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A B S T R A C T   

Predicting the behavior of nanomaterials under various conditions presents a significant challenge due to their 
complex microstructures. While high-fidelity modeling techniques, such as molecular dynamics (MD) simula
tions, are effective, they are also computationally demanding. Machine learning (ML) models have opened new 
avenues for the rapid exploration of design spaces. In this work, we developed a deep learning framework based 
on a conditional generative adversarial network (cGAN) to predict the evolution of grain boundary (GB) net
works in nanocrystalline materials under mechanical loads, incorporating both morphological and atomic de
tails. We conducted MD simulations on nanocrystalline tungsten and used the resulting ground-truth data to train 
our cGAN model. We assessed the performance of our cGAN model by comparing it to a Convolutional 
Autoencoder (ConvAE) model and examining the impact of changes in geometric morphology and loading 
conditions on the model’s performance. Our cGAN model demonstrated high accuracy in predicting GB network 
evolution under a variety of conditions. This developed framework shows potential for predicting various ma
terials’ behaviors across a wide range of nanomaterials.   

1. Introduction 

Understanding and predicting the behaviors of nanomaterials pre
sents a critical challenge for materials research, given their complex 
microstructures and the associated dynamic evolutions under various 
conditions. High-fidelity modeling techniques [1,2], such as molecular 
dynamics (MD) simulations and first-principle density functional theory 
(DFT) calculations, are effective but also computationally expensive for 
predicting structure-property relationships in nanomaterials. This high 
computational cost often limits the exploration of the design space of 
nanomaterials. Machine learning (ML), due to its ability to predict ma
terial properties with significantly less computational cost, is gaining 
importance in the field of materials research [3–5]. Consequently, ML 
models, trained on large material datasets to predict structure-property 
relationships, have provided new pathways for rapid exploration of 
design spaces for advanced materials [6–8]. 

ML models have been developed and utilized to predict a multitude 
of mechanical properties of materials, including grain boundary energy 

[9,10], and segregation energy [11]. These models can further optimize 
the design of the structures [12] and composition [13] of materials to 
meet specific design targets. In addition to predicting individual quan
tities of interest, more ML models have also been developed to predict 
full-field quantities of interest, such as stress distribution [14–22] and 
fracture behavior [23–26]. Various deep learning techniques have been 
developed for this purpose. For instance, generative adversarial neural 
networks (GAN) are a type of deep learning network that can generate 
image data from noise, with properties comparable to training data 
input. A conditional generative adversarial network (cGAN) [27], a form 
of GAN, is conditioned with additional information and has been used to 
predict stress distribution [19,20]. 

In this study, building on this body of knowledge and recent de
velopments of state-of-the-art cGAN models, we explore their applica
tion for predicting the evolution of grain boundary (GB) networks in 
nanomaterials at the atomic level. As GBs play a crucial role in deter
mining the properties and mechanical behavior of nanomaterials, there 
is a need to develop an ML model considering both the crystalline 
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morphology and atomic-level details of GBs in predicting the dynamic 
deformation behaviors of nanomaterials. 

As such, our objective in this work is to establish a cGAN-based deep 
learning framework to predict the evolution of the GB network in 
nanocrystalline materials under mechanical loadings, incorporating 
multimodal information – both the morphology of nanocrystalline ma
terials like grain orientation and size distribution, and atomic details at 
grain boundaries. While this work focuses on the mechanical deforma
tion of nanocrystalline metals, the developed framework can potentially 
be applied to predict various material behaviors across a wide range of 
nanomaterials. 

2. Methodology 

2.1. Molecular dynamics (MD) simulations 

MD simulations of nanocrystalline tungsten are performed, yielding 
atomic-level details in the microstructure evolution of interacting grain 
boundaries (GBs). The atomic interactions are modeled using an EAM/ 
FS interatomic potential [28]. The initial atomic models of nano
crystalline Tungsten (W) materials are generated through a random 
Voronoi tessellation using the open-source package, ATOMSK [29]. The 
crystal orientation for each grain in the geometric models is randomly 
chosen, and a total of 1,000 nanocrystalline geometric models with 
different crystal grain orientations are generated. These models have the 
same 3D dimensions of 200 Å*200 Å*3.15 Å in three directions, repre
senting a 3D thin film structure, since there are only two layers in the 
z-direction which meet the minimum requirement for maintaining a 
body-centered cubic (BCC) crystal structure. The atomic model is 
divided into 5 grains, as shown in Fig. 1(a), all of which are built along 
the z-axis (<001>). The grain orientation of each grain, i.e., the angle 
between the [010] direction and the x-axis, is randomly selected from 
288⁰, 253.44⁰, 163.8⁰, 62.28⁰, 232.2⁰, and 133.92⁰. To prevent the grain 
boundary from overlapping with the edges of the models, all models are 
shifted 15 Å in the x and y-directions. 

