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A B S T R A C T

Integrating renewable energy in power systems can significantly reduce emissions in the energy sector, resulting 
in remarkable environmental and human health benefits. One of the major barriers for renewable energy inte
gration is transmission congestion, which can be effectively mitigated through optimal utilization of transmission 
flexibilities. Distributed flexible AC transmission systems (D-FACTS) are cutting-edge devices that can provide 
premium flexibility to electric power transmission systems when optimally allocated and configured. However, 
the optimal D-FACTS allocation and configuration problem is extremely computationally challenging. This study 
aims to present a computationally efficient algorithm that can optimally allocate and configure variable- 
impedance D-FACTS to minimize (1) power system operating costs, (2) global warming potential (GWP), and 
(3) human toxicity potential (HTP), considering uncertainties in load and renewable energy generation. The 
model was implemented on a modified RTS-96 test system with a high penetration of wind energy, and results 
show that optimally allocating and configuring D-FACTS can reduce power system operating costs, GWP, HTP, 
and renewable energy curtailment. The results also indicate an inverse relationship between the first objective 
and the other two, showing the necessity to choose a proper trade-off between cost savings, environmental and 
human health impacts.

Nomenclature

Indices
a, b Solutions
c Contaminant
k Transmission line.
g Generator.
n Node.
r Renewable Generator.
s Scenario.
seg Segment of linearized generator cost function.
i Objective or Fitness Function
Sets
σ+(n) Transmission lines with their “to” bus connected to node n.
σ−(n) Transmission lines with their “from” bus connected to node n.
g(n) Generators connected to node n.
r(n) Renewable generators connected to node n.
Variables
CD

inv Total investment in D-FACTS ($).

(continued on next column)

(continued )

Da,b Dominance of solution a over solution b
Fk,s Real power flow through transmission line k in scenarios s.
FMi,a Value of fitness function i for solution a
OFi,a Value of objective function i for solution a
Pg,s Real power generation of generator g in scenarios s.
PC

r,s Curtailed energy from renewable generator r in scenario s

Pseg
g,s Real generation of generator g in scenarios s in segment seg.

RD
g,s Spinning down reserve available through generator g in scenario s.

RU
g,s Spinning up reserve available through generator g in scenario s.

xD
k Integer indicating the number of D-FACTS installed on transmission line k

θb,s Voltage angle at bus b in scenarios s.
θfr,k,s Voltage angle at the “from” node of line k in scenarios s.
θto,k,s Voltage angle at the “to” node of line k in scenarios s.
ϕC Percentage of curtailed renewable energy.
Parameters
CNL

g No load cost of generator g.

Clinear
g,seg Linear cost of generator g in segment seg.

(continued on next page)
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(continued )

CD
g Down reserve cost of generator g.

CU
g Up reserve cost of generator g.

CD
single Cost a of single D-FACTS unit ($).

CD
sh Cost a of single D-FACTS unit converted to an hourly figure ($/h).

Cmax
inv Maximum investment allowed for D-FACTS.

fk,s Flow direction for line k in scenario s
Fmax

k Thermal capacity/voltage drop limit of transmission line k.
Gg,c Gaseous contaminant c released by generator g (kg/MMBTU)
GWPg,c,s Global Warming Potential caused by contaminant c from generator g in 

scenario s (1 kg CO2 eq.)
Hlinear

g,seg Linearized Heat production of generator g in generation segment seg 
(MMBTU/MW)

HTPg,c,s Human Toxicity Potential caused by contaminant c from generator g in 
scenario s (1 kg toluene eq.)

imax
k Maximum number of D-FACTS that can be allocated per line.
I Interest rate/discount rate.
lalloc
max Max. number of lines in which D-FACTS devices may be allocated
lk Length of line k
Ln,s Load at bus n in scenario s.
N Lifespan of D-FACTS devices.
Nc Total number of contaminants considered
Ng Total number of generators.
Nk Total number of lines.
Ns Number of scenarios.
Nseg Number of segments for the linearized generator cost function.
Npop Population size for the algorithm.
Nr Number of renewable generators.
ps Probability of scenario s.
Pmax

g Upper generation limit of generator g.
Pmin

g Lower generation limit of generator g.
Pr,s Renewable power from renewable generator r in scenario s
SD Spinning down reserve requirement g.
SU Spinning up reserve requirement g.
Tc Toxicity of contaminant c
Xk The reactance of transmission line k.
Xmax

k Maximum reactance of line k if D-FACTS are installed on this line.
Xmin

k Minimum reactance of line k if D-FACTS are installed on this line.
Wc GWP factor for contaminant c (1 kg CO2 eq.)
ηC The maximum adjustment percentage of the line’s reactance in the 

capacitive mode that a single D-FACTS module (1 device/phase/mile) can 
achieve.

ηL The maximum adjustment percentage of the line’s reactance in the 
inductive mode that a single D-FACTS module (1 device/phase/mile) can 
achieve.

Δθmax
k Max. value of bus voltage angle difference for stability in line k.

Δθmin
k Min. value of bus voltage angle difference for stability in line k.

1. Introduction

ELECTRIC power generation accounts for one-seventh of human 
exposure to air pollutants such as fine particulate matter 2.5 (PM2.5), 
sulfur dioxide, and nitrogen oxides, and at least 40 % of greenhouse- 
causing CO2 emissions in recent years. Residents in low-income areas 
are more likely to be affected by air pollution, resulting in environ
mental equity issues [1]. Studies such as [2] show that organic and 
inorganic compounds produced by coal-powered plants create an 
elevated risk of cancer in nearby areas up to 50 miles away, and case 
studies have shown that replacing low-efficiency generators can reduce 
harmful emissions by over 60 % [3]. To reduce the environmental and 
health hazards, many countries set goals for emission reduction or clean 
energy integration. For example, the U.S. set a goal to reach net-zero 
emissions by 2050. Reaching such a goal requires not only wide 
deployment of clean generation but also building sufficient infrastruc
ture, such as transmission networks, to integrate renewable energy [4]. 
Today, transmission congestion is one of the biggest issues in the North 
American electric transmission grid and the leading cause of renewable 
energy curtailment [5]. Transmission congestion occurs when trans
mission line capacity or transformer active power flow limits cannot 
meet the needs [6], and transmission expansion or upgrades are usually 
the first solutions being considered. However, such expansion or 

upgrades cannot solve the problem in a timely manner. In 2015 alone, 
$20.1 billion were invested in transmission system upgrades, but many 
independent systems operators still reported considerable 
congestion-related costs even after heavy spending on upgrades [7]. As 
transmission congestion issues persist, it has become necessary to find 
new approaches to mitigate this problem other than solely relying on 
transmission expansion or upgrades.

