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ARTICLE INFO ABSTRACT

Keywords: Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their
Grain boundary network complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simula-
Nanomaterials

tions, are effective, they are also computationally demanding. Machine learning (ML) models have opened new
avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based
on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) net-
works in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic de-
tails. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train
our cGAN model. We assessed the performance of our ¢cGAN model by comparing it to a Convolutional
Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading
conditions on the model’s performance. Our cGAN model demonstrated high accuracy in predicting GB network
evolution under a variety of conditions. This developed framework shows potential for predicting various ma-
terials’ behaviors across a wide range of nanomaterials.

Machine learning
Generative adversarial networks
Evolution prediction

1. Introduction

Understanding and predicting the behaviors of nanomaterials pre-
sents a critical challenge for materials research, given their complex
microstructures and the associated dynamic evolutions under various
conditions. High-fidelity modeling techniques [1,2], such as molecular
dynamics (MD) simulations and first-principle density functional theory
(DFT) calculations, are effective but also computationally expensive for
predicting structure-property relationships in nanomaterials. This high
computational cost often limits the exploration of the design space of
nanomaterials. Machine learning (ML), due to its ability to predict ma-
terial properties with significantly less computational cost, is gaining
importance in the field of materials research [3-5]. Consequently, ML
models, trained on large material datasets to predict structure-property
relationships, have provided new pathways for rapid exploration of
design spaces for advanced materials [6-8].

ML models have been developed and utilized to predict a multitude
of mechanical properties of materials, including grain boundary energy

[9,10], and segregation energy [11]. These models can further optimize
the design of the structures [12] and composition [13] of materials to
meet specific design targets. In addition to predicting individual quan-
tities of interest, more ML models have also been developed to predict
full-field quantities of interest, such as stress distribution [14-22] and
fracture behavior [23-26]. Various deep learning techniques have been
developed for this purpose. For instance, generative adversarial neural
networks (GAN) are a type of deep learning network that can generate
image data from noise, with properties comparable to training data
input. A conditional generative adversarial network (cGAN) [27], a form
of GAN, is conditioned with additional information and has been used to
predict stress distribution [19,20].

In this study, building on this body of knowledge and recent de-
velopments of state-of-the-art cGAN models, we explore their applica-
tion for predicting the evolution of grain boundary (GB) networks in
nanomaterials at the atomic level. As GBs play a crucial role in deter-
mining the properties and mechanical behavior of nanomaterials, there
is a need to develop an ML model considering both the crystalline
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Fig. 1. Evolution of the grain boundary (GB) network in polycrystalline tungsten according to MD simulations: (a) Initial distribution of the orientation angle for
each grain within the polycrystalline sample; (b) Initial structure of the GB network, as represented by the Centrosymmetry Parameter (CSP), which indicates the
lattice disorder for each atom (with atoms in the bulk region having a CSP close to zero, and atoms in GB regions showing high values); and (c) Deformed GB network
structure, represented by the CSP, following a specific loading process that includes relaxation, shearing, and unloading.

morphology and atomic-level details of GBs in predicting the dynamic
deformation behaviors of nanomaterials.

As such, our objective in this work is to establish a cGAN-based deep
learning framework to predict the evolution of the GB network in
nanocrystalline materials under mechanical loadings, incorporating
multimodal information — both the morphology of nanocrystalline ma-
terials like grain orientation and size distribution, and atomic details at
grain boundaries. While this work focuses on the mechanical deforma-
tion of nanocrystalline metals, the developed framework can potentially
be applied to predict various material behaviors across a wide range of
nanomaterials.