The atomic-level microstructure of the GB network in the simulated 
nanocrystalline tungsten can be visualized using the centrosymmetry 
parameter (CSP) to distinguish GB regions from bulk regions in mate
rials. CSP is a structural property used to measure the local disorder 
around an atom and can be calculated using the following equation: CSP 
=

∑4
i=1| ri

→
+ ri+4

̅̅→
|
2. In this equation, 4 is half of the nearest neighbor 

numbers, which is 8 for BCC crystalline materials. ri
→andri+4

̅̅→ are position 
vectors from the central atom to its neighbor. For an ideal crystal 
without any defects, ri

→andri+4
̅̅→ are in the opposite direction and the same 

length, so the CSP is 0. However, if defects exist, ri
→andri+4

̅̅→ will be 
different, and thus the CSP is non-zero. Therefore, as shown in Fig. 1(b), 
the CSP for atoms in the bulk is zero, while it is non-zero for atoms in the 

regions of GBs. 
Based on the initial atomic structures of the polycrystalline models, 

their initial CSP contours are calculated. CSP and grain orientation 
values are calculated for each atom. Subsequently, we compute a Vor
onoi polyhedron for each atom, ensuring that these polyhedrons do not 
overlap. When assigning CSP and grain orientation values to pixels, 
rather than averaging the volume, we identify which Voronoi poly
hedron encompasses each pixel. Thus, if a pixel is located within the 
volume of a specific atom’s Voronoi polyhedron, it is assigned the CSP 
and grain orientation values of that atom. This method allows for a 
precise and accurate translation of atomic-level data into the pixelated 
image format used in our visualizations. The atomic structures with 
corresponding CSP values are converted into images of CSP contours 
512*512 pixels, as shown in Fig. 1(b). The contour of the grain orien
tation angle for each grain is also converted into images with 512*512 
pixels. These images will serve as input for the ML model. 

MD simulations are performed on the initial models following a 
specific loading process that includes relaxation, shearing, and unload
ing. After relaxation is performed, the initial nanocrystalline models are 
subjected to a cycle of shearing and unloading, i.e., shearing the models 
by a shear strain of 10% and then fully unloading. Shear loading is 
applied to both the left and right sides of the specimen. The strain rate 
applied is 1 × 109s−1. For both relaxation and shearing phases, an NPT 
ensemble with zero pressure is used, and the temperature is maintained 
at 300 K. The microstructure evolution of these nanocrystalline models 
during the loading and unloading is modeled with MD simulations using 
LAMMPS [30]. The CSP contours for the deformed models after the 
loading process are also calculated and converted into images with 
512*512 pixels as shown in Fig. 1(c). As seen from Fig. 1(b), the initial 
structure of the GB network of a sample is shown by the initial CSP, and 
GBs between any two neighboring grains are clearly displayed. How
ever, after the loading process including relaxation, shearing, and 
unloading, the GB network shown in Fig. 1(c) exhibits some changes 
compared to the initial structure in Fig. 1(b). For example, the GBs be
tween some grains disappear because the differences in the orientation 
angle between grains are small. Other GBs remain stable after the whole 
loading process. The evolution of the GB networks heavily depends on 
the complexity of the microstructure, such as the distribution of grain 
orientation angles and grain sizes. 

2.2. Development of cGAN-based machine learning model 

Our objective is to develop an ML model that can efficiently predict 
the evolution of the microstructure in nanocrystalline materials under 
certain mechanical loadings. Specifically, we have built a cGAN-based 
ML model to predict the evolution of the GB network, represented by 
the contour of the CSP, after a specific loading process. The overall 

Fig. 1. Evolution of the grain boundary (GB) network in polycrystalline tungsten according to MD simulations: (a) Initial distribution of the orientation angle for 
each grain within the polycrystalline sample; (b) Initial structure of the GB network, as represented by the Centrosymmetry Parameter (CSP), which indicates the 
lattice disorder for each atom (with atoms in the bulk region having a CSP close to zero, and atoms in GB regions showing high values); and (c) Deformed GB network 
structure, represented by the CSP, following a specific loading process that includes relaxation, shearing, and unloading. 
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workflow of the ML framework is shown in Fig. 2. The ground-truth 
results of the GB network’s evolution, represented by the CSP con
tours, are obtained from MD simulations. These results are converted to 
images and used as training data for the cGAN model development. 

