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The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate
change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling
approach, this study investigates the impacts of climate change induced sea-level rise and higher river
discharge on the magnitude and frequency of flooding events as well as the relative importance of
various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of
flooding under the present-day climate are projected to occur once every few hundred years under
climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate
change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are
presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the
future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level
signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change.
These findings are critical for informing climate adaptation and coastal resilience planning in San

Francisco Bay.

The San Francisco Bay Area (SF Bay), the fifth largest metropolitan area in
the United States, is important locally and globally due to its prosperous
economy, diverse culture, and unique landscape'~. However, some low-
lying areas of SF Bay experience coastal flooding™* and the SF Bay Area is at
risk of worsening compound coastal flooding due to multiple forcing factors
such as tides, waves, and river discharge (RD)". As sea level rises due to
climate change'"", increasingly frequent extreme sea-level events are pro-
jected to inundate low-lying areas around the Bay***'*™"* with potentially
disastrous effects on public health, infrastructure, and ecosystems™>'*'*'%"".
In addition, warmer temperatures may increase the intensity of extreme
rainfall'*”® and runoff , resulting in higher RD and changes to flood risk*.
Climate change may also result in more precipitation falling as rain instead
of snow'""*, leading to more direct runoff and causing higher peak RD in SF
Bay', even with some flood control capacity provided by reservoirs
upstream in the Sacramento and San Joaquin river basins. Therefore,
compound flood risk has the potential of significantly increasing as a result
of both sea-level rise (SLR) and higher RD**'*. Itis critical to investigate the
impact of climate change on compound coastal flooding for climate adap-
tation planning and efforts to increase coastal resilience™ .

The influence of climate change on compound coastal flooding in SF
Bay remains underexplored. Most existing research focuses on coastal

flooding under SLR*>>'7**** while only a few studies have focused on
compound flooding analysis under both SLR and higher RD due to cli-
mate change’”. Much of the existing research employs dynamical
approaches™”**7**%* while a few studies use statistical approaches™ or
hybrid statistical-dynamical approaches”. Dynamical approaches are
capable of accurately simulating spatially varying water levels for flooding
analysis by using high-fidelity hydrodynamic modeling techniques™*.
However, heavy computational burden limits the applicability of this
approach for investigating many forcing combinations and flood sce-
narios, especially for large and complex coastal areas such as SF Bay***".
Statistical approaches efficiently assess compound flooding by relying on
techniques such as extreme value analysis for historical data analysis®>*>*.
Statistical approaches are, however, typically unable to perform flooding
analysis for any location of interest or explore all possible forceing com-
binations due to limited spatially and/or temporally varying data**,
particularly when considering climate change****. Like many hybrid
statistical-dynamical approaches applied in other coastal areas*”'">, the
hybrid approaches for compound flooding analysis in SF Bay under cli-
mate change” typically first use statistical techniques to efficiently sample
forcing combinations for return level events under climate scenarios and
then pass the forcing conditions into computationally expensive
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hydrodynamic models to simulate water levels. These types of hybrid
approaches may not identify extreme compound flooding driven by dif-
ferent combinations of forcings that are not captured by statistical
techniques®®. Alternative hybrid modeling approaches have been devel-
oped by merging statistical and numerical modeling to generate the
response of dynamical approaches under a full range of possible forcing
combinations'**>**"*,

This study uses the hybrid statistical-dynamical approach developed
in ref. 56 to analyze compound coastal flooding in SF Bay under a range of
climate change scenarios. By combining a stochastic generator of com-
pound flooding drivers, a high-fidelity hydrodynamic simulator, and
machine learning-based surrogate models; the hybrid framework can
investigate the full range of plausible forcing combinations for compound
flooding analysis, applied to SF Bay. Here we consider six representative
climate change scenarios and a baseline scenario without climate change
for compound flooding analysis using the hybrid framework. The six
climate change scenarios (see Table S1 for details) are defined by linking
three SLR projections (low, medium, and high impact) with six combi-
nations of future warming and thermodynamic scaling of daily pre-
cipitation. Each climate change scenario is used to generate 100 hourly
synthetic simulations of 500 years each, allowing infrequent extreme
return level events to be analyzed. The impact of climate change on
compound coastal flooding is investigated in terms of flood magnitude,
flood frequency, and the relative contributions of different drivers to
extreme flooding. These three metrics can be used to inform climate
change adaptation and coastal resilience planning in the SF Bay Area, and
the hybrid statistical-dynamical approach demonstrated here can be
generalized for compound coastal flooding analysis in other complex
coastal areas under climate change.