2. Methodology
2.1. Molecular dynamics (MD) simulations

MD simulations of nanocrystalline tungsten are performed, yielding
atomic-level details in the microstructure evolution of interacting grain
boundaries (GBs). The atomic interactions are modeled using an EAM/
FS interatomic potential [28]. The initial atomic models of nano-
crystalline Tungsten (W) materials are generated through a random
Voronoi tessellation using the open-source package, ATOMSK [29]. The
crystal orientation for each grain in the geometric models is randomly
chosen, and a total of 1,000 nanocrystalline geometric models with
different crystal grain orientations are generated. These models have the
same 3D dimensions of 200 A*200 A*3.15 A in three directions, repre-
senting a 3D thin film structure, since there are only two layers in the
z-direction which meet the minimum requirement for maintaining a
body-centered cubic (BCC) crystal structure. The atomic model is
divided into 5 grains, as shown in Fig. 1(a), all of which are built along
the z-axis (<001>). The grain orientation of each grain, i.e., the angle
between the [010] direction and the x-axis, is randomly selected from
288°, 253.44° 163.8°, 62.28°, 232.2°, and 133.92°. To prevent the grain
boundary from overlapping with the edges of the models, all models are
shifted 15 A in the x and y-directions.

The atomic-level microstructure of the GB network in the simulated
nanocrystalline tungsten can be visualized using the centrosymmetry
parameter (CSP) to distinguish GB regions from bulk regions in mate-
rials. CSP is a structural property used to measure the local disorder
around an atom and can be calculated using the following equation: CSP
= YL+ m\z. In this equation, 4 is half of the nearest neighbor
numbers, which is 8 for BCC crystalline materials. 7; andr;, 4 are position
vectors from the central atom to its neighbor. For an ideal crystal
without any defects, 7; andr;,4 are in the opposite direction and the same
length, so the CSP is 0. However, if defects exist, 7;andri;4 will be
different, and thus the CSP is non-zero. Therefore, as shown in Fig. 1(b),
the CSP for atoms in the bulk is zero, while it is non-zero for atoms in the

regions of GBs.

Based on the initial atomic structures of the polycrystalline models,
their initial CSP contours are calculated. CSP and grain orientation
values are calculated for each atom. Subsequently, we compute a Vor-
onoi polyhedron for each atom, ensuring that these polyhedrons do not
overlap. When assigning CSP and grain orientation values to pixels,
rather than averaging the volume, we identify which Voronoi poly-
hedron encompasses each pixel. Thus, if a pixel is located within the
volume of a specific atom’s Voronoi polyhedron, it is assigned the CSP
and grain orientation values of that atom. This method allows for a
precise and accurate translation of atomic-level data into the pixelated
image format used in our visualizations. The atomic structures with
corresponding CSP values are converted into images of CSP contours
512*512 pixels, as shown in Fig. 1(b). The contour of the grain orien-
tation angle for each grain is also converted into images with 512*512
pixels. These images will serve as input for the ML model.

MD simulations are performed on the initial models following a
specific loading process that includes relaxation, shearing, and unload-
ing. After relaxation is performed, the initial nanocrystalline models are
subjected to a cycle of shearing and unloading, i.e., shearing the models
by a shear strain of 10% and then fully unloading. Shear loading is
applied to both the left and right sides of the specimen. The strain rate
applied is 1 x 10%s~1. For both relaxation and shearing phases, an NPT
ensemble with zero pressure is used, and the temperature is maintained
at 300 K. The microstructure evolution of these nanocrystalline models
during the loading and unloading is modeled with MD simulations using
LAMMPS [30]. The CSP contours for the deformed models after the
loading process are also calculated and converted into images with
512*512 pixels as shown in Fig. 1(c). As seen from Fig. 1(b), the initial
structure of the GB network of a sample is shown by the initial CSP, and
GBs between any two neighboring grains are clearly displayed. How-
ever, after the loading process including relaxation, shearing, and
unloading, the GB network shown in Fig. 1(c) exhibits some changes
compared to the initial structure in Fig. 1(b). For example, the GBs be-
tween some grains disappear because the differences in the orientation
angle between grains are small. Other GBs remain stable after the whole
loading process. The evolution of the GB networks heavily depends on
the complexity of the microstructure, such as the distribution of grain
orientation angles and grain sizes.