The cGAN is an ML algorithm that is apt for facilitating image-to- 
image transitions. Similar to the traditional generative adversarial 
network (GAN) model, the cGAN is divided into two components: a 
generator (G) and a discriminator (D). In this study, we have developed 
a cGAN-based model to predict the evolution of the GB network, based 
on Phillip Isola’s work [31]. In our cGAN-based model, the generator is 
used to generate ’fake’ images based on the input of initial crystal 
orientation and initial CSP contours. The discriminator receives input 
images from the ground truth (i.e., MD simulation results) or from the 
G’s output and then estimates whether the input is from the ground truth 
or an output image generated by G. Consequently, the generator and 
discriminator operate in adversarial roles: the generator tries to ’cheat’ 
the discriminator, while the discriminator tries to maximize the identi
fication rate of fake images. In our cGAN-based ML model, a general 
shape of a U-Net is used for the generator, and a convolutional PATCH 
GAN classifier is used for the discriminator. The generator consists of 19 
layers, while the discriminator includes 7 layers. Detailed architecture of 
the generator and the discriminator used in our cGAN model, including 
the configuration of layers, can be found in Appendix A. The optimizer 
used for both G and D is Adam. The initial learning rate is set at 0.002. A 
scheduler is configured to decrease the learning rate from its initial 
value to zero over 500 epochs. The learning rate decreases linearly every 
50 epochs. 

3. Results and discussion 

3.1. Training the cGAN-based model for predicting GB network evolution 

In this work, we trained the cGAN model using two types of inputs: 
(1) the geometric morphology of materials, which includes information 
on grain orientations, size, and shape; and (2) the CSP contours of the 
initial atomistic structures. The outputs are the deformed structures of 
GB networks, represented by the CSP contours of the models after 
applying the loading scheme. All these inputs and outputs are converted 
into images with 512*512 pixels. 

We specifically designed the loss function to adapt the conventional 
cGAN model to predict the GB network evolution for nanocrystalline 

materials under mechanical loadings. Unlike the original cGAN model, 
we formulated the loss function for the generator (G) by combining three 
different terms: Loss_GAN, Mean Absolute Error (MAE), and Structural 
Similarity Index Measure (SSIM), as shown in Eq. (1). 

Lossgenerator = LossGAN + λ1 ∗ MAE − λ2 ∗ SSIM (1) 

The GAN loss is a cross-entropy loss, calculated by the predicted 
image tensor and the ground-truth tensor. In our cGAN model, the GAN 
loss is a modified form of the conventional GAN loss and can be 
expressed using Eq. (2). Here, x is the input, y is the output, z is the 
random noise, and D(x, G(x, z)) is the output of the discriminator. 

LossGAN = Ex,y[logD(x, G(x, z) ) ] (2) 

The MAE loss is calculated by comparing the ground truth and the 
prediction (Eq. (3)). 

MAE =
∑512

i,j=1
|xpre(i, j) − xreal(i, j)| (3) 

In addition, we incorporated the SSIM loss into the loss function for 
the generator. SSIM is widely used to measure the similarity between 
two images based on three different aspects: luminance, contrast, and 
structure. SSIM ranges from 0 to 1, where a value close to 1 indicates 
that two images are similar, while a value close to 0 means that the two 
images are different. The detailed formulation for SSIM can be found in 
Appendix B. λ1 and λ2 in Eq. (1) are the weights for the MAE and SSIM 
losses, respectively. 

The loss function for the discriminator (D) is the sum of these two 
components. This loss, shown in Eq. (4), can be divided into two parts, 
Lossreal and Lossfake, which are binary cross-entropy losses, as expressed 
in Eqs. (5) and (6). Unlike the loss for G, for D, the ground-truth image 
should have a higher score (close to 1), and the fake part should have a 
lower score (close to 0). Therefore, the real part (Eq. (5)) only has the 
first term, and the fake loss (Eq. (6)) only has the second term. 

