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Efficient Artificial Intelligence With Novel Matrix
Transformations and Homomorphic Encryption
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Abstract— This paper addresses the challenges of data privacy
and computational efficiency in artificial intelligence (AI) models
by proposing a novel hybrid model that combines homomorphic
encryption (HE) with AI to enhance security while maintain-
ing learning accuracy. The novelty of our model lies in the
introduction of a new matrix transformation technique that
ensures compatibility with both HE algorithms and AI model
weight matrices, significantly improving computational efficiency.
Furthermore, we present a first-of-its-kind mathematical proof of
convergence for integrating HE into AI models using the adaptive
moment estimation optimization algorithm. The effectiveness and
practicality of our approach for training on encrypted data
are showcased through comprehensive evaluations of well-known
datasets for air pollution forecasting and forest fire detection.
These successful results demonstrate high model performance,
with nearly 1 R-squared for air pollution forecasting and 99 %
accuracy for forest fire detection. Additionally, our approach
achieves a reduction of up to 90% in data storage and a tenfold
increase in speed compared to models that do not use the
matrix transformation method. Our primary contribution lies
in enhancing the security, efficiency, and dependability of Al
models, particularly when dealing with sensitive data.

Index Terms— Artificial intelligence, homomorphic encryption,
matrix transformation, convergence analysis.

I. INTRODUCTION

HE development of methods leveraging artificial intel-

ligence (AI) is demonstrably powerful, as evidenced
by various studies [1], [2]. These advancements span mul-
tiple fields, including time series forecasting, audio signal
processing, wireless communications, and computer vision
applications. In each domain, ADl’s ability to extract valu-
able insights from these vast datasets is driving significant
improvements in both theoretical understanding and practical
applications. However, a significant challenge arises: as Al
models become increasingly sophisticated and capable, their
computational demands and size also grow exponentially.
This poses new hurdles for researchers and practitioners who
must grapple with efficient training and deployment of these
powerful, but resource-intensive, models [3].
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To address these challenges, third-party providers have
emerged, offering specialized services such as large-scale
model training and high-performance model deployment.
These providers leverage advanced infrastructure and expertise
to handle the computational intensity of modern Al appli-
cations. While most guarantee high privacy and security for
customer data, concerns remain regarding data leakage during
communication and the potential for unauthorized access to
the data, especially as the volume of big data explodes [4].

Numerous research efforts have addressed these security
concerns by utilizing homomorphic encryption (HE) to protect
data integrity and enable computations on encrypted data.
Recent studies [5], [6] have proposed methodologies show-
casing a significant improvement in data security through this
integration. By allowing computations to be performed directly
on encrypted data without compromising its confidentiality,
HE offers a promising solution to data privacy issues.
However, HE also introduces a trade-off, as it increases the
complexity and computational demands of Al algorithms [6].
Balancing security and performance remains an ongoing chal-
lenge in this area.

In this study, we propose a novel approach that combines
matrix transformation techniques with the Cheon-Kim-Kim-
Song (CKKS) algorithm [7] within the Al field. To validate the
correctness and efficiency of the proposed model, we demon-
strate its mathematical convergence and perform simulations
on two representative Al problems: air pollution forecasting
and forest fire detection. By successfully merging techniques
from cryptography and machine learning, this project has the
potential to significantly advance secure machine learning.
We hope that our research will pave the way for the develop-
ment and implementation of HE algorithms in AI models in
the near future. Our contributions are as follows:

1) We propose two hybrid models combining HE and Al

optimized for various real-world problems.

2) We introduce a novel matrix transformation method for
both CKKS algorithms and the weight matrices of the
proposed Al models.

3) We demonstrate the convergence of integrating HE into
Al using the adaptive moment estimation (ADAM) opti-
mization algorithm, which has not been clearly proven
mathematically in previous research.

4) We conduct simulations based on real-world data,
including air pollution forecasting and wildfire detection,
to demonstrate the effectiveness of AI models when
trained on encrypted datasets.
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The remaining parts of the paper are structured as fol-
lows: Section II presents related research, and Section III
covers preliminary knowledge of HE algorithms and neural
networks. Section IV outlines our proposed developments and
implementations. In Section V, we describe the datasets and
evaluation criteria, followed by results for two Al problems.
Lastly, we conclude the paper in Section VI.

II. RELATED WORK

The field of Al is developing extremely rapidly with many
significant advancements. Recent studies in areas such as com-
puter vision and time series forecasting have introduced new
proposals to enhance model productivity and efficiency [8],
[9], [10]. In [11], the authors introduced a method to transform
time series data and partition them based on thresholds to
improve the accuracy of forecasting models. Another example
in the smart grid sector [12] demonstrated that combining
Al models increased accuracy to 98% with real-world data.
In the computer vision field, in [13], the authors introduced
an optimized framework for patient care, showcasing Al’s
practical contributions to human health. Another example of
Al application in signal recognition was presented in [14], also
achieving an accuracy of 98%.