Results

Here we present hybrid model results revealing the potential impacts of
climate change in SF Bay (Fig. 1) in terms of flood magnitude, frequency,
and the relative contributions of forcings to flood events. All analyses are
performed at 16 representative locations that are approximately evenly
distributed along the centerline of the Bay (ie., locations 3-18) while
locations 1 and 2 near the Delta mouth are used as auxiliary points for
analysis. The magnitude and frequency of possible flooding are illustrated at
locations 3-18, and the relative contributions of drivers are focused on the 7
locations in the North Bay (ie., locations 3-9) considering the modest
impact of the climate change scenarios considered here on the spatial
variability of the relative contributions elsewhere in the Bay.

Flood magnitude

Stochastic 100-year return level total water level (TWL) event distributions
under each of six climate change scenarios and a baseline scenario without
climate change (Table S1) are computed across 100 hourly simulations of
500 years each. The flood magnitude distributions for each scenario are
shown (Fig. 2a—c) for locations in SF North Bay (location 5), Central Bay
(location 12), and South Bay (location 18, Fig. 1). Extreme TWLs show
larger variability under more extreme climate change scenarios (i.e., higher
temperature and larger thermodynamic scaling rate of extreme precipita-
tion) in the North Bay. For example, extreme TWLs peak at a larger value,
have a greater variation, and are characterized by having a more right-
skewed distribution under the climate change scenario C6 at location 5 (Fig.
2a). The mean, standard deviation, and skewness of the 100-year return level
TWLs under different climate scenarios are provided in Table S3. However,
there is similar variability of extreme TWL events under all climate change
scenarios in the Central and South Bay.
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Fig. 1 | The locations (blue dots) along the centerline (red curve) of San Francisco
(SF) Bay, CA, USA selected for compound flooding analysis. The X and Y coor-
dinates of the 18 locations are provided in Table S2. The Bay is classified into the
North Bay (locations 1-9), Central Bay (locations 10-14), and South Bay (locations
15-18) for convenience of analysis. Note that locations 1 and 2 are near the

Sacramento San Joaquin Delta mouth where Sacramento and San Joaquin rivers flow
into the Bay, and location 3 is where the two rivers converge in the Bay. Inset maps
show the SF Bay Area surrounding (nine counties, i.e., Alameda, Contra Costa,
Marin, Napa, San Mateo, Santa Clara, Solano, Sonoma, and San Francisco) and
including SF Bay, and its location in CA.
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Fig. 2 | Flood magnitude distributions under different climate scenarios.

a—c Distributions of 100-year return level TWLs under different climate scenarios at
locations 5, 12, and 18 (~26 km, 80 km, and 132 km seaward from the Delta,
respectively). d Spatial distribution of mean extreme TWLs under different climate
scenarios along the centerline of SF Bay. Different colors represent different climate
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scenarios, where CO0 is a baseline scenario without climate change and C1 — C6 are
six climate change scenarios with higher river discharge and SLR defined in Table S1.
Note the lines overlap with each other under C1 and C4, or C2 and C5, or C3 and C6
at almost all locations in the Central and South Bay.

The 100-year return level TWLs over the 100 simulations at each
location are averaged to obtain the spatial distribution of the mean extreme
TWLs (Fig. 2d). The spatial variability under different climate scenarios is
similar in the Central and South Bay. However, spatial variability is pro-
jected to be smaller under more extreme climate change scenarios in the
North Bay (i.e., C1 > C4>C2 > C3 > C5> C6).

In addition, the difference in variability between scenarios of climate
change with the same temperature but different thermodynamic scaling
rates of extreme precipitation is greater in scenarios of higher temperature,
i.e, the largest difference of TWLs is 0.26 m, 0.10 m, and 0.02 m between C3
and C6, C2 and C5, and C1 and C4, respectively.