Lossdiscriminator = Lossreal + Lossfake (4)  

Lossreal = Ex,y[logD(x, y)] (5)  

Lossfake = Ex,z[log(1 − D(x, G(x, z)))] (6) 

We used 80% of the data to train the model, 10% for validation, and 
10% for testing the ML model. To quantify how well our cGAN-based ML 

Fig. 2. The workflow of the cGAN-based ML framework for predicting the evolution of grain boundary (GB) networks in polycrystalline materials. The inputs, 
including initial morphology (grain orientation and size) and atomic information (CSP), are fed to the generator (G) in the cGAN. G generates a prediction of the GB 
network post-loading, which is sent to the discriminator (D). D compares the prediction with the ground truth and provides feedback to G to enhance the accuracy of 
GB network evolution predictions. 
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model fits a dataset during the training stage, we used the metrics of 
Mean Squared Error (MSE) and SSIM. As shown in Fig. 3, the MSE of the 
training set decreased to less than 0.5, and the SSIM increased with the 
number of epochs, reaching 0.90 at the 1,000th epoch. For the test set, 
the SSIM converged to around 0.77, and the MSE converged to about 
2.3. Between 800 and 1,000 epochs, the MSE and SSIM showed stable 
values, suggesting that the cGAN model converged after 1,000 epochs of 
training. Therefore, in this study, we trained all models for at least 1,000 
epochs to ensure that the training of the cGAN model converged. 

3.2. Evaluation of the cGAN-based Model for Predicting GB Network 
Evolution 

In this section, we evaluate the performance of our cGAN model in 
terms of its accuracy in predicting the evolution of the GB network. 
Besides comparing it to the ground truth derived from MD simulations, 
we also contrast our cGAN-based model with another benchmark model, 
specifically, the Convolutional Autoencoder (ConvAE). 

For this purpose, we trained a ConvAE model [32], which has a 
channel autoencoder structure utilizing residual blocks. Given its ca
pacity for image reconstruction, it can be trained to generate images of 
the deformed GB network post-loading. 

We conducted a comparison of the GB network predictions between 
the cGAN and ConvAE models, and the ground truth from MD simula
tions. Fig. 4 presents a side-by-side comparison of images from the cGAN 
model, the ground truth, and the ConvAE model. Evidently, the cGAN 
model provides a more accurate prediction of the GB network structure. 
The cGAN model outperforms the ConvAE model in predicting the 
evolution of the GB structure, and the luminance of the cGAN prediction 
closely aligns with that of the ground truth, whereas the ConvAE pre
diction is considerably darker. 

To quantitatively evaluate the accuracy of our cGAN model in pre
dicting the evolution of the GB network, we employed three distinct 
types of metrics. First, in Section 3.2.1, we utilized global metrics such as 
MAE, MSE, and SSIM for an image-to-image comparison between the 
ground truth and the predictions. Second, we developed binary classi
fication accuracy metrics to assess our model’s performance in differ
entiating GB regions from the bulk regions, as discussed in Section 3.2.2. 

Fig. 3. Converge of evaluation metrics (MSE and SSIM) during the training of 
the cGAN model. 

Fig. 4. Comparison of predictions of GB network represented by CSP contours from the cGAN and ConvAE models with the ground truth for four different samples. 
Each column represents results for a specific sample. The first row displays the ground truth from MD simulation results after loading, the second row shows the 
prediction from the trained cGAN model, and the last row illustrates the prediction from the trained ConvAE model. 

Table 1 
Comparative analysis of predictions from cGAN and ConvAE models.   

cGAN ConvAE 

MAE  0.4161  0.4820 
MSE  2.3445  1.9702 
SSIM  0.7699  0.6934  
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Finally, in Section 3.2.3, we introduced a novel type of metric to eval
uate our cGAN model’s performance in predicting the distribution of GB 
regions. 

3.2.1. Quantitative image-to-image evaluation using global metrics 
In Table 1, we present a quantitative image-to-image comparison 

between the ground truth and the predicted outcomes, employing three 
global metrics: MAE, MSE, and SSIM. The SSIM values for the cGAN and 
ConvAE models are 0.7699 and 0.6934, respectively, indicating that our 
cGAN model performs significantly better as a higher SSIM value cor
responds to superior prediction quality. Moreover, our cGAN model 
surpasses the ConvAE model in reducing MAE. However, the ConvAE 
model outperforms the cGAN model in terms of MSE. 

This suggests that while the ConvAE model has focused more on 
minimizing MSE, it falls behind in MAE and SSIM compared to the cGAN 
model. Considering that our study’s objective is to predict the evolution 
of the GB network - which occupies a much smaller area than the bulk 
regions - the SSIM seems to be a more accurate evaluation metric than 
the MSE for our specific context of GB network evolution, as further 
confirmed by the comparison in Fig. 4 and the quantitative comparison 
in Table 1. 

However, these metrics, including MAE, MSE, and SSIM, treat all 
pixels in the images equally and are therefore unable to differentiate the 
GB regions from the bulk regions. Since our study aims to improve 
prediction accuracy specifically for the GB network, it is crucial to 
introduce more precise evaluation metrics for assessing a model’s per
formance in predicting the GB network. We will address this issue in the 
next two sections. 