A well-established method for securing data in machine
learning is federated learning [15], [16]. In this approach,
individual clients participate in the training process without
sharing their raw data or a central server. Instead, they
exchange Al models with the server, which aggregates and
updates the models before sending them back to each client.
This technique effectively safeguards sensitive data, ensuring
that personal or proprietary information remains with the
clients and is not exposed during training. As the need for
even greater security has grown, researchers have turned to
more advanced methods. Studies such as [17], [18], and [19]
have introduced secure multi-party computation (SMPC) to
enhance federated learning. SMPC allows multiple parties to
jointly compute a function over their inputs while keeping
those inputs private, thereby defending against side-channel
attacks—a vulnerability in traditional federated learning.

Despite these advancements, a critical challenge remains:
the risk of malicious clients. These rogue participants might
infiltrate the training process to degrade model accuracy or
steal sensitive information from the server. In such cases,
encryption algorithms are essential, offering robust protection
by ensuring that even if a malicious actor gains access to
the process, the encrypted data remains secure and intact.
This convergence of federated learning, SMPC, and encryption
represents the cutting edge of secure Al model training.
However, these advancements come with their own challenges,
particularly in terms of increased model complexity and
computational bottlenecks [20]. To address this, a novel trans-
formation method proposed in [21] converts model weights
into a binary form, significantly reducing the model size
and training time without compromising effectiveness. This
approach presents a highly practical and innovative solution.

Additionally, a major security concern with Al models is
the reliance on servers for training, which necessitates secure
communication protocols to maintain data integrity during

transmission. To further address security concerns, researchers
have developed encryption algorithms combined with Al
Many authors have proposed hybrid models that tackle various
Al-related issues, dividing the encryption process into two
types: encryption during information transmission and recep-
tion, and encryption during model training. In studies such
as [22], [23], and [24], encryption methods were introduced
for the transmission and reception process, preventing external
attacks on information shared between clients and servers. This
ensures that third parties cannot access the data post-training
without the secret key holder’s permission, effectively prevent-
ing the leakage of critical information.

Another promising approach in secure Al training is in-
training encryption, where both the model and data are
encrypted throughout the training process. This method relies
on third-party cloud platforms with substantial storage capac-
ity to handle the encrypted data. While involving a third
party raises privacy concerns, advancements in SMPC pro-
vide promising solutions to these issues. Researchers have
begun exploring the possibility of training Al models directly
on encrypted datasets, an area of research that has shown
significant potential. The study in 2019 [25] introduced a
partial machine learning model that operates on encrypted
data, integrated with SMPC. This model specifically addressed
a critical limitation of many encryption schemes: the inability
to perform the final thresholding operation used for classifi-
cation. The authors proposed an innovative training method
designed to protect selected sensitive features from leaking,
adversarially optimizing the network to defend against an
adversary attempting to identify these features. However, the
model’s application was limited to the MNIST dataset, and its
effectiveness with more complex, real-world data remains to
be fully validated.

Further advancements in this area were showcased in the
study [26], where they introduced an approximate model
capable of performing effectively in image recognition tasks,
even when operating on encrypted data. This model represents
a significant step forward, as it demonstrates that robust image
classification can still be achieved without compromising
data security. Building on this foundation, authors in [27]
extended these innovative techniques to the realm of audio
signal processing. Their work achieved an impressive accu-
racy, with an error deviation of only around 1% compared to
traditional methods that do not employ HE. This achievement
highlights the potential of HE to maintain high levels of perfor-
mance across different types of data, reinforcing its versatility
and effectiveness in securely handling sensitive information.
Despite these successes, the use of HE algorithms introduces
a notable challenge: a substantial increase in computation
time. The encryption process significantly enlarges the dataset,
which in turn leads to considerable delays and increased
resource demands. This computational overhead remains a
critical obstacle, as it can hinder the practical deployment of
HE in real-world applications where speed and efficiency are
paramount. As the field continues to evolve, finding ways to
mitigate these performance bottlenecks will be essential for the
broader adoption of HE-based solutions in secure Al model
training. Moreover, despite ongoing research, there remains a
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gap in establishing theoretical guarantees for the convergence
of some of these models. This lack of formal proof makes it
challenging to definitively validate their effectiveness, partic-
ularly as they scale to more complex and varied datasets.

In response to these challenges, our study aims to advance
the field by demonstrating the effectiveness of combining a
specific HE scheme, the CKKS scheme, with AI models across
various scenarios. Our objectives are threefold: (1) to minimize
the time and space complexity of these algorithms through the
use of matrix transformations, (2) to mathematically prove the
convergence of Al algorithms within the encrypted domain,
and (3) to validate these theoretical proofs through rigorous
experiments on two different real-world datasets.

III. PRELIMINARIES
A. Homomorphic Encryption

Homomorphic encryption was first proposed by Craig Gen-
try in 2009 [28], allowing operations to be performed on
encrypted data. Let’s denote the encryption function as Enc(-)
and the decryption function as Dec(-). For a plaintext message
m, the encryption results in a ciphertext ¢ = Enc(m).
A key feature of HE is that it supports specific operations on
ciphertexts which correspond to operations on the plaintexts.
For example, if we can perform addition on the encrypted data,
it will correspond to addition on the plaintext data. Similarly,
multiplication on ciphertexts corresponds to multiplication on
plaintexts. This means that computations can be carried out
on encrypted data without decrypting it first.