Other than transmission expansion and upgrades, some proposed 
solutions to congestion issues include energy storage [8], electric vehicle 
(EV) integration [9], and other strategies, including generator 
rescheduling, load shedding, distributed generation allocation, nodal 
pricing, etc. [10]. One of the most effective and promising approaches to 
address transmission congestion, though, is using variable-impedance 
series Flexible AC Transmission Systems (FACTS), which can be used 
to provide effective power flow control as part of smart transmission 
systems, improving the transfer capability of the transmission network 
and enabling a more sustainable and reliable power delivery network 
[11]. Distributed FACTS (D-FACTS) is a lightweight version of FACTS. 
They have the advantages of lower per-unit cost, improved reliability, 
and much smaller physical space requirements. They are built in a 
modular fashion and can be attached to a transmission conductor or 
installed on transmission towers. There are three main types of D-FACTS 
devices: Distributed Series Static Compensator (DSSC), Distributed Se
ries Reactor (DSR), and Distributed Series Impedance (DSI). DSR and 
DSI work mainly by adjusting line impedance, while DSSC functions 
similarly to a phase shifter [12].

Different types of FACTS and D-FACTS devices have different func
tionalities in the power grid, such as reducing transmission congestion 
and operational costs [13], improving the overall stability of power 
grids, preventing line degradation and power outages, and facilitating 
renewable energy integration [14]. Studies such as [15] recommend the 
use of D-FACTS devices for effectively controlling power flows in sys
tems with distributed generation sources, including non-dispatchable 
energy resources such as solar and wind energies. It has been repeat
edly proven that both variable-impedance type FACTS and D-FACTS are 
effective for smart power flow control. D-FACTS devices, in particular, 
have the advantages of providing enhanced grid utilization, increased 
flexibility in power flow control, and increased security and reliability 
compared to traditional FACTS devices.

The topic of D-FACTS allocation is still a relatively new concept, with 
the technology proposed in 2005 as a cost-effective, low-footprint so
lution to traditional FACTS devices. Since then, various studies have 
been done on the viability and cost-effectiveness of D-FACTS devices, as 
well as their role in improving overall power quality [14]. Different 
optimization methods have been adopted for the optimal allocation of 
such devices. One such optimization method is graph theory, used by 
Ref. [16] to control line flows under the presence of changing generation 
and loads. Particle swarm optimization (PSO) is another optimization 
method for D-FACTS allocation, which is suitable for graphic-based 
problems [17]. For example [18], focused on minimizing voltage devi
ation and power losses, maximizing voltage stability, and optimizing 
load balancing using an enhanced bacteria foraging optimization based 
on the particle swarm optimization (PSO) algorithm. PSO methods have 
also been used by Ref. [19] to minimize power loss and voltage de
viations by allocating various types of D-FACTS devices. However, these 
D-FACTS allocation algorithms do not consider the uncertainties caused 
by load variation and renewable generation. Mixed-integer linear pro
gramming with stochastic scenarios was used by Ref. [20], allowing for 
accurate D-FACTS optimal allocation and configuration in meshed net
works with uncertainties. However, due to a large number of integer 
variables in the optimization problem, computational efficiency is still a 
challenge.

Despite a variety of optimization methods for D-FACTS allocation, 
the literature still comes short in solving the optimal allocation and 
configuration of variable-impedance type D-FACTS considering system 
uncertainties with high computational efficiency. The major challenge is 
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that such problems require us to solve mixed-integer programs with a 
large number of integer variables considering a large number of con
straints. Another gap to be addressed is utilizing D-FACTS to reduce the 
environmental impact of energy systems. Since D-FACTS devices affect 
the power flow patterns in the transmission network, they can signifi
cantly change the emissions, including PM2.5, sulfur dioxide, nitrogen 
oxides, and carbon dioxide, from the power system. These emissions 
have varied impacts on the environment, causing not only greenhouse 
effects but also hazards to human health. Although there is a recent work 
studying the impact of FACTS on carbon emissions [21], there is still a 
lack of work that considers how different emissions affect both the 
environment and human health in D-FACTS allocation and 
configuration.

To address the computational challenge, a preliminary evolutionary 
algorithm (EA) was proposed in the authors’ previous work [22]. The 
model had a single objective of minimizing system operating costs and 
did not consider the impact of D-FACTS allocation on environmental 
impacts. Thus, this paper aims to address the above-mentioned gaps by 
customizing and fine-tuning the EA for a comprehensive, multi-objective 
D-FACTS optimization model that considers not only operating cost 
reduction but also environmental impacts.

The contributions of the paper are listed as follows. 

1) This paper proposes a multi-objective optimization model to opti
mally allocate and configure D-FACTS in meshed transmission net
works, minimizing not only power system operating costs but also 
the environmental and human health impacts of power systems. The 
environmental and human health impact metrics used in this study 
are global warming potential (GWP), a metric used to determine how 
much heat the emissions are capable of trapping [23], and human 
toxicity potential (HTP), which measures long-term health risks for 
humans associated with inhalation and skin exposure to harmful 
substances.

2) A custom-made, computationally efficient evolutionary algorithm is 
proposed in this study to solve the nonlinear, computationally 
challenging D-FACTS optimization problem, considering a complete 
set of power system operating constraints and uncertainties. The 
model can optimally allocate D-FACTS modules over the entire line 
instead of allocating the modules per mile, offering flexibility in the 
number of D-FACTS modules to be allocated for each line.