3.2.2. Quantitative evaluation using binary classification metrics 
In the previous section, we analyzed global metrics (MAE, MSE, and 

SSIM) which do not differentiate between the GB and bulk regions. 
However, given that the GB regions hold more importance in our study, 
it’s crucial to develop evaluation metrics that pay special attention to 
these areas. 

This section, therefore, introduces a method of distinguishing each 
pixel in the predicted image as belonging either to the GB or the bulk 
region. Our problem thus transforms into a binary classification task for 
each pixel in the image, labeling it as a bulk or a GB pixel. The model’s 
evaluation criterion now lies in its ability to correctly classify each pixel. 

Pixels exceeding a particular threshold in the CSP value are classified 
as grain boundary (GB) pixels. This threshold was meticulously deter
mined to ensure all atoms within GB regions have a CSP value exceeding 

it, while atoms within the bulk have lower values. In Fig. 5(b), the 
horizontal line, which indicates a CSP threshold of 0.5, predominantly 
encompasses GB pixels and effectively eliminates all bulk pixels. Uti
lizing the Open Visualization Tool (OVITO), we distinctly delineate the 
GB network, wherein all atoms possessing a CSP value exceeding 0.5 are 
identified as GB atoms, as shown in Fig. 5(a). This graphical represen
tation efficiently highlights all existing GBs, as evidenced in Fig. 5(a), 
while concurrently preventing the erroneous inclusion of any atoms 
within the bulk region into the GB network. 

For a quantitative assessment of our ML model’s ability to predict GB 
regions in the deformed structure of nanocrystalline materials, we 
employ Pratt’s Figure of Merit (PFoM) [33,34] to measure the GB region 
prediction accuracy. This metric compares the ground truth and the 
predicted image in terms of binary classification of GB and bulk regions. 
The PFoM is defined by the following equation: 

PFoM =
1

max(NrealGB , NfakeGB )

∑NfakeGB

i=1

1
1 + ξd2

i

. (7) 

In the equation, NrealGB and NfakeGB denote the number of GB pixels 
whose CSP value is smaller than the threshold in the ground truth and 
predicted images, respectively, ξ is a constant used to scale the value 
within a suitable range [35], and in this study, it is set to 0.1, and di 

represents the L2-norm distance from the i-th GB pixel to the nearest GB 
pixel in the images. 

Additionally, in our study, we modified and utilized the commonly 
used metrics of recall and precision, which are commonly used in binary 
classification problems. Recall is defined as the ratio of correctly pre
dicted GB pixels to the total number of GB pixels in the ground truth: 

Recall =
1

NrealGB

∑NrealGB

i=1
max(sign(D2 − g2

i ), 0). (8) 

Precision is defined as the ratio of correctly predicted GB pixels to the 
total number of predicted GB pixels: 

Precision =
1

NfakeGB

∑NfakeGB

i=1
max(sign(D2 − d2

i ), 0). (9) 

Here, D represents a constant standard distance used to determine 
whether a pixel is predicted correctly or incorrectly, and in our study, we 
set D to 3. If the distance di or gi is smaller than D, the prediction is 
considered correct; otherwise, it is considered incorrect. The term gi 

represents the L2-norm distance of the i-th GB pixel in the ground truth 

Fig. 5. (a) GB network colored by crystal phases. Only atoms with a CSP larger than 0.5 are displayed; (b) Comparison between the ground truth and predicted CSP 
distribution along a crossline to identify the location of GBs. The solid straight line indicates the CSP = 0.5 threshold for distinguishing GB and bulk regions. 
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to the nearest GB pixel in the predicted images. The CSP threshold of 0.5 
is used to distinguish between GB and bulk regions. 

The results, shown in Table 2, reveal that compared to the ConvAE 
baseline model, the cGAN model exhibits superior performance in terms 
of PFoM and Precision, although it lags slightly in Recall. Overall, the 
cGAN model performs better than the ConvAE model at distinguishing 
GB regions from bulk regions. 

3.2.3. Quantitative evaluation using GB neighbor ratio 
The evaluation metrics detailed in the previous section are primarily 

concerned with differentiating whether a pixel belongs to the GB or the 
bulk region. This section takes a further step by focusing on the accuracy 
of predicting the neighboring environment for each pixel. To this end, 
we introduce the concept of the GB neighbor ratio. 

We continue to use a threshold of 0.5 for the CSP value to distinguish 
between GB pixels and bulk pixels. The GB neighbor ratio is then defined 
as the ratio of GB pixels to all neighboring pixels. A GB neighbor ratio of 
0 indicates that all neighboring pixels are bulk pixels, while a ratio of 1 
signifies that all neighboring pixels are GB pixels. 

