Fungal Genetics and Biology 169 (2023) 103829

ELSEVIER

Contents lists available at ScienceDirect
Fungal Genetics and Biology

journal homepage: www.elsevier.com/locate/yfgbi —

t.)

Check for

Update on the state of research to manage Fusarium head blight S|

Soumya Moonjely ?, Malaika Ebert ™', Drew Paton-Glassbrook ", Zachary A. Noel -2,

Ludmila Roze ?, Rebecca Shay ?, Tara Watkins ", Frances Trail

@ Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA

a,b,*

b Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA

ARTICLE INFO ABSTRACT

Keywords:

Fusarium graminearum
Cereal disease
Mycotoxin

Integrated management
Biological control

Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in
yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic
fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and
zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the
past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce

RNAi the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-
tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents
multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide
chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.

1. Introduction

Fusarium head blight (FHB) is one of the most challenging fungal
diseases that affect cereal crops worldwide. The disease reduces grain
yield and results in toxic contaminants that render grain inedible.
Several Fusarium species are associated with FHB (Dill-Macky and Jones,
2000; Ma et al., 2020); however, the most prevalent causal agents
belong to the Fusarium graminearum species complex (FGSC). Among the
seventeen phylogenetically distinct subgroups belonging to the FGSC,
the predominant species causing FHB in the United States is
F. graminearum (de Chaves et al., 2022; Del Ponte et al., 2022; Gale et al.,
2007), which causes FHB in cereal crops, including wheat, barley, rice,
corn, and oats. In the United States, FHB has been the greatest threat to
cereal crops for multiple decades (Bai and Shaner, 1994; Dill-Macky,
1996; McMullen et al., 1997; McMullen et al., 2008; Powell and Vuja-
novic, 2021). The outbreaks date back to 1917, when they were reported
in 31 states with an estimated yield loss of 288,000 metric tons of wheat
(Atanasoff, 1920; McMullen et al., 1997). From 1993 to 2014, wheat
farmers in the United States lost $17 billion worth of wheat due to FHB
(Ma et al., 2020). An outbreak in the Southeastern United States in 2003
resulted in severe economic losses to wheat growers, primarily in
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Maryland, North Carolina, and Virginia, with a loss of over $13 million
(Cowger and Sutton, 2005). In 2010, parts of Ohio reported a 60%
incidence of FHB in wheat fields, which is typical of fields worldwide
when environmental conditions are conducive to disease (McMullen
et al., 2012). Although significant preventative measures have been
developed and implemented for the control of F. graminearum, FHB re-
mains a problematic disease to cereal farmers across the globe as the
effectiveness of control measures varies depending upon weather
conditions.

In wheat and barley, F. graminearum primarily affects the inflores-
cence, and the initial symptoms appear shortly after flowering. Infection
is initiated when airborne ascospores (sexual spores) and conidia
(asexual spores) are deposited on florets, primarily by wind dispersal
(Fig. 1). These spores are released from colonized crop residues (Bai and
Shaner, 2004; Imboden et al., 2018) and other infected hosts (Fulcher
et al., 2019a). F. graminearum also causes stalk rot in maize, as well as
root rot in other crops, including wheat, maize, and soybean (Kang et al.,
2019; Li et al.,, 2016a; Reid et al.,, 2001; Wang et al., 2015a).
F. graminearum infects wheat and barley during anthesis through the
developing florets, and after initial infection, the fungus colonizes in-
ternal tissues of the developing grains with hyphae. The initial
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symptoms of the infection are dark-brown areas on the glumes of
infected florets, which subsequently lead to the bleaching of the entire
floret. The infection spreads both internally and externally to adjacent
florets, across the entire head, and down the rachis through the stalk
(Boenisch and Schafer, 2011; Guenther and Trail, 2005; Jansen et al.,
2005). As the symptoms progress, the infected kernels appear shriveled
and bleached and are commonly known as tombstones (McMullen et al.,
1997). Environmental conditions significantly influence the initiation
and severity of the disease, where high humidity (>90%) and moderate
temperatures (59 to 86°F) favor the fungus and lead to more severe
incidences of FHB in the field. At the end of the growing season,
F. graminearum overwinters on colonized crop residues, where the next
spring fruiting bodies develop under favorable environmental condi-
tions (Dill-Macky and Jones, 2000; Naef and Défago, 2006), and the
cycle continues.

F. graminearum contaminates grains with mycotoxins, including
deoxynivalenol (DON), nivalenol, and zearalenone. The amount of
mycotoxins in the infected grains varies depending on several factors,
including weather conditions, preharvest control strategies, time of
harvest, and resistance level of the cultivar (Mielniczuk and Skwaryto-
Bednarz, 2020). The resulting mycotoxins in the grains after
F. graminearum infection not only affect nutritional quality, but also
endanger the health of humans and livestock through the consumption
of mycotoxin contaminated food (Huff et al., 1981; Malekinejad et al.,
2007; Mudge et al., 2006; Rotter et al., 1996). In addition, most of the
barley grown in the United States is used for malting by the brewing
industry, and F. graminearum infection of barley leads to gushing of
bottled beer caused by contamination with fungal hydrophobins during
the malting process (Denschlag et al., 2012).

FHB is a difficult disease to control. Extensive research has been
conducted on developing management strategies to reduce the losses
caused by FHB. Adequate control of FHB cannot be accomplished by a
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single approach. Currently, integrated disease management is recom-
mended through combining fungicides with tolerant crop varieties, and
crop rotation to reduce inoculum from susceptible crops (Amarasinghe
et al., 2013; McMullen et al., 2012; Willyerd et al., 2012). These prac-
tices manage the disease well in years where environmental conditions
do not significantly favor the pathogen. However, in years where
weather (cool temperatures and rain) favors the fungus, such strategies
do not work. For the long term, new means of control must be innovated.
While developing effective management, it is necessary to select tools
that are stable, cost-effective, and eco-friendly. Above all, the chosen
management strategy should prevent or reduce the development of
resistant F. graminearum strains. In this review, we focus on the current
management strategies and explore innovative directions for FHB
management (Fig. 1). The genetics and chemistry of DON biosynthesis
and its effects on plants, humans and animals are beyond the scope of
this review, but have been presented elsewhere, including Chen et al.
(2019), Cimbalo et al. (2020), Payros et al. (2016), Rocha et al. (2005),
and Sumarah (2022).