3) An analysis of the trade-off between power system operating costs, 
GWP, and HTP, with the use of D-FACTS, is presented in this paper. 
In the case studies, Pareto fronts were obtained using the proposed 
method. The Pareto fronts show inverse relationships between power 
system operating costs and the environmental and human health 
impacts, and decision-makers can choose a Pareto-optimal D-FACTS 
allocation and configuration solution based on their budget and 
environmental impact mitigation goals.

The remainder of this paper is organized as follows: Section II de
scribes the mathematical formulation of the multi-objective D-FACTS 
optimization model, Section III presents the proposed evolutionary al
gorithm, Section IV presents case studies and analyzes the results, and 
conclusions are drawn in Section V.

2. D-FACTS optimization model formulation

The proposed multi-objective optimization model allocates D-FACTS 
modules in each phase with the objectives of minimizing power system 
operating costs, GWP, and HTP, respectively, while satisfying different 
power system operating constraints. The model also automatically 
configures D-FACTS modules with optimized set points. In the proposed 
model, D-FACTS modules are allocated along a number of transmission 
lines in a system. Since the reactances of the lines will be adjusted by the 
D-FACTS devices that will be installed, the equations describing power 
flow will change based on whether the flow is traveling in the reference 

direction (1) or against it (2) [24]:
If θfr,k,s − θto,k,s ≥ 0,

θfr,k,s − θto,k,s
/
Xmax

k ≤ Fk,s ≤ θfr,k,s − θto,k,s
/
Xmin

k (1) 

If θfr,k,s − θto,k,s ≤ 0,

θfr,k,s − θto,k,s
/
Xmin

k ≤ Fk,s ≤ θfr,k,s − θto,k,s
/
Xmax

k (2) 

The formulation of the proposed D-FACTS optimization model 
considering power flow directions is described by Equations (3)–(28).

Objectives: 

min OF1 =
∑Ns

s=1
Ps

⎛

⎜
⎜
⎝

∑Ng

g=1

⎛

⎜
⎜
⎝

∑Nseg

seg=1
Clinear

g,seg Pseg
g,s + CU

g RU
g,s

+CD
g RD

g,s + CNL
g

⎞

⎟
⎟
⎠+

∑Nr

r=1
crPC

r,s

⎞

⎟
⎟
⎠+ CD

inv

(3) 

min OF2 =

(
∑Ns

s=1

(

Ps

∑Ng

g=1

∑Nc

c=1
GWPg,c,s

))

(4) 

min OF3 =

(
∑Ns

s=1

(

Ps

∑Ng

g=1

∑Nc

c=1
HTPg,c,s

))

(5) 

Constraints: 

Pg,s =
∑Nseg

seg=1
Pseg

g,s (6) 

Pmin
g ≤Pg,s ≤ Pmax

g (7) 

−Fmax
k ≤ Fk,s ≤ Fmax

k (8) 

∑

k∈σ+(n)
Fk,s −

∑

k∈σ−(n)
Fk,s +

∑

g∈g(n)

Pg,s +
∑

r∈r(n)

(
Pr,s −PC

r,s

)
= Ln,s (9) 

∑Ng

g=1
RU

g,s ≥ SU (10) 

∑Ng

g=1
RD

g,s ≥ SD (11) 

RU
g,s ≤Pmax

g − Pg,s (12) 

RD
g,s ≤Pg,s − Pmin

g (13) 

RU
g,s ≥ 0 (14) 

RD
g,s ≥ 0 (15) 

Δθmin
k ≤ θfr,k,s − θto,k,s ≤ Δθmax

k (16) 

θ1,s =0 (17) 

fk,s

(

1+
xD

k
lk

ηL

)

XkFk,s ≥ fk,s
(
θfr,k,s − θto,k,s

)
(18) 

fk,s

(

1+
xD

k
lk

ηC

)

XkFk,s ≤ fk,s
(
θfr,k,s − θto,k,s

)
(19) 

0 ≤ xD
k ≤ imax

k (20) 

∑Nk

k=1

xD
k

max
(
xD

k ,1
) ≤ lalloc

max (21) 
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GWPg,c,s =
∑Nseg

seg
Hlinear

g,seg Pseg
g,s Gg,sWc (22) 

HTPg,c,s =
∑Nseg

seg
Hlinear

g,seg Pseg
g,s Gg,sTc (23) 

CD
inv =

∑Nk

k=1

3CD
shx

D
k (24) 

CD
inv ≤ Cmax

inv (25) 

CD
sh =CD

single
I(1 + I)N

8760
(
(1 + I)N

− 1
) (26) 

0≤PC
r,s ≤ Pr,s (27) 

ϕC =
∑Ns

s=1

∑Nr

r=1

PC
r,sps

Pr,s
(28) 

In this formulation, the objectives are to minimize the total power 
system operating costs, including generation and reserve costs as well as 
D-FACTS investment costs, as shown in Equation (3), and to minimize 
GWP and HTP, as shown in Equations (4) and (5), respectively. Equation 
(6) segments and linearizes the generation cost function, while (7) es
tablishes the upper and lower generation limits for each generator in the 
system. Equation (8) sets the transmission limits for each line. The 
power balance at each bus in the system is defined by (9), which ensures 
that the load at each bus equals all the power generated at each bus plus 
the incoming line transfers minus the outgoing line transfers. Equations 
(10)–(15) define the spinning up and down reserve requirements, with 
(10) and (11) defining required total spinning up and down reserve 
capacities, (12) and (13) setting a limit on maximum reserve that could 
be scheduled from each generator, and (14) and (15) ensuring that the 
spinning up and down reserves are nonnegative. Equation (16) defines 
the voltage angle constraints, and (17) sets bus 1 as the reference bus. 
Furthermore, Equations (18) and (19) calculate the power flow on each 
line, considering possible D-FACTS installations on the lines. In these 
two equations, the power flow direction (fk) can be either +1 or −1. The 
values of fk are obtained by solving the model with no D-FACTS 
installed, in which fk = 1 and xD

k = 0. Equation (20) sets a limit on how 
many D-FACTS can be installed on each line, and Equation (21) limits 
the number of lines at which D-FACTS can be installed. Equation (22)
calculates the GWP of each generator considering the pollutants it re
leases based on the piecewise linear heat-based emission curves. In this 
equation, the GWP factors are obtained from Ref. [23]. Equation (23)
calculates the HTP of each generator in a similar way, using the HTP 
factors in Ref. [25]. Equation (24) calculates the total investment cost of 
D-FACTS, which is limited in (25) and converted into an hourly figure in 
(26), considering a discount rate and the expected lifespan of D-FACTS 
modules. Additionally, (27) defines the upper and lower bounds for 
renewable energy curtailment, while (28) defines the wind energy 
curtailment percentages.