We demonstrate a comparison of the CSP value distribution between 
our cGAN model and the ground truth in Fig. 6(a-d). The comparison 
shows that our cGAN model has a strong capacity for accurately pre
dicting GB locations. Further examination of the GB neighbor ratio 
distribution in Fig. 6(e) reveals that the predicted images contain 
slightly more GB pixels than the ground truth, as evidenced by the 
marginally higher values. 

To provide a more comprehensive view, we calculate the average GB 
neighbor ratio for a predicted image of the GB network. This is achieved 
using the following formula: AVG(RGB_neighbor) = 1

LxLy

∑LxLy
i,j=1RGB_neighbor(i,j). 

In this equation, RGB_neighbor represents the GB neighbor ratio for each 
pixel in the image, and Lx and Ly correspond to the lengths of the sample 
in pixels. 

In Fig. 6(f), we compare the average GB neighbor ratios predicted by 
both the ConvAE and cGAN models across 30 test samples. The com
parison reveals that the cGAN model performs better, especially in the 
lower range of the distribution, closely aligning with ground truth 
values. 

In summary, the comparisons across various evaluation metrics 
clearly underscore the superior predictive capability of the cGAN model 
in forecasting the evolution of the GB network. 

3.3. Investigation into factors affecting the performance of the cGAN 
model 

In this section, we delve into the investigation of various factors that 
could potentially influence the performance of the cGAN Model. Spe
cifically, we explore the implications of input features representing the 
GB network, the geometric morphology of crystal grains, and the 
different loading conditions. 

3.3.1. Effects of additional input features for representing the GB network 
In Section 3.2, we relied solely on the CSP to differentiate atoms 

within GB regions from those in bulk regions. In this section, we 
investigate whether this single feature is sufficient, or whether addi
tional features could improve our model’s accuracy. Specifically, we 
consider the excess free volume (VFree) and the bond orientational order 
(Q10) for each atom. 

The VFree represents the additional volume an atom occupies 
compared to a regular lattice bulk environment. This feature can 
potentially distinguish between atoms in GB regions and those in bulk 
regions due to differences in their excess free volumes. On the other 
hand, the Q10 quantifies the spatial distribution of neighboring atoms. It 
represents the spherical harmonic between a central atom and its 
neighbors, as defined by the following equations: 

Table 2 
Comparative analysis of predictions for distinguishing GB regions.   

cGAN ConvAE 

PFoM  0.8314  0.6683 
Recall  0.9406  0.9485 
Precision  0.9470  0.7954  

Fig. 6. Quantitative evaluation of the cGAN model by comparing to ground truth and ConvAE predictions: the CSP along the y-direction at different locations of (a) x 
= 20 Å and (b) x = 220 Å, (c) the CSP of a slide along the x-direction; (d) the CSP distribution; (e) the distribution of GB neighbor ratio for the ground truth and 
predicted images; (f) the average GB neighbor ratio from predictions versus ground truth for both cGAN and ConvAE models. 
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qm(i) =
1
Nb

∑Nb

j=1
Ym

(
θ
(
rij
→)

, φ
(
rij
→) )

(10)  

Q10(i) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4π
21

∑10

m=−10
|qm(i) |

2

√
√
√
√ (11)  

where i is the index of the central atom, j refers to a neighboring atom, 
and Nb represents the number of neighboring atoms. 

We expanded our model inputs to include bond orientational order 
and excess free volume, alongside CSP, to describe the GB network. We 
tested these features both individually and in combination. Table 3 
provides a comparison of results for different combinations of input 
features. Interestingly, the model using only CSP (i.e., without any 
additional features) slightly outperforms other cases in terms of PFoM, 
scoring 0.8314 compared to the range of 0.81–0.82 for models with 
additional features. This result supports the use of CSP alone as it yields 

a higher PFoM. 
Further examination of Recall and Precision reveals that the model 

without additional features presents slightly lower Recall but higher 
Precision than other cases. This indicates that the introduction of VFree 
and Q10 doesn’t significantly improve prediction, largely due to their 
overlapping influences with the basic CSP input feature. Thus, this 
additional analysis suggests that the CSP feature alone is sufficient for 
differentiating atoms in GBs from those in bulk regions in our cGAN 
model. 