2.2. Development of cGAN-based machine learning model

Our objective is to develop an ML model that can efficiently predict
the evolution of the microstructure in nanocrystalline materials under
certain mechanical loadings. Specifically, we have built a cGAN-based
ML model to predict the evolution of the GB network, represented by
the contour of the CSP, after a specific loading process. The overall
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Fig. 2. The workflow of the cGAN-based ML framework for predicting the evolution of grain boundary (GB) networks in polycrystalline materials. The inputs,
including initial morphology (grain orientation and size) and atomic information (CSP), are fed to the generator (G) in the cGAN. G generates a prediction of the GB
network post-loading, which is sent to the discriminator (D). D compares the prediction with the ground truth and provides feedback to G to enhance the accuracy of

GB network evolution predictions.

workflow of the ML framework is shown in Fig. 2. The ground-truth
results of the GB network’s evolution, represented by the CSP con-
tours, are obtained from MD simulations. These results are converted to
images and used as training data for the cGAN model development.

The cGAN is an ML algorithm that is apt for facilitating image-to-
image transitions. Similar to the traditional generative adversarial
network (GAN) model, the cGAN is divided into two components: a
generator (G) and a discriminator (D). In this study, we have developed
a cGAN-based model to predict the evolution of the GB network, based
on Phillip Isola’s work [31]. In our cGAN-based model, the generator is
used to generate 'fake’ images based on the input of initial crystal
orientation and initial CSP contours. The discriminator receives input
images from the ground truth (i.e., MD simulation results) or from the
G’s output and then estimates whether the input is from the ground truth
or an output image generated by G. Consequently, the generator and
discriminator operate in adversarial roles: the generator tries to *cheat’
the discriminator, while the discriminator tries to maximize the identi-
fication rate of fake images. In our cGAN-based ML model, a general
shape of a U-Net is used for the generator, and a convolutional PATCH
GAN classifier is used for the discriminator. The generator consists of 19
layers, while the discriminator includes 7 layers. Detailed architecture of
the generator and the discriminator used in our cGAN model, including
the configuration of layers, can be found in Appendix A. The optimizer
used for both G and D is Adam. The initial learning rate is set at 0.002. A
scheduler is configured to decrease the learning rate from its initial
value to zero over 500 epochs. The learning rate decreases linearly every
50 epochs.

3. Results and discussion
3.1. Training the cGAN-based model for predicting GB network evolution

In this work, we trained the cGAN model using two types of inputs:
(1) the geometric morphology of materials, which includes information
on grain orientations, size, and shape; and (2) the CSP contours of the
initial atomistic structures. The outputs are the deformed structures of
GB networks, represented by the CSP contours of the models after
applying the loading scheme. All these inputs and outputs are converted
into images with 512*512 pixels.

We specifically designed the loss function to adapt the conventional
c¢GAN model to predict the GB network evolution for nanocrystalline

materials under mechanical loadings. Unlike the original cGAN model,
we formulated the loss function for the generator (G) by combining three
different terms: Loss_GAN, Mean Absolute Error (MAE), and Structural
Similarity Index Measure (SSIM), as shown in Eq. (1).

LoSSgenerator = LOSSgan + A1 * MAE — 13 * SSIM (€8]

The GAN loss is a cross-entropy loss, calculated by the predicted
image tensor and the ground-truth tensor. In our cGAN model, the GAN
loss is a modified form of the conventional GAN loss and can be
expressed using Eq. (2). Here, x is the input, y is the output, z is the
random noise, and D(x, G(x,2)) is the output of the discriminator.

@

The MAE loss is calculated by comparing the ground truth and the
prediction (Eq. (3)).

Lossgan = Eyy[logD(x, G(x,2) )]

512

MAE = Z |xpre(i7j) _xreal(iyj)‘
ij=1

3

In addition, we incorporated the SSIM loss into the loss function for
the generator. SSIM is widely used to measure the similarity between
two images based on three different aspects: luminance, contrast, and
structure. SSIM ranges from 0 to 1, where a value close to 1 indicates
that two images are similar, while a value close to 0 means that the two
images are different. The detailed formulation for SSIM can be found in
Appendix B. 1; and 4, in Eq. (1) are the weights for the MAE and SSIM
losses, respectively.