Since the optimization problem is a nonlinear program, it is very 
computationally complex. But the metaheuristic approach proposed 
below in Section III removes the nonlinearities by pre-establishing the 
values of xD

k and reduces the problem into a linear program that linear 
optimization solvers can solve.

3. The evolutionary algorithm

Metaheuristic search methods are steadily gaining traction in opti
mization research due to their quick convergence and low computa
tional burden. They are able to achieve good near-optimal solutions by 

performing a quick, effective, and intelligent search of the solution 
space, and their can solve problems that cannot always be solved using 
traditional mathematical approaches [26].

This paper presents a custom-made MOEA which is fine-tuned to 
efficiently find possible solutions to the D-FACTS allocation problem and 
identify which of them meet optimality conditions. The MOEA was 
modified by separating the sub-problem that it solves into a generation 
dispatch problem, a linear program (LP) and a greedy reserve allocation 
problem to reduce the expected computational time from the simplex 
algorithm which runs on polynomial time. The reason to replace part of 
the problem with a greedy algorithm is that the greedy algorithm runs 
on linear time.

As this is a multiple-objective optimization problem, it is both 
possible and expected that at least some of the objectives are in oppo
sition to each other, and that a single optimal solution cannot be 
determined without assistance from a decision-maker. For this type of 
situation, the Pareto optimality is considered. If no better solution can be 
found than a solution without sacrificing other objective values, then 
this solution is called a Pareto optimal solution. At the end of an opti
mization method that uses Pareto optimality, the result is a set of Pareto- 
optimal solutions called the Pareto front or Pareto-optimal set. This set 
of solutions can then be further analyzed in a procedure called post- 
Pareto optimality.

The proposed MOEA begins by generating sets of random values 
within the possible solution space. Each of these sets is called a chro
mosome, representing a possible solution to the problem. The chromo
some is a 1-dimensional vector array, representing the number of D- 
FACTS devices to be installed in each line, based on the limits allowed by 
the maximum reactance adjustment allowed for each line and the 
adjustment range for each device, with the constraints defined in (20) 
and (21). Fig. 1 is a flowchart that shows the process adopted by the 
algorithm. At each iteration, a set of possible solutions, or population, is 
generated. At the first iteration, the population is generated randomly, 
while in subsequent iterations, it is generated based on the previous 
population by a process known as crossover, where two of the current 
generation’s solutions will be chosen and combined to produce a new 
solution. After generating the population, each solution or chromosome 
is first employed in a reduced LP model, consisting of Equations (3)–(9), 
(16)–(19), (22), (23), (27), (28) which would minimize the total gen
eration cost, GWP, and HTP in a single scenario at a time, giving priority 
to the cost function and then obtaining the related GWP and HTP based 
on the LP solution, while the reserves are assigned by a greedy algorithm 
based on the solution of the LP and Equations (10)–(15), before pro
ducing a weighted average of these costs using the scenario probabilities 
as weights and adding the D-FACTS cost given by (24). The dominance 
of each solution is checked via (29). Solutions that satisfy (30) are 
considered non-dominated and stored. After evaluating the objective 
functions for each solution, they need to be combined into a single value 
in order for the crossover function to operate properly. To do this, two 
fitness metrics are created, based on proximity to the true Pareto front 
and inter-solution distance, to ensure that the solutions generated are 
both closer to the true limits of the Pareto front and well spread over it 
[27]. These functions are then normalized and combined to produce a 
single aggregated fitness metric.

Proximity to the true Pareto front is not measurable as we do not 
have any information on it. However, we can establish that more 
dominant solutions must be closer to it. Thus, the first fitness metric is a 
dominance count for each solution. The dominance is defined in (29), 
stating that solution a dominates solution b if it is better than it in all 
objectives, and the associated fitness metric for dominance is defined in 
(31). This metric is shown in (32) as the sum of all inter-solution 
objective function distances, assuming they have been normalized to 
the (0,1) range. At the end, The aggregated fitness metric is then 
calculated by the formula given in (33). 

If OFobj,a ≤OFobj,b ∀obj; Da,b = 1; else,Da,b = 0 (29) 
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∑Npop

a=1
Da,b =0 (30) 

FM1,a =
∑Npop

b=1

Da,b (31) 

FM2,a =
∑Npop

b=1

[
∑Nobj

obj=1

(
OFobj,a − OFobj,b

)2

]1
2

(32) 

FM0,a =
FM1,a

max
b

FM1.b
+

FM2,a

max
b

FM2.b
(33) 

After calculating the aggregated fitness metric and ranking the so
lutions accordingly, a tournament-type selection is held to select the 
parents for each new solution. In this, four solutions are selected and 
paired. The solution with the better fitness metric is stored in each pair, 
and the remaining two are combined with a single cut-point, resulting in 
a new candidate solution. Two processes, one known as elitism and the 
other as mutation, are incorporated into the crossover process. Elitism 
guarantees good solutions in the new population while mutation helps 
avoid falling into local optima and increases solution diversity. Elitism 
automatically transfers a percentage of the previous population into the 
new one. Mutation works by randomly switching some of the values in a 
solution if a parameter falls within a threshold.

After all the iterations, dominance is checked again over the stored 

solutions in order to find the optimal Pareto set for the problem so that 
they may be presented to a decision-maker for final decision-making 
based on their specific needs.