3.3.2. Effects of loading conditions 
In the preceding sections, we considered samples subjected to a 

specific loading process comprising shearing and unloading. This section 
explores the generalizability of our cGAN model under a different 
loading condition. Specifically, we apply a shearing strain of 10% to the 
samples, akin to what we used in previous sections. However, unlike 
earlier tests, we do not unload the samples, resulting in a final deformed 
shape that differs from the input images. Therefore, additional adjust
ments are necessary and were performed for our cGAN model to 
accommodate these differing shapes between input and output images. 

After training our models with the new loading condition, we eval
uated the distribution of the CSP and GB neighbor ratio, as shown in  
Fig. 7. Fig. 7(a) and (b) demonstrate that the cGAN model can still 
accurately predict the location of GBs in the network following the 
application of the new loading condition. Compared to the results shown 
in Fig. 6(d), we observed an increase in the number of pixels with high 

Table 3 
Comparison of PFoM, Recall, and Precision for different input features.  

Extra Input Feature PFoM Recall Precision 

None (CSP only)  0.8314  0.9406  0.9470 
Q10  0.8159  0.9496  0.9151 
VFree  0.8152  0.9499  0.9144 
Q10, VFree  0.8185  0.9507  0.9165  

Fig. 7. Quantitative evaluation of the cGAN model by comparing to ground truth: the CSP along the crossline at different locations of (a) x = 220 Å and (b) y =
120 Å, (c) the CSP distribution; and (d) the distribution of GB neighbor ratio in the ground truth and predicted images. 
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CSP values in the samples subjected to the new loading condition, as 
shown in Fig. 7(c). This increase is likely due to the presence of more 
defects, such as dislocations and stacking faults, in the bulk region 
caused by not unloading the samples. 

The comparison of the cGAN model predictions to ground truth re
sults (Figs. 7(c) and 7(d)) suggests that the cGAN model continues to 
perform well in predicting the distribution of the CSP and GB neighbor 
ratio. Overall, this exploration of a new loading condition demonstrates 
that our cGAN model retains its predictive power in simulating the 
evolution of the GB network for nanocrystalline samples under various 
loading conditions. 

3.3.3. Effects of geometric morphology of crystal grains 
In all previous sections, our cGAN model was trained and tested on a 

specific geometric morphology (Geometry A) of the nanocrystalline 
materials. This geometry featured grains with regular shapes as shown 
in Fig. 1. In this section, we explore the impact of changes in geometric 
morphology on the performance of our machine learning model. 

We create another geometry, referred to as Geometry B, which also 
contains five grains. However, unlike Geometry A, the shape and size of 
the grains in Geometry B are randomly generated, as shown in Fig. 8(a). 
We apply the same specific loading process to these samples, simulating 
the evolution of the GB network. 

The cGAN model is trained with the same arguments and process as 
in previous sections. When compared with the results from Geometry A, 
the cGAN model shows the same or even better accuracy for Geometry B.  
Table 4 presents the comparison. The MAE and MSE for the Geometry B 
samples in the test set are 0.4128 and 2.2802, respectively, slightly 
better than the 0.4161 and 2.3445 for Geometry A samples. The SSIM is 
0.7713 for Geometry B, similar to the 0.7699 for Geometry A. Moreover, 

the PFoM for Geometry B is 0.8492, an improvement compared to 
0.8124 in Geometry A. 

Despite the randomly generated grain size and shape in Geometry B, 
which results in a more complex structure, the model provides slightly 
better predictions. This could be attributed to the richer details provided 
by Geometry B, offering more information for the model to learn from. 
As seen in Figs. 8(a) and 8(b), the predicted image accurately indicates 
whether the GB will disappear or not, similar to what we observed in 
Geometry A. Fig. 8(c) shows the CSP of a slice cut along the dashed line 
in Figs. 8(a) and 8(b), and it illustrates that the cGAN model’s prediction 
of GB locations generally aligns with the ground truth, with minor dif
ferences in GB width and maximum CSP values. Figs. 8(d) and 8(e) 
display the same trend in the distributions of CSP and GB neighbor ratio 
between predictions and the ground truth for Geometry B. 

In conclusion, despite the complexity introduced by changes in ge
ometry, the comparison results demonstrate that such changes do not 
negatively affect the predictive capability of our cGAN model. This 
suggests that our cGAN model can be generalized to predict the evolu
tion of the GB network with varying geometrical morphologies. 

4. Conclusions 

In conclusion, this work presents a novel, cGAN-based machine 
learning framework for predicting the evolution of the GB network in 
nanocrystalline materials subjected to mechanical loading conditions. 
We adapted and trained the cGAN model using MD simulation results, 
providing a robust and accurate tool for analyzing nanocrystalline 
materials. 

