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Abstract Neural networks (NNs) enable precise modeling of complicated geophysical phenomena but can
be sensitive to small input changes. In this work, we present a new method for analyzing this instability in NNs.
We focus our analysis on adversarial examples, test‐time inputs with carefully crafted human‐imperceptible
perturbations that expose the worst‐case instability in a model's predictions. Our stability analysis is based on a
low‐rank expansion of NNs on a fixed input, and we apply our analysis to a NN model for tsunami early warning
which takes geodetic measurements as the input and forecasts tsunami waveforms. The result is an improved
description of local stability that explains adversarial examples generated by a standard gradient‐based
algorithm, and allows the generation of other comparable examples. Our analysis can predict whether noise in
the geodetic input will produce an unstable output, and identifies a potential approach to filtering the input that
enable more robust forecasting.

Plain Language Summary Deep learning models trained on empirical or simulated data can yield
accurate predictions in real time. Consequently, their use has expanded to predicting complex physical
phenomena. For example, a convolutional neural network can predict tsunami waveforms accurately using only
geodetic measurements of the earthquake, thereby potentially informing early warning systems. However,
indiscernible perturbations in the measurement data can incur instabilities in neural networks (NNs). Should the
early warning systems rely on such models, the ramifications of unstable predictions are of great concern for
safety and security. The cause of these instabilities is largely unknown, and characterizing the destabilizing
perturbations and securing a NN against them are important open problems. In this work, we introduce a novel
stability analysis of NNs, making progress toward understanding how these instabilities arise, by focusing on
the inherent layered structure of NNs. We conduct this analysis on a previously proposed tsunami prediction
model, obtaining destabilizing perturbations comparable to those found by state‐of‐the‐art algorithms. Our
methodology can potentially be applied to similar models trained on other types geophysical data for prediction,
for example, in seismic forecasting models.

1. Introduction
In recent years, neural networks (NNs) have achieved a remarkable level of performance in making predictions
even when they are trained only on empirical observations (Goodfellow et al., 2016; LeCun et al., 2015).
Numerous studies have confirmed that these NNs generalize strikingly well in comparison to previous regression
models (Hochreiter & Schmidhuber, 1997; Krizhevsky et al., 2017; LeCun et al., 1989; Vaswani et al., 2017).
Following such a strong track record, NNs have recently been proposed as tools for a variety of geoscience
applications related to hazard assessment or real‐time forecasting for warning systems, for example, (Liu
et al., 2021; Makinoshima et al., 2021; Mulia et al., 2022; Rim et al., 2022). As one example, in (Rim et al., 2022)
a NN was trained to forecast several hours of a tsunami waveform at a specified location based on only a few
minutes of seismic Global Navigation Satellite System (GNSS) data acquired in real‐time during an earthquake.
The training data was generated by running tsunami and seismic simulations for a large set of synthetic earth-
quakes, and it was demonstrated that a model trained using 1,300 events could be used to generate accurate
tsunami forecasts when presented with synthetic GNSS data for a new event. This particular model is used as a
test case in Section 3.2, and is discussed further below and in much more detail in (Rim et al., 2022). There are two
major issues that are important to address before considering the application of the model to real‐world fore-
casting. The synthetic GNSS data was generated using a layered earth model (Zhu & Rivera, 2002), raising

RESEARCH ARTICLE
10.1029/2024JH000223

Key Points:
• Neural networks (NNs) suffer from

input instabilities, making them
difficult to deploy in critical
applications like natural hazard
warning

• We derive a low‐rank expansion for
NNs, revealing an input‐dependent
low‐rank matrix that describes local
input stability

• We illustrate that the instabilities are
closely related to the singular vectors
derived from the low‐rank matrix

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
D. Rim,
rim@wustl.edu

Citation:
Rim, D., Suri, S., Hong, S., Lee, K., &
LeVeque, R. J. (2024). A stability analysis
of neural networks and its application to
tsunami early warning. Journal of
Geophysical Research: Machine Learning
and Computation, 1, e2024JH000223.
https://doi.org/10.1029/2024JH000223

Received 8 APR 2024
Accepted 17 NOV 2024

© 2024 The Author(s). Journal of
Geophysical Research: Machine Learning
and Computation published by Wiley
Periodicals LLC on behalf of American
Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non‐commercial and no modifications or
adaptations are made.

RIM ET AL. 1 of 20

https://orcid.org/0000-0002-6721-2070
https://orcid.org/0009-0009-6158-3653
https://orcid.org/0000-0003-4154-7611
https://orcid.org/0000-0003-1557-5862
https://orcid.org/0000-0003-1384-4504
mailto:rim@wustl.edu
https://doi.org/10.1029/2024JH000223
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024JH000223&domain=pdf&date_stamp=2024-12-05


questions about how well the trained model would work if presented with GNSS data from a real event. Moreover,
real GNSS data contains noise and observational errors that may have small relative amplitude but could
potentially excite any underlying instabilities in the model. The same concerns arise for many other applications
of NNs in geophysics and beyond, where the model must be trained using synthetic data while the real data may
contain observation errors or differ in other, possibly minor, ways from the training data.

In this paper we study one core aspect of this question, the stability of forecasts with respect to small changes in
the input data. This is an important topic because several recent computational studies have observed that NNs are
susceptible to instabilities under small input perturbations (Biggio et al., 2013; Szegedy et al., 2014). Input data
that is an imperceptible perturbation of the original input but that leads to significant changes in the forecast are
often called “adversarial examples” in the machine learning literature, suggesting that an adversary is attempting
to fool an algorithm to gain advantage. But we note that this is just a name used in this context for data and a
perturbation that exposes the underlying instability of the machine learning model, and we use it in this manner
here. A famous early example from (Szegedy et al., 2014) is a NN trained to classify images that correctly
classifies an image of a school bus, but for which a small perturbation in the pixel colors (imperceptible to a
human) results in essentially the same image being classified as an ostrich. In this paper we are not concerned with
classification problems but rather a regression problem: The forecasting of a tsunami time series based on several
input GNSS time series, and an adversarial example would be one for which small changes in the inputs (perhaps
at the level of observational noise) result in significant changes to the tsunami forecast (on the scale of meters).
Such examples are often found by a gradient‐based approach such as the projected gradient descent (PGD) al-
gorithm (Kurakin et al., 2017; Madry et al., 2018) that search over the high dimensional space of possible per-
turbations in hopes of finding extreme adversarial examples.