The CKKS algorithm [7] is a specific HE scheme designed
for approximate arithmetic on real numbers. In CKKS, a plain-
text message m (which is a vector of real numbers) is
encrypted to produce ciphertext ¢ = Enc(m). The decryption
process approximately recovers the original message, m ~
Dec(c).

CKKS supports both addition and multiplication of
encrypted data. For plaintext vectors m; and mj, with their
corresponding ciphertexts ¢; = Enc(m) and ¢, = Enc(m,),
the following operations are supported:

« Addition:

Dec(ci + ¢2) ® m1 +m2 )
o Multiplication:

Dec(cy - ¢2) ® my - my 2

CKKS uses polynomial approximations to represent real
numbers, allowing efficient operations. It introduces a scal-
ing factor to maintain precision. Specifically, for a plaintext
message m scaled by a factor A, the encrypted message
is ¢ = Enc(m - A). During homomorphic operations, the
ciphertexts are scaled accordingly, and after decryption, the
resulting plaintext is divided by the scaling factor to retrieve
the approximate result. For example, the product of two
plaintext messages is approximately recovered by dividing the
decrypted ciphertext by the scaling factor:

- Dec(cq - ¢7)

mp-my N —— 3)

where A is typically chosen from 240 to 2%0. This range
is selected to balance precision and efficiency. A larger A
improves the precision of the approximate equality by reducing
the relative error introduced during encryption and decryption.
However, it also increases computational complexity and stor-
age requirements.

B. Neural Networks

Neural networks (NNs), conceived by Warren McCullough
and Walter Pitts in 1943 [29], emulate the organization and
functioning of the human brain, serving as a foundational pillar
of machine learning. Composed of interconnected nodes (neu-
rons), these networks analyze input data to discern patterns
crucial for predictions and data classification across diverse
domains like image recognition, natural language processing,
and time series forecasting. A typical NN structure comprises
an input layer, one or more hidden layers, and an output layer,
with neurons within each layer processing inputs through
weighted sums, biases, and activation functions. Through
iterative training, where weights and biases are adjusted based
on prediction errors, NNs optimize their predictive capabilities,
embodying a dynamic tool for data analysis and prediction in
numerous applications.

1) Feedforward Neural Network: In a feedforward neural
network, information moves in one direction: from the input
layer, through the hidden layers, to the output layer. The output
of each neuron is given by z; = Z;'-=] 0;ijx; + b;, where z; is
the input to the activation function of the i-th neuron, 6;; is the
weight between the j-th input and the i-th neuron, x; is the
j-th input, and b; is the bias of the i-th neuron.

The activation function o applies non-linearity to the neu-
ron’s output: a; = o (z;).

2) Backpropagation: During training, the neural network
uses backpropagation to minimize the error between predicted
and actual outputs. The error (loss) is calculated using a loss
function L, such as mean squared error (MSE) for regression
tasks:

1< 2
Ly, 9=~ ;m 3 @)
where y; is the actual value and y; is the predicted value.
The network updates its weights 6;; and biases b; by
computing the gradients of the loss function with respect to
each weight and bias. The updates are performed using an
optimization algorithm:

oL
9,']' (_eij_a@ (5)
and
b; < b; — aa—L (6)
ab;
where « is the learning rate, controlling the size of the update
steps.

Through multiple iterations of forward passes and backprop-
agation, the neural network learns the optimal weights and
biases that minimize the loss function, enabling it to make
accurate predictions on new dataset.
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Fig. 1. Detailed architecture of the proposed system.

IV. PROPOSED SECURE Al MODELS

A. Matrix Transformer

In examining a small example of both algorithms (CKKS
and NNs), we observe the following: the time complexity
of a neural network is primarily influenced by factors such
as the number of layers, the quantity of neurons within
each layer, and the computational tasks conducted during
both the forward and backward passes. For the forward pass,
the complexity for one layer is O(n - m), where n is the
number of inputs and m is the number of neurons in the
layer. For a network with L layers, the overall complexity
of the forward pass is O (Zle n; - m,-). The backward pass,
which involves backpropagation, has a similar complexity.
Hence, the total time complexity for training a neural network
over E epochs is O (E - Z mi). On the other hand,
the CKKS scheme involves polynomial arithmetic and FFT
operations. The encryption and decryption processes have
a time complexity of O(NlogN), where N is the degree
of the polynomial. Homomorphic addition is efficient with
O(N) complexity, while homomorphic multiplication, involv-
ing polynomial multiplication and scaling, has a complexity of
O(N log N). Additionally, the main factor leading to this is the
matrix multiplication operations in the algorithms. Therefore,
we propose transforming real-number matrices into matrices
whose coefficients only include {—1, 0, 1}, whereby matrix
multiplications are simplified into coefficient-wise additions.

Let us consider two matrices (A(n - m) and B(m - p)).
In the typical case (FP16, commonly used by programming
languages like Python or C), we need to apply matrix multi-
plication formulas, resulting in a matrix C with elements C; ;
calculated by (7):

=17

)

m
Cij = D aik - by
k=1

where 1 <i <n,1 < j < p. Therefore, the time complexity
of the matrix multiplication operation would be O(n - m - p).