We benchmarked the performance of the cGAN model against a 
baseline model (ConvAE), showing superior results. To quantitatively 
evaluate the accuracy of the cGAN model, we introduced three novel 
types of metrics, including binary classification metrics, to differentiate 
GBs from the bulk regions. 

This study also explores the influence of various factors on the per
formance of our cGAN model. Specifically, we have shown that the 
cGAN model is capable of predicting the evolution of GB networks across 
different geometric morphologies of crystal grains and under various 

Fig. 8. (a) and (b) show the respective ground truth and predicted image for Geometry B; (c) presents the CSP of a slide along the x-direction; (d) displays the CSP 
distribution; (e) depicts the distribution of GB neighbor ratio in the ground truth and predicted images; and (f) illustrates the average GB neighbor ratio from the 
cGAN model and the ground truth. 

Table 4 
Comparison of results for two different types of geometries.  

Geometry MAE MSE SSIM PFoM Recall Precision 

A  0.4161  2.3445  0.7699  0.8124  0.9456  0.9130 
B  0.4128  2.2802  0.7713  0.8492  0.9588  0.9369  

Y. Wang et al.                                                                                                                                                                                                                                   



Extreme Mechanics Letters 70 (2024) 102172

9

loading conditions, demonstrating its versatility and wide applicability. 
This work primarily focuses on developing a deep learning model to 
predict the complex behavior of grain boundary evolution under me
chanical loading at room temperature. Given that temperature signifi
cantly influences the evolution of grain boundaries, we will consider 
high-temperature effects, including annealing processes, in our future 
work. 

This research not only provides a powerful tool for predicting GB 
network evolution, but it also highlights the potential of using machine 
learning in advancing our understanding of nanocrystalline materials. 
We expect that this cGAN-based ML framework will pave the way for 
more precise predictions in material science, ultimately enabling the 
design and creation of more robust, adaptable materials. 
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Bombarelli, Representations of materials for machine learning, Annu Rev. Mater. 
Res 53 (2023). 

[5] F. Oviedo, J.L. Ferres, T. Buonassisi, K.T. Butler, Interpretable and explainable 
machine learning for materials science and chemistry, Acc. Mater. Res. 3 (6) (2022) 
597–607. 

[6] M. Parsazadeh, S. Sharma, N. Dahotre, Towards the next generation of machine 
learning models in additive manufacturing: a review of process dependent material 
evolution, Prog. Mater. Sci. 135 (2023) 101102. 

[7] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C.W. Park, 
A. Choudhary, A. Agrawal, S.J. Billinge, Recent advances and applications of deep 
learning methods in materials science, Npj Comput. Mater. 8 (1) (2022) 59. 

[8] D. Morgan, G. Pilania, A. Couet, B.P. Uberuaga, C. Sun, J. Li, Machine learning in 
nuclear materials research, Curr. Opin. Solid State Mater. Sci. 26 (2) (2022) 
100975. 

[9] M. Guziewski, D. Montes de Oca Zapiain, R. Dingreville, S.P. Coleman, Microscopic 
and macroscopic characterization of grain boundary energy and strength in silicon 
carbide via machine-learning techniques, ACS Appl. Mater. Interfaces 13 (2) 
(2021) 3311–3324. 

[10] Y. Wang, X. Li, X. Li, Y. Zhang, Y. Zhang, Y. Xu, Y. Lei, C.S. Liu, X. Wu, Prediction 
of vacancy formation energies at tungsten grain boundaries from local structure via 
machine learning method, J. Nucl. Mater. 559 (2022). 

[11] J. Messina, R. Luo, K. Xu, G. Lu, H. Deng, M.A. Tschopp, F. Gao, Machine learning 
to predict aluminum segregation to magnesium grain boundaries, Scr. Mater. 204 
(2021). 

[12] K. Guo, Z. Yang, C.H. Yu, M.J. Buehler, Artificial intelligence and machine learning 
in design of mechanical materials, Mater. Horiz. 8 (4) (2021) 1153–1172. 

[13] C. Wen, C. Wang, Y. Zhang, S. Antonov, D. Xue, T. Lookman, Y. Su, Modeling solid 
solution strengthening in high entropy alloys using machine learning, Acta Mater. 
212 (2021). 

[14] Z. Nie, H. Jiang, L.B. Kara, Stress field prediction in cantilevered structures using 
convolutional neural networks, J. Comput. Inf. Sci. Eng. 20 (1) (2020). 

[15] W. Dai, H. Wang, Q. Guan, D. Li, Y. Peng, C.N. Tomé, Studying the 
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