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ABSTRACT

Parity-time (PT) symmetry was first studied in quantum mechanical systems with a non-Hermitian Hamiltonian whose observables are real-
valued. Most existing designs of PT symmetric systems in electronics, optics, and acoustics rely on an exact balance of loss and gain in the
media to achieve PT symmetry. However, the dispersive behavior of most loss and gain materials restricts the frequency range where the
system is PT symmetric. This makes it challenging to access the exceptional points of the system to observe the PT symmetric transition
dynamics. Here, we propose a new path to realize PT symmetric systems based on gyroscopic effects instead of using loss and gain units.
We demonstrate that PT symmetry and the occurrence of exceptional points are preserved for inversive, counter-rotating gyroscopic systems
even with dispersive sub-units. In a gyroscopic system with two circular rings rotating in opposite directions at the same speed, the spon-
taneous symmetry breaking across the exceptional points results in a phase transition from a moving maximum deformation location to a
motionless maximum point. The motionless maximum point occurs despite the externally imposed rotation of the two rings. The results set
the foundation to study nonlinear dispersive physics in PT symmetric systems, including solitary waves and inelastic wave scattering.
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Parity-time (PT) symmetric systems are invariant under the
combined parity and time reversal operation. A non-Hermitian sys-
tem with PT symmetry can exhibit an entirely real-valued spectrum
while complex-valued eigenvalues appear as a result of parame-
ter variations that lead to a phase transition in the system.'* The
symmetry-breaking thresholds in the parameter space at which two
or more eigenvalues become degenerate are known as the excep-
tional points of PT symmetric systems. At the exceptional points,
the Hamiltonian transitions from the PT-exact phase to the PT-
broken phase or vice versa.”’” The PT-exact phase consists of the
parameter space where the system spectrum is real-valued, while the
PT-broken phase marks the parameter space where the spectrum
contains complex-valued eigenvalues. The eigenvector, or the sub-
space spanned by the eigenvectors, associated with any eigenvalue
is invariant under PT symmetry in a PT-exact phase but is not in a
PT-broken phase. Various concepts related to PT symmetry, includ-
ing anti-PT symmetry, are widely explored in electronics,”” heat
and mass transfer,” optics,"” " and acoustics.""'* Many intrigu-
ing phenomena are related to phase transitions of the system
Hamiltonians that occur at the exceptional points. Accessing the

)—

exceptional points enables ultrasensitive measurements,'” *' manip-
ulation of the modal content of multimode lasers,””** and
realization of asymmetric wave transport in both optics and
acoustics.'*

Most studies rely on an exact loss and gain balance in the
medium to achieve PT symmetry of a system, but the disper-
sive behavior of most loss and gain materials prevents achieving
this condition over a broad frequency range. Obtaining the excep-
tional points of these dispersive systems requires judicious tuning
of the gap size between the loss and gain media.' However, this
approach changes the physical configuration of the system and the
corresponding Hamiltonian. Thus, the tuning approach cannot be
applied to study the phase transition dynamics around the excep-
tional points of a system with a given Hamiltonian. To observe the
PT-phase transition dynamics of a specific Hamiltonian, it is desir-
able to develop a new platform of PT symmetric systems where
the PT symmetry is independent of material dispersion and the
exceptional points can be robustly obtained.

We propose a new path to realize systems with PT symmet-
ric dynamics by using the gyroscopic effects in moving media.
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Gyroscopic effects in mechanical systems are those arising from
Coriolis accelerations. The conditions for a general gyroscopic vibra-
tory system to be PT symmetric are derived. Based on the derived
conditions, counter-rotating gyroscopic systems, defined as those
where two identical coupled bodies (i.e., sub-units) rotate in oppo-
site directions at the same speed, are PT symmetric. They can possess
and operate around exceptional points by tuning the sub-unit rota-
tion speed. Compared to designs based on the loss and gain balance,
the dispersion of the materials used in the sub-units of counter-
rotating gyroscopic systems neither affects the PT symmetry of the
system nor prevents the occurrence of exceptional points. We inves-
tigate the dynamics of two systems consisting of counter-rotating
rings (dispersive) and strings (non-dispersive) to illustrate quali-
tative dynamic properties of counter-rotating gyroscopic systems
across the phase transition.