Flood frequency
The amount of time in which nuisance, minor, moderate, and major flood
thresholds are exceeded™ ™" each year is counted for each climate scenario in

the 100 simulations. Fig. 3a—d shows the distribution of the number of hours
per year that water levels exceed these flood thresholds at a location in the
North Bay (the distributions in the Central and South Bay are similar). As
expected, the hours of threshold exceedances per year increase with the
more extreme climate change scenarios. Overall, the hours of threshold
exceedance per year demonstrate a smaller variability when some simula-
tions result in no threshold exceedances and larger variability otherwise.
However, climate change does not have a large impact on variability when
all simulations have threshold exceedances.

The mean flood frequency in terms of return period is calculated by
averaging over the 100 simulations for the four flood thresholds under each
climate scenario at each location (Fig. 3e). The spatial variability of the four
flood thresholds simulations are smaller under more extreme climate
change scenarios. For example, nuisance and minor flood return periods
(minor flooding in particular) decrease from North Bay to South Bay under
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Fig. 3 | Flood frequency distributions under different climate scenarios.

a-d Distributions of the number of hours per year in which nuisance, minor,
moderate, and major flood thresholds are exceeded under different climate scenarios
atlocation 5 (~26 km seaward of the Delta, Fig. 1). e Spatial distribution of nuisance
(circle), minor (asterisk), moderate (triangle), and major (cross) flood frequencies
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under different climate scenarios along the centerline of SF Bay. Note the lines
almost overlap with each other under C1 and C4, or C2 and C5, or C3 and C6 in
(a-d). Moderate flood frequencies at some locations and major flood frequencies at
all 16 locations under CO are not plotted if no such flood events are found in analysis.

C0. Flood events exceeding both are projected to occur more frequently than
once per year at all locations under any considered climate change scenario.
However, the return period of major flood threshold exceedance events
demonstrates relatively large spatial variations under C1 and C4 (ie., both
195.8-500 years), small variability under C2 and C5 (i.e., 1-2.6 years and
1-2.5 years), and no variability under C3 and C6 (i.e., occurs more than once
per year).

Relative contributions of flood drivers

The relative contribution, and associated variability, of each non-SLR for-
cing to the five most extreme events in each simulated hourly 500-year time
series under different climate change scenarios is investigated (Fig. 4a—f for
location 5) (the relative contribution of SLR is straightforward and provided
in Fig. S1). The top five events in each time series represent TWL events with

1% or less chance of occurring in any given year. Overall, tidal levels asso-
ciated with extreme TWLs (Fig. 4a) share a similar range and variability
under all climate scenarios. The water levels (WLs, i.e., the water levels due to
any combination of drivers) due to non-tidal and non-SLR drivers other
than RD (i.e., MMSL, waves, SLP, and winds in Fig. 4b-e) also have a similar
order of magnitude under all climate scenarios. However, these WLs overall
shift from a more left-skewed distribution to a less left-skewed distribution
under more extreme climate change scenarios, e.g., the skewness of the WLs
due to MMSL is -1.52 and -0.11 under CI and C6, respectively. The WLs
associated with these non-tidal and non-SLR drivers become approximately
zero under scenario C6. Unlike other non-tidal and non-SLR drivers, the
WLs due to RD (Fig. 4f) have a larger range (e.g., 0.35 m and 0.85 m under
Cl1 and C6), peak at a larger value (e.g., 0.13 m and 0.50 m under C1 and C6),
and have a less right-skewed distribution (e.g., a skewness of 1.38 and 0.36
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Fig. 4 | Distributions of the relative contributions of non-SLR drivers under
different climate scenarios. Distributions of WLs associated with the five most
extreme events in each simulated hourly 500-year time series due to (a) tides, (b)
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monthly mean sea level (MMSL), (c) waves, (d) sea level pressure (SLP), (e) winds,
and (f) RD under different climate scenarios at location 5 (~26 km from the Delta).

under C1 and C6) under more extreme climate change scenarios, especially
C6. Note that the WLs due to higher SLR have larger variability at location 5
(even at location 12, see Fig. S1).

