = - \Psi 1,i,j since this is a correction to the momentum in the x-direction. We
implement this by negating the matrix coefficient that would correspond to the missing
cell, and adding it to cell (i, j)'s matrix entry. Since \Psi 2 updates the y-momentum, tan-
gential to this edge, we want \Psi 2,i+1,j =\Psi 2,i,j and the matrix coefficient is not negated
before adding it to cell (i, j)'s matrix entry. At the top and bottom boundaries, wall
boundary conditions are implemented similarly with the negation swapped between
\Psi 1 and \Psi 2. For extrapolation boundary conditions, no components are negated. Ex-
trapolation boundary conditions do not absorb outgoing waves as well for SGN as for
SWE, where they are routinely used in GeoClaw at open ocean boundaries. The im-
plementation of better absorbing boundary conditions is still work in progress, using a
sponge layer as often used in other dispersive solvers, e.g., [37]. Boundary conditions
for dispersive equations are still an open area of research [47].

The switch from SGN to SWE is made on a cell-by-cell basis. If the initial water
depth for any cell in the 3-by-3 neighborhood surrounding a given cell is below a
specified threshold, then the dispersive correction is not applied. This is implemented
by setting this row of the linear system for \vec{}\Psi to the corresponding row of the identity
matrix and the right-hand side to zero, ensuring a zero correction. The cell can still
be used in the stencil for the dispersive terms of a neighboring cell if appropriate.
We have not observed any spurious reflections from the interface where the equation
changes when using this procedure.
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3.2. AMR for SGN. Now suppose we have two grid levels with refinement by
a factor of 2 in time. The main changes to the algorithm involve fine grid ghost cells
and a second implicit solve on the coarser levels. Figure 2 illustrates the setup, with
one grid at the coarsest level, and two adjacent rectangular nonoverlapping fine grid
patches at level 2. We denote the coarse grid values at some time tN as above, using
capital letters. We assume that the fine grid is at time tN , but that on the fine grid
we want to take two time steps of \Delta t/2 to reach time tN+1. For the fine grid values
at time tN we use lowercase letters with qN = (h,hu,hv,\psi 1,\psi 2)

N .
We always need boundary conditions in ghost cells around the union of fine grid

patches when taking an explicit hyperbolic time step, which in general are obtained
by space-time interpolation from the underlying coarser level grids. For the SGN
equations we also need boundary conditions for the elliptic system of equations that
is solved on the union of all grid patches at the fine level. By incorporating \vec{}\Psi in Q,
the same space-time interpolation operators provide these necessary ghost cell values.

In the algorithm description below, \scrI f (QN ) denotes the spatial interpolation op-
erator that interpolates from coarse grid values to the ghost cells of a fine grid patch
at a single time tN .

One time step on the coarse grid, coupled with two time steps on the fine grid, is
accomplished by the following steps:

1. Coarse grid step:
(a) Take time step \Delta t on the coarse grid as described above for the single

grid algorithm, but denote the result by ( \widetilde H,\widetilde HU,\widetilde HV )N+1 since these
provisional values will later be updated. This step is taken on the union
of all coarse level patches and does not involve fine patches.

(b) Solve for a provisional \widetilde \Psi N+1 = [\Psi 1,\Psi 2]. This is the second implicit solve
mentioned above. This will be needed for interpolation in time when
determining ghost cell values for \psi on the fine grid using \scrI f (QN ) and

\scrI f ( \widetilde QN+1).
2. Fine grid steps:

(a) Given (h,hu,hv)N and ghost cells boundary conditions \scrI f (QN ) on the
union of fine grid patches, solve the fine grid elliptic system for \psi N .

(b) Update using the source terms

(h,hu,hv)\ast = (h,hu,hv)N +

\biggl( 
0,

\Delta t

2

\Bigl( g
\alpha 
\eta x  - \psi 1

\Bigr) N
,
\Delta t

2

\Bigl( g
\alpha 
\eta y  - \psi 2

\Bigr) N\biggr) 
.

Δt/2

Δt/2

Δt

Fig. 2. There is a coarse grid with cells outlined in black on the base grid. Over part of the
domain there are two adjacent fine patches refined by a factor of two, with cells outlined in red. The
fine grid time step is half the coarse grid step. Before the fine grid takes a step, two ghost cells (not
shown in the figure) are needed to complete the stencil. Figure taken from [8].
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(c) Take a shallow water step:

(h,hu,hv)N+1/2 = SW ((h,hu,hv)\ast ,\Delta t/2).