4. Case studies

A Simulation Setup

For the simulation study, the model from Section II was adopted to 
study the cost-effectiveness and environmental benefits of D-FACTS, and 
it was solved using the algorithm proposed in Section III. The simula
tions were carried out on a modified IEEE RTS-96 test system. Modifi
cations to the system were made to add congestion to the system, so that 
the system becomes suitable for analyzing the impact of D-FACTS 
implementations. These modifications are a shifting of 480 MW of load 
towards bus 13, and a reduction in the capacity rating in five of the lines 
in order to create congestion. The modifications were made based on a 
realistic cause of transmission congestion, namely, a lack of transmission 
capacity between load centers and generation sources. Similar modifi
cations have been widely adopted in previous research on flexible 
transmission systems, such as References [5,13,20,21,28], and [29]. The 
original RTS-96 test system includes different types of generation 
sources, including oil-fired, coal-fired, hydroelectric and nuclear gen
erators. Nuclear generators are usually used to serve the base load, while 
the oil-fired, coal-fired, hydroelectric generators are dispatchable gen
eration sources. These generators are usually not considered as sources 
of uncertainties in power system operations. To study the impact of the 
uncertainties of renewable energy sources, we added two 400-MW wind 
farms on buses 19 and 20 of the system for the cases in which wind 
energy was considered. For the cases where solar energy was considered, 
a 200 MW solar farm was added to bus 22. Rooftop solar panels equating 
to 10 % of the load at the buses, rounded to the nearest 5 MW, were also 
added for the cases with solar energy, and the total rooftop solar gen
eration capacity was 225 MW. Thus, a total solar capacity of 425 MW 
was considered in case studies with solar energy in this paper. The test 
system is shown in Fig. 2, where the locations for wind generators are 
marked with blue circles with “WT400” on them, the location of the 
solar farm is marked with a yellow parallelogram with “PV200” on it, 
and the locations of rooftop solar panels are marked with green rect
angles with “RS” on them.

Uncertainties in this study are from two sources, namely, load and 
renewable energy generation. Renewable energy considered in this 
study includes solar and wind energy. Despite an abundance of different 
types of renewable energy sources, the two were selected because they 
have a high potential for future energy production. According to a 
technical report by the U.S. Department of Energy, solar and wind are 
the two renewable energy sources with the highest energy potential 
[30]. The two renewable energy sources are kept separate for two rea
sons. First, the availability of solar and wind energy is subject to climate 
conditions in different geographic regions. Research shows that regions 
with abundant solar and wind energy usually do not overlap [31,32]. 
Second, solar and wind energy sources have different characteristics, 
and thus have different impacts on power grid operations. It is para
mount to study the patterns of impact by each source individually. As 
such, the following three cases were formulated in this study. 

• Case I: Only the uncertainty of load is considered, and four different 
load scenarios with load factors at 0.65, 0.75, 0.85, and 0.95 are 
adopted as per [20]. These scenarios attempt to simulate possible 
load factors at different times of day.

• Case II: The uncertainties in both the load and wind energy gener
ation are considered. Wind energy scenarios were introduced to the 
system with four different renewable energy scenarios at 0 %, 20 %, 
60 %, and 100 % of the rated wind energy generation capacity. With 
a cross-product of the load and renewable generation scenarios, a 
total of 16 scenarios were created to represent the uncertainties.

Fig. 1. Evolutionary algorithm flowchart.
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• Case III: The uncertainties in both load and solar generation are 
considered. Solar generation scenarios were created based on the 
NREL PVWatts Calculator for the city of El Paso. For simplicity, these 
scenarios were set at 0 %, 30 %, 50 %, and 85 % of the rated capacity 
for regular solar panels, with 0 % holding the highest probability as 
solar panels produce virtually no energy for half the day. Just as with 
Case II, there is a total of 16 scenarios in this case.

B D-FACTS Parameters

It is assumed that each D-FACTS module is designed to be able to 
adjust the line’s reactance by ±2.5% per phase per mile, with a 
maximum reactance adjustment range for a 3-phase line of ± 20%. D- 
FACTS allocation results were obtained with the assumption that the 
modules are allocated evenly per line per phase. Given the devices’ 
adjustment range and the line adjustment limits, the maximum number 
of devices allowed is estimated to be 20/2.5 = 8 devices per mile for 
each line.

D-FACTS costs were determined based on industry data and previous 
academic studies [20], assuming the cost for a device of $100/kVA, 
where the compensation level in kVA depends on the parameters of the 
line in which the device is installed. For simplicity, the compensation 
level for the most demanding line was adopted. In the modified RTS-96 
system, the largest compensation level is 30 kVA/module. Thus, a cost of 
$3000 per module is used for this study. The hourly cost of devices is 
obtained based on (26), with an assumed lifespan N of 30 years and a 
discount rate I of 6 % as in Ref. [20]. Equation (25) denotes the in
vestment limit on the D-FACTS modules. For this study, a maximum 

allowance of $25/hour is assumed. 

C Costs, GWP, HTP, and Wind Energy Curtailment

The MOEA was programmed on MATLAB® 2019a and run with the 
following parameters: 500 individuals over 100 iterations, with 10 % 
elitism and a 5 % chance of mutation. The algorithm was run on a Dell 
computer with 256 GB of RAM and an Intel® Xeon® W-2195 CPU. From 
the simulation results, we obtained power system operating costs, GWP, 
and HTP from each solution in the first two cases, and they are sum
marized in Fig. 3 for Case I and Fig. 4 for Case II. The figures show 
nonlinear relations between the objectives, indicating that attempting to 
reduce one of the objectives will result in an increase for the other ones, 
although this is not necessarily a linear relation. This is to be expected 
when looking at the generator data, as cheaper generators in the test 
system have much higher emission rates than the more expensive ones. 
However, this conflict exists mainly between the costs and environ
mental impact objectives rather than between the two environmental 
impact metrics. It is also noticeable that while there is some linearity in 
the trendline for Case I, there is none for Case II. This is due to the un
certainties associated with the inclusion of wind energy into the system 
which, depending on the power flow control settings and generator 
dispatch, can have a much larger effect on the system and the objectives 
being optimized.