A precise description of these instabilities will help make our discussion clear. Suppose f is a NN model that takes
a vector x as an input and outputs the vector y = f (x). In plain terms, we say f is unstable or has an instability at x
if a small relative perturbation δx of x causes a much larger perturbation relative δy in the output y. In mathe-
matically precise terms: We say f is unstable at x if there is a perturbation δx that is small in the sense that
‖δx‖X ≤ ε‖x‖X for some small ε, but for which the corresponding output perturbation δy = f (x + δx) − f (x) is
much larger in the sense that

‖δy‖Y
‖ y‖Y

≥ C
‖δx‖X
‖x‖X

, for some large constant C. (1)

here the choice of input and output variables, the model f , the constants C, ε, the norm for the input ‖⋅‖X and the
output ‖⋅‖Y , can vary depending on the context, and takes into account relevant scales or measurement units. In
this notion of instability, the model f can be either a regression model or a classification model (e.g., an image
classifier f that assigns to a pixelated image x an integer y corresponding to a label (Szegedy et al., 2014)).
Adversarial examples are particular x and δx that reveal the instability (the name used in particular for instabilities
that occur in trained deep learning models). In our tsunami forecasting context, f would be a prediction model for
tsunami waveforms, taking as input geodetic signals x (surface displacements as a function of time at multiple
sensors) and producing as output the tsunami waveform y (water surface elevation as a function of time at
specified locations). In general the tsunami waveform is a stable function of the earthquake and the resulting
seismic signal (see e.g., (LeVeque et al., 2016; Williamson et al., 2019)) and 0.5%‐level perturbation is well
within the signal‐to‐noise ratio in real measurements (Melgar et al., 2020). So in our tsunami prediction setting,
we may specify the constants ε = 0.005, C = 20 above to define instabilities, that is, we say the model has an
instability if a 0.5%‐level perturbation in the GNSS input signal causes more than 10% relative change in the
predicted tsunami waveform (since ϵC = 0.1 in this case). We use the ℓ2‐norm to define the norms of both the
input and output time series.

Many analyses and mitigation strategies were proposed to understand and address this instability, to varying
degrees of success (Cohen et al., 2019; Ilyas et al., 2019; Madry et al., 2018; Shafahi et al., 2019; Szegedy
et al., 2014; Tramér et al., 2018; Zhang et al., 2019). But even for relatively simple models such as convolutional
neural networks (CNNs), adversarial examples persist and no satisfactory stabilization method has been found.
The root cause of these instabilities has not been identified. Characterizing the destabilizing perturbations and
stabilizing a NN against them are important open problems. Currently proposed stabilization techniques often
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come at a loss of model utility (Zhang et al., 2019) or at a high computational cost (Cohen et al., 2019). On the
other hand, greater data set size and greater test accuracy correlates well with greater accuracy against adversarial
examples, according to a broad survey (Miller et al., 2021). This suggests simply scaling up the data set and the
model size (Kaplan et al., 2020) might stabilize the NNs eventually, but the scale needed for desired accuracy is
infeasible to achieve at the moment. As a result, the development of deep learning methods that produce accurate
models that are stable against adversarial examples, that is, models for which adversarial examples cannot be
found, still remains an open problem, and to date there has been little mathematical understanding of how to
approach this more systematically.

In this work, we introduce a novel stability analysis for feedforward NNs derived directly from the NN archi-
tecture. Our analysis is based on a new observation that a feedforward NN f has the expansion

f (x) = [F0 + Fσ(x)] ⋅ x. (2)

In the expansion F0 is a constant matrix that is independent of the input and Fσ is a low‐rank matrix that varies with
the input x. We say the latter matrix Fσ is low‐rank because its rank is less than the number of layers in the NN; The
number of layers is usually much smaller than either input or parameter dimensions in practice. This expansion is
new, to the best of our knowledge, and is presented in more detail in Theorem 2.4 below.

The expansion follows from simple linear algebraic tools like Householder reflection and singular value
decomposition (SVD); we refer the readers to standard texts in numerical linear algebra for terminology used
throughout (Groetsch, 2011; Trefethen & Bau, 1997). Moreover, the key components of the expansion, that is, the
singular vectors of the low‐rank matrix, can be estimated efficiently at the complexity required to evaluate the NN
once. This implies that the decomposition can potentially be used during training or evaluation for stabilization.
These two qualities, the simplicity of the analysis as well as the computational efficiency, are indications that the
analysis can be adapted to more general situations.

Based on an analysis of this expansion, in conjunction with existing empirical evidence, we conjecture that the
adversarial examples originate from the input‐dependent low‐rank map Fσ . To support our thesis in a high‐
consequence context, we apply the analysis to a NN model for tsunami early warning that was trained on syn-
thetic geodetic signals and tsunami waveform (Rim et al., 2022). The NN model has a CNN architecture, and
more specifically it uses 1D convolution and transpose convolution layers. Such a NN is already known to be
susceptible to adversarial examples: for example, a 1D CNN trained on electrocardiogram data suffers from such
examples (Han et al., 2020).

We show that adversarial examples found by the PGD algorithm (Kurakin et al., 2017; Madry et al., 2018) have
significant components in the unstable terms in the rank‐1 expansion of Fσ and that, conversely, the unstable
components of Fσ serve as adversarial input perturbations. Similarly, when the unstable components are filtered,
the input ceases to cause large changes in the output. This implies that the expansion in Equation 2 can potentially
be used as a computationally efficient algorithm for detecting and filtering adversarial input perturbations.

2. Low‐Rank Expansion of NNs and Stability Analysis
This section introduces the low‐rank expansion for feedforward NNs, and formulates an explanation of how
adversarial examples can appear by analyzing that expansion. We begin by defining feedforward NNs whose
activation function is set as the rectified linear unit (ReLU) and deriving an expansion. Then we show that the
input‐dependent part of the expansion has a low‐rank representation. Finally, we describe how certain singular
behavior in the expansion can lead to adversarial examples.