Note that we use tN+1/2 = tN +\Delta t/2 to denote the intermediate time for
the fine grid.

(d) Obtain ghost cell values at this intermediate time as 1
2 (\scrI f (Q

N ) +

\scrI f ( \widetilde QN+1)).
(e) Solve the elliptic system for \psi N+1/2 on the fine grid.
(f) Update using the source terms

(h,hu,hv)\ast = (h,hu,hv)N+1/2

+

\biggl( 
0,

\Delta t

2

\Bigl( g
\alpha 
\eta x  - \psi 1

\Bigr) N+1/2

,
\Delta t

2

\Bigl( g
\alpha 
\eta y  - \psi 2

\Bigr) N+1/2
\biggr) 
.

(g) Take a shallow water step:

(h,hu,hv)N+1 = SW ((h,hu,hv)\ast ,\Delta t/2).

3. Update coarse grid:
(a) Define (H,HU,HV )N+1 by the provisional values ( \widetilde H,\widetilde HU,\widetilde HV )N+1

where there is no fine grid covering a grid cell, but replacing ( \widetilde H,\widetilde HU,\widetilde HV )N+1 by the conservative average of (h,hu,hv)N+1 over fine grid cells
that cover any coarse grid cell. In other words, the fine grid values update
all underlying coarser cells to get the coarser level ready for its next step.

The final step is applied because the fine grid values (h,hu,hv)N+1 are more accu-
rate than the provisional coarse grid values. Note that it is not necessary to update \Psi 
to \Psi N+1 on the coarse grid because this is computed at the start of the next time step.

We then proceed to the next coarse grid time step. At the start of this step,
the updated (H,HU,HV )N+1 is used to solve for \Psi N+1, and the provisional \widetilde \Psi N+1

is discarded. Hence two elliptic solves are required on the coarse level each time step,
rather than only one as in the single grid algorithm. Luckily this second solve is not
needed on the finest grid level.

The algorithm above easly generalizes to refinement factors larger than 2. There
will be additional time steps on level 2, and for each time step the ghost cell BCs
will be determined by linear interpolation in time between \scrI f (QN ) and \scrI f ( \widetilde QN+1). If
there are more than 2 levels, this same idea is applied at the next level. After each
time step on level 2, any level 3 grids will be advanced by the necessary number of
time steps to reach the advanced time on level 2. In this case we will need two elliptic
solves for every time step on level 2, one at the start of a level 2 time step, and one
for the provisional values after advancing level 2, to provide interpolated ghost cell
values to level 3.

When there are multiple possibly adjacent grids at the same level, as in Figure
2, the border cells of one grid might include another grid's interior cells in its stencil.
Its row and column numbers need to be known to build the entries of the matrix. To
enable this, grids are preprocessed at every adaptive regridding step by numbering
the cells to indicate what equation in the matrix they apply to. This information is
saved on each grid patch. Figure 3 illustrates this enumeration for the level 2 grids in
Figure 2. For example, the stencil for cell 40 on the left grid involves cell 73 from the
right grid. The preprocessing step would fill in these numbers in those ghost cells that
come from adjacent grids. If there are no such adjacent grid patches, then the ghost
cells would have been interpolated from the coarse grid and are treated as Dirichlet
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1 2 3 4 5 6 7 8 9 10
  11   12   13  14  15   16    17   18  19   20
  21   22   23  24  25   26    27   28  29   30
  31   32   33  34  35   36    37   38  39   40
  41   42   43  44  45   46    47   48  49   50
  51   52   53  54  55   56    57   58  59   60

  61  62  63  64  65 66   67 68 69 70 71 72
73  74  75  76  77 78  79  80  81 82 83 84

85

109
97

Fig. 3. Sample enumeration of cells on level 2 grids. The numbers are used to map to the row
in the linear system.

conditions. They would be flagged with  - 1 to indicate that they have no row or
column associated with them, and their values are incorporated into the right-hand
side of the equations.