The loss function for the discriminator (D) is the sum of these two
components. This loss, shown in Eq. (4), can be divided into two parts,
L0sSreq and LosSgax,, which are binary cross-entropy losses, as expressed
in Egs. (5) and (6). Unlike the loss for G, for D, the ground-truth image
should have a higher score (close to 1), and the fake part should have a
lower score (close to 0). Therefore, the real part (Eq. (5)) only has the
first term, and the fake loss (Eq. (6)) only has the second term.

Lossgiscriminator = LOSSreal +L035fake (4
LoSSreq = Exy[logD(x,y)] )
Lossfake = Ex,z [IOg(l - D(X, G(X, Z)))] Q)

We used 80% of the data to train the model, 10% for validation, and
10% for testing the ML model. To quantify how well our cGAN-based ML
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Fig. 3. Converge of evaluation metrics (MSE and SSIM) during the training of
the cGAN model.

model fits a dataset during the training stage, we used the metrics of
Mean Squared Error (MSE) and SSIM. As shown in Fig. 3, the MSE of the
training set decreased to less than 0.5, and the SSIM increased with the
number of epochs, reaching 0.90 at the 1,000th epoch. For the test set,
the SSIM converged to around 0.77, and the MSE converged to about
2.3. Between 800 and 1,000 epochs, the MSE and SSIM showed stable
values, suggesting that the cGAN model converged after 1,000 epochs of
training. Therefore, in this study, we trained all models for at least 1,000
epochs to ensure that the training of the cGAN model converged.
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3.2. Evaluation of the cGAN-based Model for Predicting GB Network
Evolution

In this section, we evaluate the performance of our cGAN model in
terms of its accuracy in predicting the evolution of the GB network.
Besides comparing it to the ground truth derived from MD simulations,
we also contrast our cGAN-based model with another benchmark model,
specifically, the Convolutional Autoencoder (ConvAE).

For this purpose, we trained a ConvAE model [32], which has a
channel autoencoder structure utilizing residual blocks. Given its ca-
pacity for image reconstruction, it can be trained to generate images of
the deformed GB network post-loading.

We conducted a comparison of the GB network predictions between
the ¢cGAN and ConvAE models, and the ground truth from MD simula-
tions. Fig. 4 presents a side-by-side comparison of images from the cGAN
model, the ground truth, and the ConvAE model. Evidently, the cGAN
model provides a more accurate prediction of the GB network structure.
The ¢cGAN model outperforms the ConvAE model in predicting the
evolution of the GB structure, and the luminance of the cGAN prediction
closely aligns with that of the ground truth, whereas the ConvAE pre-
diction is considerably darker.

To quantitatively evaluate the accuracy of our cGAN model in pre-
dicting the evolution of the GB network, we employed three distinct
types of metrics. First, in Section 3.2.1, we utilized global metrics such as
MAE, MSE, and SSIM for an image-to-image comparison between the
ground truth and the predictions. Second, we developed binary classi-
fication accuracy metrics to assess our model’s performance in differ-
entiating GB regions from the bulk regions, as discussed in Section 3.2.2.

Table 1
Comparative analysis of predictions from cGAN and ConvAE models.
cGAN ConvAE
MAE 0.4161 0.4820
MSE 2.3445 1.9702
SSIM 0.7699 0.6934

Sample 3

20.0

Sample 4

0.0

20.0

0.0

Fig. 4. Comparison of predictions of GB network represented by CSP contours from the cGAN and ConvAE models with the ground truth for four different samples.
Each column represents results for a specific sample. The first row displays the ground truth from MD simulation results after loading, the second row shows the
prediction from the trained cGAN model, and the last row illustrates the prediction from the trained ConvAE model.
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Fig. 5. (a) GB network colored by crystal phases. Only atoms with a CSP larger than 0.5 are displayed; (b) Comparison between the ground truth and predicted CSP
distribution along a crossline to identify the location of GBs. The solid straight line indicates the CSP = 0.5 threshold for distinguishing GB and bulk regions.