We will introduce definitions and notations necessary to describe NNs. Given a sequence nℓ ∈ N for index
ℓ = 1,… , L signifying the layer number, let x ∈ Rn0 denote the input vector, and σ : R → R the nonlinear
activation (called ReLU) that sets negative values to zero σ(z) ≡ max{z, 0}. We will omit the range of ℓ when it is
clear from the context. Let Aℓ : Rnℓ × nℓ − 1 be linear maps enumerated by the index ℓ. Linear maps can be identified
with a matrix inRnℓ × nℓ − 1 so we write Aℓ(z) = Aℓ ⋅ z = Aℓz, for matrix‐vector multiplication, and will often refer
to a matrix in place of the corresponding linear map. We denote by ⊙ the entrywise application of the scalar
function σ to any vector: if z = [z1, … , znℓ ]

T ∈ Rnℓ then σ ⊙ z = [σ(z1),… , σ(znℓ )]
T ∈ Rnℓ .

JGR: Machine Learning and Computation 10.1029/2024JH000223

RIM ET AL. 3 of 20

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000223, W
iley O

nline Library on [24/02/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Definition 2.1 A feedforward neural network with ReLU activation f : Rn0 → RnL is defined as the alternating
composition

f (x) = AL ⋅ σ ⊙ AL− 1 ⋅ … ⊙ A2 ⋅ σ ⊙ A1(x). (3)

Throughout, we will refer to such f simply as a neural network (NN).

This is a simplified model widely used in literature analyzing NNs (DeVore et al., 2021; Goodfellow et al., 2016;
Szegedy et al., 2014). In practice it is common to have bias terms in the maps Aℓ or to introduce max‐pooling
layers, but we will omit these here for the simplicity of exposition. They can also be included in our lineariza-
tion in a straightforward manner. We will re‐introduce these in our computational examples when we experiment
with NNs used in practice.

A NN is called fully connected when Aℓ’s are allowed to be dense, and the NN is said to be convolutional when
they are mostly convolutions or transpose convolutions. When there are skip connections, the NN is said to be
residual. For detailed explanation of these or other terminology, we refer the reader to (Goodfellow et al., 2016).

2.1. Motivation

Our principle aim is to determine the local stability properties of the NNs defined by Equation 3. To motivate our
approach, we start by revisiting the well‐known analysis presented in (Szegedy et al., 2014). A straightforward
analysis (Appendix A1) yields the bound

‖ f (x) − f (y)‖2 ≤ ( ∏
L

ℓ=1
‖Aℓ‖2)‖x − y‖2. (4)

Note that we will use the ℓ2‐norm denoted by ‖⋅‖2 as the norm of choice throughout.

Due to this inequality, the Lipschitz constant for f is bounded above by ∏L
ℓ =1‖Aℓ‖2. The bound implies that one

can control the Lipschitz constant Lf of the NN by controlling ‖Aℓ‖2. This leads to several strategies that impose
certain penalties during training (Bai et al., 2021). However, this bound neglects the effect of the nonlinear
activation, and only applies to the constant matrix F0 that is the product of the matrices Aℓ,

F0 ≡ AL ⋅ AL− 1 ⋅ … ⋅ A2 ⋅ A1. (5)

So F0 ⋅ x is equal to f (x) only when the output of all the intermediate hidden variables all have non‐negative
entries. Any instability for the linear map F0 is straightforward to characterize: Its SVD reveals all the singu-
lar vectors with large singular values. So one finds all linear subspaces of the domain that can cause an instability
through the SVD (see standard texts, for example (Groetsch, 2011)).

In contrast, adversarial examples generally depend nonlinearly on the input x and are not restricted to a fixed
linear subspace. This suggests that the instability is inherently nonlinear. Moreover, the upper bound of the
Lipschitz constant of f given above in Equation 5 yields an identical estimate for the Lipschitz constants for both f
and F0. That is to say, the bound cannot distinguish between two types of instabilities that have distinct de-
pendencies on the input. As such, it would be surprising if penalizing the spectral norms of the Aℓ’s during
training provided a good control of these nonlinear instabilities that are present in f but not in F0.

The motivation for this work is to extend the completely linear stability analysis Equation 4 to the nonlinear
regime. However, the fully nonlinear regime is high‐dimensional, making the analysis intractable; instead, we
pursue a simplifying analytic technique. The key idea is to approximate the nonlinear activation σ using a rank‐1
perturbation of the identity, which dramatically simplifies the stability analysis of the entire NN yet it incorporates
sufficient nonlinear effects to account for the adversarial examples. We will provide the details in the following
sections.
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2.2. Approximating Nonlinear Activations Using Householder Reflectors

Instead of focusing on F0 to study the stability of f , we focus on a different representation derived from f . First, we
write the ReLU activation in an alternate form. Note that ReLU can be written as

σ ⊙ z =
1
2

(z + |z|), (6)

where |z| is the entrywise absolute value of the vector. Since the map z ↦ |z| is a reflection, one can write it as a
Householder reflection (Trefethen & Bau, 1997) in the form

Hz = I − 2vzvT
z . (7)

The vector vz is a scalar multiple of |z| − z (see Appendix A2). Then we have that the ReLU function, when
interpreted as a matrix, is also a rank‐1 perturbation of the identity,

σ ⊙ z =
1
2

(I + Hz) z = (I − vzvT
z ) z. (8)

This is nonlinear since vz depends on z, but below we will linearize about a fixed z in defining the matrix. Next,
denoting the hidden units in the feedforward network by

zℓ+1 ≡ σ ⊙ Aℓzℓ, z0 = x, (9)

and enumerating the input dependent vectors vz appearing in the rank‐1 perturbation in Equation 8 corresponding
to the input zℓ from the previous layer as in

vℓ ≡ vw where w = Aℓzℓ, (10)

we have that

σ ⊙ Aℓzℓ = (I − vℓvT
ℓ) (Aℓzℓ) = (Aℓ − vℓvT

ℓ Aℓ) zℓ. (11)

Now, we view the map as a rank‐1 perturbation of Aℓ. Denote the perturbation by

Mℓ ≡ vℓwT
ℓ , where wℓ ≡ − AT

ℓ vℓ, ℓ = 1,… ,L − 1. (12)

So the ReLU σ applied to Aℓzℓ is the sum of two linear maps Aℓ and Mℓ applied to zℓ,

σ ⊙ Aℓzℓ = (Aℓ + Mℓ) zℓ, ℓ = 1,… , L − 1. (13)

Note that each Mℓ is dependent on the input, that is, Mℓ = Mℓ(x). We let ML be the zero matrix.