The average of the relative contributions of each driver to 100-year
return level TWLs across the 100 simulations are calculated under different
climate scenarios in the North Bay (i.e., locations 3-9; up to ~55 km seaward
of the Delta) (Fig. 5). Either tides or SLR dominate extreme TWLs with
relative contributions varying over the climate scenario and/or location.
Tides dominate extreme TWLs in the baseline scenario (i.e., C0) and less
extreme climate change scenarios with SLR =0.5m (i.e., C1 and C4) at all
locations. Tides also dominate extreme TWLs under moderate climate
change scenarios with SLR=1.0m (i.e., C2 and C5) at location 9. SLR
dominates extreme TWLs in all the cases when tides do not dominate. Both
tides and SLR have a similar contribution to extreme TWLs under the
climate change scenarios with the same increase in temperature (also same
SLR) but different precipitation rates (e.g., C1 and C4) at all locations except
location 3, where the contribution is smaller under C6 than under C3 (Fig.
S2). However, the contribution of tides increases seaward in each climate

scenario (i.e., CO — C6) while the contribution of SLR does not vary spatially
except in extreme scenarios with SLR=15m (ie, C3 and C6) near
the Delta.

RD has a much larger relative contribution to extreme TWLs than any
other non-tidal and non-SLR driver (i.e., MMSL, waves, SLP, and winds),
especially near the Delta under more extreme climate change scenarios (e.g.,
even larger than the relative contribution of tides at location 3 under C6).
However, the relative contribution of RD decreases significantly moving
seaward, especially under more extreme scenarios (i.e., C5 and C6, Fig. S2).
The other non-tidal and non-SLR drivers make a relatively small con-
tribution to extreme TWLs, especially near the Delta under more extreme
scenarios (e.g., atlocation 3 under C6). However, the combined contribution
of these drivers (i.e., MMSL, waves, SLP, and winds) can be close to the
relative contribution of low SLR (i.e., C1 and C4 when SLR=0.5m) at
locations 6 and 7 (~32-39 km seaward of the Delta). Furthermore, the
relative contributions of these drivers increase from location 3 to around
location 6 and then decrease toward location 9 with different variability
under different climate scenarios (Fig. S2).
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Fig. 5 | Spatial distributions of the relative con-

tributions of different drivers (i.e., tides, MMSL,

waves, SLP, winds, RD, and SLR) to 100-year return 3
level TWLs under different climate scenarios along

the centerline of SF North Bay (i.e., locations 3-9).
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The relative contributions of non-tidal and non-SLR drivers to the
non-tidal and non-SLR component of 100-year return level TWLs under
different climate scenarios are also investigated (Fig. 6). RD dominates the
non-tidal and non-SLR component of extreme TWLs near the Delta,
especially under more extreme climate change scenarios (ie.,
C0<Cl1<C4<C2<C3<C5<C6). RD still accounts for around 35% of
the non-tidal and non-SLR water level signal, even ~32 km seaward of the
Delta (i.e., location 6) under C6. However, the relative contribution of RD
decreases significantly moving seaward, and becomes minor and smaller
than the other drivers seaward of location 6. Furthermore, the reduction of
the relative contribution of RD is projected to be larger under more
extreme climate change scenarios (Fig. S3). Each of the other non-tidal
and non-SLR drivers has a smaller contribution than RD near the Delta,
especially under more extreme climate change scenarios (ie.,
C0>C1>C4>C2>C3>C5>(C6). In addition, non-tidal and non-SLR
drivers other than RD have a similar contribution under the same climate
scenario near the Delta, as well as under all climate scenarios seaward of
location 6.

Discussion

Compound coastal flooding under climate change poses severe threats
globally, including in the SF Bay Area, but is relatively underexplored due to
the large sample size needed to analyze extreme events. This study inves-
tigates the impact of climate change-induced SLR and increased RD on

compound flooding using a hybrid statistical-dynamical approach. The
results indicate that climate change could have significant impacts on flood
magnitude, frequency, and the relative contributions of different drivers to
extreme water levels.

SLR and higher RD due to climate change are projected to result in
higher extreme TWLs, which in turn demonstrate different temporal and
spatial variability across climate change scenarios and locations within the
Bay. The projected rise in sea level will increase water levels by a similar
magnitude throughout the entire SF Bay. Higher RD under climate change
scenarios (Fig. S4 and Fig. S7) also leads to higher extreme TWLs near the
Delta. The variability associated with this driver reduces significantly over
distance as downstream TWLs are affected by other drivers, especially tides
and SLR.