Finally, in Section 3.2.3, we introduced a novel type of metric to eval-
uate our cGAN model’s performance in predicting the distribution of GB
regions.

3.2.1. Quantitative image-to-image evaluation using global metrics

In Table 1, we present a quantitative image-to-image comparison
between the ground truth and the predicted outcomes, employing three
global metrics: MAE, MSE, and SSIM. The SSIM values for the cGAN and
ConvAE models are 0.7699 and 0.6934, respectively, indicating that our
c¢GAN model performs significantly better as a higher SSIM value cor-
responds to superior prediction quality. Moreover, our cGAN model
surpasses the ConvAE model in reducing MAE. However, the ConvAE
model outperforms the cGAN model in terms of MSE.

This suggests that while the ConvAE model has focused more on
minimizing MSE, it falls behind in MAE and SSIM compared to the cGAN
model. Considering that our study’s objective is to predict the evolution
of the GB network - which occupies a much smaller area than the bulk
regions - the SSIM seems to be a more accurate evaluation metric than
the MSE for our specific context of GB network evolution, as further
confirmed by the comparison in Fig. 4 and the quantitative comparison
in Table 1.

However, these metrics, including MAE, MSE, and SSIM, treat all
pixels in the images equally and are therefore unable to differentiate the
GB regions from the bulk regions. Since our study aims to improve
prediction accuracy specifically for the GB network, it is crucial to
introduce more precise evaluation metrics for assessing a model’s per-
formance in predicting the GB network. We will address this issue in the
next two sections.

3.2.2. Quantitative evaluation using binary classification metrics

In the previous section, we analyzed global metrics (MAE, MSE, and
SSIM) which do not differentiate between the GB and bulk regions.
However, given that the GB regions hold more importance in our study,
it’s crucial to develop evaluation metrics that pay special attention to
these areas.

This section, therefore, introduces a method of distinguishing each
pixel in the predicted image as belonging either to the GB or the bulk
region. Our problem thus transforms into a binary classification task for
each pixel in the image, labeling it as a bulk or a GB pixel. The model’s
evaluation criterion now lies in its ability to correctly classify each pixel.

Pixels exceeding a particular threshold in the CSP value are classified
as grain boundary (GB) pixels. This threshold was meticulously deter-
mined to ensure all atoms within GB regions have a CSP value exceeding

it, while atoms within the bulk have lower values. In Fig. 5(b), the
horizontal line, which indicates a CSP threshold of 0.5, predominantly
encompasses GB pixels and effectively eliminates all bulk pixels. Uti-
lizing the Open Visualization Tool (OVITO), we distinctly delineate the
GB network, wherein all atoms possessing a CSP value exceeding 0.5 are
identified as GB atoms, as shown in Fig. 5(a). This graphical represen-
tation efficiently highlights all existing GBs, as evidenced in Fig. 5(a),
while concurrently preventing the erroneous inclusion of any atoms
within the bulk region into the GB network.

For a quantitative assessment of our ML model’s ability to predict GB
regions in the deformed structure of nanocrystalline materials, we
employ Pratt’s Figure of Merit (PFoM) [33,34] to measure the GB region
prediction accuracy. This metric compares the ground truth and the
predicted image in terms of binary classification of GB and bulk regions.
The PFoM is defined by the following equation:

1 NMatags
PFoM = . )
maX(Nrealgg 3 Nfakegg ) i—1 1 + -fdlz

In the equation, Nreq,, and Ny, denote the number of GB pixels
whose CSP value is smaller than the threshold in the ground truth and
predicted images, respectively, £ is a constant used to scale the value
within a suitable range [35], and in this study, it is set to 0.1, and d;
represents the Ly-norm distance from the i-th GB pixel to the nearest GB
pixel in the images.