The equation of motion for a general gyroscopic system under
free vibration is M@~ + Gq~ + Kq =0, where M is the inertia operator,
G=C+QG consists of the damping (C) and gyroscopic (QC ) oper-
ators, K=Ks;— Q2K contains the stiffness (Ks) and centripetal accel-
eration (— Q2K ) operators, and Q is the rotation speed of system. M
is independent of the rotation speed of the system. The gyroscopic
operator, which arises from Coriolis accelerations, is proportional to
the rotation speed. K includes a term that is quadratic in the rotation
speed.

General gyroscopic systems do not necessarily satisfy PT sym-
metry. Gyroscopic effects can occur in systems without inversion
symmetry of their geometry, and gyroscopic effects break the time
reversal symmetry in general, i.e., (—f) is not a solution of the equa-
tion of motion. As shown in the supplementary material, Note 1,
the condition for a general gyroscopic system to be PT symmetric
is that the operators M and K are invariant under the PT sym-
metry operation, i.e., (PTM PT)~' =M, while the operator G sat-
isfies (PTQ PT) ~! =—G. For systems where M, G, and K are time
independent, M and K need to be invariant under parity symmetry
(i.e., PMP~! = M) while G is anti-parity symmetric (PGP~ = -G).
Because G consists of damping (C) and gyroscopic (G ) operators,
the condition for PT symmetry is that both C and QG’ are anti-parity
symmetric.

A particular type of gyroscopic system naturally satisfies the
above-mentioned conditions for being PT symmetric. A system of
this type is characterized by two identical sub-units that move at the
same speed () in opposite directions. This is referred to as a counter-
rotating gyroscopic system in this work. For a system with o
identical sub-units, application of the parity operation on a deforma-
tion q of the system exchanges the deformations q: and q. of the two
sub-units, i.e., Pq=P(q,,q,) " =(q,q,)". The inertia operator M
is independent of the sub-unit rotation speed (, and the centripetal
acceleration of the system —Q2k is independent of the sign of Q.
M and K are invariant under parity symmetry because the sub-units
are identical and both M and K are independent of the directions
in which the sub-unit moves. In contrast, the gyroscopic opera-

tor QG in G is proportional to the rotation speed of the sub-units.
Because the two sub-units move in opposite directions at the same
speed, QG is anti-parity symmetric. Meanwhile, the damping opera-
tor Cis also anti-parity symmetric, which indicates the two sub-units
need to have the exact energy loss and gain balance to satisfy the
PT symmetric condition. In this work, the operator G only models

ARTICLE scitation.org/journal/adv

gyroscopic effects. Damping terms (linear loss and gain) are
excluded, i.e., G=Q G . Therefore, counter-rotating gyroscopic sys-
tems satisfy all the conditions of PT symmetry. Gyroscopic effects
are sufficient to achieve the PT symmetry, and no loss and gain
sub-units are needed.

Exceptional points occur in the parameter space of counter-
rotating gyroscopic systems, specifically the parameter of rotation
speed. As special cases of gyroscopic systems, counter-rotating gyro-
scopic systems experience instability similar to known instabili-
ties of general gyroscopic systems. The boundaries between sta-
ble and unstable operating speeds are the exceptional points of
counter-rotating gyroscopic systems. These are speeds at which
two or more eigenvalues coalesce and become degenerate. These
exceptional points are frequently referred to as critical speeds in
mechanics literature.” ** The lowest exceptional point occurs when
K ceases to be positive-definite because of the centripetal term
—Q2K . Across this exceptional point, gyroscopic systems, includ-
ing counter-rotating gyroscopic systems, frequently transition from
stable to unstable or vice versa as the rotation speed increases.
Many gyroscopic systems, such as axially moving strings/beams
and spinning disks with a transverse stiffness, recover stability with
a further increase in the speed despite the stiffness operator being
sign indefinite at these higher speeds.””** Threshold speeds where
a gyroscopic system recovers stability after a region of instability
are also the exceptional points if the system is a counter-rotating
gyroscopic system. The occurrence of exceptional points in counter-
rotating gyroscopic systems is not related to dispersive properties of
the sub-units.