These derivations result in the following lemma.

Lemma 2.2 (Matrix representation of a NNs). A NN f as in Definition 2.1 can be written as a matrix‐vector
product

f (x) = F(x) ⋅ x, (14)

where the matrix F : Rn0 → RnL × n0 is given by

F(x) = [AL + ML(x)] [AL− 1 + ML− 1(x)] ⋯ [A1 + M1(x)], (15)
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where Aℓ’s are linear mappings in the feedforward architecture, and Mℓ’s are rank‐1 matrices. We will call F the
matrix representation of the NN f .

One expands the matrix product to see that F is a sum of 2L linear transformations. Let us denote each of them by
Fb where b is an integer represented in L‐bits,

Fb = BLBL− 1… B1, where Bℓ ≡ {
Aℓ if (b)ℓ = 0,

Mℓ if (b)ℓ = 1.
(16)

With this notation we may write

F = ∑
2L− 1

b=0
Fb. (17)

For any b > 0, there is a least one ℓ such that (b)ℓ = 1 so Bℓ = Mℓ which is rank‐1, implying that Fb is also rank‐
1 (see Appendix A3). Writing the terms Fb with b > 0 as a separate sum, F is written as follows. The term with
b = 0 is F0 = ALAL − 1⋯A0, a constant matrix which can potentially be full‐rank.

Lemma 2.3 The matrix representation F of the NN f (as in Definition 2.1) can be written

F(x) = F0 + Fσ(x), where Fσ(x) ≡ ∑
2L − 1

b=1
Fb(x), Fb in the sum are rank‐1. (18)

Here Fσ is dependent on the input x, but F0 is not. Crucially, Fσ is a sum of rank‐1 matrices resulting from the
nonlinear activations, and its stability properties cannot be inferred solely from those of F0. We will show in the
next section that F(x) can be viewed as a low‐rank perturbation of F0, and its kernel and range are critical
subspaces in relation to adversarial examples. We briefly remark that Leaky ReLU can be used in place of ReLU
above (see Appendix A4).

2.3. Low‐Rank Householder Expansion of NNs

Recall that the matrices Fb with b > 0 appearing in the input dependent part of Fσ in Equation 18 and are each rank‐
1. But since the sum in Equation 18 includes 2L terms, it seems that Fσ could have very high rank. On the contrary,
it is at most rank L − 1 because of the structure of these matrices, a key fact for our analysis. We show that the
domain and range for such Fb belong to fixed linear subspaces independent of b, and that these subspaces have
dimensions at most L − 1.

Put in other terms, the input‐dependent part Fσ has the rank‐1 expansion,

Fσ = ∑
L− 1

ℓ,ℓ′=1
Cℓℓ′ ϕℓψT

ℓ′ where Cℓℓ′ = ∑
2L − 1

b=1
∑

ℓmin(b) = ℓ
ℓmax(b) = ℓ′

cb. (19)

It is natural to take the SVD of the matrix (Cℓℓ′ ) to obtain orthonormal bases Z = {ζℓ}
r
ℓ =1 of Φ = {ϕℓ}

r
ℓ =1 and

Ξ = {ξℓ}
r
ℓ =1 of Ψ = {ψℓ}

r
ℓ =1, respectively, that have dimensions r ≤ L − 1 and transforms the double sum in

Equation 19 into a single sum. The new sum with L − 1 terms is expressed as the SVD

Fσ = ∑
r

ℓ=1
dℓζℓξT

ℓ with r ≤ L − 1, (20)
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where d1 ≥ d2 ≥ ⋯ ≥ dr are singular values, whereas ζℓ and ξℓ are the left and right singular vectors, respectively.
The functions dℓ,ζℓ,ξℓ as well as the rank r depend on x.

The derivation of the low‐rank structure in the previous section results in the following theorem. This is the main
result of the paper, and the detailed derivations appear in Appendix A5.

Theorem 2.4 (Low‐rank Householder expansion of NNs). Let f be a NN as in Definition 2.1 with the matrix
representation F. Then F can be expanded

F(x) = F0 + Fσ(x) with rank(Fσ(x)) ≤ L − 1. (21)

We refer to this expansion as the low‐rank Householder expansion or simply low‐rank expansion of NN f.

We say the expansion is low‐rank in the sense that the rank of Fσ is less than the number of layers L and in many
applications L is significantly smaller than the dimension of the input n0 or the dimension of the parame-
ters ∑

L − 1
ℓ =0 nℓnℓ + 1.

Now one could linearize f about a fixed input x0 by freezing Fσ in Equation 21. Doing so yields a constant linear
map Fσ (x0) . In this case Equation 11 becomes a rank‐1 approximation of ReLU which is first order accurate, and
one obtains a linearization

F(x0) ⋅ (x0 + δx) = f (x0) + (F0 + Fσ (x0)) ⋅ δx. (22)

The resulting F(x0) ⋅ x agrees with f (x) up to first order in the neighborhood of x0.

We make a few remarks regarding the linearization. Observe that the ReLU linearized by freezing the input in its
rank‐1 perturbation Equation 8 is equal to the original ReLU output for positive entries, but is not equal otherwise.
As a result, this linearization does not preserve the pattern of zeros introduced by the ReLU and it is distinct from
other linearizations that do. There are straightforward extensions of Equation 11 to higher rank approximations
that lead to a family of linearizations similar to that in Equation 21. We mention that there are other linearization
of the nonlinear activations (e.g., see (Choromanska et al., 2015)).