Encrypted Result

A
Private Key

Algorithm 1 Matrix Transformer

Input: Weight matrix 6 of size n - m
Output: Quantized weight matrix 6y and dequantized

weight matrix Gapprox
1 Compute average absolute value y = - > . 16;j]
2 /* Quantization Function */
3fori < 1tondo
4

~1,1)
end for
end for

for j < 1tomdo
5 0¢li, j1 < RoundClip (0[l /1

6

7

8 /+x Dequantization Function =*/
9fori < 1tondo

y+e’
10 for j < 1tomdo

n ‘ Oapproxli, j1 < O¢li, j1- (v +¢€)
12 end for
13 end for

14 return 0, Oxpprox

In this paper, we introduce a novel approach designed to
improve the efficiency of matrix multiplication in terms of
both time and space utilization, as outlined in Algorithm 1
with a small positive error € to avoid division by zero. Our
method entails converting matrix weights into a {—1, 0, 1}
format using a quantization function, similar to the technique
proposed in [21]. Subsequently, the multiplication operations
involving weighted matrices are simplified into polynomial
additions, leading to a significant reduction in computational
overhead, resulting in a notable reduction in computational
overhead and time complexity is reduced to O(n - m).

B. Proposed Secure Neural Networks

The proposed system is fundamentally based on the inte-
gration of HE and Al, as detailed in Algorithm 2, with
its structural visualization depicted in Fig. 1. This crypto-
graphic technique enables arithmetic operations on ciphertexts,
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Algorithm 2 Proposed Training Process

Input: Training data D, number of iterations 7, number
of layers L, number of heads H, sequence length
S, dropout rate, learning rate «

Output: Trained model weights 6,

1 Initialize training iterations 7', number of layers L,
number of heads H, original data D, sequence length S,
dropout rate, learning rate «.

2 Initialize model weights 6 (including embedding matrix
0, and transformer weights).

3 /* Encrypt model weights and data =*/

4 O.nc < Enc(d)

5 Dene < Enc(D)

6 /+* Start training =/

7fori=1toT do

8

9

for each batch X.,. in encrypted data D.,. do
Eenc < HMUlt(eenc» 66)
10 Eone < encoding(E;nc)
11 for /=1 to Ldo
12 for h = 1 to H do
13 0, K,V <« split_heads(E.,.)
14 0,K,V <« binarize(Q,K,V)
15 Aene < Approximate Active Function
16 Aene < dropout(Acpe)
17 Oh.enc < HMUlt(A,,c, V)
18 end for
19 Oenc <~ Concat([Ol,enCa ceey OH,enc])
20 Oene < linear_transformation(O.,.)
21 Eene < add_and_norm(E...c, Ocnc)
22 F,,. < feed_forward(E,,.)
23 F,,. < binarize(F,,.)
24 E... < add_and_norm(E..c, Fenc)
25 end for
26 /* Output =*/
27 outpute,. < linear_transformation(E,;.)
28 predicted <— outpute,.
29 loss < compute_loss(predicted, actual)
30 gradients < backpropagate(loss)
31 /+ Update weights in encrypted
domain */
32 Oone < Oene — @ % gradients
33 end for
34 end for

35 return 6,

generating encrypted outcomes that align with results obtained
from operations on plaintexts once decrypted. Such a property
guarantees the confidentiality of data throughout the training
process. Furthermore, the utilization of a matrix transformer
aids in minimizing computational and memory requirements
by binarizing specific operations.

1) Initialization: The training process begins with the ini-
tialization of the model parameters. This includes setting the
number of training iterations 7', the number of transformer
layers L, the number of attention heads H, the original data
D, the sequence length S, the dropout rate, and the learning

rate . The model weights, including the embedding matrix
0, and transformer weights, are initialized and subsequently
encrypted using CKKS scheme, resulting in encrypted model
weights ,,.. Similarly, the training data D and labels Y are
encrypted to produce D, and Y.

2) Training Process: In the proposed training process, the
input batch X, undergoes an embedding operation where it
is multiplied with the encrypted embedding matrix 6,. This
HE-based multiplication preserves the confidentiality of the
input data while allowing the model to learn representations.
Additionally, positional encoding is incorporated into the
embedded input to capture sequence information, which is
crucial for tasks involving sequential data.

Each transformer layer within the model architecture con-
sists of a multi-head attention mechanism followed by a
feed-forward network. In the multi-head attention component,
computations are performed on the query (Q), key (K), and
value (V) matrices, which are binarized to enhance com-
putational efficiency. Attention scores are calculated using a
ninth-degree polynomial approximation of the activation func-
tion, which is clearly defined in our previous research [27],
ensuring compatibility with HE. Dropout is applied to the
attention scores, maintaining the security of the mechanism
even under encryption constraints. The resulting scores are
then utilized to compute the output of each attention head,
which is concatenated and subjected to linear transformation.
Addition and normalization operations are employed to sta-
bilize the learning process. Subsequently, the feed-forward
network further processes the output, followed by bina-
rization and another round of addition and normalization
operations operation, enhancing the model’s representation
capabilities.