2. FHB management strategies
2.1. Agricultural practices

Agricultural practices, including the selection of resistant cultivars,
crop rotation, management of crop residues using tillage, irrigation, and
applying efficient disease forecasting models, have proven successful in
mitigating the incidence and spread of FHB (Fernando et al., 2021;
McMullen et al., 2012; Wegulo et al., 2015). Hyphae of F. graminearum,
overwintering on crop residues, produce fruiting bodies under favorable
environmental conditions, and the ascospores discharged from these
fruiting bodies serve as the major FHB inoculum, which can be mini-
mized through the careful management of the residues (Blandino et al.,
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2010, 2012; Dill-Macky and Jones, 2000; Guenther et al., 2009;
McMullen et al., 2012; Osborne and Stein, 2007). Therefore, tillage,
which reduces large amounts of crop residue on the soil surface is
effective in decreasing FHB incidence (Dill-Macky and Jones, 2000;
Schaafsma et al., 2005). Crop rotation is also recommended for reducing
FHB outbreaks, and rotating wheat or barley with a non-host crop spe-
cies reduces the F. graminearum inoculum load in the field (Shah et al.,
2018). Soybean is one of the crops most commonly recommended for
rotation with wheat, barley, and maize to reduce the risk of disease
development. However, studies have shown that F. graminearum can
colonize soybean and become a source of inoculum (Chiotta et al., 2020;
Kang et al., 2019). In addition to crop rotation, the management of non-
cultivated plants such as weeds, including other grasses, is important in
reducing the amount of inoculum in fields, as several common weeds
within cereal crop rotations may serve as reservoir hosts for
E. graminearum (Fulcher et al., 2019b; Suproniene et al., 2019). Studies
have shown that crop rotations can significantly impact the microbiome
of durum wheat, including encouraging beneficial species that can be
used as biological control agents against pathogenic fungal species,
emphasizing the importance of assessing microbial diversity as part of
effective integrated management strategies (Vujanovic et al., 2012).
Biological control of FHB and the host microbiome are discussed in
section 2.4. There are limitations to managing FHB outbreaks through
agricultural practices, especially when the climatic conditions are
favorable for infection, so more effective strategies are needed to
incorporate into the integrated FHB management program.

Recently, the addition of silica to the soil as a fertilizer has been
shown to reduce FHB incidence and severity (Pazdiora et al., 2021; Sakr,
2021a), especially in combination with fungicide treatments (Pazdiora
et al., 2022). Numerous studies have demonstrated the active involve-
ment of silicon (Si) in mediating host resistance against fungal patho-
gens, including Blumeria graminis (Bélanger et al., 2003; Rémus-Borel
et al., 2005), Bipolaris sorokiniana (Domiciano et al., 2013), Drechslera
tritici-repentis (Dorneles et al., 2017), F. culmorum, F. verticillioides, F.
solani, F. equiseti (Sakr, 2021a; Sakr and Kurdali, 2022) and Magnaporthe
grisea (Rodrigues et al., 2004; Rodrigues et al., 2005). Plants absorb si-
licic acid via the roots, then translocate it to the shoots, where it is
polymerized into silica (Ma and Yamaji, 2006; Mayland et al., 1991). A
field study demonstrated the effect of amending soil with calcium sili-
cate in reducing FHB severity in wheat (Pazdiora et al., 2021). The effect
of silicon applications to roots versus leaves in reducing FHB incidence
and severity was compared, and the results showed that neither treat-
ment reduced disease incidence nor severity during the initial infection
stage. However, both aspects were significantly reduced two weeks after
initial infection, revealing that successful reduction of FHB requires a
minimum concentration of silica to accumulate in the host tissues to
modulate defense responses (Sakr, 2021b). An in vitro bioassay on wheat
showed that Fusarium spp. can proliferate on the plant surface, regard-
less of silica application, indicating that silica may not act directly on the
fungus (Sakr, 2022). Yobo et al. (2019) analyzed the efficacy of applying
potassium silicate under greenhouse conditions; however, their results
revealed no significant reduction in FHB severity in wheat. There is
some evidence that the interaction of F. graminearum with silica treated
plants enhances disease. Two recent publications present data that silica
amendments were associated with disease reduction in wheat. However,
it was also noted in these reports that applications of silica did not
reduce hyphal growth, and that mycotoxin contamination in kernels was
more severe than in unamended controls in susceptible cultivars (Paz-
diora et al., 2022; Sakr, 2022). For clarity, more research efforts are
needed to uncover the association of silica to FHB.

2.2. Fungicides
Fungicides are the primary means of controlling FHB in the United

States and many areas of the world. However, high FHB disease pressure
in fields, usually brought on by conducive weather conditions, can result
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in greater than 60% disease incidence even in the presence of fungicide
applications (Gonzalez-Dominguez et al., 2021; Haidukowski et al.,
2005; Lehoczki-Krsjak et al., 2010; Singh et al., 2021). Several other
factors influence the efficacy of fungicide applications, including the
severity of the infection, the timing of application and the type of
fungicide, the resistance level of cultivars, and the tolerance of the
pathogen to the chemicals (Bolanos-Carriel et al., 2020; Mesterhazy
et al., 2011). In wheat, fungicides are applied during a short window of
time, coinciding approximately with anthesis, when the fungus initiates
infection that will result in grain contamination (Caldwell et al., 2017;
Freije and Wise, 2015). However, the timing of fungicide application for
successful control can be up to 11 days after anthesis to avoid DON
accumulation in the seed (Freije and Wise, 2015). In barley, fungicide
timing is dependent on whether the cultivar is open-flower or closed-
flower, where closed-flowering cultivars can benefit from later appli-
cations due to delayed access of spores to floral parts (Yoshida et al.,
2008). Additionally, the use of a combination of multiple fungicides
during the growing season has been shown to be more effective in
controlling FHB for the full season (Barro et al., 2021; Caldwell et al.,
2017; Friskop et al., 2023; Haidukowski et al., 2005).

In the United States, the most commonly used fungicides to control
FHB are the azoles, which target the ergosterol biosynthetic pathway,
specifically the cytochrome P450 sterol 14a-demethylase (CYP51),
leading to instability of cell membranes (Amarasinghe et al., 2013;
Anderson et al., 2020; Caldwell et al., 2017; Chen and Zhou, 2009; Freije
and Wise, 2015; Haidukowski et al., 2005; Paul et al., 2018). A widely
used fungicide chemistry registered for control of FHB is the succinate
dehydrogenase inhibitors (SDHIs), which inhibit the respiratory elec-
tron transport chain (Avenot and Michailides, 2010). The quinone
outside inhibitors (Qol), such as the strobilurins, affect the mitochon-
drial cytochrome-bc complex, are found to be less effective than azole-
based fungicides in controlling FHB (Bolanos-Carriel et al., 2020; Paul
et al., 2018). A recent study reported that Qol can enhance mycotoxin
synthesis by accelerating the production of acetyl-CoA, a substrate
involved in the trichothecene biosynthetic pathway of F. graminearum
(Duan et al., 2020).