2.4. Adversarial Examples From the Low‐Rank Expansion

We now discuss the conditions under which an adversarial example can exist although F0 is stable. We will
assume that the induced ℓ2‐norm of F0, and therefore its Lipschitz constant, is not large. Suppose δx is a
perturbation about x0 satisfying

‖δx‖2 < ε and
‖Fσ (x0) ⋅ δx‖2

‖F0 ⋅ δx‖2
≥ 1. (23)

Then we have (via derivations in Appendix A6)

‖F(x0) ⋅ δx‖2 ≥

⃦
⃦
⃦
⃦
⃦

∑
r

ℓ=1
dℓξT

ℓ(δx)ζℓ

⃦
⃦
⃦
⃦
⃦

2

− ‖F0‖2‖δx‖2. (24)

If we choose the perturbation δx satisfying Equation 23 that is also parallel to the orthonormal basis function ξℓ∗
we have

‖F(x0)‖2 ≥
‖F(x0) ⋅ δx‖2

‖δx‖2
≥ dℓ∗ − ‖F0‖2. (25)

Large variations in the output relative to the input can arise if dℓ∗ ∼ 1/ε whereas ‖F0‖2 ∼ 1. In that case
‖F(x0)‖2 ∼ 1/ε. Since F(x0) approximates F(x), the NN must also be unstable with respect to the perturba-
tion δx.
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NNs satisfying these conditions are readily found in computational experiments, both in untrained NNs with
randomly assigned weights and in more realistic NNs with trained weights. We will demonstrate this in the
following section.

3. Computational Examples
In this section, we will perform computational experiments with two NNs. The first is an untrained model with
randomly assigned weights. Note that the distributions of weights often used to initialize training typically gives a
stable NN, which may then become unstable after training. For this simple example we instead randomly assign
weights from a Gaussian process in order to mimic a trained NN without explicitly training the network. This
allows us to assess how characteristics of the weight distribution affect the degree of instability. We also infer that
instabilities occur even when the NN is relatively small, magnifying as the network gets deeper.

Figure 1. Singular values related to the untrained model. (a) Singular values of matrices whose columns are vectors sampled
from Φ and Ψ, and (b) singular values of F0 and Fσ (x0).

Figure 2. Ratio of spectral norms R = ‖Fσ (x0)‖2/‖F0‖2 for the untrained model with (a) varying dimensions, and (b) varying
bias levels B in Equation 26.
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The second example we study is a CNN model trained on simulated geophysical data that was studied in (Rim
et al., 2022) for the purpose of tsunami early warning.

3.1. An Illustrative Example

We first consider the example involving a simple untrained NN with randomly assigned weights. This example
indicates that we need neither a large nor a deep NN to see instabilities from perturbations arise. However, the
instabilities become more apparent and with higher bias in larger networks. We create a fully connected NN in the
form of Equation 3 with L = 7 layers and dimensions n0 = n1 = ⋯ = nL = 30. We choose randomly
generated weights for all the linear layers Aℓ, drawn from the standard normal distribution N(0,1). We also
randomly select an input and we expand the NN. The input is a vector whose entries were drawn from the uniform
distribution U (− 1/2, 1/2).

We compute an orthonormal basis for Φ and Ψ as defined in (Appendix A14) by sampling the vectors
{Fbx0 : b = 1, … ,2L − 1} and {FT

b f (x0) : b = 1,… ,2L − 1} then taking their SVD. The singular values are
shown in Figure 1a. There is a sharp drop in the singular values to single‐precision machine roundoff level after
the first 6 singular values. This agrees well with our low‐rank expansion in Equation 21, showing that Φ and Ψ are
indeed at most L − 1 = 6 dimensional.

For this untrained model, it is not difficult to compute all the individual terms Fb for b = 1,… , 2L − 1 and

explicitly form the sum Fσ (x0) = ∑
2L − 1
b =1 Fb. Then one obtains the low‐rank expansion by taking the SVD of the

computed Fσ (x0) . The singular values are shown in Figure 1b. The index where there is a gap in the singular
values agrees precisely with the previous plot. We have computed the correlation between the two sets of singular
vectors, and found that the two orthonormal bases span the same space up to the level of numerical precision.

The size of the gap in the singular values suggests that an orthonormal basis for Φ and Ψ can be found simply by
sampling Fbx and FT

b f (x0) for a number of values b then computing the SVD. Upon computing these bases, one
samples the matrix Cℓℓ′ and then computes its SVD to estimate the low‐rank expansion indirectly.

Figure 3. (a) Singular values of matrices whose columns are vectors sampled from Ψ and Φ, (b) logarithmic scale plot of
absolute values of Ĉℓℓ′ estimated based on Ψ̂ and Φ̂, and (c) singular values of the matrix [ Ĉℓℓ′ ].
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Next, we attempt to verify whether we can generate adversarial examples from a random untrained model. Above
we discussed the conditions in which adversarial examples can be precisely identified by the low‐rank expansion
Equation 21. We will show that we can meet these conditions with our untrained model, if we make use of a
customized Gaussian process noise model for the weights in the linear layers. We assign randomized weights
entrywise by forcing that Aℓ is lower Hessenberg, that its entries below the first subdiagonal are zero, then
drawing the nonzero entries from a normal distribution with a negative bias,

(Aℓ)ij ∼ N(− B, 1) if i − j > 1 (26)

where B is a bias in the range [0,2]. We explicitly compute spectral norms of F0 and Fσ (x0) to compare their ratios

R =
‖Fσ (x0)‖2

‖F0‖2
. (27)

Note that if R ≫ 1 it implies that δx satisfying Equation 25 with dℓ∗ = R‖F0‖2 exists (ℓ∗ = 1), resulting in

‖F(x0) ⋅ δx‖2
‖δx‖2

≥ (R − 1)‖F0‖2. (28)

To observe the dependence on the dimension m = n0 = ⋯ = nL and the bias level B, we calculate the ratio R
for 100 randomly drawn NNs for each bias level B = 0.0, 0.2,0.4,… , 2.0 for fixed dimension m = 30, then for
each dimension m = 10, 20,… ,50 for fixed bias level B = 0.6.

The statistics of the ratio is shown in two sets of box plots in Figure 2. The ratio easily reaches 200 and above,
meaning that a small perturbation in the input in the direction of the first singular vector (ξ1 in Equation 20) can
cause a much larger response in Fσ (x0) compared to that in F0. One observes that the bias level at around 0.8
maximizes the ratio, and that in the unbiased or highly biased cases the ratio stays modest, although outliers exist
in the latter case. When the dimension m is increased, the quartiles tend to increase with the dimension. This

Figure 4. The singular vector pairs (ξℓ, ζℓ) for the domain and the range of Fσ (20) corresponding to indices ℓ = 1,2. (a) The
right singular vector ξ1 plotted as a Global Navigation Satellite System input at two selected stations, (c) the left singular
vector ζ1 plotted at a gauge output. Similar plot for ξ2 (b) and ζ2 (d).
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indicates that among NNs with the same random model for the weights those with larger dimensions are more
likely have larger values of R.