For adaptive calculations, the PETSc preconditioner mentioned above can be
reused until the grids at that level change. The coarsest level 1 grids never change,
but they are so coarse and inexpensive that reuse is not important.

The finite volume method used for SWE in GeoClaw exactly conserves mass on
a Cartesian domain with no coastal or onshore points, even when AMR is used (and
also near the coast on a uniform grid, but see [34] for more discussion of conservation
and the issues that arise when using AMR near the coast). GeoClaw also conserves
momentum when used on a flat bottom, but with any realistic topography momentum
should not be conserved. The modifications we introduce to solve Boussinesq-type
equations add additional source terms only to the momentum equations, and so mass
is conserved as well as it is for SWE.

3.3. Composite solution algorithm. To verify the accuracy of our procedure
for refinement in time, we also implemented a multilevel composite solve without
subcycling. In this composite solve, the unknowns on all levels are coupled together
in a single system of equations. In this approach all levels take the same time step.
This global time step must then be chosen for stability on the finest level, based on
the CFL condition for the explicit SWE solver. This typically means that the Courant
number is much smaller than 1 on the coarser levels, requiring more coarse time steps
and perhaps diminishing the accuracy due to numerical dissipation. For this reason
we prefer to use subcycling in practice.

The composite solve introduces two new types of equations, pictorially illustrated
in Figure 4. The first and last rows and columns just inside the border of a fine grid
have an equation that says their area-weighted sum should equal the corresponding
value on the underlying coarse cell. This equation is associated with the coarse cell in-
dex, and it needs to be included in the grid enumeration procedure. Note that this hid-
den coarse cell is also part of its coarse neighbor's stencil that lies outside the fine grid.

Second, all the ghost cells on the fine grid will now have equations for \vec{}\psi that
specify linear interpolation in space only from the coarse grid. We use a centrally
differenced gradient in x and y on the coarse cell to reconstruct to the fine ghost cell.
If the stencil includes a cell that lies outside the computational domain the boundary
conditions are applied. Note that the fine grid ghost cell is also referenced in the
stencil of the first interior fine cell mentioned above.
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o

o

o

o o
x
x x

x

x

Fig. 4. For the composite coupled solution, new unknowns and equations are introduced into
the elliptic solver. The fine grid ghost cell marked by the green x is a new unknown, and its equation
specifies that this value is linearly interpolated from the 5 coarse grid values indicated by red circles.
Note that the green cell is also part of several fine grid stencils for the interior fine cells adjacent
to the patch edge. There is also a new unknown on the coarse grid marked with a red circle that is
underneath the fine grid. Its equation specifies that the coarse grid value is the average of the 4 fine
grid values.

Except for the border cells mentioned above, the rest of the coarse cells that are
underneath a fine grid do not need to participate in the composite solve. They are
marked with a flag to ignore them in the composite enumeration preprocessing step.
After the solve, the coarse cells are updated by the fine grid, and the shallow water
step proceeds on each level separately as in the usual patch-based AMR for hyperbolic
equations, except with the same time step.

3.4. Algorithmic comparisons. We compare the composite coupled algorithm
just described with the patch-based algorithm with subcycling in time described in
subsection 3.2. The problem has a flat topography with water depth 4000 m. The
radially symmetric initial sea surface is given by \eta (x, y,0) = exp( - (r/2000)2), where
r=

\sqrt{} 
x2 + y2. The initial velocity is 0 everywhere. The simulation is run to time 300

seconds. There are 5 levels of refinement, each with a factor of 2 in x and y. The
composite algorithm has a single \Delta t based on the stability limit for the level 5 grid.
The subcycled algorithm refines by a factor of 2 in time as well. We also compare
with a uniformly fine solution at the same resolution as the finest level.

Figure 5 shows the results from the three approaches after 300 seconds. To the
eye the leading waves are identical. The two adaptively refined simulations show
quite different refinement patterns, none of which enforce symmetry, yet the solutions
remain remarkably symmetric.

For completeness, we also compared the coupled algorithm with an uncoupled
solution and the same fixed (small) time step. This intermediate algorithm was also
more accurate than the subcycled algorithm in a few places, at the cost of increased
run time due to the much smaller time step needed here, as with the coupled algorithm.