Although a combination of fungicides and tolerant host varieties can
provide stable control, there is growing concern for the development of
fungicide resistance. For instance, the emergence of resistant
F. graminearum isolates in field populations has been reported following
the continuous use of triazoles (Anderson et al., 2020; Chen et al.,
2021a). Zhao et al. (2022) observed that a single amino acid substitution
(G443S) of the CYP51A gene in F. graminearum significantly reduced
sensitivity to ergosterol biosynthesis inhibitors including tebuconazole
and metconazole. Cross resistance can develop when the genes impart-
ing resistance to one fungicide can provide tolerance to fungicides in
other classes. An in vitro study exposing a field isolate to sublethal doses
of tebuconazole yielded two resistant phenotypes, one developing azole-
specific cross resistance, and the other developing multidrug resistance
with increased tolerance to amine fungicides, as well as azoles. The
study demonstrated the ability of F. graminearum to become resistant to
multiple classes of fungicides in a short time due to exposure to a single
fungicide (Becher et al., 2010). The development of multidrug resistance
is linked to the activation of efflux transporters and has been reported in
other phytopathogenic fungal species as well (Cheng et al., 2023; De
Waard et al., 2006, Samaras et al., 2020; Vicentini et al., 2022). Recent
evidence demonstrates the critical role of the plasma membrane local-
ized H" antiporter, FgQdr2, as a drug efflux pump that confers multi-
drug resistance in F. graminearum. The activation of FgQdr2 has been
shown to be involved in the efflux of multiple fungicides, and the
absence of the FgQdr2 gene causes increased sensitivity to fungicides.
The specific role of FgQdr2 in multidrug resistance is not known, but it
has been suggested that the changes in the proton gradient and envi-
ronmental chemical stress upregulate the FgQdr2 gene, resulting in
resistance (Ma et al., 2022).

In two separate studies, transcriptomic analyses in F. graminearum
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following azole fungicide applications revealed that genes of the
ergosterol biosynthetic pathway were significantly upregulated,
including those that are not the direct target of azoles (Becher et al.,
2011; Liu et al., 2010). Additionally, ABC transporters, transcription
factors, and genes involved in cellular metabolism were upregulated,
indicating the potential of the fungus to efflux the fungicide through
transporters and to generate more ergosterol to alleviate the impact of
the fungicide. An interesting case study in F. graminearum reported how
resistance to phenamacril, a cyanoacrylate fungicide that interferes with
mycelial growth by targeting the myosin 1 gene, develops. Phenamacril
was developed due to high resistance to the $-tubulin-specific antifungal
agent, carbendazim, in strains in China, where carbendazim is
commonly used to control FHB. However, in testing phenamacril in the
lab, resistance developed multiple times in F. graminearum (Chen and
Zhou, 2009; Zheng et al., 2014, 2015). Genetic studies have shown that
resistance occurs due to point mutations in multiple, separate genes,
each of which confers resistance to multiple fungicides on its own. For
example, mutations in the myosin 5 and p-tubulin genes render resis-
tance to the fungicides phenamacril and carbendazim, respectively (Liu
et al., 2019, Zheng et al., 2014, 2015). A similar study assessed the
development of resistance to the SDHI fungicide, pydiflumetofen, as
well as the risk of cross-resistance between pydiflumetofen and other
fungicides. Sequencing analysis and cross-resistance tests showed that
resistance to SDHIs developed by mutations in the genes encoding the
succinate dehydrogenase subunit without conferring resistance to fun-
gicides such as tebuconazole and phenamacril (Sun et al., 2020). To
achieve the sustainable management of crop diseases through chemical
control, frequent introduction of chemistries with new modes of action
is essential (Steinberg and Gurr, 2020).

Novel compounds for the control of fungi have been mined from a
variety of organisms, including plants, lichens, fungi, and bacteria. Such
specialized (secondary) metabolites have demonstrated their antifungal
properties primarily in vitro (Annis et al., 2000; Bemvenuti et al., 2019;
Chen et al., 2018a; Drakopoulos et al., 2020, 2019; Gao et al., 2016;
Heidtmann-Bemvenuti et al., 2016; Kouassi et al., 2017; Schoneberg
et al., 2018). Similarly, essential oils derived from plant sources have
been shown in vitro to combat fungal pathogens (Chen et al., 2020;
Delaquis et al., 2002; Ferreira et al., 2018; Hyldgaard et al., 2012; Kumar
et al., 2016; Rao et al., 2019). Lichens have also been mined for novel
antifungal compounds. The unique assortment of phenolic (aromatic)
compounds such as depsides, depsidones, and dibenzenofurans pro-
duced by lichens possess a variety of biological activities (Calcott et al.,
2018; Molnar and Farkas, 2010; Shrestha and St Clair, 2014). Several
lichen compounds have been shown to affect mycotoxin biosynthesis in
Aspergillus spp. and F. graminearum (Annis et al., 2000; Pani et al., 2016).
Since some lichen compounds possess strong antioxidant activity
(Fernandez-Moriano et al., 2016; Kosanic, et al., 2011), they may lessen
the oxidative stress that triggers mycotoxin biosynthesis (Audenaert
et al., 2010; Grintzalis et al., 2014; Ponts et al., 2007, 2006, 2003;
Reverberi et al., 2006), thus reducing mycotoxin accumulation.
Although a large number of studies on natural compounds have shown
their potential antifungal activity, many of these findings are limited to
in vitro or greenhouse trials. The antifungal potential of these com-
pounds must be tested in planta under field conditions to develop an
effective antifungal commercial formulation that is easy to produce, has
an affordable price, a long shelf life, and flexible application
requirements.