Details regarding power system operating cost, GWP, HTP, and 
renewable energy curtailment (%) for Cases I – III are given in Table 1
for the non-dominated solutions in the Pareto front. The numbers of non- 

Fig. 2. The modified RTS-96 test system with added wind turbines (WT), photovoltaic farm (PV) and rooftop solar (RS) locations.
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dominant solutions differ depending on the cases; four non-dominated 
solutions were found in Cases I and II, respectively, and two non- 
dominated solutions were found in Case III. The solutions from Case I 
were numbered as 1a, 1b, 1c, and 1d, respectively, those from Case II 
were 2a, 2b, 2c, and 2d, respectively, and the ones from Case III were 
number 3a and 3b. We also ran a base case with no D-FACTS for each 

case and numbered them as 1e, 2e. and 3c, respectively. Base case 1e 
follows the conditions specified in Case I, base case 2e follows those in 
Case II, and base case 3c follows the conditions for Case III. This allows 
us to compare the system operating cost, GWP, and HTP in cases with 
and without D-FACTS. The unit of GWP in the table is 1 kg CO2 eq., and 
the unit of HTP is 1 kg toluene eq.

As the table shows, under all the three cases, generation dispatch 
cost, GWP, and HTP are lower when using D-FACTS, compared to the 
base cases without D-FACTS. In all the three cases, there is a negative 
correlation between cost reduction and GWP, meaning that reducing 
generation dispatch cost is at the cost of increasing GWP. Without solar 
or wind energy, the GWP is mainly affected by the generation output of 
the coal and oil-fired generators. The energy production cost of coal- 
fired generators is much cheaper than that of oil-fired generators, but 
they have a higher carbon dioxide emission. Thus, when a preference is 
put on reducing cost, the GWP will increase. The sub-cases under Case II 
saw the most prominent reductions in generation dispatch costs and 
GWP, because the adoption of D-FACTS helped to reduce wind energy 
curtailment. Wind turbines have zero fuel costs and emissions during 
their operation, and an enhanced integration of wind energy helped to 
further reduce the generation dispatch costs and GWP. The generation 
dispatch cost and HTP, however, are not always negatively correlated. 
This is because coal-fired generators, although have a higher emission 
rate for carbon dioxide, do not have a high emission rate on all the gases 
that are hazardous to human health. Coal-fired generators have similar 
emission rates for nitrogen oxides as oil-fired generators, and lower 
emission rates for carbon monoxide and volatile organic compounds 
(VOCs) than oil-fired generators. The sub-cases in Case III saw the lowest 
generation dispatch cost, GWP, and HTP, compared to the cases with 
wind energy or without renewable energy, but they also saw the lowest 
reductions in generation dispatch cost, GWP, and HTP, mainly because 
solar energy has a distributed feature. Due to the widespread, distrib
uted rooftop solar panels, the integration of solar energy is less affected 
by transmission constraints. Thus, solar energy tends to be better inte
grated than wind energy in a congested transmission network. Solar 
energy incurs zero fuel costs and emissions, and the better integrated 
solar energy helped to reduce the cost, GWP, and HTP overall. However, 
since the integration of solar energy is less affected by transmission 
constraints, mitigating transmission congestion does not enhance the 
integration of solar energy as effectively as that of wind energy, and this 
leads to lower reductions in costs, GWP, and HTP when using D-FACTS.

To further compare the results, the percentages of reduction in sys
tem operating cost, GWP, HTP, and renewable energy curtailment in the 
cases with D-FACTS compared to the ones without D-FACTS were 
calculated and presented in Table 2. It can be observed that D-FACTS 
could reduce system operating cost by up to 2.08 % in Case I, 2.95 % in 
Case II, and 1.30 % for Case III. D-FACTS could also reduce the GWP by 
up to 0.04 % in Case I, 0.05 % in Case II, and 0.06 % in Case III, and the 
HTP by up to 0.11 % in Case I, 0.07 % in Case II, and 0.06 % in Case III. 
Since the objectives of the optimization problem are minimizing costs, 
GWP, and HTP, the renewable energy curtailment may or may not be 

Fig. 3. Case I Pareto front.

Fig. 4. Case II Pareto front.

Table 1 
Details of selected solutions.

Case # Cost GWP HTP Renewable Energy Curtailment

I 1a 77,839 88.314 2.798 N/A
I 1b 78,137 88.300 2.798 N/A
I 1c 78,305 88.298 2.797 N/A
I 1d 78,326 88.286 2.797 N/A
I 1e 79,494 88.320 2.800 N/A
II 2a 70,958 88.022 2.789 60.40 %
II 2b 71,144 88.021 2.789 61.31 %
II 2c 71,218 88.033 2.788 60.02 %
II 2d 71,257 88.019 2.789 60.22 %
II 2e 73,114 88.060 2.790 64.45 %
III 3a 68,743 54.2624 1.7195 51.76 %
III 3b 68,835 54.2403 1.7188 51.76 %
III 3c 69,651 54.2704 1.7198 51.76 %

Table 2 
Reduction in costs and environment impact indices.

Case # Cost GWP HTP Renewable Energy Curtailment

I 1a 2.08 % 0.01 % 0.07 % N/A
I 1b 1.71 % 0.02 % 0.07 % N/A
I 1c 1.50 % 0.02 % 0.11 % N/A
I 1d 1.47 % 0.04 % 0.11 % N/A

II 2a 2.95 % 0.04 % 0.04 % 6.28 %
II 2b 2.69 % 0.04 % 0.04 % 4.87 %
II 2c 2.59 % 0.03 % 0.07 % 6.87 %
II 2d 2.54 % 0.05 % 0.04 % 6.56 %

III 3a 1.30 % 0.01 % 0.02 % 0 %
III 3b 1.17 % 0.06 % 0.06 % 0 %
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reduced. In this study, while the wind energy curtailment was improved 
in Case II by the D-FACTS, with a reduction of about 5–7% in the 
different cases, the curtailment of solar power did not change in Case III, 
mainly due to the distributed feature of solar energy, as analyzed in the 
previous paragraph.