The final output of the model is generated through a linear
transformation of the processed embeddings. To assess the
model’s performance, the output is decrypted to compare it
with the actual values. In the encrypted domain, a polyno-
mial approximation serves as the activation function, ensuring
compatibility with HE. The loss is computed by comparing
the decrypted predictions with the actual labels. This loss
guides the backpropagation process, facilitating the refinement
of model parameters. Furthermore, during backpropagation,
gradients are computed on the encrypted data. These gradients
are then used to update the encrypted model weights, ensuring
that the weights remain confidential and secure throughout
the training process. The weight update rule is defined as
Oenc < Benc — o - gradients, where o represents the learning
rate.

C. Model Convergence Proof

In this paper, we use the ADAM algorithm [30] as the
optimizer for the proposed models. ADAM maintains two
moving averages of the gradients: the first moment (mean) and
the second moment (uncentered variance). The update rules for
ADAM are as follows:

« Compute gradients:

& = VL(6) ®)
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« Update biased first-moment estimate:

my = Bim_1+ 1 - Beg )

« Update biased second-moment estimate:

v = Povi—1 + (1= B2)g; (10)
« Compute bias-corrected first-moment estimate:
A m;
my = ——— (11)
t 1 _ ‘Bi
« Compute bias-corrected second-moment estimate:
~ Ut
V= —— (12)
t 1— ‘Bé
« Update parameters:
Bt = 6 — a it (13)

Vo

Now, to prove the model convergence with the ADAM
optimizer, we first introduce the convex function:

Lemma 1 (Convex Function): Let f : R" — R be a
differentiable function. If and only if f satisfies the inequality:

FO) = f)+V O (v —x)

for all x, y € R”, then f is convex.
Proof: For the forward implication, if f is convex, then
we have the definition [31]:

JFAy+d=Mx) =Af()+UA =N f(x)
< g = fQAy+ 0 =Mx)
—AfM) -0 =Nf(x)<0
for all x, y, and A € [0, 1]. Therefore,

{0 = Jim 252 <0
SVIfWG—x)— fO)+ f(x) <0
&S )=V )0 —x) + f(x).

For the backward implication, if

FO) =V —x) + fx)

then we now consider z = Ax+ (1 —\)y. We have 2 following
inequalities:

f=Vif@0o -2+ f
S fO = AV @O —x)+ fOx+ 0= Ny)
and
fO) =V -2+ f2)
S ) =0 =MV f@Qx—y)+ fFOx+ A= Ny)

Multiplying the first inequality by 1 — A, the second one by
A, and adding them we get:

A=NfM+Af) = fAx+ A =N)y)

which shows that f is convex. (I
We then recap the loss function definition:

Definition 1: Let 0* := argminge, >.._, L,(6) with x as
the set of & which will occur in the ADAM algorithm. The
loss is then defined as:

T

L(T) := > (Li(6) — Li(8%))

t=1

Now, we need to prove that the loss converges with the
timestamp 7', and once this proof is completed, our task will
be accomplished.

Theorem 1: The loss function can be approximated in the
HE domain as:

hp1HZ,G
2a(1 - B1)

hHZ./Tor N
20(1 = 1)
ahﬁl t 1,i

2(1 — B Z (= Dby

T

L(T) =

m

2(1 - ,31) z ./tv,,

where, g; be bounded with ||g]l2 < G and | gtllec < Goos
a > ap, [|0h — Oul2 < H and |6, — Onllec < Hoo with
nme{l,..., T}

Proof: From (9), (11), and (13), we can express the update
function as:

v

Vi

0, — a,(ﬂl’tmt_l + 1 - ﬁl,t)gt)
(1= BV

The convex differentiable of L(6) can be written follow
lemma 1:

Ory1 =0; —

Li(6%) > L, (6,) + gl (0" —6))
& Li(B) — L(0%) < gl 6, — 0%

Let us consider the i-th coefficient of weight set in R”:

n’tl .
Ori1,i — 05 =6, — 0% — ;
t,i
& Or1.i — 09> = (Ori — 05> = 2(601 — 05y
Vi
I’IA’l .
+af (=)
Ui
Multiply both sides by (zla fl) ﬁ~1 ) , we have:
(1 —ﬂi)\/ﬁ,,,»(e g — BV O — 0%)?
2ar(1—Br) 0T T 2 (T By
— 26, — %)y
Ui

m;
rad( )
t,i
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From this equation, (9), (11), and simplify it, we have: Using Cauchy-Schwarz inequality for two numbers, we have:
@ 9*) o) < P | Vi@ =0 Py
8t,ibri — U =
T (I —B1.1) 20t 2./13_1'
U= BV (g, g0 — @i — 09 <n/a—pn o
20{[(1 — ﬁl t) t,i Ri t+1,i Ri =(P1 1
Add both term of the inequality with (c), and apply the
(a) : t .
constrain (1 — g}) < 1:
+ imt—l (0,1 — 6%)
A=pry B (o < P | Vi@ =0 O, ey,
C) =
b) (I —B1,0) 201 2,/13,_1,,-
AN ( sy i )2 il
2(1 - ,31,t) ﬁt,i 2(1 - .31 t)\/ Uti
(© - Biv/0r—1,i (07 — 9t,i) Bro—1m?_ Li
- 20(1 — By) 2(1 — B0
For each term (a), (b), and (c¢), we consider the coefficient in \ﬂlt_“/
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From @, @, and @, theorem 1 is proven:

2 SN 2
LT < hHZ \/Tor ; + hB1HS G
201 = B1)  2a(1 —B1)
Olhﬂ] Al 1,i

T
2(1 - B ; V=Dt

T

2,

RET < N

(]

With the mentioned constraints, we need to prove that the

loss function converges within the time domain. Since 7' > 0,
we have the following equation:

lim E( ) hHZ /T

. [ hB1H3,G oo
lim
T—>00 T T >o00 | 2/T O[(l - B1)

2Ta(l = p1)

t—lt

ahpi
A= gy Z < i Do

T I’}A12
Tara —ﬁ1) ; ,Fv,,]

As the denominators of each term grow faster than their
respective numerators, and under the assumption that the
sums in the third and fourth terms remain bounded, all terms
approach zero, leading to the convergence of the loss function
to zero:

lim ﬂ:O

14
T—>o00 T (14

V. RESULT AND DISCUSSION
A. Data Preparation and Evaluation Metrics

1) Data Preparation: In this study, we conducted a compre-
hensive evaluation of a proposed transformation methodology
by applying it to two significant Al problems: time series
forecasting for air pollution and image recognition for forest
fire detection. The air pollution dataset [32] was collected
hourly over five years at the US embassy in Beijing,
China. It includes meteorological data (temperature, humidity,
wind speed, atmospheric pressure), pollutant concentrations
(PM2.5), and temporal information (date and time stamps).
The objective was to assess the impact of these features on air
pollution levels. We divided the dataset into 80% for training
and 20% for testing.

The forest fire dataset [33] comprised 2388 images labeled
“fire” and ‘“no fire”, collected from real forests using
drones in 2020. These images varied in size and resolution,
capturing diverse environmental conditions and maintaining
high-resolution details necessary for accurate fire detection.
To process this dataset, we employed a vision transformer
(ViT) model, known for its effectiveness in image recognition
tasks. We also integrated CKKS to ensure data privacy, which
is crucial for real-world applications. This combination of
ViT and CKKS provides a robust foundation for developing
advanced forest fire detection systems, enhancing model accu-
racy while protecting sensitive data.

=R2 ® MAE (pg/m?®) m RMSE (kg/m?) m MAPE (%)

Three-
bit
CKKS

Two-bit
CKKS

Multi
LSTM
CKKS

Multi
LSTM

Normal
LSTM 26.259

27.735

Fig. 2. Performance evaluation metrics for five different air pollution
forecasting models.

2) Evaluation Metrics: We use 4 metrics to assess air pollu-
tion forecasting models. Mean absolute error (MAE) and root
mean square error (RMSE) measure the difference between
predicted and actual pollution levels, while mean absolute
percentage error (MAPE) reveals the model’s bias. R-squared
(R2) quantifies the variance explained by the model [34]. For
forest fire detection, precision, recall, F1 score, and accu-
racy score [35] evaluate model performance, with precision
measuring correct predictions, recall identifying actual fire
instances, and F1 score balancing both. Additional ROC curve
and confusion matrix assess detection system effectiveness and
spatial agreement.

B. Air Pollution Forecasting

We explore forecasting air pollution by comparing outcomes
across five distinct models. The initial model employs an
LSTM framework with 64 units, predicting solely based on
past air pollution data points, disregarding other features,
and serving as the baseline assessment. Following is a mul-
tivariate LSTM model, featuring 128 units, which accounts
for all specified dataset features. The third model integrates
the multivariate LSTM with the CKKS algorithm, configured
with a modulus degree of 8192 and 160 coefficient bits. The
fourth model, a novel proposal, evolves from the multivariate
LSTM and CKKS model merged with the matrix transformer
algorithm, with weight matrix quantization within the range of
{—1, 1}, named two-bit CKKS. Similarly, the fifth model, now
named three-bit CKKS, applies weight matrix quantization
within the range of {—1, 0, 1}. Parameters selected for models
4 and 5 align respectively with those of models 2 and 3. The
training epoch for these forecasting models is set to 100, and
the early-stopping technique is also employed to minimize
processing time.

In Fig. 2, we observe differences between utilizing features
compared to using a basic LSTM network. Moreover, tran-
sitioning the network to the encrypted domain has enhanced
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Fig. 3.