2.3. Host resistance

Use of highly resistant cultivars would provide the most efficient
means of reducing FHB outbreaks. FHB resistance in small grain cereals
is classified into five types (Fernando et al., 2021; Foroud and Eudes,
2009; Mesterhazy et al., 1999). Type I is defined as resistance to initial
fungal infection, and type II resistance corresponds to the suppression of
spread of FHB within the host plant, and resistance to trichothecene
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accumulation characterizes type III resistance (Buerstmayr et al., 2019;
Lemmens et al., 2005; Mesterhazy et al., 1999; Wang and Miller, 1988).
Type 1V is described as resistance to kernel infection rate (Fernando
et al.,, 2021; Mesterhazy et al., 1999), whereas type V resistance is
described as the ability of the host plant to stop mycotoxin production by
the fungus and convert it to non-toxic derivatives (Martin et al., 2017).
In addition, the plant’s phenotypic characteristics, including the height,
spikelet density, and time of flowering, contribute to tolerance of FHB
and is termed “passive resistance” (Mesterhazy, 1995; Pritsch et al.,
2000). Currently, the cultivars developed through conventional
breeding programs are only moderately resistant. Development of
highly resistant cultivars has proven challenging as FHB resistance is
under complex polygenic control with only moderate heritability (Aviles
et al., 2020).

Selected wheat cultivars with accumulated resistance have been used
in wheat breeding programs to develop stronger resistance. Wheat ac-
cessions Sumai 3, Wangshuibai, and Nyu Bai are commonly used by
breeders to develop resistant cultivars (Bai and Shaner, 2004; Ma et al.,
2020). Sumai 3 and Wangshuibai originated in China, while Nyu Bai is a
Japanese landrace (Bai and Shaner, 2004; Ma et al., 2020; Niwa et al.,
2014; Zhou et al., 2004). Among these, Sumai 3 exhibits type I and II
resistance, was developed from two moderately susceptible cultivars,
and its descendants are used in most FHB resistance breeding programs
worldwide.

In barley, F. graminearum shows limited internal spread from the
rachis, thus rendering most barley varieties naturally type II resistant
(Langevin et al., 2004). However, barley is highly susceptible to initial
infection, with 2-row barley typically more resistant than 6-row barley
(He et al., 2015). Wild relatives of barley have been screened for resis-
tance to provide a reservoir of resistance genes for breeding (Bai and
Shaner, 2004). However, wild Hordeum species are not more resistant to
FHB than the cultivated varieties, which increases the difficulty of
breeding fully resistant varieties.

Genetic mapping studies have shown that multiple quantitative trait
loci (QTLs) are implicated in FHB resistance of wheat and barley,
including resistance to mycotoxin accumulation. Over 500 QTLs related
to FHB resistance have been reported in wheat (Buerstmayr et al., 2009;
Buerstmayr et al., 2019; Chen et al., 2021¢c; Ma et al., 2020; Poudel et al.,
2022; Song et al., 2022), however, more studies are required to validate
the majority of these QTLs. The most widely studied QTLs are Fhb1 and
Fhb7 (Wang et al., 2020). Fhb1, the major wheat QTL identified in Sumai
3 (Buerstmayr et al., 2009) and Wangshuibai (WSB; Jia et al., 2018),
both bred in China, is often used for breeding wheat varieties more
tolerant to FHB (Berraies et al., 2020; Ma et al., 2019; Rawat et al.,
2016). Fhb1 presents type II resistance to several species of Fusarium,
and consistently exhibits moderately high resistance to FHB (Hao et al.,
2020). Screening efforts in wild wheat relatives are also used to increase
available sources of resistance, notably identifying a QTL from the
wheatgrass Thinopyrum elongatum, Fhb7, encoding the trichothecene
detoxification enzyme glutathione S-transferase, which detoxifies DON
through de-epoxidation (Wang et al., 2020). In barley, QTLs associated
with FHB resistance, DON accumulation, and kernel discoloration have
also been identified (de la Pena et al., 1999; Huang et al., 2021; Ogro-
dowicz et al., 2020; Sallam et al., 2023). However, the coincident nature
of the QTLs associated with FHB resistance and the agricultural traits
inherent in these lines makes breeding efforts complicated in barley. To
better elucidate the relationship between QTLs and agricultural traits, a
moderately susceptible cultivar, Rasmusson, was crossed with
PI383933, a highly susceptible, short-stature Japanese landrace with a
dense spike. The recombinant inbred lines showed a correlation of FHB
severity with the morphological traits, where the plant height and spike
length were negatively correlated, and the spike density was positively
correlated with disease severity (Huang et al., 2018).

Recently, the gene responsible for the Fhb1 resistance within the QTL
has been identified in wheat. Su et al. (2019) and Li et al. (2019a) have
identified a gene in the Fhb1 region in Sumai 3 and WSB, TaHRC, and
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Qfhs.njau-3B, respectively, which encodes a histidine-rich calcium-
binding protein (His). They found that a deletion mutation spanning the
start codon in the His gene confers FHB resistance in wheat. Thus, the
wild-type His gene functions as a susceptibility determinant regulating
the FHB symptoms (Li et al., 2019a; Su et al., 2019). Experiments by Su
et al. (2019) suggest that the mutated gene did not acquire a new
function, but rather enhanced FHB resistance. The His gene has been
shown to localize in the nucleus, suggesting its potential role in altering
host immunity-related processes (Li et al., 2019a). The T. elongatum
genome sequence was used to clone and characterize a gene Fhb7
identified as having an origin in Epichloe, an endophyte of grasses (Wang
etal., 2020). More recently, the homologs of Fhb7 were reported in other
genera of grass, including Elymus, Leymus, Roegneria, and Pseudoroeg-
neria (Guo et al., 2022). In addition, Guo et al. (2023) found a con-
trasting reaction to FHB in wheat-Thinopyrum substitution and
translocation lines, with some lines carrying glutathione S-transferase
encoding Fhb7 homolog showing FHB susceptibility. Wang et al. (2023)
transformed a single strain of the endophytic fungus Phomopsis liqui-
dambaris to produce Fhbl. When inoculated separately into wheat,
which was then challenged by F. graminearum, spike disease was reduced
by 25.7% and 24.7%, with significantly reduced DON levels in grain.
Although more extensive work needs to be done before using this
method commercially, the study indicates that engineered endophytes
can reduce disease and, importantly, extends the possibilities of using
endophytes for plant protection by expressing plant resistance genes.