3.2. Tsunami Early Warning Model

We apply our analysis to a tsunami early warning model (Rim et al., 2022). This model is summarized very briefly
below; full details and many figures illustrating the data and quality of forecasts are presented in the original
paper. We compute the low‐rank expansion in Equation 21, estimate the input space Ξ in Equation 20, then
compare the adversarial perturbations found by PGD with perturbations to the singular vectors {ξℓ} in the
expansion. We repeat the experiments for standard noise perturbations.

3.2.1. Model Architecture and Its Expansion

The model is a standard CNN that maps the geodetic time‐series measurements coming from 60 GNSS stations,
each with east (E), north (N), vertical (Z) components. Accordingly, the input dimension is n0 = 60 ⋅ 3 ⋅ 512
because there are 60 stations and 3 components and the length of the time‐series is 512. The output of the NN is
the full tsunami waveform at 3 different gauge locations. The output dimension is nL = 3 ⋅ 256, as there are 3
gauges and the length of the time‐series is 256. For training data we used 1,300 synthetic earthquakes originally
generated by Melgar et al. (2016) using the MudPy software (Melgar, 2020), which also generates synthetic
GNSS data. The seafloor deformation for each event was then used to generate the corresponding tsunami
waveform using the GeoClaw software (Clawpack Development Team, 2020).

Throughout this section, we will plot inputs and outputs at only two GNSS stations named bamf and lsig and only
show the Z component of the signal, in order to illustrate typical results. We also show the tsunami wave gauge
forecasts as only a single gauge location, Gauge 901, which is located in Discovery Bay, WA. The plots for the
other components, and at the other GNSS stations or gauge locations, have similar characteristics (see Figures S1–
S6 in Supporting Information S1).

Figure 5. An adversarial example found by projected gradient descent. (a) The perturbed input x0 + δx at two selected
stations, (b) the perturbation δx, and (c) the resulting perturbed output f (x0 + δx) at gauge 901. An imperceptible 0.5%
change in the input causes a large 36% change in the output.
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Given an input, the model first applies a sequence of 9 pairs of convolutional and max‐pool layers, then applies the
8 transpose convolutional layers. Between each pairs, we apply the Leaky ReLU activation function with negative
slope 1/2. The channel output sizes for each convolutional and transpose convolutional layer are
26‐26‐27‐27‐27‐28‐28‐29‐29 and 29‐29‐28‐28‐27‐27‐26‐26, respectively. In the study, an ensemble of 25 NNs were
trained. We will analyze the stability of one NN in the ensemble.

Here we will omit the details regarding this NN model and focus on studying its stability properties. For full
details regarding the geographical locations of these stations and gauges, as well as the NN model and its training,
we refer to the original reference (Rim et al., 2022); also, see Data and Resources.

This NN architecture includes bias terms and max‐pool layers that were absent in our analysis of Equation 3.
Introducing the bias terms result in additional input‐dependent terms in our expansion in Equation 20 that we can
include into Fσ (x0) in a straightforward manner, and this does not increase its rank. We also freeze the max‐pool
layers (Appendix A7) so that they effectively become permutations, resulting in a linearization. We note here that
the technique linearizing the ReLU above can also be applied to max‐pool layers, and doing so would result in a
different linearization. We will not pursue this here, however.

3.2.2. Basis Estimation

We sample the input and output spaces Ψ ≡ span{ψℓ}
r
ℓ and Φ ≡ span{ϕℓ}

r
ℓ (recall Equation 19) by computing

the outer product Fb for a small subsample of b of size 3L (out of 2L − 1 possible values, see (Appendix A12)).
Then collecting these sampled vectors and taking the SVD, we see a gap in the singular values and obtain the
basesΦ̂ = {ϕ̂ℓ} andΨ̂ = {ψ̂ℓ} . See Figure 3 for a plot of singular values of the sampled basis. Next, we use them
as surrogates for the sum in Equation 19

Figure 6. Input and output perturbations for the projected adversarial example. (a) The perturbed input x0 + (δx)proj at two
selected stations, (b) the projected perturbation (δx)proj, and (c) the resulting perturbed output f (x0 + (δx)proj). An
imperceptible 0.5% change in input causes a large 34% change in the output.
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F̂σ (x0) = ∑
ℓ,ℓ′

Ĉℓℓ′ ϕ̂ℓψ̂ℓ′ . (29)

Next, we calculate Ĉℓℓ′ by computing all of Fb for b = 1,… ,2L − 1 and projecting them into the bases Φ̂ andΨ̂.
Taking the SVD of Ĉℓℓ′ , we obtain our approximation Ẑ = {ζ̂ℓ} and Ξ̂ = {ξ̂ℓ} of Z and Ξ. A plot of absolute
values of Ĉℓℓ′ , together with the singular values of Ĉℓℓ′ are shown in Figure 3. First two basis in Ẑ and Ξ̂ are
shown in Figure 4.

We remark here that the estimation of Ĉℓℓ′ is a computationally expensive task, whereas the computation of the
orthonormal basesΦ̂ andΨ̂ only required evaluations of the NN for 3L sample values of b, yet the plot of absolute
values of Ĉℓℓ′ shows that the ordering of the bases remains largely unchanged. Therefore the estimated bases Φ̂
and Ψ̂ can potentially serve as computationally cheap substitutes for Ẑ and Ξ̂. As a consequence, the basis in the
low‐rank expansion can be computed at a small cost at any input x0, that is, at the cost equivalent to one evaluation
of the NN.

3.2.3. Adversarial Examples From the Low‐Rank Expansion

Now that we have an estimate of the low‐rank expansion in Equation 20 for the tsunami model, we perform tests
to verify if adversarial examples discovered via optimization lie in the linear subspace Ψ.

We compute an adversarial example x0 + δx about an input x0 using PGD. In PGD, we attempt to maximize the
test loss, a strategy that is sometimes called an untargeted attack. Within the PGD algorithm, we have used both
ℓ∞ and ℓ2‐projections and found that ℓ2‐projection yields worse adversarial examples. We will use ℓ2 throughout
but using ℓ∞‐projections instead lead to similar conclusions. To measure the size of the perturbations in input and
output, we will use the relative 2‐norm (e.g., for input change we use the ratio ‖δx‖2/‖x‖2).