TABLE I
PERFORMANCE COMPARISON BETWEEN VARIOUS MODELS

Model Name Precision  Recall ~ F1-Score  Accuracy
ViT 0.9879 0.9899 0.9889 0.9889
ViT CKKS 0.9798 0.9838 0.9818 0.9818
Two-bit CKKS 0.9819 0.9838 0.9828 0.9829
Three-bit CKKS 0.9899 0.9879 0.9889 0.9889

security for the Al model, albeit with a trade-off as accuracy
is slightly diminished, specifically seen in the MAPE index
increasing from 8.633% to 8.945%. Similarly, employing a
matrix transformer also escalates the MAPE index to 10.961%.
However, across other metrics such as R2, MAE, or RMSE,
we notice minimal changes. Notably, the R2 score of the
three-bit CKKS model reaches 0.996, indicating an excep-
tional fit of the model to the data, capturing almost all
patterns and relationships within the dataset, resulting in highly
precise predictions. Switching to visualization, as depicted in
Fig. 3, we can clearly observe the accuracy of the proposed
models. Among them, the three-bit CKKS model demonstrates
remarkable adherence to the air pollution trend line.

C. Forest Fire Detection

For the forest fire detection task, we opted for the ViT
model as our baseline for benchmarking against our novel
composite architectures. The second model in consideration
integrates ViT with CKKS encryption, featuring parameters
(8192, 160). Our proposed innovations, namely two-bit CKKS
and three-bit CKKS, are derived through the application of
the matrix transformer algorithm outlined in Section IV. The
training epoch for these detection models is fixed at 100, and
the early-stopping technique is used to reduce processing time.

Upon analyzing Table I, Table III, Fig. 4, and Fig. 5,
a nuanced understanding of each model’s problem-solving
prowess emerges. While the fundamental ViT model demon-
strates superior accuracy metrics, this advantage comes at
the expense of the enhanced security features offered by our
proposed models. Moreover, the marginal declines in accuracy
metrics such as precision, recall, F1, and overall accuracy are
virtually negligible, all registering below the 1% threshold.

Visualization of forecasting results from five different models for air pollution forecasting.
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Fig. 4. Confusion matrix of (a) ViT model, (b) ViT CKKS model, (c) Two-bit
CKKS model, and (d) Three-bit CKKS model.
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Visualization of ROC curves for various models for forest fire

Delving deeper, the transformative approach to the matrix
not only amplifies accuracy but also yields substantial
reductions in training duration and model dimensions when
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TABLE II
PERFORMANCE COMPARISON BETWEEN VARIOUS WORKS
Model Dataset ' Data‘ Acceler‘atlon Best Accuracy Time
Dimension Technique Accuracy (%) Gap (%) per Epoch (s)
DCT-CryptoNets ) Discrete Cosine
CIFAR-10 16x16 91.6 1.0-25 565
ResNet-20 [36] x Transform
LeNet-5 MNIST 32%32 None 95.0 ; 1515.13
OpenFHE [37]
LeNet-5 MNIST 32x32 Hardware 93.0 . 63.20
Lancelot [37] Acceleration
ReL Audi
ReLU udio Signal None 95.5 02-1 701
approximation [27] MNIST
Two-Bit Forest Fire | 4057x3155 Matrix 983 <0.6 21.6
Transformer
. . Matrix
Three-Bit Forest Fire | 4057x3155 98.9 <0.1 31.8
Transformer
Fire NoFire NoFire Fire Fire . . .
(Score: 0.99)  (Score: 0.98)  (Score: 0.98 g_core: 0.99)  (Score: 0.99) striking example of how hardware acceleration can dramati-
cally influence performance. OpenFHE’s LeNet-5, which lacks
> - any form of hardware acceleration, achieves a higher accuracy
‘ & of 95.0% but at a considerable computational cost, requiring
. : 4 L SR 1515.13 seconds per epoch. On the other hand, Lancelot’s
Fire NoFire Fire NoFire Fire . . . . .
Score: 0.99) LeNet-5, which incorporates hardware acceleration, signifi-

(Score: 0.98)  (Score: 0.99)

Score: 0.97 iScore: 0.99)

Fig. 6. Forest fire detection results of the three-bit model.

juxtaposed with the ViT CKKS algorithm. This noteworthy
aspect will be elaborated upon in subsequent sections, eluci-
dating the multifaceted benefits of our innovative approach.
Furthermore, Fig. 6 illustrates the consistently high detection
accuracy of the three-bit CKKS model across 10 randomly
selected images.

D. Performance Comparison Between Several Works

The performance comparison in Table II provides a com-
prehensive analysis of how various models and techniques
perform in terms of accuracy and computational efficiency,
with datasets ranging from widely used benchmarks like
CIFAR-10 and MNIST to more specialized domains such
as forest fire detection. This comparison reveals impor-
tant insights into how different acceleration techniques and
encryption methods affect the trade-off between accuracy and
processing time.

The DCT-CryptoNets ResNet-20 model [36] performs well
on the CIFAR-10 dataset, achieving a best accuracy of 91.6%.
However, this model comes with a significant computational
cost, requiring 565 seconds per epoch. This highlights a
notable trade-off between maintaining high accuracy and com-
putational overhead, particularly when employing the discrete
cosine transform (DCT) for encryption acceleration. While the
accuracy is commendable, the relatively long time per epoch
makes this approach less suitable for real-time or resource-
constrained environments.