Transgenic breeding provides new possibilities for developing FHB
resistant cultivars, which has advantages over conventional breeding
methods due to its ease of transferring candidate genes relevant to FHB
resistance, especially with genome editing technologies like CRISPR/
Cas9. Recently, overexpression of the non-specific lipid transfer protein
(AtLTP4.4) from Arabidopsis into wheat demonstrated reduced DON
accumulation (McLaughlin et al., 2021). In addition, UDP-glycosyl
transferases (UGT) produced in plants such as Arabidopsis and barley
have been identified as being involved in detoxifying DON (Poppen-
berger et al., 2003; Xing et al., 2017). The transgenic expression of UGT
in wheat reduced DON accumulation and FHB severity by suppressing
pathogen spread in the spike, contributing to type II resistance (Gatti
et al., 2019; He et al., 2020; Li et al., 2015; Shin et al. 2012). Another
study reported the successful reduction of FHB in barley via over-
expression of an antifungal gene, nepenthesin 1 (Bekalu et al., 2020),
thus identifying another transgenic opportunity for disease resistance
against FHB. Multiple resistance genes can be used for stronger resis-
tance through gene pyramiding (Joshi and Nayak, 2010). The engi-
neering of constitutive expression of two barley genes, UGT, and a
pectinase inhibitor (AcPMEI or PvPGIP2), into wheat contributed
enhanced resistance to FHB (Mandala et al., 2021). Similarly, the
overexpression of multiple genes connected to FHB resistance may
permit broad-spectrum resistance in crops. The induced expression of
multiple defense response genes, including those encoding o-1-pur-
othionin, thaumatin-like protein 1, and f-1,3-glucanase in wheat,
significantly enhanced the FHB resistance (Mackintosh et al., 2007).
Thus, several research groups have successfully generated wheat and
barley lines with enhanced resistance to FHB through genetic engi-
neering using these approaches. However, no wheat varieties are highly
resistant at this time (Fabre et al., 2020), and with the barriers of
introducing external genes into commercial varieties (Entine et al.,
2021), it may be a long time until fully resistant transgenic varieties are
available to growers.

2.4. Biological control of FHB and importance of the host microbiome

The role of the individual members of the host microbiome in pro-
tecting plants against pathogen infection is under intensive study, and
the impact of the community structure is being revealed in hosts of
F. graminearum (Kavamura et al., 2021; Solanki et al., 2021). Individual
community members can thwart host-plant colonization by Fusarium
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pathogens through strategies, including antibiosis, niche competition,
and host defense induction (Gdanetz and Trail, 2017; Gdanetz et al.,
2021; Karlsson et al., 2021; Longley et al., 2020; Rojas et al., 2020).
Numerous studies have demonstrated the ability of microorganisms to
biotransform or biodegrade mycotoxins, and to increase yield (Gao
et al., 2018; Hassan et al., 2021; Liu et al., 2022; Noel et al., 2022). Thus,
the utilization of microorganisms is a promising means of controlling
FHB and mycotoxins in plants (Fig. 2), where the microbes can be native,
applied, or both.

Inhibitory interactions between the host and pathogen can be direct,
most commonly, or indirect. In direct inhibition, microbes weaken the
effect of the pathogen through mycoparasitism or production of bioac-
tive chemicals. Mycoparasitism involves a microbe that parasitizes the
fungus, for example, the effect of the biotrophic fungus Sphaerodes
mycoparasitica and the necrotrophic Trichoderma harzianum on reducing
colonization of the host plant by F. graminearum (He et al., 2019;
Vujanovic and Goh, 2009). S. mycoparasitica is a biotroph originally
isolated from Canadian fields in association with F. avenaceum,
F. graminearum, and F. oxysporum (Kim and Vujanovic, 2016; Vujanovic
and Goh, 2009). Both in vitro and in planta assays demonstrated the
ability of S. mycoparasitica to penetrate the F. graminearum hyphae and
hinder hyphal growth (Vujanovic and Goh, 2012, 2011). In addition to
growth inhibition, S. mycoparasitica degrades mycotoxins produced by
F. graminearum resulting in less toxic metabolites (Kim and Vujanovic,
2017; Kim and Vujanovic, 2022; Powell et al., 2023). Direct inhibition of
the growth of pathogenic fungi has been documented through antago-
nistic compounds such as antifungal metabolites (Hao et al., 2021b). A
recent study demonstrated inhibition of spore germination and mycelial
growth in F. graminearum by the yeasts Meyerozyma guilliermondii,
Cyberlindnera saturnus, Rhodotorula glutinis, and Cryptococcus carnescens
(Podgorska-Kryszezuk et al., 2022). Studies of enzymatic antagonism
demonstrated the attenuating impacts of hydrolytic enzymes, including
chitinases, glucanases and proteases produced by microbes (Dominelli
etal., 2022; Kim et al., 2019; Li et al., 2016b; Swiontek Brzezinska et al.,
2014).

Indirect inhibition of fungal growth can be manifested by the host or
through the effects of microbes colonizing the host or rhizosphere. Mi-
crobes can promote plant growth, resulting in the priming of plant de-
fense responses, or stimulate the plant’s overall health by releasing
stimulatory volatiles, phytohormones or by improving the host nutrient
acquisition capacity (Adnan et al., 2022; Ilyas and Bano, 2012; Jha,
2020; Quetal., 2020; Vandana et al., 2021). Induced systemic resistance
primes the plant immune system, leading to more efficient activation of
immune responses, a common outcome of beneficial mycorrhizal-plant
relationships (Ali et al., 2023; Constantin et al., 2019; Jung et al.,
2012; Teixeira et al., 2019). Microbes can also affect each other through
nutrient competition and/or niche exclusion, which can be facilitated by
disease attenuated strains. In F. graminearum, deletion mutants of the
Tri6 and NADH oxidase genes, have reduced pathogenicity and activate
FHB resistance in wheat (Ravensdale et al., 2014). Beneficial microbes
residing in the host plant or the rhizosphere influence disease severity by
interacting more efficiently with the host plant than the pathogens,
causing competitive exclusion of the pathogens (Busby et al., 2016;
Medina et al., 2017). Integrating multiple levels of management ap-
proaches affords both healthier crops and increased tolerance to disease
pressure.

Plant-associated microbiomes play an important role in maintaining
plant fitness by combating other microbial pathogens and insect herbi-
vores. A recent study revealed the potential of bacterial members of the
wheat head microbiome to reduce the virulence of F. graminearum.
Among the bacterial isolates, Pseudomonas piscium modified fungal his-
tones through the activity of phenazine-1-carboxamide, which conse-
quently reduced fungal growth and virulence (Chen et al., 2018b).
Microbial antagonists isolated from wheat anthers, including Bacillus
subtilis/amyloliquefaciens and Cryptococcus spp., demonstrated a reduc-
tion in FHB disease symptoms and increased grain weight (Khan et al.,
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Fig. 2. Overview of microbiome mediated FHB management. Microbial members, colonizing host tissues or from the rhizosphere, can protect plants from
F. graminearum directly or indirection through parasitism, niche competition, detoxifying mycotoxins, antifungal metabolite production, and by triggering host
defense responses. The beneficial microbes of the host microbiome can also promote plant growth.