Climate change is projected to have a significant impact on flood
frequency. More extreme climate change with higher SLR and RD will lead
to a longer cumulative duration of flood events per year, as SLR and RD will
result in more events likely to exceed flood thresholds. In addition, there will
be smaller spatial variability of flood frequency (i.e. similar return period)
under more extreme climate change scenarios. In this case, special attention
should be paid to the parts of the Bay that are more vulnerable to flooding
(e.g., the far north and south ends of the Bay") due to potentially higher
flood risk in future. Here, the spatial variability analysis is based on existing
flood thresholds in the area without considering the change of some
important factors such as potential flood defenses over time. A flood

npj Natural Hazards| (2025)2:3


www.nature.com/npjnathazards

https://doi.org/10.1038/s44304-024-00057-0

Article

Fig. 6 | Spatial distributions of relative contributions

of non-tidal and non-SLR drivers (i.e., MMSL,

waves, SLP, winds, and RD) to non-tidal and non- 3
SLR water levels associated with 100-year return

level TWLs under different climate scenarios along

the centerline of SF North Bay (i.e., locations 3-9).
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thresholding system taking these possible factors into account would result
in a more accurate analysis of flood frequency in the Bay and could be used
to inform future flood risk reduction at different locations™. Previous
research shows that extreme flooding associated with 100-year return level
events in SF Bay can become annual events by the end of this century’. The
present study shows that the situation can become even more severe. For
instance, major flood events are projected to occur annually under the
climate changes scenarios with SLR=1.5m (i.e, C3 and C6) while they
occur only once every few hundred years under the climate changes sce-
narios with SLR = 0.5 m (i.e., C1 and C4). It is clearly important to reevaluate
the return period of coastal flood events in SF Bay to understand the change
in risk under climate change™.

The relative contributions of each forcing driver to extreme TWLs are
projected to change with climate change. In this study, climate change
impacts only mean sea level (via SLR) and RD. However, the similar order of
magnitude for the non-tidal and non-SLR drivers other than RD (i.e.,
MMSL, waves, SLP, and winds) under all climate scenarios confirms that
each of these drivers is also important for the extreme TWLs in SF Bay™*. The
WLs due to SLR or RD have a larger range under more extreme climate
change scenarios. The minimum WLs associated with RD will be similar
under all assessed climate scenarios while the maxima will be larger under
more extreme climate change scenarios. This can be clearly seen from the
correlation between extreme TWLs and their associated RD in more
extreme climate change scenarios, especially for the Sacramento River near

the Delta (location 3 in Fig. S5). Note that the correlation does not neces-
sarily become stronger under a more extreme climate change scenario (e.g.,
Sacramento River under C5 — C6 at location 3). The WLs due to non-tidal
and non-SLR drivers other than RD shift to a smaller magnitude while the
WLs associated with RD shift to a larger magnitude under more extreme
climate change scenarios. This observation and the finding of the correlation
between extreme TWLs and their associated RD confirm the finding that
extreme compound flood events are not necessarily the result of all indi-
vidual drivers being extreme, but instead can occur over a wide range of
driver combinations*>”. In this context, high-fidelity but compute-intensive
dynamical approaches or compute-efficient statistical approaches (e.g., joint
probability analysis) without sufficient historical data do not necessarily
capture extreme compound flood events by assuming that extreme flooding
is induced by a particular forcing combination with extreme values of
drivers**. The hybrid statistical-dynamical approach with accuracy similar
to dynamical approaches but much higher computational efficiency™ is able
to characterize extreme compound flooding by exploring the full range of
possible forcing combinations under stochastic climate and weather con-
ditions at any location of interest.

Climate change is projected to have a significant impact on the spatial
distribution of the relative contributions of each driver to extreme TWLs,
and of non-tidal and non-SLR drivers to the non-tidal and non-SLR com-
ponents of extreme TWLs. Tidal dominance to extreme TWLs will be
reduced due to greater contributions of SLR and river discharge near the
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Delta under a more extreme climate change scenario, especially when high
SLR coincides with high river discharge. However, the relative contribution
of tides increases seaward under all assessed climate scenarios due to
decreasing relative contribution of river discharge, resulting in tidal dom-
inance to extreme TWLs far away from the Delta under moderate climate
change scenarios. This highlights the importance of tides to extreme TWLs
in SF Bay under both today’s climate and future climate scenarios™**. SLR is
expected to dominate extreme TWLs throughout the Bay in more extreme
climate change scenarios, even when river discharge is extremely high. The
contribution of SLR to extreme compound flooding found here aligns with
previous research on SF Bay and other coasts around the world™***",