Additionally, in our study, we modified and utilized the commonly
used metrics of recall and precision, which are commonly used in binary
classification problems. Recall is defined as the ratio of correctly pre-
dicted GB pixels to the total number of GB pixels in the ground truth:

Nrealgy

Z max(sign(D* —g?), 0). (€)]

realgg =1

Recall =

Precision is defined as the ratio of correctly predicted GB pixels to the
total number of predicted GB pixels:

Nfakegp
> max(sign(D* - d;), 0). ©)

 fakegp i1

Precision =

Here, D represents a constant standard distance used to determine
whether a pixel is predicted correctly or incorrectly, and in our study, we
set D to 3. If the distance d; or g is smaller than D, the prediction is
considered correct; otherwise, it is considered incorrect. The term g
represents the Ly-norm distance of the i-th GB pixel in the ground truth
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Table 2
Comparative analysis of predictions for distinguishing GB regions.
cGAN ConvAE
PFoM 0.8314 0.6683
Recall 0.9406 0.9485
Precision 0.9470 0.7954

to the nearest GB pixel in the predicted images. The CSP threshold of 0.5
is used to distinguish between GB and bulk regions.

The results, shown in Table 2, reveal that compared to the ConvAE
baseline model, the cGAN model exhibits superior performance in terms
of PFoM and Precision, although it lags slightly in Recall. Overall, the
c¢GAN model performs better than the ConvAE model at distinguishing
GB regions from bulk regions.

3.2.3. Quantitative evaluation using GB neighbor ratio

The evaluation metrics detailed in the previous section are primarily
concerned with differentiating whether a pixel belongs to the GB or the
bulk region. This section takes a further step by focusing on the accuracy
of predicting the neighboring environment for each pixel. To this end,
we introduce the concept of the GB neighbor ratio.

We continue to use a threshold of 0.5 for the CSP value to distinguish
between GB pixels and bulk pixels. The GB neighbor ratio is then defined
as the ratio of GB pixels to all neighboring pixels. A GB neighbor ratio of
0 indicates that all neighboring pixels are bulk pixels, while a ratio of 1
signifies that all neighboring pixels are GB pixels.

We demonstrate a comparison of the CSP value distribution between
our cGAN model and the ground truth in Fig. 6(a-d). The comparison
shows that our cGAN model has a strong capacity for accurately pre-
dicting GB locations. Further examination of the GB neighbor ratio
distribution in Fig. 6(e) reveals that the predicted images contain
slightly more GB pixels than the ground truth, as evidenced by the
marginally higher values.

To provide a more comprehensive view, we calculate the average GB
neighbor ratio for a predicted image of the GB network. This is achieved

. . LiL .
using the following formula: AVG(R¢g neighbor) = L}Tyzi 121 RGB neighbor (1.])-
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In this equation, Rgp neighbor represents the GB neighbor ratio for each
pixel in the image, and L, and Ly correspond to the lengths of the sample
in pixels.

In Fig. 6(f), we compare the average GB neighbor ratios predicted by
both the ConvAE and ¢cGAN models across 30 test samples. The com-
parison reveals that the cGAN model performs better, especially in the
lower range of the distribution, closely aligning with ground truth
values.

In summary, the comparisons across various evaluation metrics
clearly underscore the superior predictive capability of the cGAN model
in forecasting the evolution of the GB network.

3.3. Investigation into factors affecting the performance of the cGAN
model

In this section, we delve into the investigation of various factors that
could potentially influence the performance of the cGAN Model. Spe-
cifically, we explore the implications of input features representing the
GB network, the geometric morphology of crystal grains, and the
different loading conditions.

3.3.1. Effects of additional input features for representing the GB network

In Section 3.2, we relied solely on the CSP to differentiate atoms
within GB regions from those in bulk regions. In this section, we
investigate whether this single feature is sufficient, or whether addi-
tional features could improve our model’s accuracy. Specifically, we
consider the excess free volume (V) and the bond orientational order
(Qj9) for each atom.