2001). An endophytic fungus, Simplicillium lamellicola, isolated from the
roots of the wheat cultivar AC Morely was found effective in reducing
F. graminearum infections on wheat in field conditions. Moreover,
S. lamellicola displayed plant growth promoting properties by increasing
shoot and root length as well as fresh and dry weight of wheat cultivars
(Abaya et al., 2021). Besides antagonistic effects, microbial candidates
that can degrade, adsorb, or transform the fungal mycotoxins have been
characterized. DON was converted into 3-epi-DON and 3-keto-DON by
various bacteria found both in soil and wheat tissue (Volkl et al., 2004).
In contrast to DON, 3-epi-DON and 3-keto-DON form weaker bonds with
the ribosome, the mode of action for DON toxicity, leading to less stable
binding, and do not induce ribotoxic stress response in the plant (Payros
et al., 2016). Degradation of DON and formation of derivatives have
been seen in species of the bacterial genera Nocardioides and Devosia,
which are residents of the wheat phyllosphere and rhizosphere (Ikunaga
et al., 2011; Wachowska et al., 2017; Zhang et al., 2021). The applica-
tion of DON degrading microbial candidates from the host phyllosphere
or rhizosphere microbiome is a promising approach for FHB
management.

Viruses remain one of the most understudied facets of the plant

microbiome, but our understanding of them has greatly increased
recently because of the advancement and widespread use of sequencing
techniques that better capture their genetic information. Mycoviruses
are those that specifically infect fungi, and as of 2019, there were 29
fully sequenced mycoviruses identified from members of the genus
Fusarium (Li et al., 2019b). In most cases, mycovirus infection causes
little or no symptoms in the fungal host (Son et al., 2015). However,
some mycoviruses can cause phenotypic alterations to virus disease
cycles, reducing (hypo-) or increasing (hyper-) virulence on the host (Li
et al., 2019b; Nuss, 2005; Pearson et al., 2009; Sharma et al., 2018).
Hypo-virulent viruses have promising bio-control mechanisms, as they
have been shown to reduce mycelial growth, decrease virulence in
wheat, and demonstrated substantial reduction in trichothecene pro-
duction (Son et al., 2015). Mycoviruses from the family Fusariviridae and
Crysoviridae are associated with hypovirulence in F. graminearum (Chu
et al., 2002; Darissa et al., 2012).

Numerous studies highlight the importance of bacterial, fungal, and
viral candidates as potential biocontrol agents against F. graminearum.
Although the application method of these biocontrol agents depends on
multiple factors such as weather conditions, crop stage, formulation,
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and the type of agent, the most widely used methods include seed
treatment, spraying, and soil drenching (Elnahal et al., 2022). The
application of bacterial biocontrol inoculum via seed coating (Mattei
et al., 2022) or spraying on heads (Baffoni et al., 2015) has shown
effective biocontrol against FHB in wheat. The off-target impacts of
fungicides on native or applied microbial agents should be studied more
in-depth, and in the context of F. graminearum infection. Such studies
should seek the most effective use of fungicides, while minimizing losses
to ecosystem function due to off target impacts. In addition to opti-
mizing the use of microbial agents to control FHB, it is essential to un-
derstand how F. graminearum employs its effector proteins to modulate
the microbiome composition and promote disease development in the
host.

2.5. Effector proteins and application in management strategies

Insight into the molecular pathways employed by F. graminearum to
initiate colonization in host plants is essential for the development of
novel control strategies. Fungal effectors are proteinaceous or non-
proteinaceous secreted molecules that serve to modulate the host’s de-
fense responses, ultimately promoting successful colonization by the
fungus on the host (Pradhan et al., 2021; Rocafort et al., 2020; Wilson
and McDowell, 2022). Increasing evidence shows that proteins that are
larger in size and lower in cysteine content can also function as effectors
(Sperschneider et al., 2015; See et al., 2019). The functions of effectors
are not limited to virulence contributions, but are also involved in
triggering plant cell death (Yang et al., 2021a), nutrient-acquisition, and
competition with other microbes (Bradley et al., 2022). Because effec-
tors are so important to disease, and also an evolving field of research,
we briefly summarize the progress on research in this area, and
comment on the possible efficacy of management strategies that work
against effectors.

The advancement of omics tools allows the use of in silico approaches
to identify proteins with putative effector functions in F. graminearum
(Alouane et al., 2021; Brown et al., 2012; Fabre et al., 2019; Hao et al.,
2021c; Tu et al.,, 2023; Yang et al., 2021a). Transcriptional datasets
document expression patterns of candidate effectors, suggesting their
involvement in fungal-host interactions (Chen et al., 2021b; Mentges
et al., 2020; Rocher et al., 2022). Prediction tools identify candidate
effectors, leaving the experimental validation of their role in patho-
genesis. FgNIs1 is an effector protein in F. graminearum with a eukaryotic
nuclear localization signal, which interacts with the wheat histone 2B
protein. Transgenic wheat plants that silence FgNlslexpression sup-
pressed FHB symptoms (Hao et al., 2023). Recently, Fgl2, a secreted
ribonuclease effector, has been characterized and shown to contribute to
fungal virulence and cell death in the host (Yang et al., 2021a).