Increased intensity of precipitation due to climate change, along with a
shift from snow to rain during the winter, will cause greater peak river
discharge into SF Bay and increase extreme TWLs. Due to the impact of
other forcings (tides and SLR in particular), the relative contribution of the
downstream discharge of the river becomes limited and even smaller than
other non-tidal and non-SLR drivers, although it has significant con-
sequences on compound flooding on the upstream boundary’'. Note that
river discharge can dominate the non-tidal and non-SLR water level signal
throughout approximately half of the North Bay (i.e., locations 3-6) under
the extreme climate change scenario. This result demonstrates the great
impact that river discharge could have on compound flooding and high-
lights the importance of combining a stochastic weather generator** with a
hydrologic and reservoir system model®®”) (i.e., the two modules com-
posing the hybrid statistical-dynamical approach™). While this analysis
assumes that the upstream reservoir system maintains current flood control
operations in the future, this may be a key opportunity for adaptation to
reduce the river discharge component of compound flooding in the Bay™.
The hybrid approach can generate the full range of possible river discharges
that may contribute to extreme compound flooding events under stochastic
climate and weather conditions. The non-tidal and non-SLR drivers other
than river discharge are not negligible in compound flooding analysis,
especially in the cases with minor relative contribution of river discharge and
low SLR. The impact of climate change on the spatial distribution of the
relative contributions of the drivers not only indicates the need to evaluate
these relative contributions in the analysis of compound flooding under
climate change®, but also confirms the impact of climate change on the
complex compounding interactions of the flood drivers™"*"**”,

More research on compound coastal flooding under climate change
will improve adaptation planning for climate change in the Bay Area. For
example, compound flooding analysis under additional climate change
scenarios that consider mean precipitation increase to reflect more pre-
cipitation falling as rain instead of snow could inform the investment in
water resources systems to adapt to extreme precipitation events. Incor-
porating the impact of climate change on additional forcing parameters
such as the wind and wave climate would result in a more comprehensive
investigation of future changes to flooding in the region. While many
important uncertainties associated with climate and weather variability as
well as TWL forcing are captured here, other uncertainties associated with
TWL forcing (e.g., non-stationarity of forcing variables), model para-
meters (e.g., roughness coefficient in the hydrodynamic model), and
model structure (e.g., a priori assumptions of underlying processes) can
also impact the TWL variability”'. Advanced statistical methods such as
data assimilation may be employed to account for these uncertainties to
improve the extreme TWL estimates using surrogate models based on new
observed data”". In addition, a compound flood risk analysis under climate
change that accounts for flooding, exposure (e.g., building properties), and
vulnerability (e.g., flood fragility) will provide important information on
flood risk management in the Bay Area. This can be accomplished
through coupling the hybrid statistical-dynamical framework with the
exposure models (e.g., modeling of building properties), vulnerability
models (e.g., flood fragility function), and risk assessment models (e.g.,
risk quantification).

Our compound coastal flooding analysis in SF Bay under climate
change reveals that SLR and higher RD would lead to more extensive and

frequent coastal flooding, to which the Bay’s shoreline and flood protection
infrastructure will become increasingly exposed. This finding has important
implications for planning and design to reduce the risk of flooding™’. The
flooding analysis also shows that climate change could have a significant
impact on the relative importance of drivers to extreme compound flooding,
which is crucial for understanding the evolution of compound flood risk to
cope with climate change”. In addition, this study has revealed that climate
change could greatly influence the spatial variability of flood magnitude and
the relative contributions of drivers in the North Bay (especially near the
Delta), and the spatial variability of flood frequency in the Bay. These results
are particularly useful for identifying trigger points for the implementation
of climate adaptation strategies to improve coastal resilience’.