The mild reductions in environmental impacts are due to the cost- 
oriented optimization coded into the algorithm, and power system op
erators tend to follow the same reasoning in their business decisions. If 
more priority were given to environmental impacts, it would be possible 
to further reduce GWP or HTP with the usage of D-FACTS. However, in 
this case, the operational costs may increase, which is not a desirable 
outcome for power system operators. Additionally, since power system 
operations cost hundreds of billions of dollars and produce an estimated 
1.55 billion metric tons of CO2 in the U.S. each year, even a small per
centage of cost, GWP, and HTP reduction can result in significant eco
nomic, environmental, and health benefits in real-world power systems.

According to a 2023 report [33], the territory managed by the 
Electric Reliability Council of Texas (ERCOT) currently has a wind en
ergy penetration of 27.3 %. Meanwhile, the wind energy penetration of 
the territory managed by the California Independent System Operator 
(CAISO) is 6.9 % as of 2022 [34]. By comparison, the test system used in 
this study has a wind penetration of 23.5 %, which is similar to the wind 
energy penetration level of the ERCOT grid and much higher than that of 
CAISO. The same sources list a solar penetration of 13.4 % for Texas and 
19.9 % for California, compared to 12.5 % for our system. Based on the 
information for Texas, the state curtailed 5 % of its wind energy and 9 % 
of its solar energy in 2022. Although the curtailment percentage is small, 
the total capacity curtailed is significant due to the large scale of the 
system. Take the ERCOT power grid as an example, the system curtails 
around 2000 MWh renewable energy every hour on average. As the 
simulation results in this study show, D-FACTS can reduce renewable 
energy curtailment by above 5 % in many cases. If the 2000-MWh hourly 
curtailment can be reduced by 5 %, that means 100 MWh more 
renewable energy can be integrated into the system every hour. 

D D-FACTS Allocation

The allocations of D-FACTS modules in the six representative solu
tions were obtained and presented in Table 3. All solutions except 1d 
(with 939) had a total of 999 devices installed. The maximum allowable 
number of D-FACTS modules is 999, based on the investment limits set 
in Equations (24)–(26). Although the quantities of D-FACTS modules 
allocated in the system were at their maximum in most cases, the 
number of D-FACTS modules allocated was smaller than the maximum 
in 1 out of the 8 solutions. This is because the optimization algorithm 
determined it served the objective best to use a specific number of D- 
FACTS modules considering all the factors, such as operating costs, 
GWP, HTP, and investment cost of D-FACTS that was converted into an 
hourly figure. The six solutions not only yielded different power system 
operating costs and GWPs, but also had D-FACTS modules allocated to 
different lines.

The test system has 38 transmission lines, and the D-FACTS modules 
were allocated on 2–5 lines in each solution. It can be seen from these 
solutions that some lines were more likely to be chosen as the location 
for D-FACTS installations. Lines 22 showed up in 8 out of the 10 solu
tions Line 28 showed up in 5 out of 10, Line 33 in 3 out of 10 solutions, 
and Lines 1, 4, 12, 24, 28 and 29 were chosen in 2 out of the 10 solutions. 
However, to ensure minimal values of system operating costs and im
pacts, each solution had a different combination of lines, and the lines 
could not be chosen individually. Thus, the optimization model can give 
us a better solution than using engineering judgments. 

E D-FACTS Set Points

In addition to obtaining the Pareto-optimal allocation of the D- 
FACTS devices, we also calculated the set points for each line in which 

the devices were installed. The set point of the D-FACTS in a line refers 
to how much the devices adjusted the reactance of the line, as a per
centage. The set points remained constant among the different scenarios 
for all solutions, and the set points are presented in Table 3.

It should be noted that while some lines, such as line 22, show up in 
most of the solutions, the set point for the line varies greatly between 
4.04 % and 13.79 %. There are many factors that can account for this 
variability, from the number of devices allocated by the algorithm (more 
devices mean a larger adjustment range), to the variations in other lines 
helping control the power flow, which result in a different need to 
compensate the line. Line 22 is also a prime candidate for power flow 
control as it is connected to node 23, which is a generator node with a 
capacity for 760 MW and, depending on the generation dispatch, would 
be outputting a large amount of power through its attached lines, 
needing more adjustment for network transfer capability.

Overall, lines 11, 22, 28, and 30 were set at a high positive set point, 
while lines 4 and 24 had a high negative set point in Case I, while lines 
22, 28, and 37 had high positive set points and lines 24 and 29 had high 
negative set points in Case II. In Case III, lines 22, 28, and 33 had high 
positive set points, while line 24 had a high negative set point. The other 
lines had some adjustments in their reactance, but the values were 
relatively close to 0, and this is largely due to the lower number of de
vices installed in those lines. Fig. 5, which shows the relationship be
tween the number of devices installed in a line and the corresponding set 
points, indicates that some of the lines still have some slack in their 
adjustment capability, with the at-max devices following the straight 

Table 3 
D-FACTS allocation of non-dominated solutions.

Case # Line Number D-FACTS per line Set Point

I 1a 1 9 −2.50 %
22 990 13.79 %

I 1b 4 240 −6.06 %
22 420 5.83 %
28 285 13.19 %
29 45 2.34 %
37 9 0.50 %

I 1c 11 270 14.06 %
22 291 4.04 %
28 294 13.75 %
30 144 12.00 %

I 1d 4 216 −5.45 %
24 153 −10.63 %
28 408 18.89 %
33 162 7.50 %

II 2a 12 27 −0.52 %
22 690 9.58 %
24 108 −7.50 %
37 174 9.67 %

II 2b 21 39 −0.49 %
22 555 7.71 %
28 165 7.64 %
29 240 −12.50 %

II 2c 3 129 −4.89 %
10 12 0.63 %
13 57 1.10 %
22 723 10.04 %
36 78 4.33 %

II 2d 13 87 1.69 %
20 225 −5.68 %
22 639 8.88 %
33 48 2.22 %

III 3a 1 9 −2.50 %
22 990 13.79 %

III 3b 24 162 −11.25 %
28 336 15.55 %
33 189 8.75 %
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line at the top diagonal of the graph and the rest of the lines with some 
slack in their D-FACTS closer to the bottom. 