Figure 7. Filtering of an adversarial example found by projected gradient descent. (a) The perturbed input x0 + (δx)filter at

two selected stations, (b) the filtered perturbation (δx)filter, and (c) the resulting perturbed output f (x0 + (δx)filter). The

amount of output perturbation is at 8%, close to that of the input perturbation.
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Next, we compute the projection of δx onto Ψ̂

(δx)proj ≡ Ψ̂Ψ̂T
(δx). (30)

then compare the resulting output perturbation. In order to show a fair comparison of the output perturbations
from two perturbations δx and (δx)proj, we will scale them so that their 2‐norm is 0.5% of the 2‐norm of the
input x0.

We show in Figures 5 and 6 the adversarial example x0 + δx, the input perturbation δx, the resulting output
y0 + δy where y0 = f (x0). We observe that (δx)proj causes a large perturbation in the output comparable to δx,
34% change versus 36%. Note also that (δx)proj has a profile similar to that of δx, showing that much of the
perturbation is unchanged through the filter.

Figure 8. Perturbation of output caused by input perturbation along the basis functions of Ξ̂. (a) to (f) Show output perturbation when δx is chosen to be parallel to ξℓ and
rescaled to be 0.5% of the ‖x0‖2, for index ℓ from 1 to 6. Some of these input perturbations cause large changes in the output, comparable to the adversarial perturbations
found by projected gradient descent in Figure 5.
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This suggests the possibility that removing from δx its projection to Ψ can lead to a more stable output. So we
define the filtered perturbation as the orthogonal complement

(δx)filter ≡ (I − Ψ̂Ψ̂T
)(δx). (31)

We again scale the filtered input to be 0.5% of the ℓ2‐norm of the input, as we have for δx and (δx)proj, and
compute the output of the perturbed input. The results are plot in Figure 7. Now the output perturbation is at a
similar level as that of the input perturbation, 3% versus 2%.

Next, following the analysis above, we measure the amount of output perturbation caused by perturbing the input
using the basis Ξ̂. The results for the first six vectors are shown in Figure 8. Observe that perturbation by ξ3 causes
29% change in the output, a severe change comparable to that of the adversarial example found by PGD. Plots for
all GNSS stations and gauges are shown in Figures S1–S6 in Supporting Information S1.

3.2.4. Noise in GNSS Data

We now consider the case that the input perturbation δx is physical noise rather than a specific perturbation in an
adversarial example computed by PGD. Since this is the type of noise that is most likely to affect real mea-
surements, it is imperative to check if such innocuous and expected perturbations could excite these instabilities.
We generate Brownian noise for each GNSS time‐series, then use it as the perturbation δx. The resulting
perturbation is shown in Figure 9. A noise level of 5% causes a 24% change in the output. After filtering, however,
the output change is reduced to 3% as shown in Figure 10.

To study the effect of input noise more closely, we experiment with three different types of noise perturbations:
white noise, Brownian noise, and power‐law noise. For the latter, the spectral density is chosen as the Gaussian
exp[− k2/σ2] with σ =

̅̅̅̅̅
10

√
. We draw 1,000 sample perturbations from each noise and compute the input and

Figure 9. An adversarial example drawn from Brownian noise. (a) The perturbed input x0 + δx at two selected stations,
(b) the perturbation δx, and (c) resulting perturbed output f (x0 + δx). Noise level of 5% in the input causes 24% change in the
output.
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output change ratio ‖δy‖2/‖δx‖2. We scale the noise uniformly across samples so that ‖δx‖2/‖x0‖2 is around 5%.
In addition, we compute the same ratio for the filtered noise (δx)filter as in Equation 31.

The results are plotted in Figure 11. The NN is not significantly affected by white noise (a similar observation can
be made in Figure 7 where filtered perturbation resembles white noise) whereas Brownian noise and power law
noise do cause large changes in the output, up to a factor of Equations 5–6. Since tsunami prediction is a risk
intolerant application and a fair amount of noise is expected in the measurement, large changes in the output have
critical consequences. However, filtering out the noise tends to yield significantly smaller output changes and
could reduce the sensitivity of the network to adversarial examples.

4. Conclusion
This work proposes a novel stability analysis, derived from a new low‐rank
expansion of feedforward NNs that uses ReLU‐type activations. Our anal-
ysis suggests a mechanism by which adversarial examples can occur, and
establishes a close relation between these examples and the SVD of the input
dependent low‐rank matrix that appear in the expansion. The computational
examples demonstrate that the analysis applies to both untrained models
initialized with random weights and a tsunami warning model trained on
empirical data. These results reveal that the models trained on simulated
geophysical data also suffer from the same instabilities as those trained on
image classification data, and urge caution in deploying NN models trained
for hazard prediction and assessment. The analysis will be potentially useful
in devising new approaches for developing defenses against adversarial ex-
amples, which is important for security‐ or safety‐critical applications. The
analysis is widely applicable to NN models trained on other geophysical data

Figure 10. Filtering of Brownian noise. (a) The perturbed input x0 + (δx)filter at two selected stations, (b) the filtered

perturbation (δx)filter, and (c) resulting perturbed output f (x0 + (δx)filter). Filtering the input reduces the output perturbation

by a factor of 10.

Figure 11. Ratio of input and output changes for different types of noise,
white noise, Brownian noise, and power law noise.
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sets, such as larger seismic data sets that include real measurements, making it a computationally efficient tool for
identifying and analyzing the instabilities in various applications.

Appendix A: Mathematical Details
A1. Naïve Estimate for Lipschitz Constant of NNs

One first observes that σ has a Lipschitz constant Lσ = 1 since

‖σ(x) − σ( y)‖2 ≤‖max{x, 0} − max{ y, 0}‖2 ≤‖x − y‖2 (A1)

for all x, y ∈ Rnℓ . This allows one to derive the bound

‖ f (x) − f (y)‖2

≤‖AL ⋅ σ ⊙ … ⊙ A1(x) − AL ⋅ σ ⊙ … ⊙ A1(y)‖2

≤‖AL‖2‖σ ⊙ AL− 1 ⋅ … ⊙ A1(x) − σ ⊙ AL− 1 ⋅ … ⊙ A1(y)‖2

≤‖AL‖2‖AL− 1 ⋅ … ⊙ A1(x) − AL− 1 ⋅ … ⊙ A1( y)‖2

⋮

≤( ∏
L

ℓ=1
‖Aℓ‖2)‖x − y‖2.