On the other hand, the LeNet-5 models (OpenFHE and
Lancelot) [37], applied to the MNIST dataset, provide a

cantly reduces the time per epoch to just 63.20 seconds.
However, this comes with a slight decrease in accuracy,
dropping to 93.0%. This result highlights the efficiency gains
possible with hardware acceleration, although it necessitates a
small trade-off in accuracy.

The ReL.U approximation model [27], applied to the audio
MNIST dataset, achieves a strong accuracy of 95.5%, demon-
strating its effectiveness for signal-based datasets. However,
it also exhibits a high time per epoch of 701 seconds, reflecting
the computational complexity associated with approximating
non-linear activation functions in encrypted environments.
While the model delivers competitive accuracy, its time
demands may limit its applicability in scenarios requiring
faster inference.

The Two-Bit and Three-Bit models, both utilizing matrix
transformer acceleration and applied to the forest fire dataset,
represent the highest-performing approaches in this compari-
son. The Two-Bit model achieves the best accuracy of 98.3%,
while the Three-Bit model reaches an even higher accuracy
of 98.9%. The Two-Bit model, for instance, completes an
epoch in 21.6 seconds, making it the fastest model in this
comparison.

A key contribution of this work is the introduction of
the accuracy gap metric, which offers a new perspective
on the impact of encryption algorithms on model perfor-
mance. The accuracy gap measures the difference in accuracy
between models using encryption techniques and their base
versions without encryption. This metric is critical for assess-
ing the trade-offs between maintaining model accuracy and
incorporating encryption for data security. For example, the
DCT-CryptoNets ResNet-20 model shows an accuracy gap of
1.0% to 2.5%, indicating a modest reduction in accuracy due
to the encryption overhead introduced by the Discrete Cosine
Transform. Despite this, the relatively small gap implies
that the encryption method effectively preserves most of the
model’s accuracy.
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TABLE III
PERFORMANCE EVALUATION OF Al MODELS IN AIR POLLUTION FORECASTING AND FOREST FIRE DETECTION

Evaluation Air Pollution Forecasting Forest Fire Detection
Metric Multi LSTM  Two-bit  Three-bit Two-bit  Three-bit
Multi LSTM Normal ViT  ViT CKKS
CKKS CKKS CKKS CKKS CKKS

Training time

0.48 121.9 1.21 2.13 13.2 541.1 21.6 31.8
per epoch (s)
Memory

12,480 1,241,061 15,033 16,055 370,159 12,281,154 241,401 489,410

storage (Bytes)

In contrast, the Two-Bit and Three-Bit models, applied to
the forest fire dataset, exhibit much smaller accuracy gaps of
less than 0.6% and less than 0.1%, respectively. These findings
demonstrate that when encryption is combined with efficient
acceleration techniques such as matrix transformers, its impact
on performance is minimal, allowing the models to maintain
high accuracy while benefiting from encryption.

E. Training Time and Memory Storage Considerations

Table III showcases significant variations in training time
and memory storage among different models for both air
pollution forecasting and forest fire detection tasks. In air
pollution forecasting, the Multi LSTM CKKS model notably
increases training time from 0.48 seconds for the traditional
Multi LSTM to 121.9 seconds. However, its memory storage
requirement sharply rises from 12,480 bytes to 1,241,061
bytes, highlighting the computational overhead introduced
by cryptographic techniques. Conversely, the two-bit CKKS
and three-bit CKKS models exhibit reduced training times,
at 1.21 seconds and 2.13 seconds, respectively, while main-
taining relatively low memory storage needs of 15,033 bytes
and 16,055 bytes. Similarly, in forest fire detection, integrating
CKKS encryption escalates both training time and memory
storage requirements. For instance, the ViT CKKS model’s
training time increases significantly from 13.2 seconds to
541.1 seconds, with a substantial rise in memory storage from
370,159 bytes to 12,281,154 bytes. In contrast, the two-bit
CKKS and three-bit CKKS models demonstrate competitive
training times of 21.6 seconds and 31.8 seconds, respectively,
with modest memory storage needs of 241,401 bytes and
489,410 bytes.

Through evaluations of models’ accuracy and resource
consumption via simulations, we successfully demonstrate the
convergence of the proposed model and assert the mathemati-
cal basis of this proof. Furthermore, we prove the effectiveness
of the matrix transformation method in reducing model size.
We affirm the performance of combining AI algorithms,
HE techniques, and matrix transformers in two tasks: time
series forecasting and image detection.

VI. CONCLUSION

This paper presents a novel approach to address the critical
challenges of data security and computational efficiency in
Al models by integrating HE. Through the development of
two hybrid models optimized for real-world applications and

the introduction of a novel matrix transformation method
compatible with both HE algorithms and Al weight matrices,
we offer a robust solution. Furthermore, the establishment
of a mathematical proof of convergence for integrating HE
with the ADAM optimization algorithm fills a significant gap
in existing literature. Our evaluations on established datasets
related to air pollution forecasting and wildfire detection
demonstrate the effectiveness and practicality of training on
encrypted data, achieving high performance while maintaining
data privacy. These contributions signify a substantial advance-
ment in enhancing the security, efficiency, and reliability of
Al models in sensitive data environments, offering promising
avenues for future research and application in privacy-sensitive
domains, such as healthcare and finance.
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