The gyroscopic term in the equation of motion is a result of
the Coriolis effect in rotating frames. In optics and acoustics, the
Coriolis effect of frame rotation leads to the well-known optical and
acoustic Hall effects.”” In both classical Hall effect and spin-Hall
effect, the trajectories of the current-carry particles or the propagat-
ing directions of optical and acoustic waves are under the impact of
external magnetic fields, the spins of particles, and the wave polar-
izations. For example, changing the sign of the external magnetic
field will change the sign of Hall voltage due to the classical Hall
effects, and particles with spins of opposite signs are accumulated
on opposing surface boundaries due to the spin-Hall effects. All
these phenomena are analogous to the gyroscopic effect as discussed
above: the sign of the gyroscopic operator QG changes if the system
is moving in the opposite direction at the speed .

These Hall effects induce many interesting physical phe-
nomena including spin-momentum locking,”*" topological optics
and acoustics,”" and chiral quantum photonics."” However, the
Hall effect induced PT symmetric properties and phase transition
dynamics have not been observed. In this paper, we demonstrate
the feasibility of PT symmetric phase transition dynamics induced
by the gyroscopic effect in a pair of simple counter-rotating rings
forming a gyroscopic system. Similar PT symmetric properties are
expected to be induced by the Hall effects of optical and acoustic
waves propagating in coupled, counter-rotating optical and acoustic
waveguides.

We consider the vibration of two counter-rotating rings as
shown in Fig. 1(a). The two identical rings rotate at the same speed
Q but in opposite directions. A uniformly distributed elastic foun-
dation couples the two rings, and both rings are supported on elastic
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FIG. 1. (a) PT symmetric system consisting of counter-rotating rings. Two identical
rings are rotating at identical speed € but in opposite directions. Both rings are
supported on uniformly distributed elastic foundations (springs in blue). They are
coupled through a uniform elastic spring (in orange). (b) Representation of ring
deformations. Ring deformations (solid lines in blue) are purely out of plane. The
blue dots represent the locations of maximum deformation of the rings. ¢ denotes
the angle between diameters of points of maximum deflection on the two rings.

foundations of equal stiffness that can differ from the coupling stiff-
ness. The system is a counter-rotating gyroscopic system as defined
earlier. As illustrated in F'ig. 1(b), only out-of-plane deformations are
allowed. The non-dimensional equations of motion are

scitation.org/journal/adv
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+ (B +B)u—Bw=0, (1b)

where w(6, ) and u(®, f)are deformations of the first and second
rings, respectively, at a spatially fixed (i.e., not rotating) angular
position 6, Bi is the stiffness of the elastic foundation connecting
a ring with the ground, B is the stiffness of the elastic foundation
coupling the two rings, and K is the bending stiffness of each ring.
For cases where K > 0, both rings are dispersive media. When k=0,
the rings are non-dispersive and can be regarded as strings. The
parity symmetry operation exchanges the deformations of the two
rings (or non-dispersive strings whenk =0),i.e., P (w (6, t), u (6,1))T
=@ @, t)weE, t)J. Based on Eq. (1), the system is PT symmet-
ric regardless of whether the sub-units are dispersive or not. The
Hamiltonian of the two counter-rotating rings is obtained by rewrit-
ing the equation of motion in Eq. (1) in the form of a Schrodinger
equation ia%q = Hq, where q = (%w,w,%u,u)T. The Hamiltonian
H is provided in the supplementary material, Note 2. As shown in
supplementary material, Note 2, the Hamiltonian is invariant under
the PT operation.