(A2)

A2. The Householder Reflector

The formula for the vector vz appearing in Equation 7 is given by

vz =

⎧⎪⎨

⎪⎩

|z| − z

[2zT(z − |z|)]
1
2

if |z| ≠ z,

0 if |z| = z.

(A3)

A3. Rank of Products

The rank of the matrix Fb for b > 0 is upper bounded as follows,

rank(Fb) = rank(BL… B1) ≤ min
ℓ

(rank(Bℓ)) ≤ 1. (A4)

A4. Householder Reflector for Leaky ReLUs

Leaky ReLU σ̂ (Goodfellow et al., 2016) can be written as

σ̂ ⊙ z = (1 − β)z + β|z| (A5)

for some hyper‐parameter β ∈ [1
4 , 1

2] . We write

σ̂ ⊙ z = ((1 − β)I + βHz) z

= ((1 − β)I + β(I − vzvT
z )) z = (I − βvzvT

z ) z,
(A6)

and the expansion in Equation 18 follows with minor changes.

A5. Derivation of the Low‐Rank Structure in the Householder Expansion

We show that there are linear subspaces Ψ ⊂RnL and Φ ⊂Rn0 satisfying
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(i) Range(Fb) ⊂ Φ, [Ker(Fb)] ⊥ ⊂ Ψ for all b > 0,

(ii) dim(Φ), dim(Ψ) ≤ L − 1.
(A7)

We will proceed by explicitly finding such Φ and Ψ. For any Fb with b > 0, let us denote

ℓmin(b) ≡ min{ℓ = 1,… , L : (b)ℓ = 1},

ℓmax(b) ≡ max{ℓ = 1,… , L : (b)ℓ = 1}.
(A8)

For example, given a 9‐bit number b = 001010100, we would have ℓmin(b) = 3 and ℓmax(b) = 7. We will
sometimes drop the dependence on b and write ℓmin, ℓmax for ℓmin(b), ℓmax(b) for brevity.

Recalling that each term Fb appearing in Fσ was defined as the matrix product

Fb = AL⋯ Aℓmax+1Mℓmax
⋯ Mℓmin

Aℓmin − 1⋯ A1, (A9)

and inserting the outer‐product form for Mℓmin
and Mℓmax

as in Equation 12,

Fb = AL⋯ Aℓmax+1(vℓmax
wT

ℓmax
)⋯ (vℓmin

wT
ℓmin

) Aℓmin − 1⋯ A1. (A10)

Grouping the matrix‐vector products we may rearrange,

Fb = (AL⋯ Aℓmax+1vℓmax) (wT
ℓmax

⋯ vℓmin) (wT
ℓmin

Aℓmin − 1⋯ A1)

= (wT
ℓmax

⋯ vℓmin) (AL⋯ Aℓmax+1vℓmax) (wT
ℓmin

Aℓmin − 1⋯ A1),
(A11)

Since wT
ℓmax

⋯ vℓmin
is scalar. As a result Fb is an outer product of two vectors,

Fb = cb ϕℓmin
ψT

ℓmax
for b > 0, (A12)

in which the vectors ϕℓ,ψℓ and scalar cb are defined as follows.

• The vectors ϕℓ and ψℓ are

ϕℓ ≡ AL⋯ Aℓ+1vℓ, ψℓ ≡ − AT
1 ⋯ AT

ℓ− 1 AT
ℓ vℓ. (A13)

Corresponding linear spaces spanned by {ϕℓ} and {ψℓ} are the linear subspaces from Appendix A7 we are
seeking, so we let

Φ ≡ span{ϕℓ : ℓ = 1,… , L − 1},

Ψ ≡ span{ψℓ : ℓ = 1,… ,L − 1}.
(A14)

• The scalar coefficients cb are

cb ≡ wT
ℓmax

Bℓmax− 1⋯ Bℓmin+1vℓmin
(A15)

where Bℓ are as in Equation 16. If this is an empty product, we set cb = 1.

As a result of Appendix 12 the matrices Fb (b = 1,… ,2L − 1) have their range in Φ and the orthogonal
complement of its kernel in Ψ as required in Appendix A7. We note here that while the number of terms in the sum
for Fσ in Equation 18 is exponential in L, the domain and range of Fσ belongs to a linear space whose dimension is
linear in L.
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A6. Perturbation Lower Bounds

The lower bound in Equation 25 follows by the triangle inequality

‖F(x0) ⋅ δx‖2 = ‖[F0 + Fσ (x0)] ⋅ δx‖2

≥‖Fσ (x0) ⋅ δx‖2 − ‖F0 ⋅ δx‖2

≥‖Fσ (x0) ⋅ δx‖2 − ‖F0‖2‖δx‖2,

(A16)

then using the rank‐1 expansion in Equation 20.

A7. Freezing the Max‐Pool Layers

1D max‐pool layers in our architecture (Goodfellow et al., 2016) picks out the larger of every two entries. We
freeze these layers by writing the selection as a multiplication by a permutation matrix, and viewing the per-
mutation to be input‐independent and fixed. For example,

z = [− 0.0803, − 0.3806, − 0.2336, 0.0252]
T , pool(z) = [− 0.0803, 0.0252]

T (A17)

The frozen max‐pool layer would correspond to the linear mapping represented by the constant matrix
multiplication

z ↦ [
1 0 0 0

0 0 0 1
] z. (A18)

Data Availability Statement
The code used to produce results in this work are archived in a Zenodo code repository (Rim & Suri, 2024). We
have made use of the data and the NN model from (Melgar, 2016; Rim et al., 2022). The geodetic data therein was
generated using the MudPy software (Melgar, 2020) that generates random earthquakes (LeVeque et al., 2016),
synthetic GNSS data and sea floor deformations. The resulting tsunami waveform data was generated using the
GeoClaw software from Clawpack (Berger et al., 2011; Clawpack Development Team, 2020). Computational
experiments involving NNs were conducted using the PyTorch Library (Paszke et al., 2019). All of the software
used is open source and freely available.
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