F Computational Complexity

In the case studies, Case I was solved in 53.51 s, and Case II was 
solved in 55.23 s. As a comparison, the MILP with a similar formulation 
proposed by Ref. [8] had a computational time of 804.50 s on the same 
computer. The implementation of this evolutionary algorithm was 
capable of reducing the computational time by more than 90 %. This 
reduction in computational time can be a significant advantage over 
simplex method-based linear program solvers, especially when applied 
to large-scale transmission networks. Because of the order of magnitude 
for the number of operations for a linear model (O(2n) at worst) using 
the simplex method, D-FACTS optimal allocation problems can become 
computationally intractable using purely the simplex method. The 
method proposed in this study, while still relying partially on the sim
plex method, uses various strategies to reduce both the number of var
iables and constraints going into the simplex solver in order to largely 
mitigate the computational time requirements: first, the reserve re
quirements are extrapolated to a greedy heuristic, which runs in linear 
time. Second, the D-FACTS allocation is done by the metaheuristic, and 
thus it becomes possible to run the linear program (LP) for all scenarios 
separately. Effectively, it is much faster to run s instances of an LP with n 
variables than it is to run a single LP with n⋅s variables, since the runtime 
for the simplex method is at worst O(2n) and s⋅O(2n)≪O(2ns). 

G Investment Cost and Return of D-FACTS

Since D-FACTS has an investment cost, it is important to study what 
is a reasonable investment level and how fast the investment can be 
recovered. Thus, we performed a sensitivity study in Cases I and II by 
varying the hourly investment limit Cmax

inv in increments of $5/hour to 
best demonstrate the effects this has on the objective values and analyze 
the return of the investment. To demonstrate potential improvements on 
each of the objectives, this sensitivity study will not show the results 
from all non-dominated solutions at each investment level but the best 
objective function value at each. This way, it is possible to understand 
how much each objective function can be reduced by increasing the 
hourly investment limit.

Figs. 6–9 below show the change in the different objectives as the 
investment limit changes from $5/hour to $55/hour. These investment 
levels are hourly figures considering the lifespan of D-FACTS and a 
discount rate, as Equations (24)–(26) show. In Fig. 6, a clear downtrend 

Fig. 5. Number of D-FACTS devices in a line vs. Setpoint (absolute value). Fig. 6. Cost sensitivity analysis over investment limit.

Fig. 7. GWP sensitivity analysis over investment limit.

Fig. 8. HTP sensitivity analysis over investment limit.

E.J. Castillo Fatule et al.                                                                                                                                                                                                                      Energy 315 (2025) 134275 

9 



can be seen in cost for both cases as the investment limit increases, so do 
GWP and HTP, as Figs. 7 and 8 show. However, this tapers off towards 
the right side of the graph as other constraints start tightening and there 
is less effect on the network. The limit on the number of lines over which 
the devices may be installed also plays a part on this tapering off the cost 
reductions.

For case II, however, the reduction in operating costs, GWP, and HTP 
is more obvious with the increase of D-FACTS investment, as more en
ergy from the wind generators can be integrated into the system (shown 
in Fig. 9) and thus actual network emissions can be reduced enough for 
the environmental impact reductions to become more noticeable.

In this study, we assume a cost of $3000 per device and a 30-year 
lifespan. Each device accounts for approximately 2.5 cents/hour when 
converted to an hourly value. An hourly increase of only $5 translates to 
$602,900 in initial costs. Although there is a strong aversion to large 
investments with a long-term return, the savings in operating costs can 
be accrued very quickly. At the $25/hour limit, the investment is 
recovered in 1904 h in the case without wind energy, and in just 1399 h 
with wind energy, with the D-FACTS deployment solutions that mini
mize operating costs. This translates to 80 and 59 days, respectively. At 
an investment limit of $50/hr., it takes 2177 h and 1676 h to recover the 
investment, respectively, which are 91 and 70 days, respectively. These 
are still extremely short periods, after which the cost benefits grow 
exponentially, and the environmental and human health impact can be 
greatly mitigated. The analysis of the benefits of deploying D-FACTS 
devices in power grids can be used by utility companies to facilitate their 
decision-making in transmission planning.

5. Conclusions and future work

This paper proposes a multiple-objective evolutionary algorithm for 
solving optimal D-FACTS allocation and configuration problems. This 
algorithm has high computational efficiency and can optimally allocate 
a budgeted number of D-FACTS devices in electric power transmission 
systems considering power system operating costs, D-FACTS investment 
cost, GWP and HTP of the power system, as well as the uncertainties of 
load and renewable energy generation. The model was implemented on 
a modified RTS-96 test system, and the results show that optimally 
allocated D-FACTS can mitigate transmission congestion, reduce power 
system operating costs, and facilitate the integration of renewable en
ergy, which can result in a significant reduction in environmental and 
human health impacts from the energy sector. The results also show that 
there is an inverse relation between the system operating cost and the 

two environmental impact metrics, GWP and HTP. A reduction in 
operating costs would generally increase environmental impacts, and 
vice versa. In each solution, the quantities and optimal locations, and set 
points for D-FACTS modules are very different from the others. In 
addition, a sensitivity analysis was performed in order to demonstrate 
the impacts of D-FACTS investment levels on power system operating 
costs, GWP and HTP. The results show that a high investment level of D- 
FACTS can result in more reduction in power system operating costs, 
GWP, and HTP, especially for power systems with a high penetration of 
renewable energy. The optimization model can provide decision-makers 
with a critical tool to determine where D-FACTS modules could be 
installed according to their budget, goals for environmental impact 
reduction, renewable energy integration, and access to transmission 
lines.

In future work, we plan to analyze the implementation of D-FACTS to 
facilitate the integration of mixed renewable energy resources with 
increased uncertainties. Additionally, we would like to consider 
different levels of renewable energy penetration in the system, consid
ering the increasing popularity of renewable generation. Finally, we 
plan on looking into other solution methods which may further improve 
computational efficiency, such as machine learning.
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