Methods

Hybrid statistical-dynamical framework

The hybrid statistical-dynamical framework for compound coastal flooding
analysis is developed by integrating a stochastic generator of compound
flooding drivers, a physics-based high fidelity hydrodynamic model, and
machine learning-based surrogate models™ (Fig. S6). The generator of
compound flooding drivers can simulate time series of joint astronomic,
atmospheric, oceanographic, and hydrologic forcings of compound coastal
flooding in SF Bay by combining a sea surface temperature (SST) recon-
struction model’?, a stochastic climate emulator’”, a stochastic weather
generator®*, and a hybrid physics-based and data-driven hydrologic and
reservoir system model®*”). The SST reconstruction model”” creates the
annual principal components (APCs) of SST anomalies, which are passed
into the climate emulator TESLA (Time-varying Emulator for Short- and
Long-Term analysis)” to generate synthetic annual weather types (AWTs).
TESLA also simulates synthetic intraseasonal weather types (IWTs) based
on variability of the Madden-Julian Oscillation. Synthetic daily weather
types (DWTs) are created which are conditionally dependent on the IWTs
and AWTs. The hourly time series of multiple drivers of compound coastal
flooding (i.e., MMSL, waves, SLP, and winds) are generated from synthetic
DWT time series. The weather generator” ®, hydrologic model®, and
reservoir system model”’ are combined under the same DWTs simulated by
TESLA to generate the daily time series of RD. Note that deterministic
astronomical tides are simulated using the UTide model”™.

A hydrodynamic model is developed to run a relatively small library of
simulations with boundary conditions defined by representative samples for
compound flooding drivers, which are generated using the Maximum
Dissimilarity Algorithm (MDA)”. The D-Flow Flexible Mesh (D-Flow FM)
model adapted from ref. 8 by simplifying grid and boundary conditions is
coupled with a wave model based on Simulating WAves Nearshore
(SWAN)” to develop a Delft3D FM (D3D FM) coupled flow-wave model
for the simulation of TWLs throughout SF Bay.

Based on the relatively small number of D3D FM coupled flow-wave
model simulations, optimized Gaussian process regression (GPR) surrogate
models are developed using five-fold cross-validation™* to efficiently
simulate WLs driven by all or some of the flooding drivers at each of
locations 3-18 shown in Fig. 1.

The validation of each model/emulator that makes up the generator of
compound flood drivers is documented in detail in refs. 63-67,72,73, and
the validation of the D3D FM coupled flow-wave model and the GPR model
can be found in ref. 56. In addition, the five-fold cross-validation of the GPR
model in all scenarios with and without climate change is provided in Table
$4. The validated hybrid statistical-dynamical framework is employed to
efficiently run 100 500-year hourly simulations representing the full range of
possible forcing combinations under all considered climate scenarios, from
which the predicted hourly water levels at locations 3-18 along SF Bay
center line are used for compound flooding analysis.

Climate change scenarios

Here, climate change in SF Bay is reflected by warmer temperatures and a
change in the hydrological cycle'". The former results in SLR" and higher
precipitation rates'""*, while the latter leads to more precipitation falling as
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rain instead of snow'®. Higher precipitation rates and more precipitation
occurring as rain causes higher peak RD flowing into the Bay from Sacra-
mento and San Joaquin rivers. Six scenarios of climate change affecting
temperature, average precipitation, and extreme precipitation (i.e., C;-Cs in
Table S1) of the weather generator simulation for CA**** are selected for
flood analysis over a period of 500 years. These include one baseline scenario
with no climate change (Cp), and three possible warming scenarios (i.e.,
warming of 1°C, 3°C, and 5°C) each with no mean precipitation change but
two levels of thermodynamic scaling rate of 7% and 14% per oC, which
replicate the effects of warming temperatures on precipitation through
increases in the moisture-holding capacity of the atmosphere. Note that the
stochastic weather generator uses a bottom-up approach with a higher
computational efficiency compared to traditional top-down approaches
such as global climate models (GCM) and ensures a thorough exploration of
the system sensitivity to small perturbations in climate, which might be
missing when employing a relatively small and often biased GCM ensemble.
Also, the weather generator can use GCM-based information to inform the
range of possible future climate changes and their probability. More details
on the development of climate change scenarios with stochastic weather
generators can be found in refs. 63-65. The local SLR scenarios are linked to
increasing temperatures by assuming an approximately linear relationship
between the global SLR (GSLR) and the increase in mean temperature™”””*,
and a local SLR rate similar to the global average SLR rate'®””. Here, three
possible sea level scenarios with GSLR values of 0.5 m (Intermediate-Low),
1.0 m (Intermediate), and 1.5 m (Intermediate-High) that account for the
uncertainty of the process and emissions in ref. 80 are linked to the tem-
perature increase of 1°C, 3°C, and 5°C, respectively. In addition, a baseline
scenario without climate change (i.e., C, without SLR and precipitation
change) is defined for comparison in the same period. The distribution of
RD under each climate scenario is calculated (Fig. S7) based on all the
minima, 10”,..., 90" percentiles, and the maxima of each simulated hourly
500-year time series to support flooding analysis.