In Figure 6 we compare 4-, 5-, and 6-level adaptive solutions to show convergence,
but since the adaptive runs do not refine everywhere and have larger truncation errors
at patch boundaries, it is hard to determine the convergence rate. Note the ``bumps""
in the zoom at level 4, which are gone by levels 5 and 6. All runs show small-scale
oscillations that decrease with refinement level. Discrepancies are highlighted in the
zooms, but the results are clearly converging to the reference 1D radial solution. There
are tiny glitches at patch interfaces that can be seen in the zoomed plots.
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these are 5 level runs, composite, 222, and equivalent uniform

Surface

Surface at 300 secondsSurface at 300 secondsSurface at 300 seconds

Fig. 5. Comparison of 5-level coupled and uncoupled AMR results with results on a uniform
grid having the same resolution as the finest AMR level. Top left is the composite coupled algorithm;
middle is the uncoupled algorithm with subcycling in time; right is the equivalently refined uniform
grid. The grid refinement patterns are fairly different but the solutions agree very well. Horizontal
transects through the 3 solutions are shown in the lower plot and compared to the reference 1D radial
solution. The zoomed sections show the very small differences in the uncoupled solution (red curve)
from the others.

Fig. 6. Example showing 4-, 5-, and 6-level adaptive runs with subcycling in time converging
to the 1D radial reference solution.

4. Computational examples. In this section we present computational results
for three different test problems that exercise the new algorithms and software. We
have not tried to optimize the runs in a high-performance computing environment, but
we do provide timings to demonstrate that it is possible to solve significant problems
on a laptop. In all cases the code was run on a MacBook Pro with the Apple M1 chip
using six threads for openMP and six MPI processes. The linear systems are solved
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using PETSc with a Krylov method and algebraic multigrid as a preconditioner. We
reuse the preconditioner for multiple time steps, which helps reduce the run time. We
changed the default convergence criteria from a relative tolerance of 10 - 5 to 10 - 9.
Other PETSc parameters can be found in the code repository for this paper [13],
along with the source code for all three of these examples.

4.1. Radially symmetric ocean, shelf, and beach. We test both the accu-
racy and the stability of our AMR implementation for a 2D problem where varying
topography, dispersion, and nonlinearity are all important. We construct a radially
symmetric ``ocean"" bounded by a continental shelf followed by a beach. The radial
profile of the topography is shown in Figure 7. The ocean has a flat bottom with 3000
m depth out to radius of 40 km, a continental slope from there to 80 km, followed
by a flat shelf with depth 100 m. Starting at 100 km a beach with slope 1:200 starts
to rise and the initial shoreline is at a radius of 120 km. As initial data we take a
stationary Gaussian hump of water with surface elevation

\eta (x, y,0) = 20exp( - (r/10000)2)(4.1)

so that the amplitude is 20 m and it decays over roughly 10 km. We use the 1D radially
symmetric SGN equations (2.10) to compute a reference solution on this topography.
The 1D version of GeoClaw used for this does not support AMR but uses a finite
volume grid with variable spacing chosen so that the Courant number is close to 1
everywhere that the depth is greater than 50 m, transitioning to equal grid spacing in
shallower water and onshore. A total of 10,000 grid cells were used from r= 0 to 124
km, giving a grid spacing that varied from roughly 80 m in the deep ocean to 5 m near
shore. The standard GeoClaw wetting-and-drying algorithm is used on shore. With
the initial conditions used here, the inundation proceeds onshore about 1.2 km, with
a runup elevation of roughly 6 m. The SGN equations are used in water deeper than
5 m, switching to SWE in shallower water and onshore for the inundation modeling.

For the 2D simulation we used topography obtained by rotating the 1D profile.
Five levels of refinement were used with mesh spacing ranging from 2 km on level 1
to 5 m on level 5. The refinement ratios going from coarsest level 1 to finest level
5 were 4,5,10,2. The problem was solved on one quadrant of the full 2D domain,
for 0 \leq x, y \leq 126 km, with solid wall boundary conditions at x = 0 and y = 0. In
order to test the stability and accuracy of AMR near grid interfaces, we focused the
refinement on the waves propagating along the diagonal where x = y, which hit the
shore at x= y =

\surd 
2\times 120\approx 169.7 km. Levels 3--5 were allowed around the shelf and

beach region. The cells flagged for refinement were also restricted so the finest level
patches were created only near the diagonal, since this is the region of interest for this
comparison.