Fw O ow w o'w - .
+20—= (H 2o, 9w Substitution of (w(6,t),u(6,t)) =expli (wt+k0)]1(¢,.9,)
or ot~ o8 )rr-n 502 + K56 into Eq. (1) yields the eigenvalue problems for each nodal diﬁm? er
+ (B +BJw — B =0, (1a) k (angular wave number),
/ |
(| —w? +20kw - (Q*- DI+ Kk + L1 + 32 —B: P
=0 ()
B> —w? = 20kw = (2 - 1)k +Kk' + B + B/ \¢u
Four eigenvalues are solved from Eq. (2) as
v N
w, =% (Q+ DR +Kk+Bi+ B+ B+ AQU(KK! + 12 + 1 + ),
v .
W, =% (QP+ 12 +Kk'+ i+ B — L2+ 407K (KK + k2 + i + B2). 3)

The eigenvalues wy’, are always real-valued while wy, are either real-
valued or purely imaginary. When the eigenvalues wy, are purely
imaginary, divergence instability occurs. In this case, the ampli-
tude of the associated k nodal diameter component associated with
the negative imaginary eigenvalue grows exponentially with time.

The exceptional points are the speeds Q such that wi, =0. Two
exceptional points occur for each nodal diameter k,

v
Qe = 1+ (kk*+ B)/k2, (4a)

\/
Qe = 1+ (Kk*+ B +282) /K2 (4b)

Figure 2 illustrates the loci of the eigenvalues wy, for nodal
diameter k= 2. The loci in Fig. 2(a) are for counter-rotating rings

(dispersive) while those in Fig. 2(b) are for counter-rotating strings
(non-dispersive). In both cases, the loci are divided into three phases
(phases L, ITI, and V in Fig. 2) by two exceptional points (IT and IV).
The phases I and V are PT-exact phases where both of the eigenval-
ues are real, while phase III is a PT-broken phase where both eigen-
values are purely imaginary. A comparison between Figs. 2(a) and
2(b) demonstrates that the occurrence of exceptional points does not
rely on the dispersive property of the sub-units.

The counter-rotating rings/strings have modal properties asso-
ciated with the system symmetry. According to Eq. (3), the four
eigenvalues for the nodal diameter k are identical to those for the
nodal diameter—k. Therefore, each eigenvalue has double degener-
acy away from the exceptional points. At the exceptional points,
the eigenvalues wi, coalesce into an eigenvalue with quadruple
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FIG. 2. Eigenvalues of PT symmetric counter-rotating (a) dispersive rings (k = 1) and (b) non-dispersive strings (k = 0). The solid lines represent the real parts of the
eigenvalues, and the dashed lines represent the imaginary parts. Exceptional points are labeled by stars. The phases separated by the exceptional points are PT-exact

phase (1), PT-broken phase (lll), and PT-exact phase (V).

degeneracy. Based on the derivation in the supplementary material,
Note 3, if exp( ikQ(Pw, ¢)T is a vibration mode of the system
associated with the eigenvalue w, we have that

A, exp(ik@) P( ¢w, ¢pu)T = exp ([kO) @« ¢~ J is a mode associ-
ated with the_eigenvalue —w, o

B.  exp(—ik@) P($u, $u)" = exp ikO)@u, $ § is a mode asso-
ciated with the eigenvalue w, and

C. exp(—ik6)($w, )" is a mode associated with the eigenvalue

—w, where w is the complex conjugate of w.

These modal properties explain why the phase with imagi-
nary eigenvalues are in a PT-broken phase while others are in
PT-exact phases. When w is real, application of the PT opera-
tor on the mode exp(ik6)(¢w, ¢)’” gives PT exp(ik6)(¢w, o)’
= exp(—ikO) (¢u, ¢w)T, which is the mode associated with the eigen-

value w. Because w=w when w is real-valued, application of the
PT operator on a mode yields a mode associated with the same
eigenvalue. In other words, the subspace spanned by the eigenvec-
tors associated with a real-valued eigenvalue is invariant under the
PT operation. Therefore, the phases where the eigenvalues are real-
valued are PT-exact phases. In contrast, when w is purely imaginary,
w=-w. The PT symmetry operation maps the subspace spanned
by the eigenvectors associated with w to the subspace associated
with —w. Therefore, the phase with purely imaginary eigenvalues is
a PT-broken phase.