Flood metrics

We consider three compound coastal flood metrics including flood magni-
tude, flood frequency, and the relative contributions of drivers to extreme
flood events because they can provide important information about extreme
events to improve flood protection and coastal resilience™**"***’. Flood mag-
nitude is quantified by 100-year return level TWL events, which are identified
based on annual maximum TWLs (the fifth largest annual maxima in the 500-
year time series). The frequency of occurrence of water levels exceeding flood
thresholds for nuisance, minor, moderate, and major flooding™*** is calculated
based on the exceedance probability of annual maximum TWTLs. The minor,
moderate, and major flood thresholds at NOAA gauges are estimated based
on a linear regression between the tide range and NOAA flood threshold
derived in ref. 57. The median nuisance flood thresholds at locations 7-18 are
estimated based on the latest threshold ranges™. Flood frequencies at each of
locations 3-18 are calculated based on the median nuisance flood threshold at
the closest location and the minor, moderate, and major flood thresholds at
the closest NOAA gauge. Note that nuisance flood thresholds at locations 3-6
are estimated using linear extrapolation based on nuisance flood thresholds at
other locations (7-18) and the distributions of minor, moderate, and major
flood thresholds across locations 3-18. Here, nuisance flooding is viewed as
being less severe than minor flooding.

At each location, the relative contributions of different forcings to
return level events are estimated by dividing the extreme TWL by the WL
due to each individual driver. Tidal water levels are calculated by running the
GPR model only with tidal drivers as input™. The WL due to each non-tidal
driver is then estimated by first running the GPR model by excluding this
driver and then subtracting the predicted WL from the extreme TWL. The
WL due to each non-tidal and non-SLR driver that is associated with the
return level events is divided by the sum of these WLs to obtain the relative
contributions of non-tidal and non-SLR drivers to the non-tidal and non-
SLR component of return level events. Please refer to ref. 56 for more details
on the definition and calculation of the three flood metrics. All metrics are

quantified based on the 100 hourly 500-year water level time series that fully
capture the parameter space of compound flooding under different climate
change scenarios. Note that all WLs are relative to mean sea level (MSL).

Data

The main input and output data for each model component of the hybrid
statistical-dynamical framework are provided in the Supplementary Data
section in ref. 56. The detailed underlying data requirements of the com-
pound flooding drivers generator can be found in each published model/
emulator, i.e., the SST reconstruction model’”?, climate emulator (TESLA)”,
weather generator” **, hydrologic model®, and reservoir system model®. To
build the D3D FM coupled flow-wave model, please refer to ref. 8 for the full
description of data inputs for the flow model. The wave data for the
development of TESLA is used to force the SWAN wave model. The D3D
FM coupled model and the GPR surrogate models are validated using the
same data set, i.e., hourly time series of all considered compound flood
drivers and the corresponding hourly TWLs time series observed by NOAA
(i.e., 2008-2018). Note that 500 years of historical proxies (i.e., tree-ring,
corals, and sclerosponge-based El Nin“o Southern Oscillation-ENSO
reconstructions) are used to feed the generator of compound flooding dri-
vers under the consideration of climate change to generate the 100 simula-
tions of hourly 500-year non-tidal and non-SLR forcing combinations.
Together with the hourly tides and the SLR values considered during the
500 years, the 100 hourly 500-year time series of forcings are input into GPR
surrogate models to predict hourly water levels to capture extreme com-
pound flooding up to a 500-year return period for flooding analysis.

Data availability

The 100 hourly time series of 500-year long forcing combinations and the
1,000 D3D FM model simulations used to develop GPR surrogate models
(i.e., 1,000 boundary condition inputs and the corresponding TWL outputs
at locations 3-18) are available on Zenodo: https://doi.org/10.5281/zenodo.
14048972. The underlying codes that support the findings of this study are
available upon request from the authors.
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