0 40 80 100 120 km

3000

2500

2000

1500

1000

500

0

m
et

er
s

deep ocean continental slope shelf beach

Radial ocean topography

Fig. 7. Topography for the radially symmetric ocean test case.
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Figures 8 and 9 show the computed solutions at several times, both the 2D surface
elevation over the quadrant and the transect along the diagonal. The latter is plotted
together with the computed solution to the 1D radial equations to assess the accuracy.
Note that by t= 600 seconds the dispersion has created an oscillatory wave train that
is well captured on level 3. By time t= 1200, shoaling on the continental shelf causes
the wavelength to decrease, and then by t = 1800 the nonlinearity in the shallower
water has caused the waves to steepen. Rather than breaking, the dispersion leads to
``soliton fission,"" the appearance of solitary waves that break off from the steepening
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Fig. 8. Solution to the radially symmetric ocean test problem at several times. The left column
shows a colormap of surface elevation \eta (x, y, t) over the positive quadrant. Colored rectangles show
grid patches (level 2: magenta; level 3: blue; level 4: yellow; level 5: black) and the dashed line is
the x= y diagonal. The right column shows a transect of the 2D solution along the diagonal at each
time, along with the solution to the 1D radially symmetric equations at the same time. Plots are
zoomed in near the shore at time t= 1800 seconds.
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Fig. 9. Continuation of Figure 8 at later times (zoomed in near the shore). Note that the axes
change in each plot to better show the signficant features at each time.

main waves. This phenomenon is frequently observed as real tsunamis approach
shore. At t= 1800 a soliton is just forming near the main peak. These waves are well
captured. At t= 2100, the leading wave is in water with depth less than 5 m, where
the transition from SGN to SWE occurs, and a shock (hydraulic jump) has formed.
In deeper water, at roughly r = 115 km, a sharply peaked soliton has formed. Note
that this wave is still 100 m wide and less than 10 m high, so it is reasonable that this
wave has not yet broken. Also note that the 2D solution agrees very well with the
1D solution in this region where the grid is refined to a similar resolution, in spite of
the fact that the 2D wave is moving diagonal to the Cartesian grid here. At t= 2300
the wave is moving onshore and has inundated about 800 m inland. The agreement
with the 1D radial solution is excellent onshore and quite good in the region of soliton
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fission. Finally, at t= 2600 the wave has roughly reached the level of maximum runup
and is starting to retreat.

In the 2D plots the accuracy decreases dramatically outside of the finer grid
patches. Inside the fine grid patches, very small oscillations can be seen radiating
from the patch boundaries that also appear in the transect plots, but these oscillations
have little effect on the primary waves in the region of interest.

The simulation up to t= 2300 required about 6 hours (wall time) on a laptop as
described at the beginning of section 4. (For better visibility of both the underlying
solution and the grid patches in Figures 8 and 9, we allowed large grid patches, up
to 1000 \times 1000 instead of 100 \times 100, reducing the effectiveness of using OpenMP
for the explicit shallow water time-stepping and slightly increasing the run time.)
A simulation using the SWE with the same refinement levels and strategy required
about 30 minutes of wall time. However, the SWE solution (not shown) does not
contain the narrow solitons seen in the SGN solution, and so it would not require
the same level of refinement to obtain an accurate SWE solution for this problem,
potentially further reducing the time required for SWE.

4.2. Japan 2011 earthquake tsunami. The great east Japan (Tohoku) earth-
quake of March 11, 2011, was studied by Popinet [51] using the SWE. He further used
it as a test problem for the dispersive SGN equations in [52], providing some com-
parisons between the two sets of equations. We present a similar comparison for
our AMR implementation of the same version of the SGN equations so that we can
compare with his figures. Because the primary tsunami wavelengths generated by
this megathrust event were so long, the addition of dispersive terms has relatively
little effect on the solution for the most part. This is generally true when modeling
tsunamis generated by large subduction zone earthquakes, the source of most devas-
tating historical tsunamis, and the use of the SWE without dispersive terms is often
well justified [21, 31]. However, there are some higher frequency waves introduced by
the dispersion that match some of the observations slightly better. Below we also use
this example to investigate a conjecture made in [3] concerning the arrival times of
the peak waves.