The counter-rotating rings/strings are analyzed in the PT-exact
and PT-broken phases. To illustrate the deformation of the elastic
continuum rings, we focus on the locations of maximum ring defor-
mation as depicted in I'ig. 1(b). The initial conditions for all the sim-
ulations in Fig. 3 consist of the deformations u( 8, 0 = cosd(26) and
u(6, 0 = cos(26 + /3 with zero initial velocity. Only the modes
with nodal diameter k =2 and -2 are excited, so the two locations

of maximum deformation on each ring form a diameter as shown
in Fig. 1(b). For the cases in the PT-exact phases [(I) and (V) in
Fig. 3(a)], the locations of maximum deformation are moving, as
seen by a ground-based observer, because all the excited modes
are associated with real-valued eigenvalues and are traveling waves.
For the PT-broken phase [Iig. 3(a) (III)], the locations of maxi-
mum deformation on the two rings rotate monotonically to fixed (as
seen by a ground-based observer) angular locations. The diameters
of the locations of maximum deformation on the two rings finally
converge to a fixed angle ¢. The angle @ is proved to be a func-
tion of the rotating speed (see details in the supplementary material,
Note 4). Similar phenomena occur for the cases at the exceptional
points [(II) and (IV) in Fig. 3(a)], where the angle ¢ is 0 and 17/2
for points (II) and (IV), respectively. The reason for the fixed loca-
tions of maximum deformation is that divergence instability occurs.
In a PT-broken phase, the k nodal diameter modes associated with
negative imaginary eigenvalues grow exponentially with time. These
modes dominate the dynamic response as time passes. Because they
are associated with imaginary eigenvalues, these dominant modal
components do not propagate circumferentially. The initial loca-
tions of maximum deformation are determined by the initial defor-
mations and move to fixed angular locations that are determined
by the dominant modes. The cases at exceptional points can be
explained similarly, except that the modes associated with the degen-
erate zero eigenvalues grow linearly, rather than exponentially, with
time.

Dispersive properties of sub-units have no impact on the
PT-symmetry-related dynamic properties of counter-rotating gyro-
scopic systems. A comparison between the subfigures in Fig. 3
demonstrates that the counter-rotating strings also experience two
phase transitions across the exceptional points in Fig. 2(b). The
behavior of the locations of maximum deformation in each of five
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FIG. 3. Evolution of deformation profiles of PT symmetric counter-rotating (a) dispersive rings and (b) non-dispersive strings. Cases (I)—(V) correspond to the rotational
speeds and eigenvalues in Fig. 2. The systems are in the PT-exact phases for cases (1) and (V), at exceptional points for cases (1l) and (IV), and in the PT-broken phases
for cases (Ill). For each case, we plot the trajectories of the locations of maximum deflection for both strings/rings, with markers colored according to the time.

scenarios (I)-(V) in Fig. 3 is qualitatively identical to those dis-
cussed above regardless of whether the sub-units are dispersive
or not.

In conclusion, counter-rotating gyroscopic systems are pro-
posed as an alternative design of PT symmetric systems to those
relying on loss and gain units. We demonstrate that the PT
symmetry and the occurrence of exceptional points in counter-
rotating gyroscopic systems are independent of the dispersive prop-
erties of the sub-units. Spontaneous symmetry breaking across the
exceptional points in counter-rotating gyroscopic systems results
in transitions from system stability to instability or vice versa.
In a gyroscopic system with two counter-rotating circular rings,
the system dynamics experience a phase transition from a system
with constantly propagating locations of maximum deformation
to one with a fixed location of maximum deflection, despite the

constant rotation speed of the rings. Counter-rotating gyroscopic
systems provide a new platform for further studying PT-phase
transition dynamics and related nonlinear dispersive physics in
PT symmetric systems, including solitary waves and inelastic wave
scattering.

See Note 1 of the supplementary material for derivation of the
PT symmetric conditions for a general gyroscopic system, Note 2
for the Hamiltonian of two counter-rotating rings, Note 3 for modal
properties of two counter-rotating rings, and Note 4 for the property
of the angle between locations of maximum deformations on the two
rings.
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