The Vg represents the additional volume an atom occupies
compared to a regular lattice bulk environment. This feature can
potentially distinguish between atoms in GB regions and those in bulk
regions due to differences in their excess free volumes. On the other
hand, the Qj¢ quantifies the spatial distribution of neighboring atoms. It
represents the spherical harmonic between a central atom and its
neighbors, as defined by the following equations:
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Fig. 6. Quantitative evaluation of the cGAN model by comparing to ground truth and ConvAE predictions: the CSP along the y-direction at different locations of (a) x
=204 and (b) x = 220 f\, (c) the CSP of a slide along the x-direction; (d) the CSP distribution; (e) the distribution of GB neighbor ratio for the ground truth and
predicted images; (f) the average GB neighbor ratio from predictions versus ground truth for both cGAN and ConvAE models.
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Table 3
Comparison of PFoM, Recall, and Precision for different input features.
Extra Input Feature PFoM Recall Precision
None (CSP only) 0.8314 0.9406 0.9470
Q1o 0.8159 0.9496 0.9151
VEree 0.8152 0.9499 0.9144
Q10> VEree 0.8185 0.9507 0.9165
(10)
an

where i is the index of the central atom, j refers to a neighboring atom,
and N, represents the number of neighboring atoms.

We expanded our model inputs to include bond orientational order
and excess free volume, alongside CSP, to describe the GB network. We
tested these features both individually and in combination. Table 3
provides a comparison of results for different combinations of input
features. Interestingly, the model using only CSP (i.e., without any
additional features) slightly outperforms other cases in terms of PFoM,
scoring 0.8314 compared to the range of 0.81-0.82 for models with
additional features. This result supports the use of CSP alone as it yields
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P IR L

0 100 200 300 400 500
Ly

B Ground Truth
101 mm cGAN Prediction

log(num)
S

0.0 2.5 5.0 75 100 125 150 17.5
csp

Extreme Mechanics Letters 70 (2024) 102172

a higher PFoM.

Further examination of Recall and Precision reveals that the model
without additional features presents slightly lower Recall but higher
Precision than other cases. This indicates that the introduction of Ve,
and Qo doesn’t significantly improve prediction, largely due to their
overlapping influences with the basic CSP input feature. Thus, this
additional analysis suggests that the CSP feature alone is sufficient for
differentiating atoms in GBs from those in bulk regions in our cGAN
model.

3.3.2. Effects of loading conditions

In the preceding sections, we considered samples subjected to a
specific loading process comprising shearing and unloading. This section
explores the generalizability of our cGAN model under a different
loading condition. Specifically, we apply a shearing strain of 10% to the
samples, akin to what we used in previous sections. However, unlike
earlier tests, we do not unload the samples, resulting in a final deformed
shape that differs from the input images. Therefore, additional adjust-
ments are necessary and were performed for our ¢cGAN model to
accommodate these differing shapes between input and output images.

After training our models with the new loading condition, we eval-
uated the distribution of the CSP and GB neighbor ratio, as shown in
Fig. 7. Fig. 7(a) and (b) demonstrate that the cGAN model can still
accurately predict the location of GBs in the network following the
application of the new loading condition. Compared to the results shown
in Fig. 6(d), we observed an increase in the number of pixels with high
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Fig. 7. Quantitative evaluation of the cGAN model by comparing to ground truth: the CSP along the crossline at different locations of (a) x = 220 A and (b) y =
120 A, (c) the CSP distribution; and (d) the distribution of GB neighbor ratio in the ground truth and predicted images.
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Fig. 8. (a) and (b) show the respective ground truth and predicted image for Geometry B; (c) presents the CSP of a slide along the x-direction; (d) displays the CSP
distribution; (e) depicts the distribution of GB neighbor ratio in the ground truth and predicted images; and (f) illustrates the average GB neighbor ratio from the

c¢GAN model and the ground truth.

Table 4

Comparison of results for two different types of geometries.
Geometry MAE MSE SSIM PFoM Recall Precision
A 0.4161 2.3445 0.7699 0.8124 0.9456 0.9130
B 0.4128 2.2802 0.7713 0.8492 0.9588 0.9369

CSP values in the samples subjected to the new loading condition, as
shown in Fig. 7(c). This increase is likely due to the presence of more
defects, such as dislocations and stacking faults, in the bulk region
caused by not unloading the samples.