This problem is also a good test of the stability of our AMR implementation of the
SGN equations on real topography from transoceanic to harbor scale, with realistic
refinement patterns and running conditions similar to those often used in practice. Six
levels of adaptive refinement were used for the simulations presented below, starting
with a level 1 grid having 2 degree resolution (220 km) and using refinement ratios
5,6,4,6,30 at successive levels to reach 1/3 arcsecond (10 m) resolution in Kahului
Harbor on the island of Maui, Hawaii. In the deep ocean at most level 4 was used (1
arcminute), with frequent regridding to follow the leading wave traveling to Hawaii
without overresolving other regions. We used identical running conditions as in [3]
with one exception: there the deep ocean was refined only to level 3 (4 arcminutes) but
better resolution is required to model the more oscillatory dispersive waves, and even
to capture the SWE waves properly close to the source. In these new computations,
4 levels were allowed in the deep ocean for both the SGN and SWE simulations.

Several different reconstructions of the tsunami source (seafloor motion) from
the 2011 earthquake have been developed by different groups. Popinet used a model
developed by the UCSB group of Shao et al. [55]. For comparison we present some
results with this UCSB model. Then we also present some results using a source
model developed by Fujii et al. [17], which was found in [41] to be one of the best at
replicating nearfield runup and DART buoy time series in a comparison of GeoClaw
results for 10 proposed sources for this event (which also included the UCSB source).
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Figure 10 shows the tsunami generated by the UCSB source at 3 hours, as com-
puted with both SWE and SGN. Differences are relatively minor, but the main out-
going wave is seen to have some dispersive ripples in the SGN calculation that are
not present with SWE. The differences are more clearly seen when a transect of the
surface elevation at a fixed latitude is plotted; see Figure 11. This is similar to Fig-
ure 15 in [52]. It should also be noted that the Basilisk [6] model used by Popinet
does cell-by-cell refinement on a quadtree structure, and that he refined in somewhat
different regions than in our patch-based GeoClaw simulations, so direct comparison
is not entirely possible.

Figure 10 also shows the location of two DART sensors that recorded the tsunami
passing by. Figure 12 shows the detided DART data observed at these locations (from
the data archived with [41]), together with the time series computed with both the
SWE and SGN versions of GeoClaw. Here we show results using the Fujii source,
which in general matches the DART observations better. As expected, dispersion
makes relatively little difference for these long wavelength waves, but does add some
oscillations at roughly the same period as seen in the observed data, although the lat-
ter is at a sampling rate of 60 seconds and is not well resolved at shorter wavelengths.

The Fujii tsunami source of [17] was used by Arcos and LeVeque [3] to model
tide gauge observations and tsunami current speeds at a number of points in Hawaii.
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Fig. 10. Simulations of the 2011 Tohoku tsunami 3 hours after the earthquake, using the UCSB
source model, using SWE (left) or SGN (right). Colors saturate at \pm 0.5 m relative to sea level
in order to accentuate the small oscillatory waves following the main peak in the dispersive SGN
simulation. The DART gauge locations are also indicated, for which time series data is plotted in
Figure 12. Compare this plot to the bottom row of Figures 12 and 13 in Popinet [52]. The black
lines show the transect along which the solution is plotted in Figure 11.
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Fig. 11. Cross section of the solution from Figure 10 at 3 hours, along the transect shown in
that figure, from (163.454E, 31.1458N) to (170.631E, 26.5282N) as provided by Popinet [50]. Compare
this plot to Figure 15 in Popinet [52].
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Fig. 12. DART gauge time series at two locations marked in Figure 10. Detided observations
(Obs) from March 11, 2001, are compared with SWE and SGN computations using the Fujii tsunami
source. The SGN results show additional oscillations that appear to match the period but not phase
of the underresolved observations.

In that paper the SWE were used, and many of the computed time series agreed
remarkably well with detided observations after shifting the results in time by about
10 minutes. Several possible reasons for this time shift were discussed in [3], including
the fact that an instantaneous seafloor displacement was used in the model. The
possible effect of dispersion on the time shift was roughly estimated using the average
ocean depth and wavelength of the leading wave. It was estimated that the arrival
time might be shifted by dispersion by about 1\%, less than 5 minutes in Hawaii, where
the first wave arrives roughly 460 minutes after the earthquake.