Specialized metabolites such as DON can act as non-proteinaceous
effectors (Collemare et al., 2019), and they can influence the microen-
vironment by altering the pH, nutrient availability, or other factors,
creating conditions conducive to microbial growth. Numerous special-
ized metabolites produced by the Fusarium spp. have antimicrobial ef-
fects (Mentges et al., 2020; Xu et al., 2023); therefore, besides virulence
promotion, specialized metabolites acting as effectors can help the
producing microbe to compete with other microbes colonizing the host
(Snelders et al., 2020). An increasing number of transcriptomic studies
report the involvement of multiple specialized metabolites during
different stages of F. graminearum colonization on the host (Mentges
et al., 2020, Miguel-Rojas et al., 2023). For instance, Jia et al. (2019)
demonstrated that fusaoctaxin A facilitates cell-to-cell penetration by
the fungus during infection and suggests a role in manipulating host
nutrient transport. Similarly, a wide array of hydrolytic enzymes pro-
duced by F. graminearum, such as cell wall degrading enzymes have been
described as effectors (Bradley et al., 2022; Garcia-Ceron et al., 2021),
and are involved in plant cell wall penetration and necrosis of host tis-
sues (Hao et al., 2021¢; Zhao et al., 2014). A recent study demonstrated
that the knockdown of the plant cell wall degrading enzyme xylanase A
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remarkably reduced fungal virulence toward wheat and barley, sug-
gesting its role in the infection process and disease development (Tini
et al., 2020). The accumulating evidence indicates effectors are the key
determinants of fungal pathogenicity, however, the identification of
putative effectors through bioinformatics tools has limitations, as these
tools predict protein function based on predetermined properties (e.g.
numbers of amino acids, cysteine residues, or secretion signals) that may
exclude the candidates without well-characterized effector properties
(Alouane et al., 2021). Recently, Miltenburg et al. (2022) used proximity
dependent biotin identification, a new method that permits the study of
protein interactions in vivo to identify candidate effector proteins in the
F. graminearum - Arabidopsis pathosystem. With new methods emerging
for discovering effectors, we may identify effector molecules that can be
targeted in control of plant diseases. Additionally, the characterization
of the effector targets in the host can be used as a guide to identify the
disease susceptibility genes in the host (Gawehns et al., 2013).

2.6. Molecular tools for control: RNA induced gene silencing of
F. graminearum

RNA-induced gene silencing (RNAi) is a transcriptional or post-
transcriptional level mechanism used by many organisms to knock
down (or silence) the expression of target genes via homology-
dependent mRNA degradation. RNAi has emerged as a promising tool
for manipulating gene expression in a multitude of organisms including
plants, animals, and fungi. The process is triggered when a long double-
stranded RNA (dsRNA) is cut or “diced” into small fragments ~ 21 bp
long by a ribonuclease III enzyme called Dicer (Gaffar et al., 2019;
Hannon, 2002; Hao et al., 2021a; Lee et al., 2010). These small frag-
ments, known as siRNAs (small interfering RNAs), subsequently bind to
a family of proteins known as argonaute. Together, the argonaute pro-
teins and the siRNAs form the RNA-induced silencing complex (RISC).
The activation of the RISC complex occurs when one of the two strands
of siRNA is removed, allowing the remaining strand to bind to the
complementary mRNA. Once bound, the argonaute proteins will cleave
the mRNA, thus degrading it and accomplishing the knockdown of the
gene (Dang et al., 2011; Gaffar et al., 2019; Koch et al., 2013). In
F. graminearum, the silencing components include two dicer proteins
(FgDicerl and FgDicer2), two argonaute proteins (FgAgol and FgAgo2),
and five RNA-dependent RNA polymerases (FgRdRp1-5) (Chen et al.,
2015). Several studies have demonstrated RNAI as an effective strategy
to enhance disease resistance in plants against phytopathogens
including Fusarium spp. (Gu et al., 2019; Machado et al., 2018; Tetorya
and Rajam, 2021), Aspergillus flavus (Arias et al., 2015; Gilbert et al.,
2018), Sclerotinia sclerotiorum, Botrytis cinerea (McLoughlin et al., 2018,
Sabbadini et al., 2021), Blumeria graminis (Hein et al., 2005; Nowara
et al., 2010), Cochliobolus sativus, Colletotrichum truncatum, Magnaporthe
oryzae (Gu et al., 2019), and Colletotrichum gloeosporioides (Mahto et al.,
2020). RNAi is advantageous to use because it is a non-chemical process
and can be developed to target specific genes and pathogens, which may
reduce the ability for resistance to develop, as well as limit off-target
effects.

There are two common methods for introducing the target RNAi
construct into cells to begin this process: host-induced gene silencing
(HIGS) and spray-induced gene silencing (SIGS) (Hao et al., 2021). In
HIGS, the host machinery is used to silence pathogen genes. This is often
accomplished by using transgenics to insert pathogen genes into the
plant host genome. Genes that form a hairpin structure will easily trigger
the gene silencing machinery (Cheng et al., 2015; Koch et al., 2013). The
introduced genes are specific to the target pathogen(s) and reflect pro-
teins the host plants would commonly encounter during initial infection,
such as effector proteins (Koch et al., 2013). Thus, when a pathogen
infects, the plant has the machinery to thwart the expression of genes
essential for disease production by the pathogen. In a study published by
Koch et al. (2016), the successful knockdown of the CYP51 gene in
F. graminearum, essential to ergosterol biosynthesis, was accomplished
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by applying the HIGS method in barley. The knockdown of certain host
genes may also promote disease resistance to FHB. For instance, in
wheat, the RNAi mediated knockdown of TaT1R1, the gene encoding the
auxin receptor, was shown to contribute to FHB resistance (Su et al.,
2021). The involvement of auxin signaling in promoting susceptibility to
FHB infection has been previously demonstrated (Brauer et al., 2019),
and the silencing of the auxin receptor gene in the host via RNAi
inhibited the hyphal extension of F. graminearum in the rachis (Su et al.,
2021). HIGS has successfully been used in trials of wheat and barley to
combat multiple pathogens, including F. graminearum, Puccinia triticina,
and wheat mosaic streak virus (Cheng et al., 2015; Koch et al., 2013).
HIGS is transgenically-generated, and its use in the field needs to
overcome regulatory barriers and public concerns.

RNAI can also be initiated through SIGS, which employs the exoge-
nous application of the dsRNA or siRNA product on the surface of crops,
similar to pesticide applications, and is taken up by the pathogen during
initial plant infection or by the plant during growth. In the first scenario,
the fungus takes up dsRNA or siRNA from the plant surface, and is
processed by fungal RNAi machinery. In the latter instance, plants take
up the RNAI structures and process them into functional siRNA using
plant RNAi machinery. The siRNA molecules are then translocated into
fungal cells via exosomes, passive diffusion, or membrane associated
receptors (Machado et al., 2018; Wang and Jin, 2017). This approach
avoids the regulatory issues with HIGS, and cellular mechanisms from
either the host or the pathogen can be targeted. Additionally, there is
evidence that host plants will amplify the silencing signal throughout
the plant beyond the initial point, making it a systemic control mecha-
nism (Cai et al., 2018a). The spray application of the same dsRNA tar-
geting the CYP51 genes inhibited fungal growth on locally sprayed parts
of detached barley leaves and distal (non-sprayed) regions (Koch et al.,
2016). SIGS of RNAi constructs targeting genes in F. graminearum
encoding chitin synthase 7, glucan synthase, and protein kinase C dis-
played silencing effects and significantly reduced the fungal infection on
wheat spikelets under greenhouse conditions (Yang et al., 2021b).
Although SIGS has benefits over HIGS, one major concern is the short-
term instability of RNAi structures before being taken up by the host
plant or pathogen (Machado et al., 2018). The limitations in achieving
stability of SIGS based RNAi constructs for FHB disease management
points to future work, which should determine whether or not combi-
nations of SIGS and fungicides are possible.