The comparison of the cGAN model predictions to ground truth re-
sults (Figs. 7(c) and 7(d)) suggests that the cGAN model continues to
perform well in predicting the distribution of the CSP and GB neighbor
ratio. Overall, this exploration of a new loading condition demonstrates
that our ¢cGAN model retains its predictive power in simulating the
evolution of the GB network for nanocrystalline samples under various
loading conditions.

3.3.3. Effects of geometric morphology of crystal grains

In all previous sections, our cGAN model was trained and tested on a
specific geometric morphology (Geometry A) of the nanocrystalline
materials. This geometry featured grains with regular shapes as shown
in Fig. 1. In this section, we explore the impact of changes in geometric
morphology on the performance of our machine learning model.

We create another geometry, referred to as Geometry B, which also
contains five grains. However, unlike Geometry A, the shape and size of
the grains in Geometry B are randomly generated, as shown in Fig. 8(a).
We apply the same specific loading process to these samples, simulating
the evolution of the GB network.

The ¢cGAN model is trained with the same arguments and process as
in previous sections. When compared with the results from Geometry A,
the cGAN model shows the same or even better accuracy for Geometry B.
Table 4 presents the comparison. The MAE and MSE for the Geometry B
samples in the test set are 0.4128 and 2.2802, respectively, slightly
better than the 0.4161 and 2.3445 for Geometry A samples. The SSIM is
0.7713 for Geometry B, similar to the 0.7699 for Geometry A. Moreover,

the PFoM for Geometry B is 0.8492, an improvement compared to
0.8124 in Geometry A.

Despite the randomly generated grain size and shape in Geometry B,
which results in a more complex structure, the model provides slightly
better predictions. This could be attributed to the richer details provided
by Geometry B, offering more information for the model to learn from.
As seen in Figs. 8(a) and 8(b), the predicted image accurately indicates
whether the GB will disappear or not, similar to what we observed in
Geometry A. Fig. 8(c) shows the CSP of a slice cut along the dashed line
in Figs. 8(a) and 8(b), and it illustrates that the cGAN model’s prediction
of GB locations generally aligns with the ground truth, with minor dif-
ferences in GB width and maximum CSP values. Figs. 8(d) and 8(e)
display the same trend in the distributions of CSP and GB neighbor ratio
between predictions and the ground truth for Geometry B.

In conclusion, despite the complexity introduced by changes in ge-
ometry, the comparison results demonstrate that such changes do not
negatively affect the predictive capability of our ¢cGAN model. This
suggests that our cGAN model can be generalized to predict the evolu-
tion of the GB network with varying geometrical morphologies.

4. Conclusions

In conclusion, this work presents a novel, cGAN-based machine
learning framework for predicting the evolution of the GB network in
nanocrystalline materials subjected to mechanical loading conditions.
We adapted and trained the cGAN model using MD simulation results,
providing a robust and accurate tool for analyzing nanocrystalline
materials.

We benchmarked the performance of the cGAN model against a
baseline model (ConvAE), showing superior results. To quantitatively
evaluate the accuracy of the cGAN model, we introduced three novel
types of metrics, including binary classification metrics, to differentiate
GBs from the bulk regions.

This study also explores the influence of various factors on the per-
formance of our ¢cGAN model. Specifically, we have shown that the
c¢GAN model is capable of predicting the evolution of GB networks across
different geometric morphologies of crystal grains and under various
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loading conditions, demonstrating its versatility and wide applicability.
This work primarily focuses on developing a deep learning model to
predict the complex behavior of grain boundary evolution under me-
chanical loading at room temperature. Given that temperature signifi-
cantly influences the evolution of grain boundaries, we will consider
high-temperature effects, including annealing processes, in our future
work.

This research not only provides a powerful tool for predicting GB
network evolution, but it also highlights the potential of using machine
learning in advancing our understanding of nanocrystalline materials.
We expect that this cGAN-based ML framework will pave the way for
more precise predictions in material science, ultimately enabling the
design and creation of more robust, adaptable materials.
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