Figure 13 shows the detided observation at one tide gauge located in Kahului
Harbor (Maui), along with the computed time series using both the SWE and SGN
equations, with no time shift. The top figure shows the computational results ob-
tained with the UCSB source, while the bottom figure shows those obtained with the
Fujii source, for comparison to [3]. In the Fujii plot, the computed waveforms look
nearly identical except for a small time shift. With SWE, the first maximum tsunami
amplitude occurs about 8 minutes early compared to the observation. Using SGN, the
peak appears roughly 3 minutes later than with SWE, so only 5 minutes early relative
to the observations. This is consistent with other findings in the literature that even
with the use of dispersive equations, numerical simulations show waves arriving about
5 minutes earlier than the observations in Hawaii for this event (e.g., [31, 14]). The
time series computed with the UCSB source show similar shifting of the first peak,
by about 2 minutes. We also note that the differences observed between the SWE
and SGN results in each case are small relative to the differences between using the
two different source models, neither of which is an exact representation of the actual
earthquake.

These calculations were performed on a laptop as described at the beginning of
section 4. Using the UCSB source, the shallow water run to 12 hours of simulated
time took roughly 23 minutes of wall time, while the SGN run required 145 minutes.
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Fig. 13. Tide gauge time series in Kahului Harbor. Detided observations (Obs) are compared
with SWE and SGN computations using the UCSB (top) and Fujii (bottom) tsunami sources. Note
that the physical tide gauge bottoms out at  - 2 m while the synthetic gauge is in slightly deeper water,
and some observational data is missing after 600 minutes.

4.3. Hypothetical asteroid impact. Next we simulate the tsunami that re-
sults from a hypothetical asteroid impact and subsequent crater in the Pacific Ocean
off the coast of Washington. The paper [8] contains more details and sample simulation
results for this example using the MS equations. Here we use the SGN equations and
we will compare to results in [8], since there is no ``data"" for this experiment. A similar
test problem was also used in [12] for a simulation using the nondispersive SWE for a
much smaller asteroid. That paper also highlighted the need for dispersive simulations
to properly model propagation and possibly runup of asteroid-generated tsunamis.

We use the same problem setup as in [8]. The crater is 1 km deep with a diameter
of 3 km, as depicted in Figure 14(a). The crater was placed approximately 150 km west
of Grays Harbor, a well-studied area due to the potential for Cascadia subduction zone
earthquakes. The initial tsunami surface elevation, shown in Figure 14(b), is taken
after 251 seconds of a radially symmetric hydrocode simulation starting with a static
crater. The velocity is initialized using an eigenvector from the linearized SWE to
give an approximately radially outgoing wave. The simulation uses 7 levels of mesh
refinement with refinement factors from coarsest to finest of 5,3,2,2,5,6. Initially there
are 5 levels, as shown in Figure 14(c). The last 2 levels are added as the wave shoals
on the continental shelf and then approaches shore. The coarsest level has \Delta y = 10
arcminutes, and the level-7 grids have \Delta y = 1/3 arcsecond. On each grid \Delta x= 1.5\Delta y
so that the finest level computational grids are at a resolution of roughly 10 m in both
x and y. The equations switch from SGN to SWE where the initial water depth is
less than 10 m, regardless of wave height. (We observed no difference in inundation
when using 5 or 2 m for the threshold.)

The wave height after 20 and 30 minutes is shown in Figure 15. Both compare
extremely well with the comparable figures in [8]. There are more grid patches in
this calculation than that paper, since a smaller maximum patch size was specified to
allow for higher parallelism. Even the region with soliton fission, shown in Figure 16
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Fig. 14. (a) Initial conditions of a static crater of depth 1 km and diameter 3 km, which
were the initial conditions for the hydrocode simulation. (b) The radially symmetric results of the
hydrocode simulation at 251 seconds, used to initialize the GeoClaw Boussinesq simulation. (c)
Radially symmetric GeoClaw initial conditions and mesh, with the initial grid patches outlined.
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Fig. 15. Surface elevation computed using SGN at the indicated times. The outlines of the
rectangles show the grid patch boundaries, and are color-coded by level of refinement as described in
the text.

as the waves approach shore, are amazingly similar, so we also show transects of the
solution at a fixed latitude to see the differences. Since the nonlinear and dispersive
terms in SGN and MS differ, one might have expected more difference in this area.
The refinement to finer levels at later times is focused on Grays Harbor, and the
plots show that the two peninsulas at the entrance to the harbor (containing the
communities of Ocean Shores and Westport, Washington) are completely inundated.
In both figures the patch boundaries are color-coded by level: level 2 is in blue, 3 is
black, 4 is magenta, 5 is cyan, 6 is black, and 7 is green.