3. Perspectives

FHB has caused large yield losses throughout the last 100 years. In
the 1990's, studies demonstrated that tillage provides some control of
F. graminearum emergence in the spring and, together with crop rotation
using non-susceptible crops, can be highly effective (Miller et al., 1998;
Dill-Macky and Jones, 2000). These management measures have limi-
tations that impact their efficacy in controlling this devastating disease
and the sustainability of production. Thus, there is a growing need for
innovative approaches to managing FHB. The future of FHB manage-
ment lies in multidisciplinary approaches that incorporate advances in
genomics, genetic-engineering, new fungicide chemistries, applied
biocontrol, and consideration of the life cycles of FHB causing Fusarium
Spp.

Use of genomics and transcriptomics has significantly advanced
identification and characterization of genes involved in virulence and
infection processes on the pathogen side, and resistance on the host side.
Engineering FHB resistance traits in plants through genome editing
promises efficient and sustainable approaches to managing FHB. The
RNAIi based approach also holds a key position in the future for FHB
management. Recently, nanoparticles have been used to deliver DNA
and RNA to plants and animals for transformation and for medical ap-
plications (Sharma and Lew, 2022; Zhang et al., 2019; Zhi et al., 2022).
Silicon, which can package the particles for delivery, is known to protect
from UV radiation (Chen et al., 2016; Tripathi et al., 2017). These two
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developments should allow more effective uses of SIGS and HIGS in
large-scale agricultural applications. Development of alternative
methods such as CRISPR-Cas9 and future techniques for genomic
modification may, in the long run, provide a low risk that is acceptable
to a worldwide community.

Fungicides play an integral role in FHB management, however, the
emergence of fungicide resistance to multiple classes of fungicides,
demonstrating the highly adaptive nature of the fungus. Moreover, the
escalating use of fungicides on crops has an impact on the environment,
human and animal health. Fungal effectors have specific functions and
structures that can be used to design inhibitors that selectively block
effector activity. These inhibitors can be developed into fungicides that
specifically target F. graminearum without harming beneficial organ-
isms. Furthermore, numerous studies have shown the potential of novel
antifungal chemistries from plants, other fungi, and lichens in control-
ling FHB. Technologies such as remote sensing help to monitor the status
of the plant health and detect early signs of FHB (Xiao et al., 2022; Zhang
et al., 2022). Remote sensing allows the targeted and timely application
of fungicides, thereby minimizing prolonged and intense fungicide use,
which may slow down the emergence of fungicide-resistant strains.

The intimate interactions of host-associated beneficial microbes in
defending against pathogen attack holds huge promise in managing
FHB. Although the ability to manipulate the host microbiome is in its
infancy, there is data indicating the role of beneficial players from the
host microbiome in controlling phytopathogens, including mycotoxin
reduction and enhanced yield. The difficult challenge ahead is to un-
derstand the complex relationships among beneficial microbes, hosts,
and pathogens, and the need to develop an appropriate intervention
strategy.

Although F. graminearum produces secondary inoculum in the form
of conidia, it behaves epidemiologically as a monocyclic disease (Sutton
1982), with ascospores providing the primary inoculum. This aspect of
the life cycle, combined with the fact that tillage is a very effective
control, suggests that addressing the formation and dispersal of asco-
spores would be a highly effective target for novel controls of this dis-
ease. In recent years, our understanding of the interactions of
F. graminearum with host plants, resulting in perithecium development,
has greatly improved (Chen et al., 2023; Imboden et al., 2018; Prussin
et al., 2014; Schmale et al., 2005; Shin et al., 2020; Sikhakolli et al.,
2012; Trail et al., 2017). Management of primary inoculum thus appears
to offer promising outcomes for control. This might be achieved through
identifying means of rapid deterioration of crop residues after harvest,
particularly in wheat and maize. In wheat, perithecium initials are
present at harvest in the stalks and heads, and initiate perithecia after
being primed by cold and dry weather (Guenther and Trail, 2005). There
are some indications that rain in the fall will stimulate conidial pro-
duction, using up stored lipid reserves that fuel perithecium develop-
ment in the spring (Guenther et al., 2009; Trail and Common, 2000).
Maize stalks support longer term inoculum production. Biological con-
trol measures that treat colonized stalks would be eco-friendly proactive
approaches to reducing perithecium maturation. Recently, Xu et al.
(2022) characterized the antagonistic properties of bacterial isolates
from the microbiome of F. graminearum perithecia collected from wheat
fields. Isolates of Pantoea agglomerans inhibited mycelial growth, peri-
thecium formation, and mycotoxin biosynthesis. Additional studies
targeting the crop residues for limiting inoculum would likely have
beneficial outcomes.

After nearly 35 years of continuous research support by the USDA
Wheat and Barley Scab Initiative, and funding worldwide to study this
disease, two recent discoveries about Fusarium have provided what are
likely major new targets for control. Extracellular vesicles (EVs) have
been shown to be part of host-pathogen interactions in a number of
mammalian and plant diseases, and are known to provide cross-kingdom
communication through transmitted proteins, nucleic acids and
specialized metabolites, including virulence factors (Bleackley et al.,
2020; Cai et al., 2018b; Garcia-Ceron et al., 2023, 2021; Mathieu et al.,
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2019; Motaung and Steenkamp, 2021; Rodrigues et al., 2008; Rybak and
Robatzek, 2019; Wang et al., 2015b). In addition, F. graminearum was
shown to produce biofilms (Shay et al., 2022), which are likely to play
an active role in pathogenicity, particularly disease initiation. Although
the roles for EVs and biofilms in Fusarium spp. and their role in disease
are yet to be fully elucidated, they are likely to provide new targets for
scientific ingenuity in head blight control.
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