The simulation up to 50 minutes required about 30 minutes (wall time) on a
laptop as described at the beginning of section 4. A simulation using the SWE with
the same refinement levels and strategy (not shown) required about 4 minutes.

5. Conclusions and future work. We have developed a high-fidelity tool for
solving depth-averaged SGN equations, a form of Boussinesq equations that can be
used to accurately model short wavelength tsunamis or other related dispersive wave
problems. Building on the open source GeoClaw software, patch-based mesh refine-
ment in space and time is implemented for solving realistic ocean-scale problems. The
major new algorithmic advance is the introduction of an implicit solver in the AMR
code to solve an elliptic equation on all grid patches at a given level of refinement. The
elliptic equation is solved before taking each shallow water time step. It must also be
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Fig. 16. Top: Surface elevation computed using SGN at the indicated times. The outlines of
the rectangles show the grid patch boundaries, and are color-coded by level of refinement as described
in the text. Bottom: Surface elevation along a transect at latitude 46.90 cutting through Westport,
Washington, highlighting the very small differences between the MS and SGN solutions. The solution
computed with SWE is also shown for comparison and does not exhibit the solitary wave formation
seen in the dispersive simulations. Note that at 50 minutes the Westport peninsula is refined to one
higher level, so the topography is finer in the transect.

solved provisionally at the end of each time step on all but the finest AMR level in or-
der to provide values for space-time interpolation to ghost cells needed to solve the el-
liptic equation on the finer grid levels, in exactly the same way that ghost cell values for
the depth and momentum are interpolated. This approach allows subcycling in time,
so that the equations are advanced on each level using a time step based on the CFL
restriction of the SWE, allowing optimal efficiency and minimal numerical dissipation.
By using PETSc for solving the elliptic equations, in conjunction with OpenMP for
the explicit hyperbolic steps, an efficient code has been developed in the GeoClaw
framework. In the near future this will be merged into the GeoClaw code base and
better documented for general use by the scientific community. We also plan to ap-
ply this software to several modeling problems, in particular for the NASA Asteroid
Threat Assessment Project that originally motivated and partially funded this work.

In future research, we plan to better explore the transition between SGN and
SWE in the nearshore region in order to better model breaking waves, which can
have an impact on the resulting onshore inundation. We would also like to reduce the
generation of reflections at interfaces between different refinement levels. Although
these reflections are generally minor, as seen in the examples we have presented,
they do tend to be larger than those seen when solving SWE. Better interpolation
procedures may be required for the SGN equations since they involve higher order
spatial derivatives. In addition it may be beneficial to increase the accuracy of the
finite difference discretization of the dispersive terms.

We also plan to compare the Boussinesq approach to modeling dispersion, which
requires implicit algorithms, with hyperbolic formulations (e.g., [7, 22]) that model
dispersion by introducing relaxation source terms. This requires somewhat reduced
time steps relative to SWE, but it has been found that these equations can still be
solved efficiently with explicit methods, unlike SGN. The algorithms presented in this
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paper and the resulting GeoClaw code can provide useful reference solutions for the
further exploration of hyperbolic approaches.

Code and data availability. The GeoClaw setup for the examples presented
in section 4 can be found in a GitHub repository created for this paper, https://
github.com/rjleveque/ImplicitAMR-paper, and is permanently archived on Zenodo
[13]. This includes standard Clawpack-style setrun.py files that show the AMR
resolutions, refinement regions, and other parameters used in these examples. The
software described in this paper and used for the experiments presented here has
recently been merged into GeoClaw and is part of release v5.10.0 [15].

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: Code and data available"" as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/rjleveque/ImplicitAMR-paper and in
the supplementary materials (ImplicitAMR-paper.zip [local/web 174KB]).
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